101
|
Minato Y, Gohl DM, Thiede JM, Chacón JM, Harcombe WR, Maruyama F, Baughn AD. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. mSystems 2019; 4:e00070-19. [PMID: 31239393 PMCID: PMC6593218 DOI: 10.1128/msystems.00070-19] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/07/2019] [Indexed: 11/30/2022] Open
Abstract
A better understanding of essential cellular functions in pathogenic bacteria is important for the development of more effective antimicrobial agents. We performed a comprehensive identification of essential genes in Mycobacterium tuberculosis, the major causative agent of tuberculosis, using a combination of transposon insertion sequencing (Tn-seq) and comparative genomic analysis. To identify conditionally essential genes by Tn-seq, we used media with different nutrient compositions. Although many conditional gene essentialities were affected by the presence of relevant nutrient sources, we also found that the essentiality of genes in a subset of metabolic pathways was unaffected by metabolite availability. Comparative genomic analysis revealed that not all essential genes identified by Tn-seq were fully conserved within the M. tuberculosis complex, including some existing antitubercular drug target genes. In addition, we utilized an available M. tuberculosis genome-scale metabolic model, iSM810, to predict M. tuberculosis gene essentiality in silico Comparing the sets of essential genes experimentally identified by Tn-seq to those predicted in silico reveals the capabilities and limitations of gene essentiality predictions, highlighting the complexity of M. tuberculosis essential metabolic functions. This study provides a promising platform to study essential cellular functions in M. tuberculosis IMPORTANCE Mycobacterium tuberculosis causes 10 million cases of tuberculosis (TB), resulting in over 1 million deaths each year. TB therapy is challenging because it requires a minimum of 6 months of treatment with multiple drugs. Protracted treatment times and the emergent spread of drug-resistant M. tuberculosis necessitate the identification of novel targets for drug discovery to curb this global health threat. Essential functions, defined as those indispensable for growth and/or survival, are potential targets for new antimicrobial drugs. In this study, we aimed to define gene essentialities of M. tuberculosis on a genomewide scale to comprehensively identify potential targets for drug discovery. We utilized a combination of experimental (functional genomics) and in silico approaches (comparative genomics and flux balance analysis). Our functional genomics approach identified sets of genes whose essentiality was affected by nutrient availability. Comparative genomics revealed that not all essential genes were fully conserved within the M. tuberculosis complex. Comparing sets of essential genes identified by functional genomics to those predicted by flux balance analysis highlighted gaps in current knowledge regarding M. tuberculosis metabolic capabilities. Thus, our study identifies numerous potential antitubercular drug targets and provides a comprehensive picture of the complexity of M. tuberculosis essential cellular functions.
Collapse
Affiliation(s)
- Yusuke Minato
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Daryl M Gohl
- University of Minnesota Genomics Center, Minneapolis, Minnesota, USA
| | - Joshua M Thiede
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Jeremy M Chacón
- Biotechnology Institute and Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - William R Harcombe
- Biotechnology Institute and Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Fumito Maruyama
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- The Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Tokyo, Japan
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Anthony D Baughn
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
102
|
Mendum TA, Chandran A, Williams K, Vordermeier HM, Villarreal-Ramos B, Wu H, Singh A, Smith AA, Butler RE, Prasad A, Bharti N, Banerjee R, Kasibhatla SM, Bhatt A, Stewart GR, McFadden J. Transposon libraries identify novel Mycobacterium bovis BCG genes involved in the dynamic interactions required for BCG to persist during in vivo passage in cattle. BMC Genomics 2019; 20:431. [PMID: 31138110 PMCID: PMC6540422 DOI: 10.1186/s12864-019-5791-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/10/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND BCG is the most widely used vaccine of all time and remains the only licensed vaccine for use against tuberculosis in humans. BCG also protects other species such as cattle against tuberculosis, but due to its incompatibility with current tuberculin testing regimens remains unlicensed. BCG's efficacy relates to its ability to persist in the host for weeks, months or even years after vaccination. It is unclear to what degree this ability to resist the host's immune system is maintained by a dynamic interaction between the vaccine strain and its host as is the case for pathogenic mycobacteria. RESULTS To investigate this question, we constructed transposon mutant libraries in both BCG Pasteur and BCG Danish strains and inoculated them into bovine lymph nodes. Cattle are well suited to such an assay, as they are naturally susceptible to tuberculosis and are one of the few animal species for which a BCG vaccination program has been proposed. After three weeks, the BCG were recovered and the input and output libraries compared to identify mutants with in vivo fitness defects. Less than 10% of the mutated genes were identified as affecting in vivo fitness, they included genes encoding known mycobacterial virulence functions such as mycobactin synthesis, sugar transport, reductive sulphate assimilation, PDIM synthesis and cholesterol metabolism. Many other attenuating genes had not previously been recognised as having a virulence phenotype. To test these genes, we generated and characterised three knockout mutants that were predicted by transposon mutagenesis to be attenuating in vivo: pyruvate carboxylase, a hypothetical protein (BCG_1063), and a putative cyclopropane-fatty-acyl-phospholipid synthase. The knockout strains survived as well as wild type during in vitro culture and in bovine macrophages, yet demonstrated marked attenuation during passage in bovine lymph nodes confirming that they were indeed involved in persistence of BCG in the host. CONCLUSION These data show that BCG is far from passive during its interaction with the host, rather it continues to employ its remaining virulence factors, to interact with the host's innate immune system to allow it to persist, a property that is important for its protective efficacy.
