101
|
Wu T, Zhu J, Strickland A, Ko KW, Sasaki Y, Dingwall CB, Yamada Y, Figley MD, Mao X, Neiner A, Bloom AJ, DiAntonio A, Milbrandt J. Neurotoxins subvert the allosteric activation mechanism of SARM1 to induce neuronal loss. Cell Rep 2021; 37:109872. [PMID: 34686345 PMCID: PMC8638332 DOI: 10.1016/j.celrep.2021.109872] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/06/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022] Open
Abstract
SARM1 is an inducible TIR-domain NAD+ hydrolase that mediates pathological axon degeneration. SARM1 is activated by an increased ratio of NMN to NAD+, which competes for binding to an allosteric activating site. When NMN binds, the TIR domain is released from autoinhibition, activating its NAD+ hydrolase activity. The discovery of this allosteric activating site led us to hypothesize that other NAD+-related metabolites might activate SARM1. Here, we show the nicotinamide analog 3-acetylpyridine (3-AP), first identified as a neurotoxin in the 1940s, is converted to 3-APMN, which activates SARM1 and induces SARM1-dependent NAD+ depletion, axon degeneration, and neuronal death. In mice, systemic treatment with 3-AP causes rapid SARM1-dependent death, while local application to the peripheral nerve induces SARM1-dependent axon degeneration. We identify 2-aminopyridine as another SARM1-dependent neurotoxin. These findings identify SARM1 as a candidate mediator of environmental neurotoxicity and suggest that SARM1 agonists could be developed into selective agents for neurolytic therapy.
Collapse
Affiliation(s)
- Tong Wu
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jian Zhu
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine in Saint Louis, St. Louis, MO 63114, USA
| | - Amy Strickland
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA
| | - Kwang Woo Ko
- Department of Developmental Biology, Washington University Medical School, St. Louis, MO 63110, USA
| | - Yo Sasaki
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA
| | - Caitlin B Dingwall
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA
| | - Yurie Yamada
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA
| | - Matthew D Figley
- Department of Developmental Biology, Washington University Medical School, St. Louis, MO 63110, USA
| | - Xianrong Mao
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA
| | - Alicia Neiner
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA
| | - A Joseph Bloom
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine in Saint Louis, St. Louis, MO 63114, USA
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University Medical School, St. Louis, MO 63110, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine in Saint Louis, St. Louis, MO 63114, USA.
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine in Saint Louis, St. Louis, MO 63114, USA.
| |
Collapse
|
102
|
Cheng XS, Shi FX, Zhao KP, Lin W, Li XY, Zhang J, Bu YY, Zhu R, Li XH, Duan DX, Ji XY, Wei JS, Wang JZ, Du J, Zhou XW. Nmnat2 attenuates amyloidogenesis and up-regulates ADAM10 in AMPK activity-dependent manner. Aging (Albany NY) 2021; 13:23620-23636. [PMID: 34644262 PMCID: PMC8580354 DOI: 10.18632/aging.203634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/03/2021] [Indexed: 12/16/2022]
Abstract
Amyloid-β (Aβ) accumulating is considered as a causative factor for formation of senile plaque in Alzheimer’s disease (AD), but its mechanism is still elusive. The Nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2), a key redox cofactor for energy metabolism, is reduced in AD. Accumulative evidence has shown that the decrease of α-secretase activity, a disintegrin and metalloprotease domain 10 (ADAM10), is responsible for the increase of Aβ productions in AD patient’s brain. Here, we observe that the activity of α-secretase ADAM10 and levels of Nmnat2 are significantly decreased, meanwhile there is a simultaneous elevation of Aβ in Tg2576 mice. Over-expression of Nmnat2 increases the mRNA expression of α-secretase ADAM10 and its activity and inhibits Aβ production in N2a/APPswe cells, which can be abolished by Compound C, an AMPK antagonist, suggesting that AMPK is involved in over-expression of Nmnat2 against Aβ production. The further assays demonstrate that Nmnat2 activates AMPK by up-regulating the ratio of NAD+/NADH, moreover AMPK agonist AICAR can also increase ADAM10 activity and reduces Aβ1-40/1-42. Taken together, Nmnat2 suppresses Aβ production and up-regulates ADAM10 in AMPK activity-dependent manner, suggesting that Nmnat2 may serve as a new potential target in arresting AD.
Collapse
Affiliation(s)
- Xiang-Shu Cheng
- Department of Neurology, Translational Medicine Center, Huaihe Hospital Affiliated to Henan University, Kaifeng 475000, Henan, China.,Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Brain Research Laboratory, Henan University, Kaifeng 475004, Henan, China
| | - Fang-Xiao Shi
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Kun-Peng Zhao
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Department of Psychiatry, Henan Key Lab of Biological Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, Henan, China
| | - Wang Lin
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiao-Ying Li
- Department of Neurology, Translational Medicine Center, Huaihe Hospital Affiliated to Henan University, Kaifeng 475000, Henan, China
| | - Jun Zhang
- Department of Neurology, Translational Medicine Center, Huaihe Hospital Affiliated to Henan University, Kaifeng 475000, Henan, China
| | - Yao-Yao Bu
- Department of Neurology, Translational Medicine Center, Huaihe Hospital Affiliated to Henan University, Kaifeng 475000, Henan, China
| | - Rui Zhu
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiao-Hong Li
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Dong-Xiao Duan
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Department of Physiology, Basic Medical College, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xin-Ying Ji
- Department of Microbiology, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Jian-She Wei
- Brain Research Laboratory, Henan University, Kaifeng 475004, Henan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jin Du
- Department of Neurology, Translational Medicine Center, Huaihe Hospital Affiliated to Henan University, Kaifeng 475000, Henan, China.,Department of Respiratory, Huaihe Hospital Affiliated to Henan University, Kaifeng 475000, Henan, China.,Brain Research Laboratory, Henan University, Kaifeng 475004, Henan, China
| | - Xin-Wen Zhou
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
103
|
Arthur-Farraj P, Coleman MP. Lessons from Injury: How Nerve Injury Studies Reveal Basic Biological Mechanisms and Therapeutic Opportunities for Peripheral Nerve Diseases. Neurotherapeutics 2021; 18:2200-2221. [PMID: 34595734 PMCID: PMC8804151 DOI: 10.1007/s13311-021-01125-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
Since Waller and Cajal in the nineteenth and early twentieth centuries, laboratory traumatic peripheral nerve injury studies have provided great insight into cellular and molecular mechanisms governing axon degeneration and the responses of Schwann cells, the major glial cell type of peripheral nerves. It is now evident that pathways underlying injury-induced axon degeneration and the Schwann cell injury-specific state, the repair Schwann cell, are relevant to many inherited and acquired disorders of peripheral nerves. This review provides a timely update on the molecular understanding of axon degeneration and formation of the repair Schwann cell. We discuss how nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) and sterile alpha TIR motif containing protein 1 (SARM1) are required for axon survival and degeneration, respectively, how transcription factor c-JUN is essential for the Schwann cell response to nerve injury and what each tells us about disease mechanisms and potential therapies. Human genetic association with NMNAT2 and SARM1 strongly suggests aberrant activation of programmed axon death in polyneuropathies and motor neuron disorders, respectively, and animal studies suggest wider involvement including in chemotherapy-induced and diabetic neuropathies. In repair Schwann cells, cJUN is aberrantly expressed in a wide variety of human acquired and inherited neuropathies. Animal models suggest it limits axon loss in both genetic and traumatic neuropathies, whereas in contrast, Schwann cell secreted Neuregulin-1 type 1 drives onion bulb pathology in CMT1A. Finally, we discuss opportunities for drug-based and gene therapies to prevent axon loss or manipulate the repair Schwann cell state to treat acquired and inherited neuropathies and neuronopathies.
Collapse
Affiliation(s)
- Peter Arthur-Farraj
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge, CB2 0PY, UK.
| | - Michael P Coleman
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge, CB2 0PY, UK.
| |
Collapse
|
104
|
DiAntonio A, Milbrandt J, Figley MD. The SARM1 TIR NADase: Mechanistic Similarities to Bacterial Phage Defense and Toxin-Antitoxin Systems. Front Immunol 2021; 12:752898. [PMID: 34630431 PMCID: PMC8494770 DOI: 10.3389/fimmu.2021.752898] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/26/2021] [Indexed: 01/19/2023] Open
Abstract
The Toll/interleukin-1 receptor (TIR) domain is the signature signalling motif of innate immunity, with essential roles in innate immune signalling in bacteria, plants, and animals. TIR domains canonically function as scaffolds, with stimulus-dependent multimerization generating binding sites for signalling molecules such as kinases and ligases that activate downstream immune mechanisms. Recent studies have dramatically expanded our understanding of the TIR domain, demonstrating that the primordial function of the TIR domain is to metabolize NAD+. Mammalian SARM1, the central executioner of pathological axon degeneration, is the founding member of the TIR-domain class of NAD+ hydrolases. This unexpected NADase activity of TIR domains is evolutionarily conserved, with archaeal, bacterial, and plant TIR domains all sharing this catalytic function. Moreover, this enzymatic activity is essential for the innate immune function of these proteins. These evolutionary relationships suggest a link between SARM1 and ancient self-defense mechanisms that has only been strengthened by the recent discovery of the SARM1 activation mechanism which, we will argue, is strikingly similar to bacterial toxin-antitoxin systems. In this brief review we will describe the regulation and function of SARM1 in programmed axon self-destruction, and highlight the parallels between the SARM1 axon degeneration pathway and bacterial innate immune mechanisms.
Collapse
Affiliation(s)
- Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine in Saint Louis, St. Louis, MO, United States
- Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine in Saint Louis, St. Louis, MO, United States
| | - Jeffrey Milbrandt
- Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine in Saint Louis, St. Louis, MO, United States
- Department of Genetics, Washington University School of Medicine in Saint Louis, St. Louis, MO, United States
| | - Matthew D Figley
- Department of Developmental Biology, Washington University School of Medicine in Saint Louis, St. Louis, MO, United States
| |
Collapse
|
105
|
Abstract
Significant advances have been made in recent years in identifying the genetic components of Wallerian degeneration, the process that brings the progressive destruction and removal of injured axons. It has now been accepted that Wallerian degeneration is an active and dynamic cellular process that is well regulated at molecular and cellular levels. In this review, we describe our current understanding of Wallerian degeneration, focusing on the molecular players and mechanisms that mediate the injury response, activate the degenerative program, transduce the death signal, execute the destruction order, and finally, clear away the debris. By highlighting the starring roles and sketching out the molecular script of Wallerian degeneration, we hope to provide a useful framework to understand Wallerian and Wallerian-like degeneration and to lay a foundation for developing new therapeutic strategies to treat axon degeneration in neural injury as well as in neurodegenerative disease. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kai Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; , , .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingsheng Jiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; , , .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; , , .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
106
|
Izadifar A, Courchet J, Virga DM, Verreet T, Hamilton S, Ayaz D, Misbaer A, Vandenbogaerde S, Monteiro L, Petrovic M, Sachse S, Yan B, Erfurth ML, Dascenco D, Kise Y, Yan J, Edwards-Faret G, Lewis T, Polleux F, Schmucker D. Axon morphogenesis and maintenance require an evolutionary conserved safeguard function of Wnk kinases antagonizing Sarm and Axed. Neuron 2021; 109:2864-2883.e8. [PMID: 34384519 DOI: 10.1016/j.neuron.2021.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 05/24/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
The molecular and cellular mechanisms underlying complex axon morphogenesis are still poorly understood. We report a novel, evolutionary conserved function for the Drosophila Wnk kinase (dWnk) and its mammalian orthologs, WNK1 and 2, in axon branching. We uncover that dWnk, together with the neuroprotective factor Nmnat, antagonizes the axon-destabilizing factors D-Sarm and Axundead (Axed) during axon branch growth, revealing a developmental function for these proteins. Overexpression of D-Sarm or Axed results in axon branching defects, which can be blocked by overexpression of dWnk or Nmnat. Surprisingly, Wnk kinases are also required for axon maintenance of adult Drosophila and mouse cortical pyramidal neurons. Requirement of Wnk for axon maintenance is independent of its developmental function. Inactivation of dWnk or mouse Wnk1/2 in mature neurons leads to axon degeneration in the adult brain. Therefore, Wnk kinases are novel signaling components that provide a safeguard function in both developing and adult axons.
