101
|
Lin JC, Wu YY, Wu JY, Lin TC, Wu CT, Chang YL, Jou YS, Hong TM, Yang PC. TROP2 is epigenetically inactivated and modulates IGF-1R signalling in lung adenocarcinoma. EMBO Mol Med 2012; 4:472-85. [PMID: 22419550 PMCID: PMC3443948 DOI: 10.1002/emmm.201200222] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 01/13/2012] [Accepted: 01/25/2012] [Indexed: 12/25/2022] Open
Abstract
Trop-2, a cell surface glycoprotein, contains both extracellular epidermal growth factor-like and thyroglobulin type-1 repeat domains. Low TROP2 expression was observed in lung adenocarcinoma tissues as compared with their normal counterparts. The lack of expression could be due to either the loss of heterozygosity (LOH) or hypermethylation of the CpG island DNA of TROP2 upstream promoter region as confirmed by bisulphite sequencing and methylation-specific (MS) polymerase chain reaction (PCR). 5-Aza-2′-deoxycytidine treatment on lung cancer cell (CL) lines, CL1-5 and A549, reversed the hypermethylation status and elevated both TROP2 mRNA and protein expression levels. Enforced expression of TROP2 in the lung CL line H1299 reduced AKT as well as ERK activation and suppressed cell proliferation and colony formation. Conversely, silencing TROP2 with shRNA transfection in the less efficiently tumour-forming cell line H322M enhanced AKT activation and increased tumour growth. Trop-2 could attenuate IGF-1R signalling-mediated AKT/β-catenin and ERK activation through a direct binding of IGF1. In conclusion, inactivation of TROP2 due to LOH or by DNA methylation may play an important role in lung cancer tumourigenicity through losing its suppressive effect on IGF-1R signalling and tumour growth.
Collapse
Affiliation(s)
- Jau-Chen Lin
- Department of Respiratory Therapy, Fu-Jen Catholic University, New Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Yu Z, Sato S, Trackman PC, Kirsch KH, Sonenshein GE. Blimp1 activation by AP-1 in human lung cancer cells promotes a migratory phenotype and is inhibited by the lysyl oxidase propeptide. PLoS One 2012; 7:e33287. [PMID: 22438909 PMCID: PMC3305320 DOI: 10.1371/journal.pone.0033287] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 02/10/2012] [Indexed: 01/04/2023] Open
Abstract
B lymphocyte-induced maturation protein 1 (Blimp1) is a master regulator of B cell differentiation, and controls migration of primordial germ cells. Recently we observed aberrant Blimp1 expression in breast cancer cells resulting from an NF-κB RelB to Ras signaling pathway. In order to address the question of whether the unexpected expression of Blimp1 is seen in other epithelial-derived tumors, we selected lung cancers as they are frequently driven by Ras signaling. Blimp1 was detected in all five lung cancer cell lines examined and shown to promote lung cancer cell migration and invasion. Interrogation of microarray datasets demonstrated elevated BLIMP1 RNA expression in lung adenocarcinoma, pancreatic ductal carcinomas, head and neck tumors as well as in glioblastomas. Involvement of Ras and its downstream kinase c-Raf was confirmed using mutant and siRNA strategies. We next addressed the issue of mechanism of Blimp1 activation in lung cancer. Using knockdown and ectopic expression, the role of the Activator Protein (AP)-1 family of transcription factors was demonstrated. Further, chromatin immunoprecipitation assays confirmed binding to identified AP-1 elements in the BLIMP1 promoter of ectopically expressed c-Jun and of endogenous AP-1 subunits following serum stimulation. The propeptide domain of lysyl oxidase (LOX-PP) was identified as a tumor suppressor, with ability to reduce Ras signaling in lung cancer cells. LOX-PP reduced expression of Blimp1 by binding to c-Raf and inhibiting activation of AP-1, thereby attenuating the migratory phenotype of lung cancer cells. Thus, Blimp1 is a mediator of Ras/Raf/AP-1 signaling that promotes cell migration, and is repressed by LOX-PP in lung cancer.
Collapse
Affiliation(s)
- Ziyang Yu
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Seiichi Sato
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Philip C. Trackman
- Division of Oral Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Kathrin H. Kirsch
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Gail E. Sonenshein
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
103
|
Geng J, Sun J, Lin Q, Gu J, Zhao Y, Zhang H, Feng X, He Y, Wang W, Zhou X, Yu J. Methylation status of NEUROG2 and NID2 improves the diagnosis of stage I NSCLC. Oncol Lett 2012; 3:901-906. [PMID: 22741015 DOI: 10.3892/ol.2012.587] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/26/2012] [Indexed: 01/09/2023] Open
Abstract
In our previous study, we attempted to develop a tool for the early diagnosis of non-small cell lung cancer (NSCLC) using DNA methylation biomarkers. With the aim of improving the diagnostic potential by optimizing the composition of the target set, in this study, 13 candidate genes (ACTA1, AIDH1A2, CBX8, CDH8, EVX1, MGC16275, NEUROG1, NEUROG2, NID2, OTX2OS1, PGAM2, PHOX2B and TOX) were analyzed by methylation-specific PCR to determine the methylation status of each gene in 5 NSCLC cell lines and in lung tissue samples from 15 healthy volunteers, 103 stage I NSCLC patients and 26 non-cancerous control patients. Results showed that NEUROG2 and NID2 were hypermethylated in stage I NSCLC tissues (31.07 and 46.60%, respectively) and unmethylated in normal lung tissues (0/15) and non-cancerous tissues (0/26). Following recombination, an optimized 5-gene panel (NEUROG2, NID2, RASSF1A, APC and HOXC9) achieved a sensitivity of 91.26% with a specificity of 84.62% in the detection of stage I NSCLC. The optimized 5-gene panel greatly improved the diagnostic power for stage I NSCLC.
Collapse
Affiliation(s)
- Junfeng Geng
- Department of General Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Walter K, Holcomb T, Januario T, Du P, Evangelista M, Kartha N, Iniguez L, Soriano R, Huw L, Stern H, Modrusan Z, Seshagiri S, Hampton GM, Amler LC, Bourgon R, Yauch RL, Shames DS. DNA methylation profiling defines clinically relevant biological subsets of non-small cell lung cancer. Clin Cancer Res 2012; 18:2360-73. [PMID: 22261801 DOI: 10.1158/1078-0432.ccr-11-2635-t] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Non-small cell lung cancers (NSCLC) comprise multiple distinct biologic groups with different prognoses. For example, patients with epithelial-like tumors have a better prognosis and exhibit greater sensitivity to inhibitors of the epidermal growth factor receptor (EGFR) pathway than patients with mesenchymal-like tumors. Here, we test the hypothesis that epithelial-like NSCLCs can be distinguished from mesenchymal-like NSCLCs on the basis of global DNA methylation patterns. EXPERIMENTAL DESIGN To determine whether phenotypic subsets of NSCLCs can be defined on the basis of their DNA methylation patterns, we combined microfluidics-based gene expression analysis and genome-wide methylation profiling. We derived robust classifiers for both gene expression and methylation in cell lines and tested these classifiers in surgically resected NSCLC tumors. We validate our approach using quantitative reverse transcriptase PCR and methylation-specific PCR in formalin-fixed biopsies from patients with NSCLC who went on to fail front-line chemotherapy. RESULTS We show that patterns of methylation divide NSCLCs into epithelial-like and mesenchymal-like subsets as defined by gene expression and that these signatures are similarly correlated in NSCLC cell lines and tumors. We identify multiple differentially methylated regions, including one in ERBB2 and one in ZEB2, whose methylation status is strongly associated with an epithelial phenotype in NSCLC cell lines, surgically resected tumors, and formalin-fixed biopsies from patients with NSCLC who went on to fail front-line chemotherapy. CONCLUSIONS Our data show that patterns of DNA methylation can divide NSCLCs into two phenotypically distinct subtypes of tumors and provide proof of principle that differences in DNA methylation can be used as a platform for predictive biomarker discovery and development.
Collapse
Affiliation(s)
- Kim Walter
- Department of Oncology Biomarker Development, Genentech Inc, South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Levenson VV, Melnikov AA. DNA methylation as clinically useful biomarkers-light at the end of the tunnel. Pharmaceuticals (Basel) 2012; 5:94-113. [PMID: 24288045 PMCID: PMC3763627 DOI: 10.3390/ph5010094] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 12/20/2022] Open
Abstract
A recent expansion of our knowledge about epigenetic changes strongly suggests that epigenetic rather than genetic features better reflect disease development, and consequently, can become more conclusive biomarkers for the detection and diagnosis of different diseases. In this paper we will concentrate on the current advances in DNA methylation studies that demonstrate a direct link between abnormal DNA methylation and a disease. This link can be used to develop diagnostic biomarkers that will precisely identify a particular disease. It also appears that disease-specific DNA methylation patterns undergo unique changes in response to treatment with a particular drug, thus raising the possibility of DNA methylation-based biomarkers for the monitoring of treatment efficacy, for prediction of response to treatment, and for the prognosis of outcome. While biomarkers for oncology are the most obvious applications, other fields of medicine are likely to benefit as well. This potential is demonstrated by DNA methylation-based biomarkers for neurological and psychiatric diseases. A special requirement for a biomarker is the possibility of longitudinal testing. In this regard cell-free circulating DNA from blood is especially interesting because it carries methylation markers specific for a particular disease. Although only a few DNA methylation-based biomarkers have attained clinical relevance, the ongoing efforts to decipher disease-specific methylation patterns are likely to produce additional biomarkers for detection, diagnosis, and monitoring of different diseases in the near future.