Collapse
Affiliation(s)
- Tom A. Mendum
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| | - Aneesh Chandran
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| | - Kerstin Williams
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| | | | | | - H. Wu
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| | - Albel Singh
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Alex A. Smith
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| | - Rachel E. Butler
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| | - Aravind Prasad
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Innovation Park, Panchavati, Pashan, Pune, Maharashtra 411008 India
| | - Neeraj Bharti
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Innovation Park, Panchavati, Pashan, Pune, Maharashtra 411008 India
| | - Ruma Banerjee
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Innovation Park, Panchavati, Pashan, Pune, Maharashtra 411008 India
| | - Sunitha M. Kasibhatla
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Innovation Park, Panchavati, Pashan, Pune, Maharashtra 411008 India
| | - Apoorva Bhatt
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Graham R. Stewart
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| | - Johnjoe McFadden
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| |
Collapse
|
103
|
Gonyar LA, Gelbach PE, McDuffie DG, Koeppel AF, Chen Q, Lee G, Temple LM, Stibitz S, Hewlett EL, Papin JA, Damron FH, Eby JC. In Vivo Gene Essentiality and Metabolism in Bordetella pertussis. mSphere 2019; 4:e00694-18. [PMID: 31118307 PMCID: PMC6531889 DOI: 10.1128/msphere.00694-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/10/2019] [Indexed: 12/30/2022] Open
Abstract
Bordetella pertussis is the causative agent of whooping cough, a serious respiratory illness affecting children and adults, associated with prolonged cough and potential mortality. Whooping cough has reemerged in recent years, emphasizing a need for increased knowledge of basic mechanisms of B. pertussis growth and pathogenicity. While previous studies have provided insight into in vitro gene essentiality of this organism, very little is known about in vivo gene essentiality, a critical gap in knowledge, since B. pertussis has no previously identified environmental reservoir and is isolated from human respiratory tract samples. We hypothesize that the metabolic capabilities of B. pertussis are especially tailored to the respiratory tract and that many of the genes involved in B. pertussis metabolism would be required to establish infection in vivo In this study, we generated a diverse library of transposon mutants and then used it to probe gene essentiality in vivo in a murine model of infection. Using the CON-ARTIST pipeline, 117 genes were identified as conditionally essential at 1 day postinfection, and 169 genes were identified as conditionally essential at 3 days postinfection. Most of the identified genes were associated with metabolism, and we utilized two existing genome-scale metabolic network reconstructions to probe the effects of individual essential genes on biomass synthesis. This analysis suggested a critical role for glucose metabolism and lipooligosaccharide biosynthesis in vivo This is the first genome-wide evaluation of in vivo gene essentiality in B. pertussis and provides tools for future exploration.IMPORTANCE Our study describes the first in vivo transposon sequencing (Tn-seq) analysis of B. pertussis and identifies genes predicted to be essential for in vivo growth in a murine model of intranasal infection, generating key resources for future investigations into B. pertussis pathogenesis and vaccine design.
Collapse
Affiliation(s)
- Laura A Gonyar
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Patrick E Gelbach
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Dennis G McDuffie
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Alexander F Koeppel
- Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Qing Chen
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Gloria Lee
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Louise M Temple
- Department of Integrated Science and Technology, James Madison University, Harrisonburg, Virginia, USA
| | - Scott Stibitz
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Erik L Hewlett
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Jason A Papin
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - F Heath Damron
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Joshua C Eby
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
104
|
Poulsen BE, Yang R, Clatworthy AE, White T, Osmulski SJ, Li L, Penaranda C, Lander ES, Shoresh N, Hung DT. Defining the core essential genome of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2019; 116:10072-10080. [PMID: 31036669 PMCID: PMC6525520 DOI: 10.1073/pnas.1900570116] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genomics offered the promise of transforming antibiotic discovery by revealing many new essential genes as good targets, but the results fell short of the promise. While numerous factors contributed to the disappointing yield, one factor was that essential genes for a bacterial species were often defined based on a single or limited number of strains grown under a single or limited number of in vitro laboratory conditions. In fact, the essentiality of a gene can depend on both the genetic background and growth condition. We thus developed a strategy for more rigorously defining the core essential genome of a bacterial species by studying many pathogen strains and growth conditions. We assessed how many strains must be examined to converge on a set of core essential genes for a species. We used transposon insertion sequencing (Tn-Seq) to define essential genes in nine strains of Pseudomonas aeruginosa on five different media and developed a statistical model, FiTnEss, to classify genes as essential versus nonessential across all strain-medium combinations. We defined a set of 321 core essential genes, representing 6.6% of the genome. We determined that analysis of four strains was typically sufficient in P. aeruginosa to converge on a set of core essential genes likely to be essential across the species across a wide range of conditions relevant to in vivo infection, and thus to represent attractive targets for novel drug discovery.
Collapse
Affiliation(s)
- Bradley E Poulsen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Rui Yang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Anne E Clatworthy
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Tiantian White
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Sarah J Osmulski
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Li Li
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Cristina Penaranda
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02142;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Noam Shoresh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Deborah T Hung
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114;
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| |
Collapse
|
105
|
Shields RC, Jensen PA. The bare necessities: Uncovering essential and condition-critical genes with transposon sequencing. Mol Oral Microbiol 2019; 34:39-50. [PMID: 30739386 DOI: 10.1111/omi.12256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/18/2019] [Accepted: 02/06/2019] [Indexed: 12/11/2022]
Abstract
Querying gene function in bacteria has been greatly accelerated by the advent of transposon sequencing (Tn-seq) technologies (related Tn-seq strategies are known as TraDIS, INSeq, RB-TnSeq, and HITS). Pooled populations of transposon mutants are cultured in an environment and next-generation sequencing tools are used to determine areas of the genome that are important for bacterial fitness. In this review we provide an overview of Tn-seq methodologies and discuss how Tn-seq has been applied, or could be applied, to the study of oral microbiology. These applications include studying the essential genome as a means to rationally design therapeutic agents. Tn-seq has also contributed to our understanding of well-studied biological processes in oral bacteria. Other important applications include in vivo pathogenesis studies and use of Tn-seq to probe the molecular basis of microbial interactions. We also highlight recent advancements in techniques that act in synergy with Tn-seq such as clustered regularly interspaced short palindromic repeats (CRISPR) interference and microfluidic chip platforms.
Collapse
Affiliation(s)
- Robert C Shields
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida
| | - Paul A Jensen
- Department of Bioengineering and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
106
|
Abstract
Transposon insertion sequencing (TIS) is a widely used technique for conducting genome-scale forward genetic screens in bacteria. However, few methods enable comparison of TIS data across multiple replicates of a screen or across independent screens, including screens performed in different organisms. Here, we introduce a post hoc analytic framework, comparative TIS (CompTIS), which utilizes unsupervised learning to enable meta-analysis of multiple TIS data sets. CompTIS first implements screen-level principal-component analysis (PCA) and clustering to identify variation between the TIS screens. This initial screen-level analysis facilitates the selection of related screens for additional analyses, reveals the relatedness of complex environments based on growth phenotypes measured by TIS, and provides a useful quality control step. Subsequently, PCA is performed on genes to identify loci whose corresponding mutants lead to concordant/discordant phenotypes across all or in a subset of screens. We used CompTIS to analyze published intestinal colonization TIS data sets from two vibrio species. Gene-level analyses identified both pan-vibrio genes required for intestinal colonization and conserved genes that displayed species-specific requirements. CompTIS is applicable to virtually any combination of TIS screens and can be implemented without regard to either the number of screens or the methods used for upstream data analysis.IMPORTANCE Forward genetic screens are powerful tools for functional genomics. The comparison of similar forward genetic screens performed in different organisms enables the identification of genes with similar or different phenotypes across organisms. Transposon insertion sequencing is a widely used method for conducting genome-scale forward genetic screens in bacteria, yet few bioinformatic approaches have been developed to compare the results of screen replicates and different screens conducted across species or strains. Here, we used principal-component analysis (PCA) and hierarchical clustering, two unsupervised learning approaches, to analyze the relatedness of multiple in vivo screens of pathogenic vibrios. This analytic framework reveals both shared pan-vibrio requirements for intestinal colonization and strain-specific dependencies. Our findings suggest that PCA-based analytics will be a straightforward widely applicable approach for comparing diverse transposon insertion sequencing screens.