Collapse
Affiliation(s)
- Azadeh Izadifar
- Life and Medical Sciences Institute (LIMES), Bonn, Germany; VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Julien Courchet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, 69622 Villeurbanne, France; Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| | - Daniel M Virga
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Tine Verreet
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Stevie Hamilton
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Derya Ayaz
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Anke Misbaer
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Sofie Vandenbogaerde
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Laloe Monteiro
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, 69622 Villeurbanne, France
| | - Milan Petrovic
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Sonja Sachse
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Bing Yan
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Maria-Luise Erfurth
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Dan Dascenco
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Jiekun Yan
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Gabriela Edwards-Faret
- Life and Medical Sciences Institute (LIMES), Bonn, Germany; VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Tommy Lewis
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Franck Polleux
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| | - Dietmar Schmucker
- Life and Medical Sciences Institute (LIMES), Bonn, Germany; VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
107
|
Fague L, Liu YA, Marsh-Armstrong N. The basic science of optic nerve regeneration. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1276. [PMID: 34532413 PMCID: PMC8421956 DOI: 10.21037/atm-20-5351] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/15/2021] [Indexed: 12/25/2022]
Abstract
Diverse insults to the optic nerve result in partial to total vision loss as the axons of retinal ganglion cells are destroyed. In glaucoma, axons are injured at the optic nerve head; in other optic neuropathies, axons can be damaged along the entire visual pathway. In all cases, as mammals cannot regenerate injured central nervous system cells, once the axons are lost, vision loss is irreversible. However, much has been learned about how retinal ganglion cells respond to axon injuries, and many of these crucial discoveries offer hope for future regenerative therapies. Here we review the current understanding regarding the temporal progression of axonal degeneration. We summarize known survival and regenerative mechanisms in mammals, including specific signaling pathways, key transcription factors, and reprogramming genes. We cover mechanisms intrinsic to retinal ganglion cells as well as their interactions with myeloid and glial cell populations in the retina and optic nerve that affect survival and regeneration. Finally, we highlight some non-mammalian species that are able to regenerate their retinal ganglion cell axons after injury, as understanding these successful regenerative responses may be essential to the rational design of future clinical interventions to regrow the optic nerve. In the end, a combination of many different molecular and cellular interventions will likely be the only way to achieve functional recovery of vision and restore quality of life to millions of patients around the world.
Collapse
Affiliation(s)
- Lindsay Fague
- UC Davis Eye Center, Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, USA
| | - Yin Allison Liu
- UC Davis Eye Center, Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, USA
| | - Nicholas Marsh-Armstrong
- UC Davis Eye Center, Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
108
|
Zhang C, Kang K, Chen Y, Shan S, Xie K, Song F. Atg7 Knockout Alleviated the Axonal Injury of Neuro-2a Cells Induced by Tri-Ortho-Cresyl Phosphate. Neurotox Res 2021; 39:1076-1086. [PMID: 33650059 DOI: 10.1007/s12640-021-00344-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/09/2021] [Accepted: 02/21/2021] [Indexed: 10/22/2022]
Abstract
Autophagy is believed to be essential for the maintenance of axonal homeostasis in neurons. However, whether autophagy is causally related to the axon degeneration in organophosphorus-induced delayed neuropathy (OPIDN) still remains unclear. This research was designed to investigate the role of autophagy in axon degeneration following tri-ortho-cresyl phosphate (TOCP) in an in vitro model. Differentiated wild-type and Atg7-/- neuro-2a (N2a) cells were treated with TOCP for 24 h. Axonal degeneration in N2a cells was quantitatively analyzed; the key molecules responsible for axon degeneration and its upstream signaling pathway were determined by Western blotting and real-time PCR. The results found that Atg7-/- cells exhibited a higher resistance to TOCP insult than wild-type cells. Further study revealed that TOCP caused a significant decrease in pro-survival factors NMNATs and SCG10 and a significant increase in pro-degenerative factor SARM1 in both cells. Notably, Atg7-/- cells presented a higher level of pro-survival factors and a lower level of pro-degenerative factors than wild-type cells in the same setting of TOCP administration. Moreover, DLK-MAPK pathway was activated following TOCP. Altogether, our results suggest that autophagy is able to affect TOCP-induced axonal injury via regulating the balance between pro-survival and pro-degenerative factors, providing a promising avenue for the potential therapy for OPIDN patients.
Collapse
Affiliation(s)
- Cuiqin Zhang
- Institute of Toxicology, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, People's Republic of China
| | - Kang Kang
- Institute of Toxicology, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, People's Republic of China
| | - Yisi Chen
- Institute of Toxicology, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, People's Republic of China
| | - Shulin Shan
- Institute of Toxicology, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, People's Republic of China
| | - Keqin Xie
- Institute of Toxicology, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, People's Republic of China
| | - Fuyong Song
- Institute of Toxicology, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
109
|
Li C, Wu LE. Risks and rewards of targeting NAD + homeostasis in the brain. Mech Ageing Dev 2021; 198:111545. [PMID: 34302821 DOI: 10.1016/j.mad.2021.111545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 01/29/2023]
Abstract
Strategies to correct declining nicotinamide adenine dinucleotide (NAD+) levels in neurological disease and biological ageing are promising therapeutic candidates. These strategies include supplementing with NAD+ precursors, small molecule activation of NAD+ biosynthetic enzymes, and treatment with small molecule inhibitors of NAD+ consuming enzymes such as CD38, SARM1 or members of the PARP family. While these strategies have shown efficacy in animal models of neurological disease, each of these has the mechanistic potential for adverse events that could preclude their preclinical use. Here, we discuss the implications of these strategies for treating neurological diseases, including potential off-target effects that may be unique to the brain.
Collapse
Affiliation(s)
- Catherine Li
- School of Medical Sciences, UNSW Sydney, NSW, 2052, Australia
| | - Lindsay E Wu
- School of Medical Sciences, UNSW Sydney, NSW, 2052, Australia.
| |
Collapse
|
110
|
Hopkins EL, Gu W, Kobe B, Coleman MP. A Novel NAD Signaling Mechanism in Axon Degeneration and its Relationship to Innate Immunity. Front Mol Biosci 2021; 8:703532. [PMID: 34307460 PMCID: PMC8295901 DOI: 10.3389/fmolb.2021.703532] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022] Open
Abstract
Axon degeneration represents a pathological feature of many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease where axons die before the neuronal soma, and axonopathies, such as Charcot-Marie-Tooth disease and hereditary spastic paraplegia. Over the last two decades, it has slowly emerged that a central signaling pathway forms the basis of this process in many circumstances. This is an axonal NAD-related signaling mechanism mainly regulated by the two key proteins with opposing roles: the NAD-synthesizing enzyme NMNAT2, and SARM1, a protein with NADase and related activities. The crosstalk between the axon survival factor NMNAT2 and pro-degenerative factor SARM1 has been extensively characterized and plays an essential role in maintaining the axon integrity. This pathway can be activated in necroptosis and in genetic, toxic or metabolic disorders, physical injury and neuroinflammation, all leading to axon pathology. SARM1 is also known to be involved in regulating innate immunity, potentially linking axon degeneration to the response to pathogens and intercellular signaling. Understanding this NAD-related signaling mechanism enhances our understanding of the process of axon degeneration and enables a path to the development of drugs for a wide range of neurodegenerative diseases.
Collapse
Affiliation(s)
- Eleanor L. Hopkins
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Weixi Gu
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Michael P. Coleman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
111
|
Yu Z, Li W, Lan J, Hayakawa K, Ji X, Lo EH, Wang X. EphrinB2-EphB2 signaling for dendrite protection after neuronal ischemia in vivo and oxygen-glucose deprivation in vitro. J Cereb Blood Flow Metab 2021; 41:1744-1755. [PMID: 33325764 PMCID: PMC8221775 DOI: 10.1177/0271678x20973119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In order to rescue neuronal function, neuroprotection should be required not only for the neuron soma but also the dendrites. Here, we propose the hypothesis that ephrin-B2-EphB2 signaling may be involved in dendritic degeneration after ischemic injury. A mouse model of focal cerebral ischemia with middle cerebral artery occlusion (MCAO) method was used for EphB2 signaling test in vivo. Primary cortical neuron culture and oxygen-glucose deprivation were used to assess EphB2 signaling in vitro. siRNA and soluble ephrin-B2 ectodomain were used to block ephrin-B2-Ephb2 signaling. In the mouse model of focal cerebral ischemia and in neurons subjected to oxygen-glucose deprivation, clustering of ephrin-B2 with its receptor EphB2 was detected. Phosphorylation of EphB2 suggested activation of this signaling pathway. RNA silencing of EphB2 prevented neuronal death and preserved dendritic length. To assess therapeutic potential, we compared the soluble EphB2 ectodomain with the NMDA antagonist MK801 in neurons after oxygen-glucose deprivation. Both agents equally reduced lactate dehydrogenase release as a general marker of neurotoxicity. However, only soluble EphB2 ectodomain protected the dendrites. These findings provide a proof of concept that ephrin-B2-EphB2 signaling may represent a novel therapeutic target to protect both the neuron soma as well as dendrites against ischemic injury.
Collapse
Affiliation(s)
- Zhanyang Yu
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Wenlu Li
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jing Lan
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Cerebrovascular Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Cerebrovascular Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Xiaoying Wang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
112
|
SARM1 signaling mechanisms in the injured nervous system. Curr Opin Neurobiol 2021; 69:247-255. [PMID: 34175654 DOI: 10.1016/j.conb.2021.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 11/21/2022]
Abstract
Axon degeneration is a prominent feature of the injured nervous system, occurs across neurological diseases, and drives functional loss in neural circuits. We have seen a paradigm shift in the last decade with the realization that injured axons are capable of actively driving their own destruction through the sterile-alpha and TIR motif containing 1 (SARM1) protein. Early studies of Wallerian degeneration highlighted a central role for NAD+ metabolites in axon survival, and this association has grown even stronger in recent years with a deeper understanding of SARM1 biology. Here, we review our current knowledge of SARM1 function in vivo and our evolving understanding of its complex architecture and regulation by injury-dependent changes in the local metabolic environment. The field is converging on a model whereby SARM1 acts as a sensor for metabolic changes that occur after injury and then drives catastrophic NAD+ loss to promote degeneration. However, a number of observations suggest that SARM1 biology is more complicated, and there remains much to learn about how SARM1 governs nervous system responses to injury or disease.