Collapse
Affiliation(s)
- Victor V Levenson
- Department of Radiation Oncology, Rush University Medical Center, 1750 West Harrison Street, Chicago, IL 60612, USA.
| | | |
Collapse
|
106
|
Ihle NT, Byers LA, Kim ES, Saintigny P, Lee JJ, Blumenschein GR, Tsao A, Liu S, Larsen JE, Wang J, Diao L, Coombes KR, Chen L, Zhang S, Abdelmelek MF, Tang X, Papadimitrakopoulou V, Minna JD, Lippman SM, Hong WK, Herbst RS, Wistuba II, Heymach JV, Powis G. Effect of KRAS oncogene substitutions on protein behavior: implications for signaling and clinical outcome. J Natl Cancer Inst 2012; 104:228-39. [PMID: 22247021 DOI: 10.1093/jnci/djr523] [Citation(s) in RCA: 412] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mutations in the v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) play a critical role in cancer cell growth and resistance to therapy. Most mutations occur at codons 12 and 13. In colorectal cancer, the presence of any mutant KRas amino acid substitution is a negative predictor of patient response to targeted therapy. However, in non-small cell lung cancer (NSCLC), the evidence that KRAS mutation is a predictive factor is conflicting. METHODS We used data from a molecularly targeted clinical trial for 215 patients with tissues available out of 268 evaluable patients with refractory NSCLC to examine associations between specific mutant KRas proteins and progression-free survival and tumor gene expression. Transcriptome microarray studies of patient tumor samples and reverse-phase protein array studies of a panel of 67 NSCLC cell lines with known substitutions in KRas and in immortalized human bronchial epithelial cells stably expressing different mutant KRas proteins were used to investigate signaling pathway activation. Molecular modeling was used to study the conformations of wild-type and mutant KRas proteins. Kaplan-Meier curves and Cox regression were used to analyze survival data. All statistical tests were two-sided. RESULTS Patients whose tumors had either mutant KRas-Gly12Cys or mutant KRas-Gly12Val had worse progression-free survival compared with patients whose tumors had other mutant KRas proteins or wild-type KRas (P = .046, median survival = 1.84 months) compared with all other mutant KRas (median survival = 3.35 months) or wild-type KRas (median survival = 1.95 months). NSCLC cell lines with mutant KRas-Gly12Asp had activated phosphatidylinositol 3-kinase (PI-3-K) and mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) signaling, whereas those with mutant KRas-Gly12Cys or mutant KRas-Gly12Val had activated Ral signaling and decreased growth factor-dependent Akt activation. Molecular modeling studies showed that different conformations imposed by mutant KRas may lead to altered association with downstream signaling transducers. CONCLUSIONS Not all mutant KRas proteins affect patient survival or downstream signaling in a similar way. The heterogeneous behavior of mutant KRas proteins implies that therapeutic interventions may need to take into account the specific mutant KRas expressed by the tumor.
Collapse
Affiliation(s)
- Nathan T Ihle
- Department of Experimental Therapeutics, The Hamon Center for Therapeutic Oncology Research and Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Clinical implications of epigenetic alterations in human thoracic malignancies: epigenetic alterations in lung cancer. Methods Mol Biol 2012; 863:221-39. [PMID: 22359296 DOI: 10.1007/978-1-61779-612-8_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Besides known genetic aberrations, epigenetic alterations have emerged as common hallmarks of many cancer types, including lung cancer. Epigenetics is a process involved in gene regulation, mediated via DNA methylation, histone modification, chromatin remodeling, and functional noncoding RNAs, which influences the accessibility of the underlying DNA to transcriptional regulatory factors that activate or repress expression. Studies have shown that epigenetic dysregulation is associated with multiple steps during carcinogenesis. Since epigenetic therapy is now in clinical use in hematopoietic diseases and undergoing trials for lung cancer, a better understanding of epigenetic abnormalities is desired. Recent technologies for high-throughput genome-wide analyses for epigenetic modifications are promising and potent tools for understanding the global dysregulation of cancer epigenetics. In this chapter, studies of epigenetic abnormality and its clinical implication in lung cancers are discussed.
Collapse
|
108
|
Yang M, Park JY. DNA methylation in promoter region as biomarkers in prostate cancer. Methods Mol Biol 2012; 863:67-109. [PMID: 22359288 DOI: 10.1007/978-1-61779-612-8_5] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The prostate gland is the most common site of cancer and the second leading cause of cancer death in American men. Recent emerging molecular biological technologies help us to know that epigenetic alterations such as DNA methylation within the regulatory (promoter) regions of genes are associated with transcriptional silencing in cancer. Promoter hypermethylation of critical pathway genes could be potential biomarkers and therapeutic targets for prostate cancer. In this chapter, we updated current information on methylated genes associated with the development and progression of prostate cancer. Over 40 genes have been investigated for methylation in promoter region in prostate cancer. These methylated genes are involved in critical pathways, such as DNA repair, metabolism, and invasion/metastasis. The role of hypermethylated genes in regulation of critical pathways in prostate cancer is discussed. These findings may provide new information of the pathogenesis, the exciting potential to be predictive and to provide personalized treatment of prostate cancer. Indeed, some epigenetic alterations in prostate tumors are being translated into clinical practice for therapeutic use.
Collapse
Affiliation(s)
- Mihi Yang
- Division of Cancer Prevention and Controls, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | |
Collapse
|
109
|
Chang J, Varghese DS, Gillam MC, Peyton M, Modi B, Schiltz RL, Girard L, Martinez ED. Differential response of cancer cells to HDAC inhibitors trichostatin A and depsipeptide. Br J Cancer 2011; 106:116-25. [PMID: 22158273 PMCID: PMC3251870 DOI: 10.1038/bjc.2011.532] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Over the last decade, several drugs that inhibit class I and/or class II histone deacetylases (HDACs) have been identified, including trichostatin A, the cyclic depsipeptide FR901228 and the antibiotic apicidin. These compounds have had immediate application in cancer research because of their ability to reactivate aberrantly silenced tumour suppressor genes and/or block tumour cell growth. Although a number of HDAC inhibitors are being evaluated in preclinical cancer models and in clinical trials, little is known about the differences in their specific mechanism of action and about the unique determinants of cancer cell sensitivity to each of these inhibitors. Methods: Using a combination of cell viability assays, HDAC enzyme activity measurements, western blots for histone modifications, microarray gene expression analysis and qRT–PCR, we have characterised differences in trichostatin A vs depsipeptide-induced phenotypes in lung cancer, breast cancer and skin cancer cells and in normal cells and have then expanded these studies to other HDAC inhibitors. Results: Cell viability profiles across panels of lung cancer, breast cancer and melanoma cell lines showed distinct sensitivities to the pan-inhibitor TSA compared with the class 1 selective inhibitor depsipeptide. In several instances, the cell lines most sensitive to one inhibitor were most resistant to the other inhibitor, demonstrating these drugs act on at least some non-overlapping cellular targets. These differences were not explained by the HDAC selectivity of these inhibitors alone since apicidin, which is a class 1 selective compound similar to depsipeptide, also showed a unique drug sensitivity profile of its own. TSA had greater specificity for cancer vs normal cells compared with other HDAC inhibitors. In addition, at concentrations that blocked cancer cell viability, TSA effectively inhibited purified recombinant HDACs 1, 2 and 5 and moderately inhibited HDAC8, while depsipeptide did not inhibit the activity of purified HDACs in vitro but did in cellular extracts, suggesting a potentially indirect action of this drug. Although both depsipeptide and TSA increased levels of histone acetylation in cancer cells, only depsipeptide decreased global levels of transcriptionally repressive histone methylation marks. Analysis of gene expression profiles of an isogenic cell line pair that showed discrepant sensitivity to depsipeptide, suggested that resistance to this inhibitor may be mediated by increased expression of multidrug resistance genes triggered by exposure to chemotherapy as was confirmed by verapamil studies. Conclusion: Although generally thought to have similar activities, the HDAC modulators trichostatin A and depsipeptide demonstrated distinct phenotypes in the inhibition of cancer cell viability and of HDAC activity, in their selectivity for cancer vs normal cells, and in their effects on histone modifications. These differences in mode of action may bear on the future therapeutic and research application of these inhibitors.
Collapse
Affiliation(s)
- J Chang
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-8593, USA
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Abstract
Lung cancer is a heterogeneous disease clinically, biologically, histologically, and molecularly. Understanding the molecular causes of this heterogeneity, which might reflect changes occurring in different classes of epithelial cells or different molecular changes occurring in the same target lung epithelial cells, is the focus of current research. Identifying the genes and pathways involved, determining how they relate to the biological behavior of lung cancer, and their utility as diagnostic and therapeutic targets are important basic and translational research issues. This article reviews current information on the key molecular steps in lung cancer pathogenesis, their timing, and clinical implications.
Collapse
Affiliation(s)
- Jill E Larsen
- Hamon Center for Therapeutic Oncology Research, Simmons Cancer Center, 6000 Harry Hines Boulevard, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA
| | | |
Collapse
|
111
|
Abstract
NK-like (NKL) homeobox genes code for transcription factors, which can act as key regulators in fundamental cellular processes. NKL genes have been implicated in divergent types of cancer. In this review, we summarize the involvement of NKL genes in cancer and leukemia in particular. NKL genes can act as tumor-suppressor genes and as oncogenes, depending on tissue type. Aberrant expression of NKL genes is especially common in T-cell acute lymphoblastic leukemia (T-ALL). In T-ALL, 8 NKL genes have been reported to be highly expressed in specific T-ALL subgroups, and in ~30% of cases, high expression is caused by chromosomal rearrangement of 1 of 5 NKL genes. Most of these NKL genes are normally not expressed in T-cell development. We hypothesize that the NKL genes might share a similar downstream effect that promotes leukemogenesis, possibly due to mimicking a NKL gene that has a physiological role in early hematopoietic development, such as HHEX. All eight NKL genes posses a conserved Eh1 repressor motif, which has an important role in regulating downstream targets in hematopoiesis and possibly in leukemogenesis as well. Identification of a potential common leukemogenic NKL downstream pathway will provide a promising subject for future studies.
Collapse
|
112
|
Lung cancer and its association with chronic obstructive pulmonary disease: update on nexus of epigenetics. Curr Opin Pulm Med 2011; 17:279-85. [PMID: 21537190 DOI: 10.1097/mcp.0b013e3283477533] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Chronic obstructive pulmonary disease (COPD) and lung cancer are the leading causes of morbidity and mortality worldwide. The current research is focused on identifying the common and disparate events involved in epigenetic modifications that concurrently occur during the pathogenesis of COPD and lung cancer. The purpose of this review is to describe the current knowledge and understanding of epigenetic modifications in pathogenesis of COPD and lung cancer. RECENT FINDINGS This review provides an update on advances of how epigenetic modifications are linked to COPD and lung cancer, and their commonalities and disparities. The key epigenetic modification enzymes (e.g. DNA methyltransferases -- CpG methylation, histone acetylases/deacetylases and histone methyltransferases/demethylases) that are identified to play an important role in COPD and lung tumorigenesis and progression are described in this review. SUMMARY Distinct DNA methyltransferases and histone modification enzymes are differentially involved in pathogenesis of lung cancer and COPD, although some of the modifications are common. Understanding the epigenetic modifications involved in pathogenesis of lung cancer or COPD with respect to common and disparate mechanisms will lead to targeting of epigenetic therapies against these disorders.