Collapse
|
107
|
Royet K, Parisot N, Rodrigue A, Gueguen E, Condemine G. Identification by Tn-seq of Dickeya dadantii genes required for survival in chicory plants. MOLECULAR PLANT PATHOLOGY 2019; 20:287-306. [PMID: 30267562 PMCID: PMC6637903 DOI: 10.1111/mpp.12754] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The identification of the virulence factors of plant-pathogenic bacteria has relied on the testing of individual mutants on plants, a time-consuming process. Transposon sequencing (Tn-seq) is a very powerful method for the identification of the genes required for bacterial growth in their host. We used this method in a soft-rot pathogenic bacterium to identify the genes required for the multiplication of Dickeya dadantii in chicory. About 100 genes were identified showing decreased or increased fitness in the plant. Most had no previously attributed role in plant-bacterium interactions. Following our screening, in planta competition assays confirmed that the uridine monophosphate biosynthesis pathway and the purine biosynthesis pathway were essential to the survival of D. dadantii in the plant, as the mutants ∆carA, ∆purF, ∆purL, ∆guaB and ∆pyrE were unable to survive in the plant in contrast with the wild-type (WT) bacterium. This study also demonstrated that the biosynthetic pathways of leucine, cysteine and lysine were essential for bacterial survival in the plant and that RsmC and GcpA were important in the regulation of the infection process, as the mutants ∆rsmC and ∆gcpA were hypervirulent. Finally, our study showed that D. dadantii flagellin was glycosylated and that this modification conferred fitness to the bacterium during plant infection. Assay by this method of the large collections of environmental pathogenic strains now available will allow an easy and rapid identification of new virulence factors.
Collapse
Affiliation(s)
- Kévin Royet
- University of LyonUniversité Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieF‐69622VilleurbanneFrance
| | - Nicolas Parisot
- University of LyonINSA‐Lyon, INRA, BF2I, UMR0203F‐69621VilleurbanneFrance
| | - Agnès Rodrigue
- University of LyonUniversité Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieF‐69622VilleurbanneFrance
| | - Erwan Gueguen
- University of LyonUniversité Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieF‐69622VilleurbanneFrance
| | - Guy Condemine
- University of LyonUniversité Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieF‐69622VilleurbanneFrance
| |
Collapse
|
108
|
Abstract
Transposition-sequencing (Tn-seq) has recently emerged as a powerful technique to query bacterial genomes. Tn-seq can be used to query the bacterial genome with unprecedented resolution, allowing the identification of small genes (e.g., noncoding RNA) that may be missed in conventional screening approaches. Tn-seq can be used to predict genes essential for in vitro growth and to directly identify genetic requirements for survival under multiple conditions. For instance, Tn-seq can be applied to determine the genes, and cellular processes, required to resist an antibacterial treatment or to acquire new resistance genes, to adapt to intracellular life or to compete with other bacteria. Virtually any assay that involves a selection pressure can be used to identify the associated genetic determinants. So far, genome-wide Tn-seq has not been applied to Legionella species. Here, we provide a protocol covering all the different steps to conduct a Tn-seq analysis in L. pneumophila. This includes generating a high-density library of insertional mutants, setting up a selection screen, sequencing the libraries, mapping the insertion sites, and analyzing the data to obtain the list of genes involved in surviving the applied selection.
Collapse
Affiliation(s)
- Léo Hardy
- CIRI, Centre International de Recherche en Infectiologie, Team "Horizontal gene transfer in bacterial pathogens", Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Villeurbanne, France
| | - Xavier Charpentier
- CIRI, Centre International de Recherche en Infectiologie, Team "Horizontal gene transfer in bacterial pathogens", Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Villeurbanne, France.
| |
Collapse
|
109
|
Rittershaus ESC, Baek SH, Krieger IV, Nelson SJ, Cheng YS, Nambi S, Baker RE, Leszyk JD, Shaffer SA, Sacchettini JC, Sassetti CM. A Lysine Acetyltransferase Contributes to the Metabolic Adaptation to Hypoxia in Mycobacterium tuberculosis. Cell Chem Biol 2018; 25:1495-1505.e3. [PMID: 30318462 PMCID: PMC6309504 DOI: 10.1016/j.chembiol.2018.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 05/14/2018] [Accepted: 09/12/2018] [Indexed: 01/07/2023]
Abstract
Upon inhibition of respiration, which occurs in hypoxic or nitric oxide-containing host microenvironments, Mycobacterium tuberculosis (Mtb) adopts a non-replicating "quiescent" state and becomes relatively unresponsive to antibiotic treatment. We used comprehensive mutant fitness analysis to identify regulatory and metabolic pathways that are essential for the survival of quiescent Mtb. This genetic study identified a protein acetyltransferase (Mt-Pat/Rv0998) that promoted survival and altered the flux of carbon from oxidative to reductive tricarboxylic acid (TCA) reactions. Reductive TCA requires malate dehydrogenase (MDH) and maintains the redox state of the NAD+/NADH pool. Genetic or chemical inhibition of MDH resulted in rapid cell death in both hypoxic cultures and in murine lung. These phenotypic data, in conjunction with significant structural differences between human and mycobacterial MDH enzymes that could be exploited for drug development, suggest a new strategy for eradicating quiescent bacteria.