Collapse
|
113
|
Abstract
Axon degeneration is an active program of self-destruction mediated by the protein SARM1. In healthy neurons, SARM1 is autoinhibited and, upon injury autoinhibition is relieved, activating the SARM1 enzyme to deplete NAD+ and induce axon degeneration. SARM1 forms a homomultimeric octamer with each monomer composed of an N-terminal autoinhibitory ARM domain, tandem SAM domains that mediate multimerization, and a C-terminal TIR domain encoding the NADase enzyme. Here we discovered multiple intramolecular and intermolecular domain interfaces required for SARM1 autoinhibition using peptide mapping and cryo-electron microscopy (cryo-EM). We identified a candidate autoinhibitory region by screening a panel of peptides derived from the SARM1 ARM domain, identifying a peptide mediating high-affinity inhibition of the SARM1 NADase. Mutation of residues in full-length SARM1 within the region encompassed by the peptide led to loss of autoinhibition, rendering SARM1 constitutively active and inducing spontaneous NAD+ and axon loss. The cryo-EM structure of SARM1 revealed 1) a compact autoinhibited SARM1 octamer in which the TIR domains are isolated and prevented from oligomerization and enzymatic activation and 2) multiple candidate autoinhibitory interfaces among the domains. Mutational analysis demonstrated that five distinct interfaces are required for autoinhibition, including intramolecular and intermolecular ARM-SAM interfaces, an intermolecular ARM-ARM interface, and two ARM-TIR interfaces formed between a single TIR and two distinct ARM domains. These autoinhibitory regions are not redundant, as point mutants in each led to constitutively active SARM1. These studies define the structural basis for SARM1 autoinhibition and may enable the development of SARM1 inhibitors that stabilize the autoinhibited state.
Collapse
|
114
|
Neuroprotection in Glaucoma: NAD +/NADH Redox State as a Potential Biomarker and Therapeutic Target. Cells 2021; 10:cells10061402. [PMID: 34198948 PMCID: PMC8226607 DOI: 10.3390/cells10061402] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide. Its prevalence and incidence increase exponentially with age and the level of intraocular pressure (IOP). IOP reduction is currently the only therapeutic modality shown to slow glaucoma progression. However, patients still lose vision despite best treatment, suggesting that other factors confer susceptibility. Several studies indicate that mitochondrial function may underlie both susceptibility and resistance to developing glaucoma. Mitochondria meet high energy demand, in the form of ATP, that is required for the maintenance of optimum retinal ganglion cell (RGC) function. Reduced nicotinamide adenine dinucleotide (NAD+) levels have been closely correlated to mitochondrial dysfunction and have been implicated in several neurodegenerative diseases including glaucoma. NAD+ is at the centre of various metabolic reactions culminating in ATP production—essential for RGC function. In this review we present various pathways that influence the NAD+(H) redox state, affecting mitochondrial function and making RGCs susceptible to degeneration. Such disruptions of the NAD+(H) redox state are generalised and not solely induced in RGCs because of high IOP. This places the NAD+(H) redox state as a potential systemic biomarker for glaucoma susceptibility and progression; a hypothesis which may be tested in clinical trials and then translated to clinical practice.
Collapse
|
115
|
Pérez MJ, Baden P, Deleidi M. Progresses in both basic research and clinical trials of NAD+ in Parkinson's disease. Mech Ageing Dev 2021; 197:111499. [PMID: 33989633 DOI: 10.1016/j.mad.2021.111499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/07/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
The decline of nicotinamide adenine dinucleotide (NAD+) levels is a hallmark of aging in multiple organisms and tissues, including the human brain. Hence, agents that increase intracellular NAD+ could have beneficial effects in aging and age-related neurodegenerative diseases. Disturbances in NAD+ metabolism have also been observed in Parkinson's disease (PD), supporting a link between neuronal bioenergetics failure and disease pathogenesis. Here, we review emerging findings revealing key roles for NAD+ and related metabolites in experimental models of dopaminergic neurodegeneration and in PD patients. We discuss how increased NAD+ levels might ameliorate disease phenotypes by restoring neuronal mitochondrial energy metabolism, promoting cellular proteostasis, and modulating the immune system. Finally, we describe ongoing clinical trials targeting NAD+ in PD and highlight the need for further investigations to better delineate the association between NAD+, brain aging and disease, and optimal strategies for efficiently and safely raising NAD+ levels. A more comprehensive understanding of the basic mechanisms linking NAD+, energy metabolism, and PD, and of the impact of life-long NAD+ targeting strategies, are critical to inform future clinical applications.
Collapse
Affiliation(s)
- María José Pérez
- German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany; Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany
| | - Pascale Baden
- German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany; Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany
| | - Michela Deleidi
- German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany; Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
116
|
Structural and Mechanistic Regulation of the Pro-degenerative NAD Hydrolase SARM1. Cell Rep 2021; 32:107999. [PMID: 32755591 DOI: 10.1016/j.celrep.2020.107999] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/09/2020] [Accepted: 07/14/2020] [Indexed: 01/20/2023] Open
Abstract
The NADase SARM1 is a central switch in injury-activated axon degeneration, an early hallmark of many neurological diseases. Here, we present cryo-electron microscopy (cryo-EM) structures of autoinhibited (3.3 Å) and active SARM1 (6.8 Å) and provide mechanistic insight into the tight regulation of SARM1's function by the local metabolic environment. Although both states retain an octameric core, the defining feature of the autoinhibited state is a lock between the autoinhibitory Armadillo/HEAT motif (ARM) and catalytic Toll/interleukin-1 receptor (TIR) domains, which traps SARM1 in an inactive state. Mutations that break this lock activate SARM1, resulting in catastrophic neuronal death. Notably, the mutants cannot be further activated by the endogenous activator nicotinamide mononucleotide (NMN), and active SARM1 is product inhibited by Nicotinamide (NAM), highlighting SARM1's functional dependence on key metabolites in the NAD salvage pathway. Our studies provide a molecular understanding of SARM1's transition from an autoinhibited to an injury-activated state and lay the foundation for future SARM1-based therapies to treat axonopathies.
Collapse
|
117
|
Tribble JR, Otmani A, Sun S, Ellis SA, Cimaglia G, Vohra R, Jöe M, Lardner E, Venkataraman AP, Domínguez-Vicent A, Kokkali E, Rho S, Jóhannesson G, Burgess RW, Fuerst PG, Brautaset R, Kolko M, Morgan JE, Crowston JG, Votruba M, Williams PA. Nicotinamide provides neuroprotection in glaucoma by protecting against mitochondrial and metabolic dysfunction. Redox Biol 2021; 43:101988. [PMID: 33932867 PMCID: PMC8103000 DOI: 10.1016/j.redox.2021.101988] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is a REDOX cofactor and metabolite essential for neuronal survival. Glaucoma is a common neurodegenerative disease in which neuronal levels of NAD decline. We assess the effects of nicotinamide (a precursor to NAD) on retinal ganglion cells (the affected neuron in glaucoma) in normal physiological conditions and across a range of glaucoma relevant insults including mitochondrial stress and axon degenerative insults. We demonstrate retinal ganglion cell somal, axonal, and dendritic neuroprotection by nicotinamide in rodent models which represent isolated ocular hypertensive, axon degenerative, and mitochondrial degenerative insults. We performed metabolomics enriched for small molecular weight metabolites for the retina, optic nerve, and superior colliculus which demonstrates that ocular hypertension induces widespread metabolic disruption, including consistent changes to α-ketoglutaric acid, creatine/creatinine, homocysteine, and glycerophosphocholine. This metabolic disruption is prevented by nicotinamide. Nicotinamide provides further neuroprotective effects by increasing oxidative phosphorylation, buffering and preventing metabolic stress, and increasing mitochondrial size and motility whilst simultaneously dampening action potential firing frequency. These data support continued determination of the utility of long-term nicotinamide treatment as a neuroprotective therapy for human glaucoma. Nicotinamide is neuroprotective in cell and animal models that recapitulate isolated features of glaucoma. Systemic nicotinamide administration has limited molecular side-effects on visual system tissue under basal conditions. Nicotinamide provides a robust reversal in the disease metabolic profile of glaucomatous animals. Nicotinamide increases oxidative phosphorylation, buffers and prevents metabolic stress, and increases mitochondrial size.
Collapse
Affiliation(s)
- James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Amin Otmani
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Shanshan Sun
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK.
| | - Sevannah A Ellis
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia.
| | - Gloria Cimaglia
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden; School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK.
| | - Rupali Vohra
- Department of Veterinary and Animal Sciences, Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Drug Design and Pharmacology, Eye Translational Research Unit, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Melissa Jöe
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Emma Lardner
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Abinaya P Venkataraman
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Alberto Domínguez-Vicent
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Eirini Kokkali
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK.
| | - Seungsoo Rho
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK; Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea.
| | - Gauti Jóhannesson
- Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden; Wallenberg Centre of Molecular Medicine, Umeå University, Umeå, Sweden.
| | | | - Peter G Fuerst
- WWAMI Medical Education Program, University of Idaho, Moscow, ID, USA.
| | - Rune Brautaset
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, Eye Translational Research Unit, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark.
| | - James E Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK; Cardiff Eye Unit, University Hospital Wales, Cardiff, UK; School of Medicine, Cardiff University, Cardiff, UK.
| | - Jonathan G Crowston
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore; Centre for Vision Research, Neuroscience and Behavioural Disorders, Duke-NUS, Singapore, Singapore.
| | - Marcela Votruba
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK; Cardiff Eye Unit, University Hospital Wales, Cardiff, UK.
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
118
|
Figley MD, Gu W, Nanson JD, Shi Y, Sasaki Y, Cunnea K, Malde AK, Jia X, Luo Z, Saikot FK, Mosaiab T, Masic V, Holt S, Hartley-Tassell L, McGuinness HY, Manik MK, Bosanac T, Landsberg MJ, Kerry PS, Mobli M, Hughes RO, Milbrandt J, Kobe B, DiAntonio A, Ve T. SARM1 is a metabolic sensor activated by an increased NMN/NAD + ratio to trigger axon degeneration. Neuron 2021; 109:1118-1136.e11. [PMID: 33657413 PMCID: PMC8174188 DOI: 10.1016/j.neuron.2021.02.009] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/15/2021] [Accepted: 02/08/2021] [Indexed: 12/16/2022]
Abstract
Axon degeneration is a central pathological feature of many neurodegenerative diseases. Sterile alpha and Toll/interleukin-1 receptor motif-containing 1 (SARM1) is a nicotinamide adenine dinucleotide (NAD+)-cleaving enzyme whose activation triggers axon destruction. Loss of the biosynthetic enzyme NMNAT2, which converts nicotinamide mononucleotide (NMN) to NAD+, activates SARM1 via an unknown mechanism. Using structural, biochemical, biophysical, and cellular assays, we demonstrate that SARM1 is activated by an increase in the ratio of NMN to NAD+ and show that both metabolites compete for binding to the auto-inhibitory N-terminal armadillo repeat (ARM) domain of SARM1. We report structures of the SARM1 ARM domain bound to NMN and of the homo-octameric SARM1 complex in the absence of ligands. We show that NMN influences the structure of SARM1 and demonstrate via mutagenesis that NMN binding is required for injury-induced SARM1 activation and axon destruction. Hence, SARM1 is a metabolic sensor responding to an increased NMN/NAD+ ratio by cleaving residual NAD+, thereby inducing feedforward metabolic catastrophe and axonal demise.