Collapse
|
113
|
Shu Y, Wang B, Wang J, Wang JM, Zou SQ. Identification of methylation profile of HOX genes in extrahepatic cholangiocarcinoma. World J Gastroenterol 2011; 17:3407-19. [PMID: 21876633 PMCID: PMC3160567 DOI: 10.3748/wjg.v17.i29.3407] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/17/2011] [Accepted: 05/24/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To identify methylation profile and novel tumor marker of extrahepatic cholangiocarcinoma (CCA) with high throughout microarray.
METHODS: Differential methylation profile was compared between normal bile duct epithelial cell lines and CCA cell lines by methyl-DNA immunoprecipitation (MeDIP) microarray. Bisulfite-polymerase chain reaction (BSP) was performed to identify the methylated allels of target genes. Expression of target genes was investigated before and after the treatment with DNA demethylating agent. Expression of candidate genes was also evaluated by immunofluorescence in 30 specimens of CCA tissues and 9 normal bile duct tissues.
RESULTS: Methylation profile of CCA was identified with MeDIP microarray in the respects of different gene functions and signaling pathways. Interestingly, 97 genes with hypermethylated CpG islands in the promoter region were homeobox genes. The top 5 hypermethylated homeobox genes validated by BSP were HOXA2 (94.29%), HOXA5 (95.38%), HOXA11 (91.67%), HOXB4 (90.56%) and HOXD13 (94.38%). Expression of these genes was reactivated with 5’-aza-2’-deoxycytidine. Significant expression differences were found between normal bile duct and extrahepatic CCA tissues (66.67%-100% vs 3.33%-10%).
CONCLUSION: HOXA2, HOXA5, HOXA11, HOXB4 and HOXD13 may work as differential epigenetic biomarkers between malignant and benign biliary tissues.
Collapse
|
114
|
Abstract
Aberrant DNA hypermethylation of tumor suppressor genes is thought to be an early event in tumorigenesis. Many studies have reported the methylation status of individual genes with known involvement in cancer, but an unbiased assessment of the biological function of the collective of hypermethylated genes has not been conducted so far. Based on the observation that a variety of human cancers recapitulate developmental gene expression patterns (that is activate genes normally expressed in early development and suppress late developmental genes), we hypothesized that the silencing of differentiation-associated genes in cancer could be attributed in part to DNA hypermethylation. To this end, we investigated the developmental expression patterns of genes with hypermethylated CpG islands in primary human lung carcinomas and lung cancer cell lines. We found that DNA hypermethylation primarily affects genes that are expressed in late stages of murine lung development. Gene ontology characterization of these genes shows that they are almost exclusively involved in morphogenetic differentiation processes. Our results indicate that DNA hypermethylation in cancer functions as a selective silencing mechanism of genes that are required for the maintenance of a differentiated state. The process of cellular de-differentiation that is evident on both the microscopic and transcriptional level in cancer might at least partly be mediated by these epigenetic events. Our observations provide a mechanistic explanation for induction of differentiation upon treatment with DNA methyltransferase inhibitors.
Collapse
|
115
|
Lind GE, Danielsen SA, Ahlquist T, Merok MA, Andresen K, Skotheim RI, Hektoen M, Rognum TO, Meling GI, Hoff G, Bretthauer M, Thiis-Evensen E, Nesbakken A, Lothe RA. Identification of an epigenetic biomarker panel with high sensitivity and specificity for colorectal cancer and adenomas. Mol Cancer 2011; 10:85. [PMID: 21777459 PMCID: PMC3166273 DOI: 10.1186/1476-4598-10-85] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 07/21/2011] [Indexed: 12/16/2022] Open
Abstract
Background The presence of cancer-specific DNA methylation patterns in epithelial colorectal cells in human feces provides the prospect of a simple, non-invasive screening test for colorectal cancer and its precursor, the adenoma. This study investigates a panel of epigenetic markers for the detection of colorectal cancer and adenomas. Methods Candidate biomarkers were subjected to quantitative methylation analysis in test sets of tissue samples from colorectal cancers, adenomas, and normal colonic mucosa. All findings were verified in independent clinical validation series. A total of 523 human samples were included in the study. Receiver operating characteristic (ROC) curve analysis was used to evaluate the performance of the biomarker panel. Results Promoter hypermethylation of the genes CNRIP1, FBN1, INA, MAL, SNCA, and SPG20 was frequent in both colorectal cancers (65-94%) and adenomas (35-91%), whereas normal mucosa samples were rarely (0-5%) methylated. The combined sensitivity of at least two positives among the six markers was 94% for colorectal cancers and 93% for adenoma samples, with a specificity of 98%. The resulting areas under the ROC curve were 0.984 for cancers and 0.968 for adenomas versus normal mucosa. Conclusions The novel epigenetic marker panel shows very high sensitivity and specificity for both colorectal cancers and adenomas. Our findings suggest this biomarker panel to be highly suitable for early tumor detection.
Collapse
Affiliation(s)
- Guro E Lind
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Selamat SA, Galler JS, Joshi AD, Fyfe MN, Campan M, Siegmund KD, Kerr KM, Laird-Offringa IA. DNA methylation changes in atypical adenomatous hyperplasia, adenocarcinoma in situ, and lung adenocarcinoma. PLoS One 2011; 6:e21443. [PMID: 21731750 PMCID: PMC3121768 DOI: 10.1371/journal.pone.0021443] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 05/28/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Aberrant DNA methylation is common in lung adenocarcinoma, but its timing in the phases of tumor development is largely unknown. Delineating when abnormal DNA methylation arises may provide insight into the natural history of lung adenocarcinoma and the role that DNA methylation alterations play in tumor formation. METHODOLOGY/PRINCIPAL FINDINGS We used MethyLight, a sensitive real-time PCR-based quantitative method, to analyze DNA methylation levels at 15 CpG islands that are frequently methylated in lung adenocarcinoma and that we had flagged as potential markers for non-invasive detection. We also used two repeat probes as indicators of global DNA hypomethylation. We examined DNA methylation in 249 tissue samples from 93 subjects, spanning the putative spectrum of peripheral lung adenocarcinoma development: histologically normal adjacent non-tumor lung, atypical adenomatous hyperplasia (AAH), adenocarcinoma in situ (AIS, formerly known as bronchioloalveolar carcinoma), and invasive lung adenocarcinoma. Comparison of DNA methylation levels between the lesion types suggests that DNA hypermethylation of distinct loci occurs at different time points during the development of lung adenocarcinoma. DNA methylation at CDKN2A ex2 and PTPRN2 is already significantly elevated in AAH, while CpG islands at 2C35, EYA4, HOXA1, HOXA11, NEUROD1, NEUROD2 and TMEFF2 are significantly hypermethylated in AIS. In contrast, hypermethylation at CDH13, CDX2, OPCML, RASSF1, SFRP1 and TWIST1 and global DNA hypomethylation appear to be present predominantly in invasive cancer. CONCLUSIONS/SIGNIFICANCE The gradual increase in DNA methylation seen for numerous loci in progressively more transformed lesions supports the model in which AAH and AIS are sequential stages in the development of lung adenocarcinoma. The demarcation of DNA methylation changes characteristic for AAH, AIS and adenocarcinoma begins to lay out a possible roadmap for aberrant DNA methylation events in tumor development. In addition, it identifies which DNA methylation changes might be used as molecular markers for the detection of preinvasive lesions.
Collapse
Affiliation(s)
- Suhaida A. Selamat
- Departments of Surgery and of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Janice S. Galler
- Departments of Surgery and of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Amit D. Joshi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - M. Nicky Fyfe
- Department of Pathology, Aberdeen Royal Infirmary, University of Aberdeen, Aberdeen, United Kingdom
| | - Mihaela Campan
- Departments of Surgery and of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Kimberly D. Siegmund
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Keith M. Kerr
- Department of Pathology, Aberdeen Royal Infirmary, University of Aberdeen, Aberdeen, United Kingdom
| | - Ite A. Laird-Offringa
- Departments of Surgery and of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
117
|
Abstract
There is an urgent need for blood-based, noninvasive molecular tests to assist in the detection and diagnosis of cancers in a cost-effective manner at an early stage, when curative interventions are still possible. Additionally, blood-based diagnostics can classify tumors into distinct molecular subtypes and monitor disease relapse and response to treatment. Increasingly, biomarker strategies are becoming critical to identify a specific patient subpopulation that is likely to respond to a new therapeutic agent. The improved understanding of the underlying molecular features of common cancers and the availability of a multitude of recently developed technologies to interrogate the genome, transcriptome, proteome and metabolome of tumors and biological fluids have made it possible to develop clinically applicable and cost-effective tests for many common cancers. Overall, the paradigm shift towards personalized and individualized medicine relies heavily on the increased use of diagnostic biomarkers and classifiers to improve diagnosis, management and treatment. International collaborations, involving both the private and public sector will be required to facilitate the development of clinical applications of biomarkers, using rigorous standardized assays. Here, we review the recent technological and scientific advances in this field.