Collapse
Affiliation(s)
- Emily S. C. Rittershaus
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School. Worcester, MA. 01650 USA
| | - Seung-Hun Baek
- Department of Microbiology, Yonsei University College of Medicine, Seoul Korea
| | - Inna V. Krieger
- Department of Biochemistry and Biophysics. Texas A&M University. College Station, TX. 77843 USA
| | - Samantha J. Nelson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School. Worcester, MA. 01650 USA
| | - Yu-Shan Cheng
- Department of Biochemistry and Biophysics. Texas A&M University. College Station, TX. 77843 USA
| | - Subhalaxmi Nambi
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School. Worcester, MA. 01650 USA
| | - Richard E. Baker
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School. Worcester, MA. 01650 USA
| | - John D. Leszyk
- Proteomics and Mass Spectrometry Facility, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA. 01650 USA
| | - Scott A. Shaffer
- Proteomics and Mass Spectrometry Facility, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA. 01650 USA
| | - James C. Sacchettini
- Department of Biochemistry and Biophysics. Texas A&M University. College Station, TX. 77843 USA
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School. Worcester, MA. 01650 USA
| |
Collapse
|
110
|
Baranowski C, Welsh MA, Sham LT, Eskandarian HA, Lim HC, Kieser KJ, Wagner JC, McKinney JD, Fantner GE, Ioerger TR, Walker S, Bernhardt TG, Rubin EJ, Rego EH. Maturing Mycobacterium smegmatis peptidoglycan requires non-canonical crosslinks to maintain shape. eLife 2018; 7:37516. [PMID: 30324906 PMCID: PMC6231781 DOI: 10.7554/elife.37516] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/11/2018] [Indexed: 01/06/2023] Open
Abstract
In most well-studied rod-shaped bacteria, peptidoglycan is primarily crosslinked by penicillin-binding proteins (PBPs). However, in mycobacteria, crosslinks formed by L,D-transpeptidases (LDTs) are highly abundant. To elucidate the role of these unusual crosslinks, we characterized Mycobacterium smegmatis cells lacking all LDTs. We find that crosslinks generate by LDTs are required for rod shape maintenance specifically at sites of aging cell wall, a byproduct of polar elongation. Asymmetric polar growth leads to a non-uniform distribution of these two types of crosslinks in a single cell. Consequently, in the absence of LDT-mediated crosslinks, PBP-catalyzed crosslinks become more important. Because of this, Mycobacterium tuberculosis (Mtb) is more rapidly killed using a combination of drugs capable of PBP- and LDT- inhibition. Thus, knowledge about the spatial and genetic relationship between drug targets can be exploited to more effectively treat this pathogen. Most bacteria have a cell wall that protects them and maintains their shape. Many of these organisms make their cell walls from fibers of proteins and sugars, called peptidoglycan. As bacteria grow, peptidoglycan is constantly broken down and reassembled, and in many species, new units of peptidoglycan are added into the sidewall. However, in a group of bacteria called mycobacteria, which cause tuberculosis and other diseases, the units are added at the tips. The peptidoglycan layer is often a successful target for antibiotic treatments. But, drugs that treat tuberculosis do not attack this layer, partly because we know very little about the cell walls of mycobacteria. Here, Baranowski et al. used genetic manipulation and microscopy to study how mycobacteria build their cell wall. The results showed that these bacteria link peptidoglycan units together in an unusual way. In most bacteria, peptidoglycan units are connected by chemical links known as 4-3 crosslinks. This is initially the same in mycobacteria, but as the cell grows and the cell wall expands, these bonds break and so-called 3-3 crosslinks form. In genetically modified bacteria that could not form these 3-3 bonds, the cell wall became brittle and weak, and the bacteria eventually died. These findings could be important for developing new drugs that treat infections caused by mycobacteria. Baranowski et al. demonstrate that a combination of drugs blocking both 4-3 and 3-3 crosslinks is particularly effective at killing the bacterium that causes tuberculosis.
Collapse
Affiliation(s)
- Catherine Baranowski
- Department of Immunology and Infectious Disease, Harvard TH Chan School of Public Health, Boston, United States
| | - Michael A Welsh
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| | - Lok-To Sham
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States.,Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Haig A Eskandarian
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland.,School of Engineering, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| | - Hoong Chuin Lim
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| | - Karen J Kieser
- Department of Immunology and Infectious Disease, Harvard TH Chan School of Public Health, Boston, United States
| | - Jeffrey C Wagner
- Department of Immunology and Infectious Disease, Harvard TH Chan School of Public Health, Boston, United States
| | - John D McKinney
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| | - Georg E Fantner
- School of Engineering, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| | - Thomas R Ioerger
- Department of Computer Science and Engineering, Texas A&M University, Texas, United States
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| | - Thomas G Bernhardt
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| | - Eric J Rubin
- Department of Immunology and Infectious Disease, Harvard TH Chan School of Public Health, Boston, United States.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| | - E Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
111
|
Hentchel KL, Reyes Ruiz LM, Curtis PD, Fiebig A, Coleman ML, Crosson S. Genome-scale fitness profile of Caulobacter crescentus grown in natural freshwater. ISME JOURNAL 2018; 13:523-536. [PMID: 30297849 DOI: 10.1038/s41396-018-0295-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 12/29/2022]
Abstract
Bacterial genomes evolve in complex ecosystems and are best understood in this natural context, but replicating such conditions in the lab is challenging. We used transposon sequencing to define the fitness consequences of gene disruption in the bacterium Caulobacter crescentus grown in natural freshwater, compared with axenic growth in common laboratory media. Gene disruptions in amino-acid and nucleotide sugar biosynthesis pathways and in metabolic substrate transport machinery impaired fitness in both lake water and defined minimal medium relative to complex peptone broth. Fitness in lake water was enhanced by insertions in genes required for flagellum biosynthesis and reduced by insertions in genes involved in biosynthesis of the holdfast surface adhesin. We further uncovered numerous hypothetical and uncharacterized genes for which disruption impaired fitness in lake water, defined minimal medium, or both. At the genome scale, the fitness profile of mutants cultivated in lake water was more similar to that in complex peptone broth than in defined minimal medium. Microfiltration of lake water did not significantly affect the terminal cell density or the fitness profile of the transposon mutant pool, suggesting that Caulobacter does not strongly interact with other microbes in this ecosystem on the measured timescale. Fitness of select mutants with defects in cell surface biosynthesis and environmental sensing were significantly more variable across days in lake water than in defined medium, presumably owing to day-to-day heterogeneity in the lake environment. This study reveals genetic interactions between Caulobacter and a natural freshwater environment, and provides a new avenue to study gene function in complex ecosystems.