Collapse
Affiliation(s)
- Matthew D Figley
- Department of Developmental Biology, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Weixi Gu
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Jeffrey D Nanson
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Yun Shi
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Yo Sasaki
- Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA; Department of Genetics, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Katie Cunnea
- Evotec (UK) Ltd., 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, UK; Evotec SE, Manfred Eigen Campus, Essener Bogen 7, 22419 Hamburg, Germany
| | - Alpeshkumar K Malde
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Xinying Jia
- Centre for Advanced Imaging, University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhenyao Luo
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Forhad K Saikot
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Tamim Mosaiab
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Veronika Masic
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Stephanie Holt
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | | | - Helen Y McGuinness
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Mohammad K Manik
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Todd Bosanac
- Disarm Therapeutics, a wholly owned subsidiary of Eli Lilly & Co., Cambridge, MA, USA
| | - Michael J Landsberg
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Philip S Kerry
- Evotec (UK) Ltd., 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, UK; Evotec SE, Manfred Eigen Campus, Essener Bogen 7, 22419 Hamburg, Germany
| | - Mehdi Mobli
- Centre for Advanced Imaging, University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert O Hughes
- Disarm Therapeutics, a wholly owned subsidiary of Eli Lilly & Co., Cambridge, MA, USA
| | - Jeffrey Milbrandt
- Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA; Department of Genetics, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA.
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia.
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA.
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia.
| |
Collapse
|
119
|
Cai Y, Yu SS, He Y, Bi XY, Gao S, Yan TD, Zheng GD, Chen TT, Ye JT, Liu PQ. EGCG inhibits pressure overload-induced cardiac hypertrophy via the PSMB5/Nmnat2/SIRT6-dependent signalling pathways. Acta Physiol (Oxf) 2021; 231:e13602. [PMID: 33315278 DOI: 10.1111/apha.13602] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 12/27/2022]
Abstract
AIM Epigallocatechin-3-gallate (EGCG), the major polyphenol found in green tea, exerts multiple protective effects against cardiovascular diseases, including cardiac hypertrophy. However, the molecular mechanism underlying its anti-hypertrophic effect has not been clarified. This study revealed that EGCG could inhibit pressure overload-induced cardiac hypertrophy by regulating the PSMB5/Nmnat2/SIRT6-dependent signalling pathway. METHODS Quantitative real-time polymerase chain reaction and western blotting were used to determine the expression of mRNA and protein respectively. A fluorometric assay kit was used to determine the activity of SIRT6, a histone deacetylase. Luciferase reporter gene assay and electrophoretic mobility shift assay were employed to measure transcriptional activity and DNA binding activity respectively. RESULTS EGCG could significantly increase Nmnat2 protein expression and enzyme activity in cultured neonatal rat cardiomyocytes stimulated with angiotensin II (Ang II) and heart tissues from rats subjected to abdominal aortic constriction. Nmnat2 knockdown by RNA interference attenuated the inhibitory effect of EGCG on cardiac hypertrophy. EGCG blocked NF-κB DNA binding activity induced by Ang II, which was dependent on Nmnat2 and the subsequent SIRT6 activation. Moreover the activation of PSMB5 (20S proteasome subunit β-5, chymotrypsin-like) was required for EGCG-induced Nmnat2 protein expression. Additionally, we demonstrated that EGCG might interact with PSMB5 and inhibit the activation of the proteasome. CONCLUSIONS These findings serve as the first evidence that the effect of EGCG against cardiac hypertrophy may be, at least partially, attributed to the modulation of the PSMB5/Nmnat2-dependent signalling pathway, suggesting the therapeutic potential of EGCG in the prevention and treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou China
- Department of Pharmacology and Toxicology School of Pharmaceutical Sciences Sun Yat‐Sen University Guangzhou China
- Cancer and Stem Cell Biology Program Duke‐NUS Medical School Singapore Singapore
| | - Shan Shan Yu
- Department of Pharmacology and Toxicology School of Pharmaceutical Sciences Sun Yat‐Sen University Guangzhou China
- Laboratory of Research of New Chinese Medicine Department of Pharmacy Zhujiang HospitalSouthern Medical University Guangzhou China
| | - Yang He
- BayRay Innovation CenterShenzhen Bay Laboratory Shenzhen China
- Institute of Molecular and Cell Biology Singapore Singapore
| | - Xue Ying Bi
- Department of Pharmacology and Toxicology School of Pharmaceutical Sciences Sun Yat‐Sen University Guangzhou China
| | - Si Gao
- Department of Pharmacology and Toxicology School of Pharmaceutical Sciences Sun Yat‐Sen University Guangzhou China
| | - Ting Dong Yan
- Department of Pharmacology School of Pharmacy Nantong University Nantong China
| | - Guo Dong Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou China
| | - Ting Ting Chen
- Department of Pharmacology and Toxicology School of Pharmaceutical Sciences Sun Yat‐Sen University Guangzhou China
| | - Jian Tao Ye
- Department of Pharmacology and Toxicology School of Pharmaceutical Sciences Sun Yat‐Sen University Guangzhou China
| | - Pei Qing Liu
- Department of Pharmacology and Toxicology School of Pharmaceutical Sciences Sun Yat‐Sen University Guangzhou China
| |
Collapse
|
120
|
Pinkerton M, Ruetenik A, Bazylianska V, Nyvltova E, Barrientos A. Salvage NAD+ biosynthetic pathway enzymes moonlight as molecular chaperones to protect against proteotoxicity. Hum Mol Genet 2021; 30:672-686. [PMID: 33749726 DOI: 10.1093/hmg/ddab080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Human neurodegenerative proteinopathies are disorders associated with abnormal protein depositions in brain neurons. They include polyglutamine (polyQ) conditions such as Huntington's disease (HD) and α-synucleinopathies such as Parkinson's disease (PD). Overexpression of NMNAT/Nma1, an enzyme in the NAD+ biosynthetic salvage pathway, acts as an efficient suppressor of proteotoxicities in yeast, fly and mouse models. Screens in yeast models of HD and PD allowed us to identify three additional enzymes of the same pathway that achieve similar protection against proteotoxic stress: Npt1, Pnc1 and Qns1. The mechanism by which these proteins maintain proteostasis has not been identified. Here, we report that their ability to maintain proteostasis in yeast models of HD and PD is independent of their catalytic activity and does not require cellular protein quality control systems such as the proteasome or autophagy. Furthermore, we show that, under proteotoxic stress, the four proteins are recruited as molecular chaperones with holdase and foldase activities. The NAD+ salvage proteins act by preventing misfolding and, together with the Hsp90 chaperone, promoting the refolding of extended polyQ domains and α-synuclein (α-Syn). Our results illustrate the existence of an evolutionarily conserved strategy of repurposing or moonlighting housekeeping enzymes under stress conditions to maintain proteostasis. We conclude that the entire salvage NAD+ biosynthetic pathway links NAD+ metabolism and proteostasis and emerges as a target for therapeutics to combat age-associated neurodegenerative proteotoxicities.
Collapse
Affiliation(s)
- Meredith Pinkerton
- Department of Neurology and Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrea Ruetenik
- Department of Neurology and Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Viktoriia Bazylianska
- Department of Neurology and Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,MS in Biochemistry and Molecular Biology, Wayne State University, School of Medicine. Detroit, MI 48201, USA
| | - Eva Nyvltova
- Department of Neurology and Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Antoni Barrientos
- Department of Neurology and Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine. Miami, FL 33136, USA
| |
Collapse
|
121
|
Fissel JA, Farah MH. The influence of BACE1 on macrophage recruitment and activity in the injured peripheral nerve. J Neuroinflammation 2021; 18:71. [PMID: 33722254 PMCID: PMC7962400 DOI: 10.1186/s12974-021-02121-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/26/2021] [Indexed: 01/13/2023] Open
Abstract
Following peripheral nerve injury, multiple cell types, including axons, Schwann cells, and macrophages, coordinate to promote nerve regeneration. However, this capacity for repair is limited, particularly in older populations, and current treatments are insufficient. A critical component of the regeneration response is the network of cell-to-cell signaling in the injured nerve microenvironment. Sheddases are expressed in the peripheral nerve and play a role in the regulation if this cell-to-cell signaling through cleavage of transmembrane proteins, enabling the regulation of multiple pathways through cis- and trans-cellular regulatory mechanisms. Enhanced axonal regeneration has been observed in mice with deletion of the sheddase beta-secretase (BACE1), a transmembrane aspartyl protease that has been studied in the context of Alzheimer’s disease. BACE1 knockout (KO) mice display enhanced macrophage recruitment and activity following nerve injury, although it is unclear whether this plays a role in driving the enhanced axonal regeneration. Further, it is unknown by what mechanism(s) BACE1 increases macrophage recruitment and activity. BACE1 has many substrates, several of which are known to have immunomodulatory activity. This review will discuss current knowledge of the role of BACE1 and other sheddases in peripheral nerve regeneration and outline known immunomodulatory BACE1 substrates and what potential roles they could play in peripheral nerve regeneration. Currently, the literature suggests that BACE1 and substrates that are expressed by neurons and Schwann cells are likely to be more important for this process than those expressed by macrophages. More broadly, BACE1 may play a role as an effector of immunomodulation beyond the peripheral nerve.
Collapse
Affiliation(s)
- John A Fissel
- Department of Neurology, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Mohamed H Farah
- Department of Neurology, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
122
|
Wang B, Huang M, Shang D, Yan X, Zhao B, Zhang X. Mitochondrial Behavior in Axon Degeneration and Regeneration. Front Aging Neurosci 2021; 13:650038. [PMID: 33762926 PMCID: PMC7982458 DOI: 10.3389/fnagi.2021.650038] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are organelles responsible for bioenergetic metabolism, calcium homeostasis, and signal transmission essential for neurons due to their high energy consumption. Accumulating evidence has demonstrated that mitochondria play a key role in axon degeneration and regeneration under physiological and pathological conditions. Mitochondrial dysfunction occurs at an early stage of axon degeneration and involves oxidative stress, energy deficiency, imbalance of mitochondrial dynamics, defects in mitochondrial transport, and mitophagy dysregulation. The restoration of these defective mitochondria by enhancing mitochondrial transport, clearance of reactive oxidative species (ROS), and improving bioenergetic can greatly contribute to axon regeneration. In this paper, we focus on the biological behavior of axonal mitochondria in aging, injury (e.g., traumatic brain and spinal cord injury), and neurodegenerative diseases (Alzheimer's disease, AD; Parkinson's disease, PD; Amyotrophic lateral sclerosis, ALS) and consider the role of mitochondria in axon regeneration. We also compare the behavior of mitochondria in different diseases and outline novel therapeutic strategies for addressing abnormal mitochondrial biological behavior to promote axonal regeneration in neurological diseases and injuries.