Collapse
|
118
|
The lysyl oxidase propeptide interacts with the receptor-type protein tyrosine phosphatase kappa and inhibits β-catenin transcriptional activity in lung cancer cells. Mol Cell Biol 2011; 31:3286-97. [PMID: 21690299 DOI: 10.1128/mcb.01426-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The propeptide region of the lysyl oxidase proenzyme (LOX-PP) has been shown to inhibit Ras signaling in NIH 3T3 and lung cancer cells with activated RAS, but its mechanism of action is poorly understood. Here, a yeast two-hybrid assay of LOX-PP-interacting proteins identified a clone encoding the intracellular phosphatase domains of receptor-type protein tyrosine phosphatase kappa (RPTP-κ), and the interaction of the two proteins in mammalian cells was confirmed. RPTP-κ is proteolytically processed to isoforms that have opposing effects on β-catenin activity. The RPTP-κ transmembrane P subunit interacts with and sequesters β-catenin at the cell membrane, where it can associate with E-cadherin and promote intercellular interactions. At high cell density, further processing of the P subunit yields a phosphatase intracellular portion (PIC) subunit, which chaperones β-catenin to the nucleus, where it can function to activate transcription. Lung cancer cells were found to contain higher PIC levels than untransformed lung epithelial cells. In H1299 lung cancer cells, ectopic LOX-PP expression reduced the nuclear levels of PIC by increasing its turnover in the lysosome, thereby decreasing the nuclear levels and transcriptional activity of β-catenin while increasing β-catenin membrane localization. Thus, LOX-PP is shown to negatively regulate pro-oncogenic β-catenin signaling in lung cancer cells.
Collapse
|
119
|
The Ras signaling inhibitor LOX-PP interacts with Hsp70 and c-Raf to reduce Erk activation and transformed phenotype of breast cancer cells. Mol Cell Biol 2011; 31:2683-95. [PMID: 21536655 DOI: 10.1128/mcb.01148-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lysyl oxidase gene (LOX) inhibits Ras signaling in transformed fibroblasts and breast cancer cells. Its activity was mapped to the 162-amino-acid propeptide domain (LOX-PP) of the lysyl oxidase precursor protein. LOX-PP inhibits Erk signaling, motility, and tumor formation in a breast cancer xenograft model; however, its mechanism of action is largely unknown. Here, a copurification-mass spectrometry approach was taken using ectopically expressed LOX-PP in HEK293T cells and the heat shock/chaperone protein Hsp70 identified. Hsp70 interaction with LOX-PP was confirmed using coimmunoprecipitation of intracellularly and bacterially expressed and endogenous proteins. The interaction was mapped to the Hsp70 peptide-binding domain and to LOX-PP amino acids 26 to 100. LOX-PP association reduced Hsp70 chaperone activities of protein refolding and survival after heat shock. LOX-PP interacted with the Hsp70 chaperoned protein c-Raf. With the use of ectopic expression of LOX-PP wild-type and deletion proteins, small interfering RNA (siRNA) knockdown, and Lox(-/-) mouse embryo fibroblasts, LOX-PP interaction with c-Raf was shown to decrease downstream activation of MEK and NF-κB, migration, and anchorage-independent growth and reduce its mitochondrial localization. Thus, the interaction of LOX-PP with Hsp70 and c-Raf inhibits a critical intermediate in Ras-induced MEK signaling and plays an important role in the function of this tumor suppressor.
Collapse
|
120
|
Ponomaryova AA, Rykova EY, Cherdyntseva NV, Choinzonov EL, Laktionov PP, Vlassov VV. Molecular genetic markers in diagnosis of lung cancer. Mol Biol 2011. [DOI: 10.1134/s0026893310061056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
121
|
DNA methylation profile during multistage progression of pulmonary adenocarcinomas. Virchows Arch 2011; 459:201-11. [PMID: 21494759 DOI: 10.1007/s00428-011-1079-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/28/2011] [Accepted: 03/31/2011] [Indexed: 12/31/2022]
Abstract
Multiple genetic and epigenetic alterations are known to be involved in the carcinogenesis of peripheral pulmonary adenocarcinoma (ADC). However, epigenetic abnormalities have not been extensively investigated in the following multistage progression sequence: atypical adenomatous hyperplasia (AAH) to adenocarcinoma in situ (AIS), to invasive ADC. To determine the potential role of promoter methylation during ADC development of the lung, we examined methylation status in 20 normal, 20 AAH, 30 AIS, and 60 ADC lung tissues and compared methylation status among the lesions. The MethyLight assay was used to determine the methylation status of 18 CpG island loci, which were hypermethylated in ADC compared to noncancerous lung tissues. The mean number of methylated CpG island loci was significantly higher in ADC than in AAH and AIS, (p < 0.003 between ADC and AAH, p < 0.005 between ADC and AIS). Aberrant methylation of HOXA1, TMEFF2, and RARB was frequently observed in preinvasive lesions, including AAH and AIS. Furthermore, methylation of PENK, BCL2, RUNX3, DLEC1, MT1G, GRIN2B, CDH13, CCND2, and HOXA10 was significantly more frequent in invasive ADC than AAH or AIS. Our results indicate that epigenetic alterations are involved in the multistep progression of pulmonary ADC development, and aberrant CpG island methylation accumulates during multistep carcinogenesis. In addition, aberrant methylation of HOXA1, TMEFF2, and RARB occurred in preinvasive lesions, which indicates that epigenetic alterations of these genes are involved in the early stages of pulmonary ADC development. In contrast, hypermethylation of PENK, BCL2, RUNX3, DLEC1, MT1G, GRIN2B, CDH13, CCND2, and HOXA10 was more frequent in invasive ADC than in preinvasive lesions, which indicates that methylation of these genes occurs later during tumor invasion in the AAH-AIS-ADC sequence.
Collapse
|
122
|
Oster B, Thorsen K, Lamy P, Wojdacz TK, Hansen LL, Birkenkamp-Demtröder K, Sørensen KD, Laurberg S, Orntoft TF, Andersen CL. Identification and validation of highly frequent CpG island hypermethylation in colorectal adenomas and carcinomas. Int J Cancer 2011; 129:2855-66. [PMID: 21400501 DOI: 10.1002/ijc.25951] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 12/27/2010] [Indexed: 01/11/2023]
Abstract
In our study, whole-genome methylation arrays were applied to identify novel genes with tumor specific DNA methylation of promoter CpG islands in pre-malignant and malignant colorectal lesions. Using a combination of Illumina HumanMethylation27 beadchips, Methylation-Sensitive High Resolution Melting (MS-HRM) analysis, and Exon arrays (Affymetrix) the DNA methylation pattern of ∼14,000 genes and their transcript levels were investigated in six normal mucosas, six adenomas and 30 MSI and MSS carcinomas. Sixty eight genes with tumor-specific hypermethylation were identified (p < 0.005). Identified hypermethylated sites were validated in an independent sample set of eight normal mucosas, 12 adenomas, 40 MSS and nine MSI cancer samples. The methylation patterns of 15 selected genes, hypermethylated in adenomas and carcinomas (FLI1, ST6GALNAC5, TWIST1, ADHFE1, JAM2, IRF4, CNRIP1, NRG1 and EYA4), in carcinomas only (ABHD9, AOX1 and RERG), or in MSI but not MSS carcinomas (RAMP2, DSC3 and MLH1) were validated using MS-HRM. Four of these genes (MLH1, AOX1, EYA4 and TWIST1) had previously been reported to be hypermethylated in CRC. Eleven genes, not previously known to be affected by CRC specific hypermethylation, were identified and validated. Inverse correlation to gene expression was observed for six of the 15 genes with Spearman correlation coefficients ranging from -0.39 to -0.60. For six of these genes the altered methylation patterns had a profound transcriptional association, indicating that methylation of these genes may play a direct regulatory role. The hypermethylation changes often occurred already in adenomas, indicating that they may be used as biomarkers for early detection of CRC.
Collapse
Affiliation(s)
- Bodil Oster
- Department of Molecular Medicine, Aarhus University Hospital, Skejby, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Kimura M, Takenobu H, Akita N, Nakazawa A, Ochiai H, Shimozato O, Fujimura YI, Koseki H, Yoshino I, Kimura H, Nakagawara A, Kamijo T. Bmi1 regulates cell fate via tumor suppressor WWOX repression in small-cell lung cancer cells. Cancer Sci 2011; 102:983-90. [PMID: 21276135 DOI: 10.1111/j.1349-7006.2011.01891.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mortality from lung cancer is important worldwide. Recently, epigenetic aberration of lung cancer, not only genomic DNA methylation but also chromatin modification, has become an important target for lung cancer research, although previous research has demonstrated that lung cancer develops as a result of both environmental and genetic factors. Here, we demonstrated that an epigenetic regulator/polycomb group protein Bmi1 is more highly expressed in small-cell lung cancer (SCLC) than in non-small-cell lung cancer by immunohistochemical analysis. In vitro experiments indicated that Bmi1 reduction by lentivirus-derived shRNA significantly suppressed proliferation, colony formation and in vivo tumor formation. Importantly, apoptosis was induced by Bmi1 depletion in small-cell lung cancer cells. Furthermore, a tumor suppressor WWOX was identified as a Bmi1 target in the cells by a chromatin immunoprecipitation assay and a quantitative real-time PCR assay; WWOX had a role as a tumor suppressor in SCLC cells; therefore, the Bmi1/WWOX pathway could be a new candidate for a new therapeutic approach for SCLC.
Collapse
Affiliation(s)
- Masaki Kimura
- Division of Biochemistry and Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Aporntewan C, Phokaew C, Piriyapongsa J, Ngamphiw C, Ittiwut C, Tongsima S, Mutirangura A. Hypomethylation of intragenic LINE-1 represses transcription in cancer cells through AGO2. PLoS One 2011; 6:e17934. [PMID: 21423624 PMCID: PMC3057998 DOI: 10.1371/journal.pone.0017934] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 02/18/2011] [Indexed: 01/23/2023] Open
Abstract
In human cancers, the methylation of long interspersed nuclear element -1 (LINE-1
or L1) retrotransposons is reduced. This occurs within the context of genome
wide hypomethylation, and although it is common, its role is poorly understood.
L1s are widely distributed both inside and outside of genes, intragenic and
intergenic, respectively. Interestingly, the insertion of active full-length L1
sequences into host gene introns disrupts gene expression. Here, we evaluated if
intragenic L1 hypomethylation influences their host gene expression in cancer.