Collapse
Affiliation(s)
- Kristy L Hentchel
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Leila M Reyes Ruiz
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Patrick D Curtis
- Department of Biology, University of Mississippi, University, MS, 38677, USA
| | - Aretha Fiebig
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.
| | - Maureen L Coleman
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, 60637, USA.
| | - Sean Crosson
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
112
|
Karash S, Kwon YM. Iron-dependent essential genes in Salmonella Typhimurium. BMC Genomics 2018; 19:610. [PMID: 30107784 PMCID: PMC6092869 DOI: 10.1186/s12864-018-4986-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/31/2018] [Indexed: 12/17/2022] Open
Abstract
Background The molecular mechanisms underlying bacterial cell death due to stresses or bactericidal antibiotics are complex and remain puzzling. Due to the current crisis of antibiotic resistance, development of effective antibiotics is urgently required. Previously, it has been shown that iron is required for effective killing of bacterial cells by numerous bactericidal antibiotics. Results We investigated the death or growth inhibition of S. Typhimurium under iron-restricted conditions, following disruption of essential genes, by transposon mutagenesis using transposon sequencing (Tn-seq). Our high-resolution Tn-seq analysis revealed that transposon mutants of S. Typhimurium with insertions in essential genes escaped immediate killing or growth inhibition under iron-restricted conditions for approximately one-third of all previously known essential genes. Based on this result, we classified all essential genes into two categories, iron-dependent essential genes, for which the insertion mutants can grow slowly if iron is restricted, and iron-independent essential genes, for which the mutants become nonviable regardless of iron concentration. The iron-dependency of the iron-dependent essential genes was further validated by the fact that the relative abundance of these essential gene mutants increased further with more severe iron restrictions. Our unexpected observation can be explained well by the common killing mechanisms of bactericidal antibiotics via production of reactive oxygen species (ROS). In this model, iron restriction would inhibit production of ROS, leading to reduced killing activity following blocking of essential gene functions. Interestingly, the targets of most antibiotics currently in use clinically are iron-dependent essential genes. Conclusions Our result suggests that targeting iron-independent essential genes may be a better strategy for future antibiotic development, because blocking their essential gene functions would lead to immediate cell death regardless of the iron concentration. This work expands our knowledge on the role of iron to a broad range of essential functions and pathways, providing novel insights for development of more effective antibiotics. Electronic supplementary material The online version of this article (10.1186/s12864-018-4986-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sardar Karash
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA.,Department of Biology, College of Education, Salahaddin University, Erbil, Kurdistan, Iraq
| | - Young Min Kwon
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA. .,Department of Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
113
|
Carey AF, Rock JM, Krieger IV, Chase MR, Fernandez-Suarez M, Gagneux S, Sacchettini JC, Ioerger TR, Fortune SM. TnSeq of Mycobacterium tuberculosis clinical isolates reveals strain-specific antibiotic liabilities. PLoS Pathog 2018; 14:e1006939. [PMID: 29505613 PMCID: PMC5854444 DOI: 10.1371/journal.ppat.1006939] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/15/2018] [Accepted: 02/13/2018] [Indexed: 01/25/2023] Open
Abstract
Once considered a phenotypically monomorphic bacterium, there is a growing body of work demonstrating heterogeneity among Mycobacterium tuberculosis (Mtb) strains in clinically relevant characteristics, including virulence and response to antibiotics. However, the genetic and molecular basis for most phenotypic differences among Mtb strains remains unknown. To investigate the basis of strain variation in Mtb, we performed genome-wide transposon mutagenesis coupled with next-generation sequencing (TnSeq) for a panel of Mtb clinical isolates and the reference strain H37Rv to compare genetic requirements for in vitro growth across these strains. We developed an analytic approach to identify quantitative differences in genetic requirements between these genetically diverse strains, which vary in genomic structure and gene content. Using this methodology, we found differences between strains in their requirements for genes involved in fundamental cellular processes, including redox homeostasis and central carbon metabolism. Among the genes with differential requirements were katG, which encodes the activator of the first-line antitubercular agent isoniazid, and glcB, which encodes malate synthase, the target of a novel small-molecule inhibitor. Differences among strains in their requirement for katG and glcB predicted differences in their response to these antimicrobial agents. Importantly, these strain-specific differences in antibiotic response could not be predicted by genetic variants identified through whole genome sequencing or by gene expression analysis. Our results provide novel insight into the basis of variation among Mtb strains and demonstrate that TnSeq is a scalable method to predict clinically important phenotypic differences among Mtb strains.
Collapse
Affiliation(s)
- Allison F. Carey
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jeremy M. Rock
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Inna V. Krieger
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Michael R. Chase
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Marta Fernandez-Suarez
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - James C. Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Thomas R. Ioerger
- Department of Computer Science, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (SMF); (TRI)
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail: (SMF); (TRI)
| |
Collapse
|
114
|
Karash S, Liyanage R, Qassab A, Lay JO, Kwon YM. A Comprehensive Assessment of the Genetic Determinants in Salmonella Typhimurium for Resistance to Hydrogen Peroxide Using Proteogenomics. Sci Rep 2017; 7:17073. [PMID: 29213059 PMCID: PMC5719062 DOI: 10.1038/s41598-017-17149-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/17/2017] [Indexed: 02/04/2023] Open
Abstract
Salmonella is an intracellular pathogen infecting a wide range of hosts and can survive in macrophages. An essential mechanism used by macrophages to eradicate Salmonella is production of reactive oxygen species. Here, we used proteogenomics to determine the candidate genes and proteins that have a role in resistance of S. Typhimurium to H2O2. For Tn-seq, a saturated Tn5 insertion library was grown in vitro under either 2.5 (H2O2L) or 3.5 mM H2O2 (H2O2H). We identified two sets of overlapping genes required for resistance of S. Typhimurium to H2O2L and H2O2H, and the results were validated via phenotypic evaluation of 50 selected mutants. The enriched pathways for H2O2 resistance included DNA repair, aromatic amino acid biosynthesis (aroBK), Fe-S cluster biosynthesis, iron homeostasis and a putative iron transporter system (ybbKLM), and H2O2 scavenging enzymes. Proteomics revealed that the majority of essential proteins, including ribosomal proteins, were downregulated upon exposure to H2O2. On the contrary, a subset of conditionally essential proteins identified by Tn-seq were analyzed by targeted proteomics, and 70% of them were upregulated by H2O2. The identified genes will deepen our understanding on S. Typhimurium survival mechanisms in macrophages, and can be exploited to develop new antimicrobial drugs.
Collapse
Affiliation(s)
- Sardar Karash
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Rohana Liyanage
- Department of Chemistry, University of Arkansas, Fayetteville, AR, 72701, USA.,Statewide Mass Spectrometry Facility, Fayetteville, AR, 72701, USA
| | - Abdullah Qassab
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Jackson O Lay
- Department of Chemistry, University of Arkansas, Fayetteville, AR, 72701, USA.,Statewide Mass Spectrometry Facility, Fayetteville, AR, 72701, USA
| | - Young Min Kwon
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA. .,Department of Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
115
|
Peng C, Lin Y, Luo H, Gao F. A Comprehensive Overview of Online Resources to Identify and Predict Bacterial Essential Genes. Front Microbiol 2017; 8:2331. [PMID: 29230204 PMCID: PMC5711816 DOI: 10.3389/fmicb.2017.02331] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/13/2017] [Indexed: 12/15/2022] Open
Abstract
Genes critical for the survival or reproduction of an organism in certain circumstances are classified as essential genes. Essential genes play a significant role in deciphering the survival mechanism of life. They may be greatly applied to pharmaceutics and synthetic biology. The continuous progress of experimental method for essential gene identification has accelerated the accumulation of gene essentiality data which facilitates the study of essential genes in silico. In this article, we present some available online resources related to gene essentiality, including bioinformatic software tools for transposon sequencing (Tn-seq) analysis, essential gene databases and online services to predict bacterial essential genes. We review several computational approaches that have been used to predict essential genes, and summarize the features used for gene essentiality prediction. In addition, we evaluate the available online bacterial essential gene prediction servers based on the experimentally validated essential gene sets of 30 bacteria from DEG. This article is intended to be a quick reference guide for the microbiologists interested in the essential genes.