Collapse
Affiliation(s)
- Biyao Wang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Minghao Huang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Dehao Shang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xu Yan
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Baohong Zhao
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
123
|
Duncan GJ, Simkins TJ, Emery B. Neuron-Oligodendrocyte Interactions in the Structure and Integrity of Axons. Front Cell Dev Biol 2021; 9:653101. [PMID: 33763430 PMCID: PMC7982542 DOI: 10.3389/fcell.2021.653101] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
The myelination of axons by oligodendrocytes is a highly complex cell-to-cell interaction. Oligodendrocytes and axons have a reciprocal signaling relationship in which oligodendrocytes receive cues from axons that direct their myelination, and oligodendrocytes subsequently shape axonal structure and conduction. Oligodendrocytes are necessary for the maturation of excitatory domains on the axon including nodes of Ranvier, help buffer potassium, and support neuronal energy metabolism. Disruption of the oligodendrocyte-axon unit in traumatic injuries, Alzheimer's disease and demyelinating diseases such as multiple sclerosis results in axonal dysfunction and can culminate in neurodegeneration. In this review, we discuss the mechanisms by which demyelination and loss of oligodendrocytes compromise axons. We highlight the intra-axonal cascades initiated by demyelination that can result in irreversible axonal damage. Both the restoration of oligodendrocyte myelination or neuroprotective therapies targeting these intra-axonal cascades are likely to have therapeutic potential in disorders in which oligodendrocyte support of axons is disrupted.
Collapse
Affiliation(s)
- Greg J. Duncan
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Tyrell J. Simkins
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, United States
- Vollum Institute, Oregon Health & Science University, Portland, OR, United States
- Department of Neurology, VA Portland Health Care System, Portland, OR, United States
| | - Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
124
|
Shahsavani N, Kataria H, Karimi-Abdolrezaee S. Mechanisms and repair strategies for white matter degeneration in CNS injury and diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166117. [PMID: 33667627 DOI: 10.1016/j.bbadis.2021.166117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
White matter degeneration is an important pathophysiological event of the central nervous system that is collectively characterized by demyelination, oligodendrocyte loss, axonal degeneration and parenchymal changes that can result in sensory, motor, autonomic and cognitive impairments. White matter degeneration can occur due to a variety of causes including trauma, neurotoxic exposure, insufficient blood flow, neuroinflammation, and developmental and inherited neuropathies. Regardless of the etiology, the degeneration processes share similar pathologic features. In recent years, a plethora of cellular and molecular mechanisms have been identified for axon and oligodendrocyte degeneration including oxidative damage, calcium overload, neuroinflammatory events, activation of proteases, depletion of adenosine triphosphate and energy supply. Extensive efforts have been also made to develop neuroprotective and neuroregenerative approaches for white matter repair. However, less progress has been achieved in this area mainly due to the complexity and multifactorial nature of the degeneration processes. Here, we will provide a timely review on the current understanding of the cellular and molecular mechanisms of white matter degeneration and will also discuss recent pharmacological and cellular therapeutic approaches for white matter protection as well as axonal regeneration, oligodendrogenesis and remyelination.
Collapse
Affiliation(s)
- Narjes Shahsavani
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
125
|
Araki T. [Mechanism of axonal degeneration: from molecular signaling to the development of therapeutic applications]. Nihon Yakurigaku Zasshi 2021; 156:66-70. [PMID: 33642532 DOI: 10.1254/fpj.20089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Neurons communicate with other cells via long processes, i.e., axons and dendrites, functionally and morphologically specialized tree-like structures. Formation and maintenance of such processes play a crucial role in neuronal functions. Axons are particularly important for construction of neuronal network, and, together with synapses at the end of them, play a central role in transmission of information. Axonal degeneration, a phenomenon that once formed axons lose structural integrity, is most typically observed as "Wallerian degeneration", in which injured axonal segment (distal to the site of injury) degenerates. Different forms of axonal degeneration are also observed in a variety of contexts, including pathogenesis and progression of different neurodegenerative disorders, as well as neuronal network formation during development. Thus, understanding of regulatory mechanism of axonal degeneration is important in many aspects, such as for clarification of neuronal morphogenesis mechanism, and for development of neuroprotective therapy against neurological disorders. Here, I discuss recent progress in the research field of axonal degeneration mechanism.
Collapse
Affiliation(s)
- Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| |
Collapse
|
126
|
Hsu JM, Kang Y, Corty MM, Mathieson D, Peters OM, Freeman MR. Injury-Induced Inhibition of Bystander Neurons Requires dSarm and Signaling from Glia. Neuron 2021; 109:473-487.e5. [PMID: 33296670 PMCID: PMC7864878 DOI: 10.1016/j.neuron.2020.11.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 09/28/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
Abstract
Nervous system injury and disease have broad effects on the functional connectivity of the nervous system, but how injury signals are spread across neural circuits remains unclear. We explored how axotomy changes the physiology of severed axons and adjacent uninjured "bystander" neurons in a simple in vivo nerve preparation. Within hours after injury, we observed suppression of axon transport in all axons, whether injured or not, and decreased mechano- and chemosensory signal transduction in uninjured bystander neurons. Unexpectedly, we found the axon death molecule dSarm, but not its NAD+ hydrolase activity, was required cell autonomously for these early changes in neuronal cell biology in bystander neurons, as were the voltage-gated calcium channel Cacophony (Cac) and the mitogen-activated protein kinase (MAPK) signaling cascade. Bystander neurons functionally recovered at later time points, while severed axons degenerated via α/Armadillo/Toll-interleukin receptor homology domain (dSarm)/Axundead signaling, and independently of Cac/MAPK. Interestingly, suppression of bystander neuron function required Draper/MEGF10 signaling in glia, indicating glial cells spread injury signals and actively suppress bystander neuron function. Our work identifies a new role for dSarm and glia in suppression of bystander neuron function after injury and defines two genetically and temporally separable phases of dSarm signaling in the injured nervous system.
Collapse
Affiliation(s)
- Jiun-Min Hsu
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Yunsik Kang
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Megan M Corty
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Danielle Mathieson
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Owen M Peters
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Marc R Freeman
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
127
|
Tribble JR, Hui F, Jöe M, Bell K, Chrysostomou V, Crowston JG, Williams PA. Targeting Diet and Exercise for Neuroprotection and Neurorecovery in Glaucoma. Cells 2021; 10:295. [PMID: 33535578 PMCID: PMC7912764 DOI: 10.3390/cells10020295] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/15/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Glaucoma is a leading cause of blindness worldwide. In glaucoma, a progressive dysfunction and death of retinal ganglion cells occurs, eliminating transfer of visual information to the brain. Currently, the only available therapies target the lowering of intraocular pressure, but many patients continue to lose vision. Emerging pre-clinical and clinical evidence suggests that metabolic deficiencies and defects may play an important role in glaucoma pathophysiology. While pre-clinical studies in animal models have begun to mechanistically uncover these metabolic changes, some existing clinical evidence already points to potential benefits in maintaining metabolic fitness. Modifying diet and exercise can be implemented by patients as an adjunct to intraocular pressure lowering, which may be of therapeutic benefit to retinal ganglion cells in glaucoma.
Collapse
Affiliation(s)
- James R. Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 171 64 Stockholm, Sweden; (J.R.T.); (M.J.)
| | - Flora Hui
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC 3002, Australia; (F.H.); (J.G.C.)
- Department of Optometry & Vision Sciences, The University of Melbourne, Melbourne, VIC 3053, Australia
| | - Melissa Jöe
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 171 64 Stockholm, Sweden; (J.R.T.); (M.J.)
| | - Katharina Bell
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore; (K.B.); (V.C.)
| | - Vicki Chrysostomou
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore; (K.B.); (V.C.)
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jonathan G. Crowston
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC 3002, Australia; (F.H.); (J.G.C.)
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore; (K.B.); (V.C.)
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Pete A. Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 171 64 Stockholm, Sweden; (J.R.T.); (M.J.)
| |
Collapse
|
128
|
Geisler S. Vincristine- and bortezomib-induced neuropathies - from bedside to bench and back. Exp Neurol 2021; 336:113519. [PMID: 33129841 PMCID: PMC11160556 DOI: 10.1016/j.expneurol.2020.113519] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022]
Abstract
Vincristine and bortezomib are effective chemotherapeutics widely used to treat hematological cancers. Vincristine blocks tubulin polymerization, whereas bortezomib is a proteasome inhibitor. Despite different mechanisms of action, the main non-hematological side effect of both is peripheral neuropathy that can last long after treatment has ended and cause permanent disability. Many different cellular and animal models of various aspects of vincristine and bortezomib-induced neuropathies have been generated to investigate underlying molecular mechanisms and serve as platforms to develop new therapeutics. These models revealed that bortezomib induces several transcriptional programs in dorsal root ganglia that result in the activation of different neuroinflammatory pathways and secondary central sensitization. In contrast, vincristine has direct toxic effects on the axon, which are accompanied by changes similar to those observed after nerve cut. Axon degeneration following both vincristine and bortezomib is mediated by a phylogenetically ancient, genetically encoded axon destruction program that leads to the activation of the Toll-like receptor adaptor SARM1 (sterile alpha and TIR motif containing protein 1) and local decrease of nicotinamide dinucleotide (NAD+). Here, I describe current in vitro and in vivo models of vincristine- and bortezomib induced neuropathies, present discoveries resulting from these models in the context of clinical findings and discuss how increased understanding of molecular mechanisms underlying different aspects of neuropathies can be translated to effective treatments to prevent, attenuate or reverse vincristine- and bortezomib-induced neuropathies. Such treatments could improve the quality of life of patients both during and after cancer therapy and, accordingly, have enormous societal impact.
Collapse
Affiliation(s)
- Stefanie Geisler
- Department of Neurology, Washington University School of Medicine in St. Louis, MO, USA.
| |
Collapse
|
129
|
Lee B, Cho Y. Experimental Model Systems for Understanding Human Axonal Injury Responses. Int J Mol Sci 2021; 22:E474. [PMID: 33418850 PMCID: PMC7824864 DOI: 10.3390/ijms22020474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/03/2020] [Accepted: 12/30/2020] [Indexed: 12/26/2022] Open
Abstract
Neurons are structurally unique and have dendrites and axons that are vulnerable to injury. Some neurons in the peripheral nervous system (PNS) can regenerate their axons after injuries. However, most neurons in the central nervous system (CNS) fail to do so, resulting in irreversible neurological disorders. To understand the mechanisms of axon regeneration, various experimental models have been utilized in vivo and in vitro. Here, we collate the key experimental models that revealed the important mechanisms regulating axon regeneration and degeneration in different systems. We also discuss the advantages of experimenting with the rodent model, considering the application of these findings in understanding human diseases and for developing therapeutic methods.
Collapse
Affiliation(s)
| | - Yongcheol Cho
- Laboratory of Axon Regeneration & Degeneration, Department of Life Sciences, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Korea;
| |
Collapse
|
130
|
Hughes RO, Bosanac T, Mao X, Engber TM, DiAntonio A, Milbrandt J, Devraj R, Krauss R. Small Molecule SARM1 Inhibitors Recapitulate the SARM1 -/- Phenotype and Allow Recovery of a Metastable Pool of Axons Fated to Degenerate. Cell Rep 2021; 34:108588. [PMID: 33406435 PMCID: PMC8179325 DOI: 10.1016/j.celrep.2020.108588] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/09/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Axonal degeneration is responsible for disease progression and accumulation of disability in many neurodegenerative conditions. The axonal degenerative process can generate a metastable pool of damaged axons that remain structurally and functionally viable but fated to degenerate in the absence of external intervention. SARM1, an NADase that depletes axonal energy stores upon activation, is the central driver of an evolutionarily conserved program of axonal degeneration. We identify a potent and selective small molecule isoquinoline inhibitor of SARM1 NADase that recapitulates the SARM1-/- phenotype and protects axons from degeneration induced by axotomy or mitochondrial dysfunction. SARM1 inhibition post-mitochondrial injury with rotenone allows recovery and rescues axons that already entered the metastable state. We conclude that SARM1 inhibition with small molecules has the potential to treat axonopathies of the central and peripheral nervous systems by preventing axonal degeneration and by allowing functional recovery of a metastable pool of damaged, but viable, axons.