First, we extracted data from L1base (http://l1base.molgen.mpg.de), a database containing putatively
active L1 insertions, and compared intragenic and intergenic L1 characters. We
found that intragenic L1 sequences have been conserved across evolutionary time
with respect to transcriptional activity and CpG dinucleotide sites for
mammalian DNA methylation. Then, we compared regulated mRNA levels of cells from
two different experiments available from Gene Expression Omnibus (GEO), a
database repository of high throughput gene expression data, (http://www.ncbi.nlm.nih.gov/geo) by chi-square. The odds ratio
of down-regulated genes between demethylated normal bronchial epithelium and
lung cancer was high (p<1E−27;
OR = 3.14; 95%
CI = 2.54–3.88), suggesting cancer genome wide
hypomethylation down-regulating gene expression. Comprehensive analysis between
L1 locations and gene expression showed that expression of genes containing L1s
had a significantly higher likelihood to be repressed in cancer and
hypomethylated normal cells. In contrast, many mRNAs derived from genes
containing L1s are elevated in Argonaute 2 (AGO2 or EIF2C2)-depleted cells.
Hypomethylated L1s increase L1 mRNA levels. Finally, we found that AGO2 targets
intronic L1 pre-mRNA complexes and represses cancer genes. These findings
represent one of the mechanisms of cancer genome wide hypomethylation altering
gene expression. Hypomethylated intragenic L1s are a nuclear siRNA mediated
cis-regulatory element that can repress genes. This
epigenetic regulation of retrotransposons likely influences many aspects of
genomic biology.
Collapse
Affiliation(s)
- Chatchawit Aporntewan
- Department of Mathematics, Faculty of Science,
Chulalongkorn University, Bangkok, Thailand
| | - Chureerat Phokaew
- Inter-Department Program of BioMedical
Sciences, Faculty of Graduate School, Chulalongkorn University, Bangkok,
Thailand
| | - Jittima Piriyapongsa
- National Center for Genetic Engineering and
Biotechnology, Genome Institute, Thailand Science Park, Pathumtani,
Thailand
| | - Chumpol Ngamphiw
- National Center for Genetic Engineering and
Biotechnology, Genome Institute, Thailand Science Park, Pathumtani,
Thailand
| | - Chupong Ittiwut
- Department of Anatomy, Faculty of Medicine,
Center of Excellence in Molecular Genetics of Cancer and Human Diseases,
Chulalongkorn University, Bangkok, Thailand
| | - Sissades Tongsima
- National Center for Genetic Engineering and
Biotechnology, Genome Institute, Thailand Science Park, Pathumtani,
Thailand
| | - Apiwat Mutirangura
- Department of Anatomy, Faculty of Medicine,
Center of Excellence in Molecular Genetics of Cancer and Human Diseases,
Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
125
|
Mostowska A, Biedziak B, Dunin-Wilczynska I, Komorowska A, Jagodzinski PP. Polymorphisms in CHDH gene and the risk of tooth agenesis. ACTA ACUST UNITED AC 2011; 91:169-76. [PMID: 21308979 DOI: 10.1002/bdra.20771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 11/14/2010] [Accepted: 11/18/2010] [Indexed: 11/07/2022]
Abstract
BACKGROUND Tooth agenesis is one of the most common anomalies of human dentition and is due to a complex and not fully elucidated etiology. The purpose of this study was to evaluate the possibility that polymorphic variants of genes encoding the main folate and choline metabolism enzymes might be associated with the risk of hypodontia in the Polish population. METHODS AND RESULTS We analyzed 21 polymorphisms of 13 candidate genes and found that single nucleotide polymorphisms (SNPs) in the CHDH gene are significantly correlated with the risk of dental agenesis. The strongest association was found for the SNP located in the intronic sequence of CHDH. Individuals carrying one copy of the rs6445606 C allele had an over two-fold decreased risk of having hypodontia (odds ratio [OR]CTvsTT=0.434; 95% confidence interval [CI], 0.2724-0.6915; p=0.0004; pcorr=0.0084). A reduced risk of tooth agenesis was also observed in individuals with one or two copies of the rs6445606 C allele compared to T allele carriers (ORCT+CCvsTT=0.524; 95% CI, 0.3386-0.8097; p=0.0035; pcorr=0.0735). Moreover, the gene-gene interaction analysis revealed a significant epistatic interaction between CHDH (rs6445606) and PLD2 (rs3764897) in the susceptibility to hypodontia (p=0.004). CONCLUSION Our study identified CHDH and PLD2 as novel candidate genes, the nucleotide variants of which could be associated with the risk of tooth agenesis.
Collapse
Affiliation(s)
- Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland.
| | | | | | | | | |
Collapse
|
126
|
Yang IA, Relan V, Wright CM, Davidson MR, Sriram KB, Savarimuthu Francis SM, Clarke BE, Duhig EE, Bowman RV, Fong KM. Common pathogenic mechanisms and pathways in the development of COPD and lung cancer. Expert Opin Ther Targets 2011; 15:439-56. [PMID: 21284573 DOI: 10.1517/14728222.2011.555400] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Lung cancer and COPD commonly coexist in smokers, and the presence of COPD increases the risk of developing lung cancer. In addition to smoking cessation and preventing smoking initiation, understanding the shared mechanisms of these smoking-related lung diseases is critical, in order to develop new methods of prevention, diagnosis and treatment of lung cancer and COPD. AREAS COVERED This review discusses the common mechanisms for susceptibility to lung cancer and COPD, which in addition to cigarette smoke, may involve inflammation, epithelial-mesenchymal transition, abnormal repair, oxidative stress, and cell proliferation. Furthermore, we discuss the underlying genomic and epigenomic changes (single nucleotide polymorphisms (SNPs), copy number variation, promoter hypermethylation and microRNAs) that are likely to alter biological pathways, leading to susceptibility to lung cancer and COPD (e.g., altered nicotine receptor biology). EXPERT OPINION Strategies to study genomics, epigenomics and gene-environment interaction will yield greater insight into the shared pathogenesis of lung cancer and COPD, leading to new diagnostic and therapeutic modalities.
Collapse
Affiliation(s)
- Ian A Yang
- The Prince Charles Hospital, Department of Thoracic Medicine, Thoracic Research Laboratory, Brisbane, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Sunaga N, Shames DS, Girard L, Peyton M, Larsen JE, Imai H, Soh J, Sato M, Yanagitani N, Kaira K, Xie Y, Gazdar AF, Mori M, Minna JD. Knockdown of oncogenic KRAS in non-small cell lung cancers suppresses tumor growth and sensitizes tumor cells to targeted therapy. Mol Cancer Ther 2011; 10:336-46. [PMID: 21306997 PMCID: PMC3061393 DOI: 10.1158/1535-7163.mct-10-0750] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Oncogenic KRAS is found in more than 25% of lung adenocarcinomas, the major histologic subtype of non-small cell lung cancer (NSCLC), and is an important target for drug development. To this end, we generated four NSCLC lines with stable knockdown selective for oncogenic KRAS. As expected, stable knockdown of oncogenic KRAS led to inhibition of in vitro and in vivo tumor growth in the KRAS-mutant NSCLC cells, but not in NSCLC cells that have wild-type KRAS (but mutant NRAS). Surprisingly, we did not see large-scale induction of cell death and the growth inhibitory effect was not complete. To further understand the ability of NSCLCs to grow despite selective removal of mutant KRAS expression, we conducted microarray expression profiling of NSCLC cell lines with or without mutant KRAS knockdown and isogenic human bronchial epithelial cell lines with and without oncogenic KRAS. We found that although the mitogen-activated protein kinase pathway is significantly downregulated after mutant KRAS knockdown, these NSCLCs showed increased levels of phospho-STAT3 and phospho-epidermal growth factor receptor, and variable changes in phospho-Akt. In addition, mutant KRAS knockdown sensitized the NSCLCs to p38 and EGFR inhibitors. Our findings suggest that targeting oncogenic KRAS by itself will not be sufficient treatment, but may offer possibilities of combining anti-KRAS strategies with other targeted drugs.
Collapse
Affiliation(s)
- Noriaki Sunaga
- Hamon Center for Therapeutic Oncology Research and the Simmons Cancer Center, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd., Dallas, Texas 75390-8593
- Department of Medicine and Molecular Science, Gunma University School of Medicine, 3-39-15, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - David S. Shames
- Hamon Center for Therapeutic Oncology Research and the Simmons Cancer Center, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd., Dallas, Texas 75390-8593
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd., Dallas, Texas 75390
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research and the Simmons Cancer Center, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd., Dallas, Texas 75390-8593
| | - Michael Peyton
- Hamon Center for Therapeutic Oncology Research and the Simmons Cancer Center, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd., Dallas, Texas 75390-8593
| | - Jill E. Larsen
- Hamon Center for Therapeutic Oncology Research and the Simmons Cancer Center, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd., Dallas, Texas 75390-8593
| | - Hisao Imai
- Department of Medicine and Molecular Science, Gunma University School of Medicine, 3-39-15, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Junichi Soh
- Hamon Center for Therapeutic Oncology Research and the Simmons Cancer Center, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd., Dallas, Texas 75390-8593
| | - Mitsuo Sato
- Hamon Center for Therapeutic Oncology Research and the Simmons Cancer Center, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd., Dallas, Texas 75390-8593
| | - Noriko Yanagitani
- Department of Medicine and Molecular Science, Gunma University School of Medicine, 3-39-15, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Kyoichi Kaira
- Department of Medicine and Molecular Science, Gunma University School of Medicine, 3-39-15, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Yang Xie
- Department of Clinical Sciences, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd., Dallas, Texas 75390
| | - Adi F. Gazdar
- Hamon Center for Therapeutic Oncology Research and the Simmons Cancer Center, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd., Dallas, Texas 75390-8593
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd., Dallas, Texas 75390
| | - Masatomo Mori
- Department of Medicine and Molecular Science, Gunma University School of Medicine, 3-39-15, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - John D. Minna
- Hamon Center for Therapeutic Oncology Research and the Simmons Cancer Center, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd., Dallas, Texas 75390-8593
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd., Dallas, Texas 75390
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd., Dallas, Texas 75390
| |
Collapse
|
128
|
Finer S, Holland ML, Nanty L, Rakyan VK. The hunt for the epiallele. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:1-11. [PMID: 20839222 DOI: 10.1002/em.20590] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Understanding the origin of phenotypic variation remains one of the principle challenges of contemporary biology. Recent genome-wide association studies have identified association between common genetic variants and complex phenotype; however, the minimal effect sizes observed in such studies highlight the potential for other causal factors to be involved in phenotypic variation. The epigenetic state of an organism (or 'epigenome') incorporates a landscape of complex and plastic molecular events that may underlie the 'missing link' that integrates genotype with phenotype. The nature of these processes has been the subject of intense scientific study over the recent years, and characterisation of epigenetic variation, in the form of 'epialleles', is providing fascinating insight into how the genome functions within a range of developmental processes, environments, and in states of health and disease. This review will discuss how and when mammalian epialleles may be generated and their interaction with genetic and environmental factors. We will outline how an epiallele has a variable relationship with phenotype, and how new technologies may be used for their detection and to facilitate an understanding of their contribution to phenotype. Finally, we will consider epialleles in population variation and their teleological role in evolution. variation and their teleological role in evolution.