Collapse
Affiliation(s)
- Chong Peng
- Department of Physics, School of Science, Tianjin University, Tianjin, China
| | - Yan Lin
- Department of Physics, School of Science, Tianjin University, Tianjin, China
| | - Hao Luo
- Department of Physics, School of Science, Tianjin University, Tianjin, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| |
Collapse
|
116
|
Chemical Genetic Interaction Profiling Reveals Determinants of Intrinsic Antibiotic Resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2017; 61:AAC.01334-17. [PMID: 28893793 DOI: 10.1128/aac.01334-17] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/07/2017] [Indexed: 12/21/2022] Open
Abstract
Chemotherapy for tuberculosis (TB) is lengthy and could benefit from synergistic adjuvant therapeutics that enhance current and novel drug regimens. To identify genetic determinants of intrinsic antibiotic susceptibility in Mycobacterium tuberculosis, we applied a chemical genetic interaction (CGI) profiling approach. We screened a saturated transposon mutant library and identified mutants that exhibit altered fitness in the presence of partially inhibitory concentrations of rifampin, ethambutol, isoniazid, vancomycin, and meropenem, antibiotics with diverse mechanisms of action. This screen identified the M. tuberculosis cell envelope to be a major determinant of antibiotic susceptibility but did not yield mutants whose increase in susceptibility was due to transposon insertions in genes encoding efflux pumps. Intrinsic antibiotic resistance determinants affecting resistance to multiple antibiotics included the peptidoglycan-arabinogalactan ligase Lcp1, the mycolic acid synthase MmaA4, the protein translocase SecA2, the mannosyltransferase PimE, the cell envelope-associated protease CaeA/Hip1, and FecB, a putative iron dicitrate-binding protein. Characterization of a deletion mutant confirmed FecB to be involved in the intrinsic resistance to every antibiotic analyzed. In contrast to its predicted function, FecB was dispensable for growth in low-iron medium and instead functioned as a critical mediator of envelope integrity.
Collapse
|
117
|
DeJesus MA, Nambi S, Smith CM, Baker RE, Sassetti CM, Ioerger TR. Statistical analysis of genetic interactions in Tn-Seq data. Nucleic Acids Res 2017; 45:e93. [PMID: 28334803 PMCID: PMC5499643 DOI: 10.1093/nar/gkx128] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/16/2017] [Indexed: 11/25/2022] Open
Abstract
Tn-Seq is an experimental method for probing the functions of genes through construction of complex random transposon insertion libraries and quantification of each mutant's abundance using next-generation sequencing. An important emerging application of Tn-Seq is for identifying genetic interactions, which involves comparing Tn mutant libraries generated in different genetic backgrounds (e.g. wild-type strain versus knockout strain). Several analytical methods have been proposed for analyzing Tn-Seq data to identify genetic interactions, including estimating relative fitness ratios and fitting a generalized linear model. However, these have limitations which necessitate an improved approach. We present a hierarchical Bayesian method for identifying genetic interactions through quantifying the statistical significance of changes in enrichment. The analysis involves a four-way comparison of insertion counts across datasets to identify transposon mutants that differentially affect bacterial fitness depending on genetic background. Our approach was applied to Tn-Seq libraries made in isogenic strains of Mycobacterium tuberculosis lacking three different genes of unknown function previously shown to be necessary for optimal fitness during infection. By analyzing the libraries subjected to selection in mice, we were able to distinguish several distinct classes of genetic interactions for each target gene that shed light on their functions and roles during infection.
Collapse
Affiliation(s)
- Michael A DeJesus
- Department of Computer Science, Texas A&M University, College Station, TX 77843, USA
| | - Subhalaxmi Nambi
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 55 Lake Avenue N., Worcester, MA 01655, USA
| | - Clare M Smith
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 55 Lake Avenue N., Worcester, MA 01655, USA
| | - Richard E Baker
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 55 Lake Avenue N., Worcester, MA 01655, USA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 55 Lake Avenue N., Worcester, MA 01655, USA
| | - Thomas R Ioerger
- Department of Computer Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
118
|
Zhao L, Anderson MT, Wu W, T Mobley HL, Bachman MA. TnseqDiff: identification of conditionally essential genes in transposon sequencing studies. BMC Bioinformatics 2017; 18:326. [PMID: 28683752 PMCID: PMC5500955 DOI: 10.1186/s12859-017-1745-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/26/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Tn-Seq is a high throughput technique for analysis of transposon mutant libraries to determine conditional essentiality of a gene under an experimental condition. A special feature of the Tn-seq data is that multiple mutants in a gene provides independent evidence to prioritize that gene as being essential. The existing methods do not account for this feature or rely on a high-density transposon library. Moreover, these methods are unable to accommodate complex designs. RESULTS The method proposed here is specifically designed for the analysis of Tn-Seq data. It utilizes two steps to estimate the conditional essentiality for each gene in the genome. First, it collects evidence of conditional essentiality for each insertion by comparing read counts of that insertion between conditions. Second, it combines insertion-level evidence for the corresponding gene. It deals with data from both low- and high-density transposon libraries and accommodates complex designs. Moreover, it is very fast to implement. The performance of the proposed method was tested on simulated data and experimental Tn-Seq data from Serratia marcescens transposon mutant library used to identify genes that contribute to fitness in a murine model of infection. CONCLUSION We describe a new, efficient method for identifying conditionally essential genes in Tn-Seq experiments with high detection sensitivity and specificity. It is implemented as TnseqDiff function in R package Tnseq and can be installed from the Comprehensive R Archive Network, CRAN.