Collapse
Affiliation(s)
- Robert O Hughes
- Disarm Therapeutics, a wholly owned subsidiary of Eli Lilly & Co, Cambridge, MA 02142, USA
| | - Todd Bosanac
- Disarm Therapeutics, a wholly owned subsidiary of Eli Lilly & Co, Cambridge, MA 02142, USA
| | - Xianrong Mao
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas M Engber
- Disarm Therapeutics, a wholly owned subsidiary of Eli Lilly & Co, Cambridge, MA 02142, USA
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rajesh Devraj
- Disarm Therapeutics, a wholly owned subsidiary of Eli Lilly & Co, Cambridge, MA 02142, USA
| | - Raul Krauss
- Disarm Therapeutics, a wholly owned subsidiary of Eli Lilly & Co, Cambridge, MA 02142, USA.
| |
Collapse
|
131
|
Covarrubias AJ, Perrone R, Grozio A, Verdin E. NAD + metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol 2020; 22:119-141. [PMID: 33353981 DOI: 10.1038/s41580-020-00313-x] [Citation(s) in RCA: 689] [Impact Index Per Article: 137.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a coenzyme for redox reactions, making it central to energy metabolism. NAD+ is also an essential cofactor for non-redox NAD+-dependent enzymes, including sirtuins, CD38 and poly(ADP-ribose) polymerases. NAD+ can directly and indirectly influence many key cellular functions, including metabolic pathways, DNA repair, chromatin remodelling, cellular senescence and immune cell function. These cellular processes and functions are critical for maintaining tissue and metabolic homeostasis and for healthy ageing. Remarkably, ageing is accompanied by a gradual decline in tissue and cellular NAD+ levels in multiple model organisms, including rodents and humans. This decline in NAD+ levels is linked causally to numerous ageing-associated diseases, including cognitive decline, cancer, metabolic disease, sarcopenia and frailty. Many of these ageing-associated diseases can be slowed down and even reversed by restoring NAD+ levels. Therefore, targeting NAD+ metabolism has emerged as a potential therapeutic approach to ameliorate ageing-related disease, and extend the human healthspan and lifespan. However, much remains to be learnt about how NAD+ influences human health and ageing biology. This includes a deeper understanding of the molecular mechanisms that regulate NAD+ levels, how to effectively restore NAD+ levels during ageing, whether doing so is safe and whether NAD+ repletion will have beneficial effects in ageing humans.
Collapse
Affiliation(s)
- Anthony J Covarrubias
- Buck Institute for Research on Aging, Novato, CA, USA.,UCSF Department of Medicine, San Francisco, CA, USA
| | | | | | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, USA. .,UCSF Department of Medicine, San Francisco, CA, USA.
| |
Collapse
|
132
|
Zhang Y, Qin Y, Chopp M, Li C, Kemper A, Liu X, Wang X, Zhang L, Zhang ZG. Ischemic Cerebral Endothelial Cell-Derived Exosomes Promote Axonal Growth. Stroke 2020; 51:3701-3712. [PMID: 33138691 PMCID: PMC7686085 DOI: 10.1161/strokeaha.120.031728] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/07/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND PURPOSE Cerebral endothelial cells (CECs) and axons of neurons interact to maintain vascular and neuronal homeostasis and axonal remodeling in normal and ischemic brain, respectively. However, the role of exosomes in the interaction of CECs and axons in brain under normal conditions and after stroke is unknown. METHODS Exosomes were isolated from CECs of nonischemic rats and is chemic rats (nCEC-exos and isCEC-exos), respectively. A multicompartmental cell culture system was used to separate axons from neuronal cell bodies. RESULTS Axonal application of nCEC-exos promotes axonal growth of cortical neurons, whereas isCEC-exos further enhance axonal growth than nCEC-exos. Ultrastructural analysis revealed that CEC-exos applied into distal axons were internalized by axons and reached to their parent somata. Bioinformatic analysis revealed that both nCEC-exos and isCEC-exos contain abundant mature miRNAs; however, isCEC-exos exhibit more robust elevation of select miRNAs than nCEC-exos. Mechanistically, axonal application of nCEC-exos and isCEC-exos significantly elevated miRNAs and reduced proteins in distal axons and their parent somata that are involved in inhibiting axonal outgrowth. Blockage of axonal transport suppressed isCEC-exo-altered miRNAs and proteins in somata but not in distal axons. CONCLUSIONS nCEC-exos and isCEC-exos facilitate axonal growth by altering miRNAs and their target protein profiles in recipient neurons.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, 48202
| | - Yi Qin
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, 48202
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, 48202
- Department of Physics, Oakland University, Rochester, Michigan, 48309
| | - Chao Li
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, 48202
| | - Amy Kemper
- Department of Pathology, Henry Ford Hospital, Detroit, Michigan, 48202
| | - Xianshuang Liu
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, 48202
| | - Xinli Wang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, 48202
| | - Li Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, 48202
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, 48202
| |
Collapse
|
133
|
Upregulated Nmnat2 causes neuronal death and increases seizure susceptibility in temporal lobe epilepsy. Brain Res Bull 2020; 167:1-10. [PMID: 33248200 DOI: 10.1016/j.brainresbull.2020.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 10/28/2020] [Accepted: 11/24/2020] [Indexed: 11/23/2022]
Abstract
A significant pathological feature of refractory temporal lobe epilepsy (TLE) is neuronal loss. Oxidative stress caused by repeated seizures is an important mechanism leading to neuronal loss in hippocampus. Nicotinamide-adenine dinucleotide (NAD) a coenzyme that is involved in many biochemical oxidation-reduction reactions. Nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2) catalyzes an essential step in NAD (NADP) biosynthetic pathwayhas and been considered as a neuronal maintenance factor that protect neurons against insults through context-dependent mechanism. However, it is unexpected that Nmnat2 does not play a neuroprotective role in epilepsy. We found that Nmnat2 was increased in mice model of TLE. Gain-of-function approach revealed that overexpression of Nmnat2 in CA1 area enhanced seizure susceptibility and caused neuronal loss in vivo. Moreover, we found that the chaperone function was essential to increased apoptosis through the function mutation of Nmnat2. Finally, Nmnat2 overexpression in vivo reduced in expression of SOD2 and increased FoxO3a. Overall, our study discloses a new biological function of Nmnat2 in epilepsy and provides novel insights into the molecular events underlying epilepsy.
Collapse
|
134
|
Canty AJ, Jackson JS, Huang L, Trabalza A, Bass C, Little G, Tortora M, Khan S, De Paola V. In vivo imaging of injured cortical axons reveals a rapid onset form of Wallerian degeneration. BMC Biol 2020; 18:170. [PMID: 33208154 PMCID: PMC7677840 DOI: 10.1186/s12915-020-00869-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 09/16/2020] [Indexed: 12/22/2022] Open
Abstract
Background Despite the widespread occurrence of axon and synaptic loss in the injured and diseased nervous system, the cellular and molecular mechanisms of these key degenerative processes remain incompletely understood. Wallerian degeneration (WD) is a tightly regulated form of axon loss after injury, which has been intensively studied in large myelinated fibre tracts of the spinal cord, optic nerve and peripheral nervous system (PNS). Fewer studies, however, have focused on WD in the complex neuronal circuits of the mammalian brain, and these were mainly based on conventional endpoint histological methods. Post-mortem analysis, however, cannot capture the exact sequence of events nor can it evaluate the influence of elaborated arborisation and synaptic architecture on the degeneration process, due to the non-synchronous and variable nature of WD across individual axons. Results To gain a comprehensive picture of the spatiotemporal dynamics and synaptic mechanisms of WD in the nervous system, we identify the factors that regulate WD within the mouse cerebral cortex. We combined single-axon-resolution multiphoton imaging with laser microsurgery through a cranial window and a fluorescent membrane reporter. Longitudinal imaging of > 150 individually injured excitatory cortical axons revealed a threshold length below which injured axons consistently underwent a rapid-onset form of WD (roWD). roWD started on average 20 times earlier and was executed 3 times slower than WD described in other regions of the nervous system. Cortical axon WD and roWD were dependent on synaptic density, but independent of axon complexity. Finally, pharmacological and genetic manipulations showed that a nicotinamide adenine dinucleotide (NAD+)-dependent pathway could delay cortical roWD independent of transcription in the damaged neurons, demonstrating further conservation of the molecular mechanisms controlling WD in different areas of the mammalian nervous system. Conclusions Our data illustrate how in vivo time-lapse imaging can provide new insights into the spatiotemporal dynamics and synaptic mechanisms of axon loss and assess therapeutic interventions in the injured mammalian brain.
Collapse
Affiliation(s)
- Alison Jane Canty
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia.
| | - Johanna Sara Jackson
- Dementia Research Institute at Imperial College, Department of Brain Sciences, Imperial College London, London, W12 0NN, UK
| | - Lieven Huang
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Antonio Trabalza
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Cher Bass
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Graham Little
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Maria Tortora
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Shabana Khan
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Vincenzo De Paola
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK. .,Medical Research Council London Institute of Medical Sciences, London, W12 0NN, UK.
| |
Collapse
|
135
|
Niu J, Sanders SS, Jeong HK, Holland SM, Sun Y, Collura KM, Hernandez LM, Huang H, Hayden MR, Smith GM, Hu Y, Jin Y, Thomas GM. Coupled Control of Distal Axon Integrity and Somal Responses to Axonal Damage by the Palmitoyl Acyltransferase ZDHHC17. Cell Rep 2020; 33:108365. [PMID: 33207199 PMCID: PMC7803378 DOI: 10.1016/j.celrep.2020.108365] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/28/2020] [Accepted: 10/19/2020] [Indexed: 12/25/2022] Open
Abstract
After optic nerve crush (ONC), the cell bodies and distal axons of most retinal ganglion cells (RGCs) degenerate. RGC somal and distal axon degenerations were previously thought to be controlled by two parallel pathways, involving activation of the kinase dual leucine-zipper kinase (DLK) and loss of the axon survival factor nicotinamide mononucleotide adenylyltransferase-2 (NMNAT2), respectively. Here, we report that palmitoylation of both DLK and NMNAT2 by the palmitoyl acyltransferase ZDHHC17 couples these signals. ZDHHC17-dependent palmitoylation enables DLK-dependent somal degeneration after ONC and also ensures NMNAT-dependent distal axon integrity in healthy optic nerves. We provide evidence that ZDHHC17 also controls survival-versus-degeneration decisions in dorsal root ganglion (DRG) neurons, and we identify conserved motifs in NMNAT2 and DLK that govern their ZDHHC17-dependent regulation. These findings suggest that the control of somal and distal axon integrity should be considered as a single, holistic process, mediated by the concerted action of two palmitoylation-dependent pathways.