Collapse
Affiliation(s)
- Sarah Finer
- The Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom
| | | | | | | |
Collapse
|
129
|
Matsumura N, Huang Z, Mori S, Baba T, Fujii S, Konishi I, Iversen ES, Berchuck A, Murphy SK. Epigenetic suppression of the TGF-beta pathway revealed by transcriptome profiling in ovarian cancer. Genome Res 2010; 21:74-82. [PMID: 21156726 DOI: 10.1101/gr.108803.110] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epithelial ovarian cancer is the leading cause of death among gynecologic malignancies. Diagnosis usually occurs after metastatic spread, largely reflecting vague symptoms of early disease combined with lack of an effective screening strategy. Epigenetic mechanisms of gene regulation, including DNA methylation, are fundamental to normal cellular function and also play a major role in carcinogenesis. To elucidate the biological and clinical relevance of DNA methylation in ovarian cancer, we conducted expression microarray analysis of 39 cell lines and 17 primary culture specimens grown in the presence or absence of DNA methyltransferase (DNMT) inhibitors. Two parameters, induction of expression and standard deviation among untreated samples, identified 378 candidate methylated genes, many relevant to TGF-beta signaling. We analyzed 43 of these genes and they all exhibited methylation. Treatment with DNMT inhibitors increased TGF-beta pathway activity. Hierarchical clustering of ovarian cancers using the 378 genes reproducibly generated a distinct gene cluster strongly correlated with TGF-beta pathway activity that discriminates patients based on age. These data suggest that accumulation of age-related epigenetic modifications leads to suppression of TGF-beta signaling and contributes to ovarian carcinogenesis.
Collapse
Affiliation(s)
- Noriomi Matsumura
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Zhang Y, Chen L. [DNA methylation and non-small cell lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2010; 13:821-6. [PMID: 20704826 PMCID: PMC6000552 DOI: 10.3779/j.issn.1009-3419.2010.08.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
基因组DNA甲基化是目前发现的最主要的一种表观遗传修饰形式,高甲基化(hypermethylation)的DNA染色质构象发生改变,导致抑癌基因转录失活,在肿瘤发生发展中具有重要意义。近年来,DNA甲基化在肺癌,主要是非小细胞肺癌(non-small cell lung cancer, NSCLC)的研究中取得较大进展,为NSCLC早期诊断、风险评估、预后判断和干预治疗提供了新的靶点。
Collapse
Affiliation(s)
- Youwei Zhang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | | |
Collapse
|
131
|
Lysyl oxidase: a potential target for cancer therapy. Inflammopharmacology 2010; 19:117-29. [DOI: 10.1007/s10787-010-0073-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 11/02/2010] [Indexed: 12/20/2022]
|
132
|
Abstract
Computed tomography (CT) screening of lung cancer allows the detection of early tumors. The objective of our study was to verify whether initial asymptomatic lung cancers, identified by high-resolution low-dose CT (LD-CT) on a high-risk population, show genetic abnormalities that could be indicative of the early events of lung carcinogenesis. We analyzed 78 tumor samples: 21 (pilot population) from heavy smokers with asymptomatic non-screening detected early-stage lung cancers and 57 from 5203 asymptomatic heavy smoker volunteers, who underwent a LD-CT screening study. During surgical resection of the detected tumors, tissue samples were collected and short-term cultures were started for karyotype evaluation. Samples were classified according to the normal (NK) or aneuploid (AK) karyotype. The NK samples were further analyzed by the Affymetrix single-nucleotide polymorphisms (SNPs) technology. Metaphase spreads were obtained in 73.0% of the selected samples: 80.7% showed an AK. A statistically significant correlation was found between presence of vascular invasion and abnormal karyotype. A total of 10 NK samples were suitable for SNPs analysis. Subtle genomic alterations were found in eight tumors, the remaining two showing no evidence to date of chromosomal aberrations anywhere in the genome. Two common regions of amplification were identified at 5p and 8p11. Mutation analysis by direct sequencing was conducted for the K-RAS, TP53 and EGFR genes, confirming data already described for heavy smokers. We show that: (i) the majority of screening-detected tumors are aneuploid; (ii) early-stage tumors tend to harbor a less abnormal karyotype; (iii) whole genome analysis of NK tumors allows for the detection of common regions of copy number variation (such as amplifications at 5p and 8p11), highlighting genes that might be considered candidate markers of early events in lung carcinogenesis.
Collapse
|
133
|
de Ridder J, Gerrits A, Bot J, de Haan G, Reinders M, Wessels L. Inferring combinatorial association logic networks in multimodal genome-wide screens. Bioinformatics 2010; 26:i149-57. [PMID: 20529900 PMCID: PMC2881395 DOI: 10.1093/bioinformatics/btq211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
MOTIVATION We propose an efficient method to infer combinatorial association logic networks from multiple genome-wide measurements from the same sample. We demonstrate our method on a genetical genomics dataset, in which we search for Boolean combinations of multiple genetic loci that associate with transcript levels. RESULTS Our method provably finds the global solution and is very efficient with runtimes of up to four orders of magnitude faster than the exhaustive search. This enables permutation procedures for determining accurate false positive rates and allows selection of the most parsimonious model. When applied to transcript levels measured in myeloid cells from 24 genotyped recombinant inbred mouse strains, we discovered that nine gene clusters are putatively modulated by a logical combination of trait loci rather than a single locus. A literature survey supports and further elucidates one of these findings. Due to our approach, optimal solutions for multi-locus logic models and accurate estimates of the associated false discovery rates become feasible. Our algorithm, therefore, offers a valuable alternative to approaches employing complex, albeit suboptimal optimization strategies to identify complex models. AVAILABILITY The MATLAB code of the prototype implementation is available on: http://bioinformatics.tudelft.nl/ or http://bioinformatics.nki.nl/.
Collapse
Affiliation(s)
- Jeroen de Ridder
- Delft Bioinformatics Lab, Delft University of Technology, 2628 CD Delft, The Netherlands
| | | | | | | | | | | |
Collapse
|
134
|
Tessema M, Klinge DM, Yingling CM, Do K, Van Neste L, Belinsky SA. Re-expression of CXCL14, a common target for epigenetic silencing in lung cancer, induces tumor necrosis. Oncogene 2010; 29:5159-70. [PMID: 20562917 PMCID: PMC2940978 DOI: 10.1038/onc.2010.255] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 03/22/2010] [Accepted: 05/27/2010] [Indexed: 12/29/2022]
Abstract
Chemokines are important regulators of directional cell migration and tumor metastasis. A genome-wide transcriptome array designed to uncover novel genes silenced by methylation in lung cancer identified the CXC-subfamily of chemokines. Expression of 11 of the 16 known human CXC-chemokines was increased in lung adenocarcinoma cell lines after treatment with 5-aza-2'-deoxycytidine (DAC). Tumor-specific methylation leading to silencing of CXCL5, 12 and 14 was found in over 75% of primary lung adenocarcinomas and DAC treatment restored the expression of each of the silenced gene. Forced expression of CXCL14 in H23 cells, where this gene is silenced by methylation, increased cell death in vitro and dramatically reduced the in vivo growth of lung tumor xenografts through necrosis of up to 90% of the tumor mass. CXCL14 re-expression had a profound effect on the genome altering the transcription of over 1000 genes, including increased expression of 30 cell-cycle inhibitor and pro-apoptosis genes. In addition, CXCL14 methylation in sputum from asymptomatic early-stage lung cancer cases was associated with a 2.9-fold elevated risk for this disease compared with controls, substantiating its potential as a biomarker for early detection of lung cancer. Together, these findings identify CXCL14 as an important tumor suppressor gene epigenetically silenced during lung carcinogenesis.
Collapse
Affiliation(s)
- M Tessema
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | | | | | | | | | | |
Collapse
|
135
|
Ibragimova I, de Cáceres II, Hoffman AM, Potapova A, Dulaimi E, Al-Saleem T, Hudes GR, Ochs MF, Cairns P. Global reactivation of epigenetically silenced genes in prostate cancer. Cancer Prev Res (Phila) 2010; 3:1084-92. [PMID: 20699414 PMCID: PMC2933318 DOI: 10.1158/1940-6207.capr-10-0039] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transcriptional silencing associated with aberrant promoter hypermethylation is a common mechanism of inactivation of tumor suppressor genes in cancer cells. To globally profile the genes silenced by hypermethylation in prostate cancer, we screened a whole genome expression microarray for genes reactivated in the LNCaP, DU-145, PC-3, and MDA2b prostate tumor cell lines after treatment with the demethylating drug 5-aza-2-deoxycytidine and the histone deacetylation-inhibiting drug trichostatin A. A total of 2,997 genes showed at least 2-fold upregulation of expression after drug treatment in at least one prostate tumor cell line. For validation, we examined the first 45 genes, ranked by upregulation of expression, which had a typical CpG island and were known to be expressed in the normal cell counterpart. Two important findings were, first, that several genes known to be frequently hypermethylated in prostate cancer were apparent, and, second, that validation studies revealed eight novel genes hypermethylated in the prostate tumor cell lines, four of which were unmethylated in normal prostate cells and hypermethylated in primary prostate tumors (SLC15A3, 66%; KRT7, 54%; TACSTD2, 17%; GADD45b, 3%). Thus, we established the utility of our screen for genes hypermethylated in prostate cancer cells. One of the novel genes was TACSTD2/TROP2, a marker of human prostate basal cells with stem cell characteristics. TACSTD2 was unmethylated in prostatic intraepithelial neoplasia and may have utility in emerging methylation-based prostate cancer tests. Further study of the hypermethylome will provide insight into the biology of the disease and facilitate translational studies in prostate cancer.