Collapse
Affiliation(s)
- Lili Zhao
- Department of Biostatistics, University of Michigan, 1415 Washington Heights, Ann Arbor, USA.
| | - Mark T Anderson
- Department of Microbiology and Immunology, School of medicine, University of Michigan, Ann Arbor, USA
| | - Weisheng Wu
- BRCF Bioinformatics Core, University of Michigan, Ann Arbor, USA
| | - Harry L T Mobley
- Department of Microbiology and Immunology, School of medicine, University of Michigan, Ann Arbor, USA
| | - Michael A Bachman
- Department of Pathology, School of medicine, University of Michigan, Ann Arbor, USA
| |
Collapse
|
119
|
Genome-wide screen for genes involved in eDNA release during biofilm formation by Staphylococcus aureus. Proc Natl Acad Sci U S A 2017; 114:E5969-E5978. [PMID: 28674000 DOI: 10.1073/pnas.1704544114] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus aureus is a leading cause of both nosocomial and community-acquired infection. Biofilm formation at the site of infection reduces antimicrobial susceptibility and can lead to chronic infection. During biofilm formation, a subset of cells liberate cytoplasmic proteins and DNA, which are repurposed to form the extracellular matrix that binds the remaining cells together in large clusters. Using a strain that forms robust biofilms in vitro during growth under glucose supplementation, we carried out a genome-wide screen for genes involved in the release of extracellular DNA (eDNA). A high-density transposon insertion library was grown under biofilm-inducing conditions, and the relative frequency of insertions was compared between genomic DNA (gDNA) collected from cells in the biofilm and eDNA from the matrix. Transposon insertions into genes encoding functions necessary for eDNA release were identified by reduced representation in the eDNA. On direct testing, mutants of some of these genes exhibited markedly reduced levels of eDNA and a concomitant reduction in cell clustering. Among the genes with robust mutant phenotypes were gdpP, which encodes a phosphodiesterase that degrades the second messenger cyclic-di-AMP, and xdrA, the gene for a transcription factor that, as revealed by RNA-sequencing analysis, influences the expression of multiple genes, including many involved in cell wall homeostasis. Finally, we report that growth in biofilm-inducing medium lowers cyclic-di-AMP levels and does so in a manner that depends on the gdpP phosphodiesterase gene.
Collapse
|
120
|
A Noise Trimming and Positional Significance of Transposon Insertion System to Identify Essential Genes in Yersinia pestis. Sci Rep 2017; 7:41923. [PMID: 28165493 PMCID: PMC5292949 DOI: 10.1038/srep41923] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 12/30/2016] [Indexed: 01/14/2023] Open
Abstract
Massively parallel sequencing technology coupled with saturation mutagenesis has provided new and global insights into gene functions and roles. At a simplistic level, the frequency of mutations within genes can indicate the degree of essentiality. However, this approach neglects to take account of the positional significance of mutations - the function of a gene is less likely to be disrupted by a mutation close to the distal ends. Therefore, a systematic bioinformatics approach to improve the reliability of essential gene identification is desirable. We report here a parametric model which introduces a novel mutation feature together with a noise trimming approach to predict the biological significance of Tn5 mutations. We show improved performance of essential gene prediction in the bacterium Yersinia pestis, the causative agent of plague. This method would have broad applicability to other organisms and to the identification of genes which are essential for competitiveness or survival under a broad range of stresses.
Collapse
|
121
|
Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. mBio 2017; 8:mBio.02133-16. [PMID: 28096490 PMCID: PMC5241402 DOI: 10.1128/mbio.02133-16] [Citation(s) in RCA: 390] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For decades, identifying the regions of a bacterial chromosome that are necessary for viability has relied on mapping integration sites in libraries of random transposon mutants to find loci that are unable to sustain insertion. To date, these studies have analyzed subsaturated libraries, necessitating the application of statistical methods to estimate the likelihood that a gap in transposon coverage is the result of biological selection and not the stochasticity of insertion. As a result, the essentiality of many genomic features, particularly small ones, could not be reliably assessed. We sought to overcome this limitation by creating a completely saturated transposon library in Mycobacterium tuberculosis In assessing the composition of this highly saturated library by deep sequencing, we discovered that a previously unknown sequence bias of the Himar1 element rendered approximately 9% of potential TA dinucleotide insertion sites less permissible for insertion. We used a hidden Markov model of essentiality that accounted for this unanticipated bias, allowing us to confidently evaluate the essentiality of features that contained as few as 2 TA sites, including open reading frames (ORF), experimentally identified noncoding RNAs, methylation sites, and promoters. In addition, several essential regions that did not correspond to known features were identified, suggesting uncharacterized functions that are necessary for growth. This work provides an authoritative catalog of essential regions of the M. tuberculosis genome and a statistical framework for applying saturating mutagenesis to other bacteria. IMPORTANCE Sequencing of transposon-insertion mutant libraries has become a widely used tool for probing the functions of genes under various conditions. The Himar1 transposon is generally believed to insert with equal probabilities at all TA dinucleotides, and therefore its absence in a mutant library is taken to indicate biological selection against the corresponding mutant. Through sequencing of a saturated Himar1 library, we found evidence that TA dinucleotides are not equally permissive for insertion. The insertion bias was observed in multiple prokaryotes and influences the statistical interpretation of transposon insertion (TnSeq) data and characterization of essential genomic regions. Using these insights, we analyzed a fully saturated TnSeq library for M. tuberculosis, enabling us to generate a comprehensive catalog of in vitro essentiality, including ORFs smaller than those found in any previous study, small (noncoding) RNAs (sRNAs), promoters, and other genomic features.
Collapse
|
122
|
Majumdar G, Mbau R, Singh V, Warner DF, Dragset MS, Mukherjee R. Genome-Wide Transposon Mutagenesis in Mycobacterium tuberculosis and Mycobacterium smegmatis. Methods Mol Biol 2017; 1498:321-335. [PMID: 27709585 DOI: 10.1007/978-1-4939-6472-7_21] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
TnSeq, or transposon (Tn) insertion sequencing, is a powerful method for identifying the essential-as well as conditionally essential-regions in a genome, both coding and noncoding. The advent of accessible massively parallel DNA sequencing technologies in particular has resulted in the increased use of TnSeq-based approaches to elucidate various aspects of bacterial physiology and metabolism. Moreover, the availability of detailed protocols has enabled even nonspecialist laboratories to adapt and develop TnSeq approaches to address specific research questions. In this chapter, we describe a recently modified experimental protocol used in our laboratory for TnSeq in the major human pathogen, Mycobacterium tuberculosis, as well as the related non-pathogenic mycobacterium, M. smegmatis. The method, which was developed in close consultation with pioneers in the field of mycobacterial genetics, includes the steps involved in preparing a phage stock, generating a mutant library, selection of the library under a specific experimental condition, isolation of genomic DNA from the pooled population of mutants, amplification of the sites of Tn insertion and, finally, determining the essential genomic regions by next-generation sequencing.