Collapse
Affiliation(s)
- Jingwen Niu
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Shaun S Sanders
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Hey-Kyeong Jeong
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Sabrina M Holland
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Yue Sun
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kaitlin M Collura
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Luiselys M Hernandez
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Haoliang Huang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Michael R Hayden
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - George M Smith
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA; Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gareth M Thomas
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
136
|
Sasaki Y, Kakita H, Kubota S, Sene A, Lee TJ, Ban N, Dong Z, Lin JB, Boye SL, DiAntonio A, Boye SE, Apte RS, Milbrandt J. SARM1 depletion rescues NMNAT1-dependent photoreceptor cell death and retinal degeneration. eLife 2020; 9:e62027. [PMID: 33107823 PMCID: PMC7591247 DOI: 10.7554/elife.62027] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/13/2020] [Indexed: 01/02/2023] Open
Abstract
Leber congenital amaurosis type nine is an autosomal recessive retinopathy caused by mutations of the NAD+ synthesis enzyme NMNAT1. Despite the ubiquitous expression of NMNAT1, patients do not manifest pathologies other than retinal degeneration. Here we demonstrate that widespread NMNAT1 depletion in adult mice mirrors the human pathology, with selective loss of photoreceptors highlighting the exquisite vulnerability of these cells to NMNAT1 loss. Conditional deletion demonstrates that NMNAT1 is required within the photoreceptor. Mechanistically, loss of NMNAT1 activates the NADase SARM1, the central executioner of axon degeneration, to trigger photoreceptor death and vision loss. Hence, the essential function of NMNAT1 in photoreceptors is to inhibit SARM1, highlighting an unexpected shared mechanism between axonal degeneration and photoreceptor neurodegeneration. These results define a novel SARM1-dependent photoreceptor cell death pathway and identifies SARM1 as a therapeutic candidate for retinopathies.
Collapse
Affiliation(s)
- Yo Sasaki
- Department of Genetics, Washington University School of MedicineSt. LouisUnited States
| | - Hiroki Kakita
- Department of Genetics, Washington University School of MedicineSt. LouisUnited States
- Department of Perinatal and Neonatal Medicine, Aichi Medical UniversityAichiJapan
| | - Shunsuke Kubota
- Department of Ophthalmology and Visual Sciences, Washington University School of MedicineSt. LouisUnited States
| | - Abdoulaye Sene
- Department of Ophthalmology and Visual Sciences, Washington University School of MedicineSt. LouisUnited States
| | - Tae Jun Lee
- Department of Ophthalmology and Visual Sciences, Washington University School of MedicineSt. LouisUnited States
| | - Norimitsu Ban
- Department of Ophthalmology and Visual Sciences, Washington University School of MedicineSt. LouisUnited States
| | - Zhenyu Dong
- Department of Ophthalmology and Visual Sciences, Washington University School of MedicineSt. LouisUnited States
| | - Joseph B Lin
- Department of Ophthalmology and Visual Sciences, Washington University School of MedicineSt. LouisUnited States
| | - Sanford L Boye
- Department of Pediatrics, Powell Gene Therapy CenterGainesvilleUnited States
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of MedicineSt. LouisUnited States
- Needleman Center for Neurometabolism and Axonal TherapeuticsSt. LouisUnited States
| | - Shannon E Boye
- Department of Pediatrics, Division of Cellular and Molecular TherapyGainesvilleUnited States
| | - Rajendra S Apte
- Department of Ophthalmology and Visual Sciences, Washington University School of MedicineSt. LouisUnited States
- Department of Developmental Biology, Washington University School of MedicineSt. LouisUnited States
- Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of MedicineSt. LouisUnited States
- Needleman Center for Neurometabolism and Axonal TherapeuticsSt. LouisUnited States
| |
Collapse
|
137
|
Salvadores N, Gerónimo-Olvera C, Court FA. Axonal Degeneration in AD: The Contribution of Aβ and Tau. Front Aging Neurosci 2020; 12:581767. [PMID: 33192476 PMCID: PMC7593241 DOI: 10.3389/fnagi.2020.581767] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/09/2020] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD) represents the most common age-related neurodegenerative disorder, affecting around 35 million people worldwide. Despite enormous efforts dedicated to AD research over decades, there is still no cure for the disease. Misfolding and accumulation of Aβ and tau proteins in the brain constitute a defining signature of AD neuropathology, and mounting evidence has documented a link between aggregation of these proteins and neuronal dysfunction. In this context, progressive axonal degeneration has been associated with early stages of AD and linked to Aβ and tau accumulation. As the axonal degeneration mechanism has been starting to be unveiled, it constitutes a promising target for neuroprotection in AD. A comprehensive understanding of the mechanism of axonal destruction in neurodegenerative conditions is therefore critical for the development of new therapies aimed to prevent axonal loss before irreversible neuronal death occurs in AD. Here, we review current evidence of the involvement of Aβ and tau pathologies in the activation of signaling cascades that can promote axonal demise.
Collapse
Affiliation(s)
- Natalia Salvadores
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Fondap Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Cristian Gerónimo-Olvera
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Fondap Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Felipe A Court
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Fondap Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,Buck Institute for Research on Aging, Novato, CA, United States
| |
Collapse
|
138
|
Yong Y, Gamage K, Cushman C, Spano A, Deppmann C. Regulation of degenerative spheroids after injury. Sci Rep 2020; 10:15472. [PMID: 32963272 PMCID: PMC7508847 DOI: 10.1038/s41598-020-71906-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/05/2020] [Indexed: 12/26/2022] Open
Abstract
Neuronal injury leads to rapid, programmed disintegration of axons distal to the site of lesion. Much like other forms of axon degeneration (e.g. developmental pruning, toxic insult from neurodegenerative disorder), Wallerian degeneration associated with injury is preceded by spheroid formation along axons. The mechanisms by which injury leads to formation of spheroids and whether these spheroids have a functional role in degeneration remain elusive. Here, using neonatal mouse primary sympathetic neurons, we investigate the roles of players previously implicated in the progression of Wallerian degeneration in injury-induced spheroid formation. We find that intra-axonal calcium flux is accompanied by actin-Rho dependent growth of calcium rich axonal spheroids that eventually rupture, releasing material to the extracellular space prior to catastrophic axon degeneration. Importantly, after injury, Sarm1-/- and DR6-/-, but not Wlds (excess NAD+) neurons, are capable of forming spheroids that eventually rupture, releasing their contents to the extracellular space to promote degeneration. Supplementation of exogenous NAD+ or expressing WLDs suppresses Rho-dependent spheroid formation and degeneration in response to injury. Moreover, injured or trophically deprived Sarm1-/- and DR6-/-, but not Wlds neurons, are resistant to degeneration induced by conditioned media collected from wild-type axons after spheroid rupture. Taken together, these findings place Rho-actin and NAD+ upstream of spheroid formation and may suggest that other mediators of degeneration, such as DR6 and SARM1, mediate post-spheroid rupture events that lead to catastrophic axon disassembly.
Collapse
Affiliation(s)
- Yu Yong
- Department of Biology, University of Virginia, Charlottesville, VA, 22904-4328, USA
| | - Kanchana Gamage
- Amgen, Massachusetts and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Courtny Cushman
- Department of Neuroscience and Biomedical Engineering, University of Virginia, Charlottesville, VA, 22904-4328, USA
| | - Anthony Spano
- Department of Biology, University of Virginia, Charlottesville, VA, 22904-4328, USA
| | - Christopher Deppmann
- Department of Biology, University of Virginia, Charlottesville, VA, 22904-4328, USA.
- Department of Neuroscience and Biomedical Engineering, University of Virginia, Charlottesville, VA, 22904-4328, USA.
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22904-4328, USA.
| |
Collapse
|
139
|
Cimaglia G, Votruba M, Morgan JE, André H, Williams PA. Potential Therapeutic Benefit of NAD + Supplementation for Glaucoma and Age-Related Macular Degeneration. Nutrients 2020; 12:nu12092871. [PMID: 32961812 PMCID: PMC7551676 DOI: 10.3390/nu12092871] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Glaucoma and age-related macular degeneration are leading causes of irreversible blindness worldwide with significant health and societal burdens. To date, no clinical cures are available and treatments target only the manageable symptoms and risk factors (but do not remediate the underlying pathology of the disease). Both diseases are neurodegenerative in their pathology of the retina and as such many of the events that trigger cell dysfunction, degeneration, and eventual loss are due to mitochondrial dysfunction, inflammation, and oxidative stress. Here, we critically review how a decreased bioavailability of nicotinamide adenine dinucleotide (NAD; a crucial metabolite in healthy and disease states) may underpin many of these aberrant mechanisms. We propose how exogenous sources of NAD may become a therapeutic standard for the treatment of these conditions.
Collapse
Affiliation(s)
- Gloria Cimaglia
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 112 82 Stockholm, Sweden;
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK; (M.V.); (J.E.M.)
| | - Marcela Votruba
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK; (M.V.); (J.E.M.)
- Cardiff Eye Unit, University Hospital Wales, Cardiff CF14 4XW, Wales, UK
| | - James E. Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK; (M.V.); (J.E.M.)
- School of Medicine, Cardiff University, Cardiff CF14 4YS, Wales, UK
| | - Helder André
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 112 82 Stockholm, Sweden;
- Correspondence: (H.A.); (P.A.W.)
| | - Pete A. Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 112 82 Stockholm, Sweden;
- Correspondence: (H.A.); (P.A.W.)
| |
Collapse
|
140
|
Kitaoka Y, Sase K, Tsukahara C, Fujita N, Arizono I, Takagi H. Axonal Protection by Nicotinamide Riboside via SIRT1-Autophagy Pathway in TNF-Induced Optic Nerve Degeneration. Mol Neurobiol 2020; 57:4952-4960. [PMID: 32820458 PMCID: PMC7541376 DOI: 10.1007/s12035-020-02063-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) synthesis pathway has been involved in many biological functions. Nicotinamide riboside (NR) is widely used as an NAD+ precursor and known to increase NAD+ level in several tissues. The present study aimed to examine the effect of NR on tumor necrosis factor (TNF)-induced optic nerve degeneration and to investigate whether it alters SIRT1 expression and autophagic status in optic nerve. We also examined the localization of nicotinamide riboside kinase 1 (NRK1), which is a downstream enzyme for NR biosynthesis pathway in retina and optic nerve. Intravitreal injection of TNF or TNF plus NR was performed on rats. The p62 and LC3-II protein levels were examined to evaluate autophagic flux in optic nerve. Immunohistochemical analysis was performed to localize NRK1 expression. Morphometric analysis showed substantial axonal protection by NR against TNF-induced axon loss. TNF-induced increment of p62 protein level was significantly inhibited by NR administration. NR administration alone significantly increased the LC3-II levels and reduced p62 levels compared with the basal levels, and upregulated SIRT1 levels in optic nerve. Immunohistochemical analysis showed that NRK1 exists in retinal ganglion cells (RGCs) and nerve fibers in retina and optic nerve. NR administration apparently upregulated NRK1 levels in the TNF-treated eyes as well as the control eyes. Pre-injection of an SIRT1 inhibitor resulted in a significant increase of p62 levels in the NR plus TNF treatment group, implicating that SIRT1 regulates autophagy status. In conclusion, NRK1 exists in RGCs and optic nerve axons. NR exerted protection against axon loss induced by TNF with possible involvement of upregulated NRK1 and SIRT1-autophagy pathway.