Collapse
Affiliation(s)
- Ilsiya Ibragimova
- Department of Surgical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | - Amanda M. Hoffman
- Department of Surgical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Anna Potapova
- Department of Surgical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Essel Dulaimi
- Department of Surgical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Tahseen Al-Saleem
- Department of Pathology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Gary R. Hudes
- Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Michael F. Ochs
- Oncology Biostatistics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Paul Cairns
- Department of Surgical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
- Department of Pathology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| |
Collapse
|
136
|
Gazdar AF, Girard L, Lockwood WW, Lam WL, Minna JD. Lung cancer cell lines as tools for biomedical discovery and research. J Natl Cancer Inst 2010; 102:1310-21. [PMID: 20679594 DOI: 10.1093/jnci/djq279] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Lung cancer cell lines have made a substantial contribution to lung cancer translational research and biomedical discovery. A systematic approach to initiating and characterizing cell lines from small cell and non-small cell lung carcinomas has led to the current collection of more than 200 lung cancer cell lines, a number that exceeds those for other common epithelial cancers combined. The ready availability and widespread dissemination of the lines to investigators worldwide have resulted in more than 9000 citations, including multiple examples of important biomedical discoveries. The high (but not perfect) genomic similarities between lung cancer cell lines and the lung tumor type from which they were derived provide evidence of the relevance of their use. However, major problems including misidentification or cell line contamination remain. Ongoing studies and new approaches are expected to reveal the full potential of the lung cancer cell line panel.
Collapse
Affiliation(s)
- Adi F Gazdar
- University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390-8593, USA.
| | | | | | | | | |
Collapse
|
137
|
Global analysis of CpG methylation reveals epigenetic control of the radiosensitivity in lung cancer cell lines. Oncogene 2010; 29:4725-31. [PMID: 20531302 DOI: 10.1038/onc.2010.223] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Epigenetic regulation by CpG methylation has an important role in tumorigenesis as well as in the response to cancer therapy. To analyze the mechanism of epigenetic control of radiosensitivity, the CpG methylation profiles of radiosensitive H460 and radioresistant H1299 human non-small cell lung cancer (NSCLC) cell lines were analyzed using microarray profiling. These analyses revealed 1091 differentially methylated genes (DMG) (absolute difference of mean beta-values, |Deltabeta |>0.5), including genes involved in cell adhesion, cell communication, signal transduction and transcriptional regulation. Among the 747 genes hypermethylated in radioresistant H1299 cells, CpG methylation of SERPINB5 and S100A6 in radioresistant H1299 cells was confirmed by methylation-specific PCR. Reverse transcriptase-PCR showed higher expression of these two genes in radiosensitive H460 cells compared with radioresistant H1299 cells. Downregulation of SERPINB5 or S100A6 by small interfering RNA in H460 cells increased the resistance of these cells to ionizing radiation. In contrast, promoter CpG sites of 344 genes, including CAT and BNC1, were hypomethylated in radioresistant H1299 cells. Suppression of CAT or BNC1 mRNA expression in H1299 cells also reduced the resistance of these cells to ionizing radiation. Thus, we identified DMGs by genome-wide CpG methylation profiling in two NSCLC cell lines with different responses to ionizing radiation, and our data indicated that these differences may be critical for epigenetic regulation of radiosensitivity in lung cancer cells.
Collapse
|
138
|
Chari R, Coe BP, Vucic EA, Lockwood WW, Lam WL. An integrative multi-dimensional genetic and epigenetic strategy to identify aberrant genes and pathways in cancer. BMC SYSTEMS BIOLOGY 2010; 4:67. [PMID: 20478067 PMCID: PMC2880289 DOI: 10.1186/1752-0509-4-67] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 05/17/2010] [Indexed: 11/27/2022]
Abstract
Background Genomics has substantially changed our approach to cancer research. Gene expression profiling, for example, has been utilized to delineate subtypes of cancer, and facilitated derivation of predictive and prognostic signatures. The emergence of technologies for the high resolution and genome-wide description of genetic and epigenetic features has enabled the identification of a multitude of causal DNA events in tumors. This has afforded the potential for large scale integration of genome and transcriptome data generated from a variety of technology platforms to acquire a better understanding of cancer. Results Here we show how multi-dimensional genomics data analysis would enable the deciphering of mechanisms that disrupt regulatory/signaling cascades and downstream effects. Since not all gene expression changes observed in a tumor are causal to cancer development, we demonstrate an approach based on multiple concerted disruption (MCD) analysis of genes that facilitates the rational deduction of aberrant genes and pathways, which otherwise would be overlooked in single genomic dimension investigations. Conclusions Notably, this is the first comprehensive study of breast cancer cells by parallel integrative genome wide analyses of DNA copy number, LOH, and DNA methylation status to interpret changes in gene expression pattern. Our findings demonstrate the power of a multi-dimensional approach to elucidate events which would escape conventional single dimensional analysis and as such, reduce the cohort sample size for cancer gene discovery.
Collapse
Affiliation(s)
- Raj Chari
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, Canada.
| | | | | | | | | |
Collapse
|
139
|
Abstract
Colorectal cancer (CRC) arises as a consequence of the accumulation of genetic and epigenetic alterations in colonic epithelial cells during neoplastic transformation. Epigenetic modifications, particularly DNA methylation in selected gene promoters, are recognized as common molecular alterations in human tumors. Substantial efforts have been made to determine the cause and role of aberrant DNA methylation ("epigenomic instability") in colon carcinogenesis. In the colon, aberrant DNA methylation arises in tumor-adjacent, normal-appearing mucosa. Aberrant methylation also contributes to later stages of colon carcinogenesis through simultaneous methylation in key specific genes that alter specific oncogenic pathways. Hypermethylation of several gene clusters has been termed CpG island methylator phenotype and appears to define a subgroup of colon cancer distinctly characterized by pathological, clinical, and molecular features. DNA methylation of multiple promoters may serve as a biomarker for early detection in stool and blood DNA and as a tool for monitoring patients with CRC. DNA methylation patterns may also be predictors of metastatic or aggressive CRC. Therefore, the aim of this review is to understand DNA methylation as a driving force in colorectal neoplasia and its emerging value as a molecular marker in the clinic.
Collapse
Affiliation(s)
- Myoung Sook Kim
- Department of Otolaryngology, Head and Neck Surgery, The Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II-5M, Baltimore, MD, 21231, USA
| | | | | |
Collapse
|
140
|
Chari R, Thu KL, Wilson IM, Lockwood WW, Lonergan KM, Coe BP, Malloff CA, Gazdar AF, Lam S, Garnis C, MacAulay CE, Alvarez CE, Lam WL. Integrating the multiple dimensions of genomic and epigenomic landscapes of cancer. Cancer Metastasis Rev 2010; 29:73-93. [PMID: 20108112 DOI: 10.1007/s10555-010-9199-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advances in high-throughput, genome-wide profiling technologies have allowed for an unprecedented view of the cancer genome landscape. Specifically, high-density microarrays and sequencing-based strategies have been widely utilized to identify genetic (such as gene dosage, allelic status, and mutations in gene sequence) and epigenetic (such as DNA methylation, histone modification, and microRNA) aberrations in cancer. Although the application of these profiling technologies in unidimensional analyses has been instrumental in cancer gene discovery, genes affected by low-frequency events are often overlooked. The integrative approach of analyzing parallel dimensions has enabled the identification of (a) genes that are often disrupted by multiple mechanisms but at low frequencies by any one mechanism and (b) pathways that are often disrupted at multiple components but at low frequencies at individual components. These benefits of using an integrative approach illustrate the concept that the whole is greater than the sum of its parts. As efforts have now turned toward parallel and integrative multidimensional approaches for studying the cancer genome landscape in hopes of obtaining a more insightful understanding of the key genes and pathways driving cancer cells, this review describes key findings disseminating from such high-throughput, integrative analyses, including contributions to our understanding of causative genetic events in cancer cell biology.
Collapse
Affiliation(s)
- Raj Chari
- Genetics Unit - Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Abstract
DNA methylation as part of the epigenetic gene-silencing complex is a universal occurring change in lung cancer. Numerous studies investigated methylation of specific genes in primary tumors, in serum or plasma samples, and in specimens from the aerodigestive tract epithelium of lung cancer patients. In most studies, single genes or small numbers of genes were analyzed. Moreover, it has been observed that methylation of certain genes can already be detected in samples from the upper aerodigestive tract epithelium of cancer-free heavy smokers. These findings indicated that methylation of certain genes may be a useful biomarker for prognosis, disease recurrence, early detection, and lung cancer risk assessment. So far, several genes were identified which seem to be of worse prognostic relevance when they were found to be methylated. In addition, it has been shown that a panel of markers may be relevant to predict disease recurrence after surgery. In comparison to analysis of single or small numbers of genes, methods for genome-wide detection of methylation were developed recently. These approaches are focused on either pharmacological re-activation of methylated genes followed by expression microarray analysis or on microarray analysis of sodium bisulfite-treated or affinity-enriched methylated DNA sequences. With currently available methods for the simultaneous detection of methylation, up to 28,000 CpG islands can be analyzed. Overall, we are just at the beginning of translating these findings into the clinic and there is hope that future patients will benefit from these results.