Collapse
Affiliation(s)
- Gaurav Majumdar
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rendani Mbau
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Vinayak Singh
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Digby F Warner
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| | - Marte Singsås Dragset
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Raju Mukherjee
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
- Division of Biology, Indian Institute of Science Education and Research, Tirupati, India.
| |
Collapse
|
123
|
Korte J, Alber M, Trujillo CM, Syson K, Koliwer-Brandl H, Deenen R, Köhrer K, DeJesus MA, Hartman T, Jacobs WR, Bornemann S, Ioerger TR, Ehrt S, Kalscheuer R. Trehalose-6-Phosphate-Mediated Toxicity Determines Essentiality of OtsB2 in Mycobacterium tuberculosis In Vitro and in Mice. PLoS Pathog 2016; 12:e1006043. [PMID: 27936238 PMCID: PMC5148154 DOI: 10.1371/journal.ppat.1006043] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/04/2016] [Indexed: 01/13/2023] Open
Abstract
Trehalose biosynthesis is considered an attractive target for the development of antimicrobials against fungal, helminthic and bacterial pathogens including Mycobacterium tuberculosis. The most common biosynthetic route involves trehalose-6-phosphate (T6P) synthase OtsA and T6P phosphatase OtsB that generate trehalose from ADP/UDP-glucose and glucose-6-phosphate. In order to assess the drug target potential of T6P phosphatase, we generated a conditional mutant of M. tuberculosis allowing the regulated gene silencing of the T6P phosphatase gene otsB2. We found that otsB2 is essential for growth of M. tuberculosis in vitro as well as for the acute infection phase in mice following aerosol infection. By contrast, otsB2 is not essential for the chronic infection phase in mice, highlighting the substantial remodelling of trehalose metabolism during infection by M. tuberculosis. Blocking OtsB2 resulted in the accumulation of its substrate T6P, which appears to be toxic, leading to the self-poisoning of cells. Accordingly, blocking T6P production in a ΔotsA mutant abrogated otsB2 essentiality. T6P accumulation elicited a global upregulation of more than 800 genes, which might result from an increase in RNA stability implied by the enhanced neutralization of toxins exhibiting ribonuclease activity. Surprisingly, overlap with the stress response caused by the accumulation of another toxic sugar phosphate molecule, maltose-1-phosphate, was minimal. A genome-wide screen for synthetic lethal interactions with otsA identified numerous genes, revealing additional potential drug targets synergistic with OtsB2 suitable for combination therapies that would minimize the emergence of resistance to OtsB2 inhibitors. Trehalose biosynthesis is considered an attractive target for the development of new drugs against various microbial pathogens including Mycobacterium tuberculosis. In this human pathogen, two partially redundant pathways mediate trehalose biosynthesis. The OtsA-OtsB2 pathway, which dominates in culture, involves trehalose-6-phosphate (T6P) synthase OtsA and T6P phosphatase OtsB2. While OtsA is dispensable, OtsB2 is strictly essential for growth of M. tuberculosis. Using conditional gene silencing, we here show that essentiality of OtsB2 is linked to accumulation of its substrate T6P, which exhibits direct or indirect toxic effects. Regulated gene expression in vivo revealed that OtsB2 is required to establish an acute infection of M. tuberculosis in a mouse infection model, but is surprisingly fully dispensable during the chronic infection phase. This highlights that trehalose metabolism of M. tuberculosis is substantially remodelled during infection.
Collapse
Affiliation(s)
- Jan Korte
- Institute for Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Marina Alber
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Carolina M. Trujillo
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Karl Syson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Hendrik Koliwer-Brandl
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - René Deenen
- Biological and Medical Research Center (BMFZ), Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Michael A. DeJesus
- Department of Computer Science, Texas A&M University, College Station, Texas, United States of America
| | - Travis Hartman
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - William R. Jacobs
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Stephen Bornemann
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Thomas R. Ioerger
- Department of Computer Science, Texas A&M University, College Station, Texas, United States of America
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Rainer Kalscheuer
- Institute for Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
124
|
Abstract
Host infection by microbial pathogens cues global changes in microbial and host cell biology that facilitate microbial replication and disease. The complete maps of thousands of bacterial and viral genomes have recently been defined; however, the rate at which physiological or biochemical functions have been assigned to genes has greatly lagged. The National Institute of Allergy and Infectious Diseases (NIAID) addressed this gap by creating functional genomics centers dedicated to developing high-throughput approaches to assign gene function. These centers require broad-based and collaborative research programs to generate and integrate diverse data to achieve a comprehensive understanding of microbial pathogenesis. High-throughput functional genomics can lead to new therapeutics and better understanding of the next generation of emerging pathogens by rapidly defining new general mechanisms by which organisms cause disease and replicate in host tissues and by facilitating the rate at which functional data reach the scientific community.
Collapse
|
125
|
Barquist L, Mayho M, Cummins C, Cain AK, Boinett CJ, Page AJ, Langridge GC, Quail MA, Keane JA, Parkhill J. The TraDIS toolkit: sequencing and analysis for dense transposon mutant libraries. Bioinformatics 2016; 32:1109-11. [PMID: 26794317 PMCID: PMC4896371 DOI: 10.1093/bioinformatics/btw022] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/13/2016] [Indexed: 12/05/2022] Open
Abstract
Summary: Transposon insertion sequencing is a high-throughput technique for assaying large libraries of otherwise isogenic transposon mutants providing insight into gene essentiality, gene function and genetic interactions. We previously developed the Transposon Directed Insertion Sequencing (TraDIS) protocol for this purpose, which utilizes shearing of genomic DNA followed by specific PCR amplification of transposon-containing fragments and Illumina sequencing. Here we describe an optimized high-yield library preparation and sequencing protocol for TraDIS experiments and a novel software pipeline for analysis of the resulting data. The Bio-Tradis analysis pipeline is implemented as an extensible Perl library which can either be used as is, or as a basis for the development of more advanced analysis tools. This article can serve as a general reference for the application of the TraDIS methodology. Availability and implementation: The optimized sequencing protocol is included as supplementary information. The Bio-Tradis analysis pipeline is available under a GPL license at https://github.com/sanger-pathogens/Bio-Tradis Contact:parkhill@sanger.ac.uk Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Lars Barquist
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK and Institute for Molecular Infection Biology, University of Würzburg, Würzburg D-97080, Germany
| | - Matthew Mayho
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK and
| | - Carla Cummins
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK and
| | - Amy K Cain
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK and
| | | | - Andrew J Page
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK and
| | - Gemma C Langridge
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK and
| | - Michael A Quail
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK and
| | | | - Julian Parkhill
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK and
| |
Collapse
|