Collapse
Affiliation(s)
- Yasushi Kitaoka
- Department of Molecular Neuroscience, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kaswasaki, Kanagawa, 216-8511, Japan.
| | - Kana Sase
- Department of Ophthalmology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Chihiro Tsukahara
- Department of Molecular Neuroscience, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kaswasaki, Kanagawa, 216-8511, Japan.,Department of Ophthalmology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Naoki Fujita
- Department of Molecular Neuroscience, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kaswasaki, Kanagawa, 216-8511, Japan.,Department of Ophthalmology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Ibuki Arizono
- Department of Molecular Neuroscience, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kaswasaki, Kanagawa, 216-8511, Japan.,Department of Ophthalmology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hitoshi Takagi
- Department of Ophthalmology, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
141
|
A glycolytic shift in Schwann cells supports injured axons. Nat Neurosci 2020; 23:1215-1228. [PMID: 32807950 DOI: 10.1038/s41593-020-0689-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 07/07/2020] [Indexed: 01/09/2023]
Abstract
Axon degeneration is a hallmark of many neurodegenerative disorders. The current assumption is that the decision of injured axons to degenerate is cell-autonomously regulated. Here we show that Schwann cells (SCs), the glia of the peripheral nervous system, protect injured axons by virtue of a dramatic glycolytic upregulation that arises in SCs as an inherent adaptation to axon injury. This glycolytic response, paired with enhanced axon-glia metabolic coupling, supports the survival of axons. The glycolytic shift in SCs is largely driven by the metabolic signaling hub, mammalian target of rapamycin complex 1, and the downstream transcription factors hypoxia-inducible factor 1-alpha and c-Myc, which together promote glycolytic gene expression. The manipulation of glial glycolytic activity through this pathway enabled us to accelerate or delay the degeneration of perturbed axons in acute and subacute rodent axon degeneration models. Thus, we demonstrate a non-cell-autonomous metabolic mechanism that controls the fate of injured axons.
Collapse
|
142
|
Figley MD, DiAntonio A. The SARM1 axon degeneration pathway: control of the NAD + metabolome regulates axon survival in health and disease. Curr Opin Neurobiol 2020; 63:59-66. [PMID: 32311648 PMCID: PMC7483800 DOI: 10.1016/j.conb.2020.02.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Axons are essential for nervous system function and axonal pathology is a common hallmark of many neurodegenerative diseases. Over a century and a half after the original description of Wallerian axon degeneration, advances over the past five years have heralded the emergence of a comprehensive, mechanistic model of an endogenous axon degenerative process that can be activated by both injury and disease. Axonal integrity is maintained by the opposing actions of the survival factors NMNAT2 and STMN2 and pro-degenerative molecules DLK and SARM1. The balance between axon survival and self-destruction is intimately tied to axonal NAD+ metabolism. These mechanistic insights may enable axon-protective therapies for a variety of human neurodegenerative diseases including peripheral neuropathy, traumatic brain injury and potentially ALS and Parkinson's.
Collapse
Affiliation(s)
- Matthew D Figley
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, 660 Euclid Avenue, St. Louis, MO 63110, USA
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, 660 Euclid Avenue, St. Louis, MO 63110, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
143
|
Retinal energy metabolism in health and glaucoma. Prog Retin Eye Res 2020; 81:100881. [PMID: 32712136 DOI: 10.1016/j.preteyeres.2020.100881] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 01/17/2023]
Abstract
Energy metabolism refers to the processes by which life transfers energy to do cellular work. The retina's relatively large energy demands make it vulnerable to energy insufficiency. In addition, evolutionary pressures to optimize human vision have been traded against retinal ganglion cell bioenergetic fragility. Details of the metabolic profiles of the different retinal cells remain poorly understood and are challenging to resolve. Detailed immunohistochemical mapping of the energy pathway enzymes and substrate transporters has provided some insights and highlighted interspecies differences. The different spatial metabolic patterns between the vascular and avascular retinas can account for some inconsistent data in the literature. There is a consilience of evidence that at least some individuals with glaucoma have impaired RGC energy metabolism, either due to impaired nutrient supply or intrinsic metabolic perturbations. Bioenergetic-based therapy for glaucoma has a compelling pathophysiological foundation and is supported by recent successes in animal models. Recent demonstrations of visual and electrophysiological neurorecovery in humans with glaucoma is highly encouraging and motivates longer duration trials investigating bioenergetic neuroprotection.
Collapse
|
144
|
Lee Y, Jeong H, Park KH, Kim KW. Effects of NAD + in Caenorhabditis elegans Models of Neuronal Damage. Biomolecules 2020; 10:E993. [PMID: 32630651 PMCID: PMC7407593 DOI: 10.3390/biom10070993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/20/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor that mediates numerous biological processes in all living cells. Multiple NAD+ biosynthetic enzymes and NAD+-consuming enzymes are involved in neuroprotection and axon regeneration. The nematode Caenorhabditis elegans has served as a model to study the neuronal role of NAD+ because many molecular components regulating NAD+ are highly conserved. This review focuses on recent findings using C. elegans models of neuronal damage pertaining to the neuronal functions of NAD+ and its precursors, including a neuroprotective role against excitotoxicity and axon degeneration as well as an inhibitory role in axon regeneration. The regulation of NAD+ levels could be a promising therapeutic strategy to counter many neurodegenerative diseases, as well as neurotoxin-induced and traumatic neuronal damage.
Collapse
Affiliation(s)
- Yuri Lee
- Department of Life Science, Hallym University, Chuncheon 24252, Korea; (Y.L.); (H.J.); (K.H.P.)
| | - Hyeseon Jeong
- Department of Life Science, Hallym University, Chuncheon 24252, Korea; (Y.L.); (H.J.); (K.H.P.)
| | - Kyung Hwan Park
- Department of Life Science, Hallym University, Chuncheon 24252, Korea; (Y.L.); (H.J.); (K.H.P.)
| | - Kyung Won Kim
- Department of Life Science, Hallym University, Chuncheon 24252, Korea; (Y.L.); (H.J.); (K.H.P.)
- Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea
- Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
145
|
Cambronne XA, Kraus WL. Location, Location, Location: Compartmentalization of NAD + Synthesis and Functions in Mammalian Cells. Trends Biochem Sci 2020; 45:858-873. [PMID: 32595066 DOI: 10.1016/j.tibs.2020.05.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/06/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
The numerous biological roles of NAD+ are organized and coordinated via its compartmentalization within cells. The spatial and temporal partitioning of this intermediary metabolite is intrinsic to understanding the impact of NAD+ on cellular signaling and metabolism. We review evidence supporting the compartmentalization of steady-state NAD+ levels in cells, as well as how the modulation of NAD+ synthesis dynamically regulates signaling by controlling subcellular NAD+ concentrations. We further discuss potential benefits to the cell of compartmentalizing NAD+, and methods for measuring subcellular NAD+ levels.
Collapse
Affiliation(s)
- Xiaolu A Cambronne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
146
|
Axon Degeneration Assays in Superior Cervical Ganglion Explant Cultures. Methods Mol Biol 2020. [PMID: 32524469 DOI: 10.1007/978-1-0716-0585-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The ability of peripheral nervous system neurons to extend long, axon-like neurites in vitro makes them ideally suited for studies on mechanisms of axon survival and degeneration. In this chapter, we describe how to prepare explant cultures of sympathetic neurons of the superior cervical ganglion (SCG). We also describe how to induce and assess axon degeneration with an injury or a chemical insult.
Collapse
|
147
|
Axon Degeneration: Which Method to Choose? Methods Mol Biol 2020. [PMID: 32524468 DOI: 10.1007/978-1-0716-0585-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Axons are diverse. They have different lengths, different branching patterns, and different biological roles. Methods to study axon degeneration are also diverse. The result is a bewildering range of experimental systems in which to study mechanisms of axon degeneration, and it is difficult to extrapolate from one neuron type and one method to another. The purpose of this chapter is to help readers to do this and to choose the methods most appropriate for answering their particular research question.
Collapse
|
148
|
Models of Axon Degeneration in Drosophila Larvae. Methods Mol Biol 2020. [PMID: 32524490 DOI: 10.1007/978-1-0716-0585-1_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The fruit fly Drosophila melanogaster has been a powerful model to study axonal biology including axon degeneration and regeneration (Brace et al., J Neurosci 34:8398-8410, 2014; Valakh et al. J Neurosci 33:17863-17,873, 2013; Xiong and Collins J Neurosci 32:610-615, 2012; Xiong et al. 191:211-223, 2010). Both adult and larval injury models have been developed in the fruit fly. This chapter focuses on in vivo and ex vivo methods developed for studying axon degeneration in Drosophila larvae. Additional models have been developed in the adult fly including injury models of olfactory receptor neurons in the brain and a model of axonal degeneration of sensory axons in the wing (Fang and Bonini, Annu Rev. Cell Dev Biol 28:575-597, 2012; Hoopfer et al. Neuron 50:883-895, 2006; Neukomm et al. Proc Natl Acad Sci U S A 111:9965-9970, 2014).
Collapse
|
149
|
Abstract
PURPOSE OF REVIEW Diffuse or traumatic axonal injury is one of the principal pathologies encountered in traumatic brain injury (TBI) and the resulting axonal loss, disconnection, and brain atrophy contribute significantly to clinical morbidity and disability. The seminal discovery of the slow Wallerian degeneration mice (Wld) in which transected axons do not degenerate but survive and function independently for weeks has transformed concepts on axonal biology and raised hopes that axonopathies may be amenable to specific therapeutic interventions. Here we review mechanisms of axonal degeneration and also describe how these mechanisms may inform biological therapies of traumatic axonopathy in the context of TBI. RECENT FINDINGS In the last decade, SARM1 [sterile a and Toll/interleukin-1 receptor (TIR) motif containing 1] and the DLK (dual leucine zipper bearing kinase) and LZK (leucine zipper kinase) MAPK (mitogen-activated protein kinases) cascade have been established as the key drivers of Wallerian degeneration, a complex program of axonal self-destruction which is activated by a wide range of injurious insults, including insults that may otherwise leave axons structurally robust and potentially salvageable. Detailed studies on animal models and postmortem human brains indicate that this type of partial disruption is the main initial pathology in traumatic axonopathy. At the same time, the molecular dissection of Wallerian degeneration has revealed that the decision that commits axons to degeneration is temporally separated from the time of injury, a window that allows potentially effective pharmacological interventions. SUMMARY Molecular signals initiating and triggering Wallerian degeneration appear to be playing an important role in traumatic axonopathy and recent advances in understanding their nature and significance is opening up new therapeutic opportunities for TBI.
Collapse
|
150
|
Zwilling M, Theiss C, Matschke V. Caffeine and NAD + Improve Motor Neural Integrity of Dissociated Wobbler Cells In Vitro. Antioxidants (Basel) 2020; 9:antiox9060460. [PMID: 32471290 PMCID: PMC7346375 DOI: 10.3390/antiox9060460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a common degenerative disease of the central nervous system concerning a progressive loss of upper and lower motor neurons. While 5%–10% of patients are diagnosed with the inherited form of the disease, the vast majority of patients suffer from the less characterized sporadic form of ALS (sALS). As the wobbler mouse and the ALS show striking similarities in view of phenotypical attributes, the mouse is rated as an animal model for the disease. Recent investigations show the importance of nicotinamide adenine dinucleotide (NAD+) and its producing enzyme nicotinic acid mononucleotide transferase 2 (Nmnat2) for neurodegeneration as well as for the preservation of health of the neuronal cells. Furthermore, it is newly determined that these molecules show significant downregulations in the spinal cord of wobbler mice in the stable phase of disease development. Here, we were able to prove a positive benefit on affected motor neurons from an additional NAD+ supply as well as an increase in the Nmnat2 level through caffeine treatment in cells in vitro. In addition, first assumptions about the importance of endogenous and exogenous factors that have an influence on the wellbeing of motor nerve cells in the model of ALS can be considered.
Collapse
|