Collapse
|
142
|
Morris MR, Ricketts C, Gentle D, Abdulrahman M, Clarke N, Brown M, Kishida T, Yao M, Latif F, Maher ER. Identification of candidate tumour suppressor genes frequently methylated in renal cell carcinoma. Oncogene 2010; 29:2104-17. [PMID: 20154727 PMCID: PMC3021900 DOI: 10.1038/onc.2009.493] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 11/06/2009] [Accepted: 11/22/2009] [Indexed: 11/08/2022]
Abstract
Promoter region hyermethylation and transcriptional silencing is a frequent cause of tumour suppressor gene (TSG) inactivation in many types of human cancers. Functional epigenetic studies, in which gene expression is induced by treatment with demethylating agents, may identify novel genes with tumour-specific methylation. We used high-density gene expression microarrays in a functional epigenetic study of 11 renal cell carcinoma (RCC) cell lines. Twenty-eight genes were then selected for analysis of promoter methylation status in cell lines and primary RCC. Eight genes (BNC1, PDLIM4, RPRM, CST6, SFRP1, GREM1, COL14A1 and COL15A1) showed frequent (>30% of RCC tested) tumour-specific promoter region methylation. Hypermethylation was associated with transcriptional silencing. Re-expression of BNC1, CST6, RPRM and SFRP1 suppressed the growth of RCC cell lines and RNA interference knock-down of BNC1, SFRP1 and COL14A1 increased the growth of RCC cell lines. Methylation of BNC1 or COL14A1 was associated with a poorer prognosis independent of tumour size, stage or grade. The identification of these epigenetically inactivated candidate RCC TSGs can provide insights into renal tumourigenesis and a basis for developing novel therapies and biomarkers for prognosis and detection.
Collapse
Affiliation(s)
- M R Morris
- Cancer Research UK Renal Molecular Oncology Group, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Abstract
The causative association between tobacco use and lung cancer is a well-established fact. However, lung cancer also occurs, at surprisingly high rates, in lifelong never smokers. In fact, lung cancer in never smokers is among the leading causes of cancer-related mortality. This CCR Focus summarizes recent data, identifies knowledge deficits, and suggests future research directions with regard to this critically important subset of lung cancer patients.
Collapse
|
144
|
Rudin CM, Avila-Tang E, Harris CC, Herman JG, Hirsch FR, Pao W, Schwartz AG, Vahakangas KH, Samet JM. Lung cancer in never smokers: molecular profiles and therapeutic implications. Clin Cancer Res 2010; 15:5646-61. [PMID: 19755392 DOI: 10.1158/1078-0432.ccr-09-0377] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The majority of lung cancers are caused by long term exposure to the several classes of carcinogens present in tobacco smoke. Although a significant fraction of lung cancers in never smokers may also be attributable to tobacco, many such cancers arise in the absence of detectable tobacco exposure, and may follow a very different cellular and molecular pathway of malignant transformation. Recent studies summarized here suggest that lung cancers arising in never smokers have a distinct natural history, profile of oncogenic mutations, and response to targeted therapy. The majority of molecular analyses of lung cancer have focused on genetic profiling of pathways responsible for metabolism of primary tobacco carcinogens. Limited research has been conducted evaluating familial aggregation and genetic linkage of lung cancer, particularly among never smokers in whom such associations might be expected to be strongest. Data emerging over the past several years show that lung cancers in never smokers are much more likely to carry activating mutations of the epidermal growth factor receptor (EGFR), a key oncogenic factor and direct therapeutic target of several newer anticancer drugs. EGFR mutant lung cancers may represent a distinct class of lung cancers, enriched in the never-smoking population, and less clearly linked to direct tobacco carcinogenesis. These insights followed initial testing and demonstration of efficacy of EGFR-targeted drugs. Focused analysis of molecular carcinogenesis in lung cancers in never smokers is needed, and may provide additional biologic insight with therapeutic implications for lung cancers in both ever smokers and never smokers.
Collapse
Affiliation(s)
- Charles M Rudin
- Johns Hopkins University School of Medicine, David H. Koch Cancer Research Building, Room 544, 1550 Orleans Street, Baltimore, MD 21231, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Shivapurkar N, Gazdar AF. DNA methylation based biomarkers in non-invasive cancer screening. Curr Mol Med 2010; 10:123-32. [PMID: 20196733 PMCID: PMC3397200 DOI: 10.2174/156652410790963303] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Accepted: 05/10/2009] [Indexed: 12/31/2022]
Abstract
DNA methylation plays a critical role in the regulation of gene expression, differentiation and in the development of cancer and other diseases. Hypermethylation of CpG islands located in the promoter regions of tumor suppressor genes is now firmly established as the most frequent mechanism for gene inactivation in cancers. Feasibility of using DNA methylation based biomarkers for early detection of cancer has been shown. Potential of using DNA methylation for prediction of therapeutic outcome and patient survival has also been shown. DNA originated from cancer cells has been routinely detected in clinical specimens (ex. Plasma/serum, sputum, urine etc.) from cancer patients. Presence of methylated DNA sequences in clinical specimens and potential of using them as biomarkers have been recognized. Novel methylation based biomarkers that can be used in clinical specimens, obtained non-invasively from cancer patients, offer significant practical advantages. More resources need to be committed to this area of biomarker research. Thus, we review recent findings on DNA methylation based cancer biomarkers with particular focus on these applicable to the clinical specimens obtained non-invasively from cancer patients.
Collapse
Affiliation(s)
- N Shivapurkar
- Hamon Center for Therapeutic Oncology Research, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA.
| | | |
Collapse
|
146
|
Abstract
The haploid human genome contains approximately 29 million CpGs that exist in a methylated, hydroxymethylated or unmethylated state, collectively referred to as the DNA methylome. The methylation status of cytosines in CpGs and occasionally in non-CpG cytosines influences protein–DNA interactions, gene expression, and chromatin structure and stability. The degree of DNA methylation at particular loci may be heritable transgenerationally and may be altered by environmental exposures and diet, potentially contributing to the development of human diseases. For the vast majority of normal and disease methylomes however, less than 1% of the CpGs have been assessed, revealing the formative stage of methylation mapping techniques. Thus, there is significant discovery potential in new genome-scale platforms applied to methylome mapping, particularly oligonucleotide arrays and the transformative technology of next-generation sequencing. Here, we outline the currently used methylation detection reagents and their application to microarray and sequencing platforms. A comparison of the emerging methods is presented, highlighting their degrees of technical complexity, methylome coverage and precision in resolving methylation. Because there are hundreds of unique methylomes to map within one individual and interindividual variation is likely to be significant, international coordination is essential to standardize methylome platforms and to create a full repository of methylome maps from tissues and unique cell types.
Collapse
Affiliation(s)
- Shaun D Fouse
- Brain Tumor Research Center, Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, CA 94158, USA.
| | | | | |
Collapse
|
147
|
Thu KL, Pikor LA, Kennett JY, Alvarez CE, Lam WL. Methylation analysis by DNA immunoprecipitation. J Cell Physiol 2010; 222:522-31. [PMID: 20020444 DOI: 10.1002/jcp.22009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
DNA methylation regulates gene expression primarily through modification of chromatin structure. Global methylation studies have revealed biologically relevant patterns of DNA methylation in the human genome affecting sequences such as gene promoters, gene bodies, and repetitive elements. Disruption of normal methylation patterns and subsequent gene expression changes have been observed in several diseases especially in human cancers. Immunoprecipitation (IP)-based methods to evaluate methylation status of DNA have been instrumental in such genome-wide methylation studies. This review describes techniques commonly used to identify and quantify methylated DNA with emphasis on IP based platforms. In an effort to consolidate the wealth of information and highlight critical aspects of methylated DNA analysis, sample considerations, experimental and bioinformatic approaches for analyzing genome-wide methylation profiles, and the benefit of integrating DNA methylation data with complementary dimensions of genomic data are discussed.
Collapse
Affiliation(s)
- Kelsie L Thu
- Department of Cancer Genetics and Developmental Biology, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada.
| | | | | | | | | |
Collapse
|
148
|
Gazdar AF, Gao B, Minna JD. Lung cancer cell lines: Useless artifacts or invaluable tools for medical science? Lung Cancer 2010; 68:309-18. [PMID: 20079948 DOI: 10.1016/j.lungcan.2009.12.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 12/09/2009] [Indexed: 11/17/2022]
Abstract
Multiple cell lines (estimated at 300-400) have been established from human small cell (SCLC) and non-small cell lung cancers (NSCLC). These cell lines have been widely dispersed to and used by the scientific community worldwide, with over 8000 citations resulting from their study. However, there remains considerable skepticism on the part of the scientific community as to the validity of research resulting from their use. These questions center around the genomic instability of cultured cells, lack of differentiation of cultured cells and absence of stromal-vascular-inflammatory cell compartments. In this report we discuss the advantages and disadvantages of the use of cell lines, address the issues of instability and lack of differentiation. Perhaps the most important finding is that every important, recurrent genetic and epigenetic change including gene mutations, deletions, amplifications, translocations and methylation-induced gene silencing found in tumors has been identified in cell lines and vice versa. These "driver mutations" represented in cell lines offer opportunities for biological characterization and application to translational research. Another potential shortcoming of cell lines is the difficulty of studying multistage pathogenesis in vitro. To overcome this problem, we have developed cultures from central and peripheral airways that serve as models for the multistage pathogenesis of tumors arising in these two very different compartments. Finally the issue of cell line contamination must be addressed and safeguarded against. A full understanding of the advantages and shortcomings of cell lines is required for the investigator to derive the maximum benefit from their use.
Collapse
Affiliation(s)
- Adi F Gazdar
- UT Southwestern Medical Center, Dallas, TX 75390-8593, USA.
| | | | | |
Collapse
|
149
|
Van Den Broeck A, Ozenne P, Eymin B, Gazzeri S. Lung cancer: a modified epigenome. Cell Adh Migr 2010; 4:107-13. [PMID: 20139698 DOI: 10.4161/cam.4.1.10885] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Epigenetic is the study of heritable changes in gene expression that occur without changes in DNA sequence. This process is important for gene expression and genome stability and its disruption is now thought to play a key role in the onset and progression of numerous tumor types. The most studied epigenetic phenomena includes post-translational modifications in DNA and histone proteins as well as microRN As expression. As epigenetic aberrations are potentially reversible, their correction has emerged as a potential strategy for the treatment of cancer. This review highlights the roles of chromatin epigenetic modifications and of microRN As expression in lung tumorigenesis and discusses the emerging epigenetic therapies which are being developed for the treatment of lung cancer.
Collapse
Affiliation(s)
- Arnaud Van Den Broeck
- Equipe Bases Moléculaires de la Progression des Cancers du Poumon, Centre de Recherche INSERM U823, Institut Albert Bonniot, Grenoble, France
| | | | | | | |
Collapse
|
150
|
Corvalan A, Wistuba II. Molecular Pathology of Lung Cancer. Lung Cancer 2010. [DOI: 10.1007/978-1-60761-524-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|