101
|
Pinheiro A, Silva AM, Teixeira JH, Gonçalves RM, Almeida MI, Barbosa MA, Santos SG. Extracellular vesicles: intelligent delivery strategies for therapeutic applications. J Control Release 2018; 289:56-69. [PMID: 30261205 DOI: 10.1016/j.jconrel.2018.09.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EV), in particular exosomes, have been the object of intense research, due to their potential to mediate intercellular communication, modulating the phenotype of target cells. The natural properties and functions of EV are being exploited as biomarkers for disease diagnosis and prognosis, and as nano-bio-carriers for the development of new therapeutic strategies. EV have been particularly examined in the field of cancer, but are also increasingly investigated in other areas, like immune-related diseases and regenerative medicine. In this review, the therapeutic use of EV as drug delivery systems is described, balancing the advantages and drawbacks of different routes for their in vivo administration. Systemic and local delivery of EV are discussed, tackling the persisting difficulties in the assessment of their pharmacokinetics, pharmacodynamics and biodistribution in vivo. Finally, we discuss the future perspectives for incorporating EV into delivery systems and their use for an improved and controlled release of EV in vivo.
Collapse
Affiliation(s)
- Alice Pinheiro
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; FEUP - Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Andreia M Silva
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - José H Teixeira
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Raquel M Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria I Almeida
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Mário A Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Susana G Santos
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
| |
Collapse
|
102
|
Pathogens and Their Effect on Exosome Biogenesis and Composition. Biomedicines 2018; 6:biomedicines6030079. [PMID: 30041409 PMCID: PMC6164629 DOI: 10.3390/biomedicines6030079] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022] Open
Abstract
Exosomes are nanosized membrane microvesicles (30⁻100 nm) that have the capability to communicate intercellularly and transport cell components (i.e., miRNA, mRNA, proteins and DNA). Exosomes are found in nearly every cell type (i.e., mast cells, dendritic, tumor, and macrophages). There have been many studies that have shown the importance of exosome function as well as their unique packaging and targeting abilities. These characteristics make exosomes ideal candidates to act as biomarkers and therapeutics for disease. We will discuss the biogenesis, composition, and relationship of exosomes with non-viral microbial infections including gram-negative bacteria, gram-positive bacteria, Leishmania and Trypanosoma cruzi.
Collapse
|
103
|
Caruso S, Poon IKH. Apoptotic Cell-Derived Extracellular Vesicles: More Than Just Debris. Front Immunol 2018; 9:1486. [PMID: 30002658 PMCID: PMC6031707 DOI: 10.3389/fimmu.2018.01486] [Citation(s) in RCA: 349] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022] Open
Abstract
The many functions of extracellular vesicles (EVs) like exosomes and microvesicles released from healthy cells have been well characterized, particularly in relation to their roles in immune modulation. Apoptotic bodies, a major class of EV released as a product of apoptotic cell disassembly, and other types of EVs released from dying cells are also becoming recognized as key players in this emerging field. There is now increasing evidence to suggest that EVs produced during apoptosis have important immune regulatory roles, a concept relevant across different disease settings including autoimmunity, cancer, and infection. Therefore, this review focuses on how the formation of EVs during apoptosis could be a key mechanism of immune modulation by dying cells.
Collapse
Affiliation(s)
| | - Ivan K. H. Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
104
|
Rackov G, Garcia-Romero N, Esteban-Rubio S, Carrión-Navarro J, Belda-Iniesta C, Ayuso-Sacido A. Vesicle-Mediated Control of Cell Function: The Role of Extracellular Matrix and Microenvironment. Front Physiol 2018; 9:651. [PMID: 29922170 PMCID: PMC5996101 DOI: 10.3389/fphys.2018.00651] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/14/2018] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs) — including exosomes, microvesicles and apoptotic bodies — have received much scientific attention last decade as mediators of a newly discovered cell-to-cell communication system, acting at short and long distances. EVs carry biologically active molecules, thus providing signals that influence a spectrum of functions in recipient cells during various physiological and pathological processes. Recent findings point to EVs as very attractive immunomodulatory therapeutic agents, vehicles for drug delivery and diagnostic and prognostic biomarkers in liquid biopsies. In addition, EVs interact with and regulate the synthesis of extracellular matrix (ECM) components, which is crucial for organ development and wound healing, as well as bone and cardiovascular calcification. EVs carrying matrix metalloproteinases (MMPs) are involved in ECM remodeling, thus modifying tumor microenvironment and contributing to premetastatic niche formation and angiogenesis. Here we review the role of EVs in control of cell function, with emphasis on their interaction with ECM and microenvironment in health and disease.
Collapse
Affiliation(s)
| | | | - Susana Esteban-Rubio
- Fundación de Investigación HM Hospitales, Madrid, Spain.,Facultad de Medicina (IMMA), Universidad CEU San Pablo, Madrid, Spain
| | | | | | - Angel Ayuso-Sacido
- IMDEA Nanoscience Institute, Madrid, Spain.,Fundación de Investigación HM Hospitales, Madrid, Spain.,Facultad de Medicina (IMMA), Universidad CEU San Pablo, Madrid, Spain
| |
Collapse
|
105
|
Lane RE, Korbie D, Hill MM, Trau M. Extracellular vesicles as circulating cancer biomarkers: opportunities and challenges. Clin Transl Med 2018; 7:14. [PMID: 29855735 PMCID: PMC5981152 DOI: 10.1186/s40169-018-0192-7] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are small, lipid-bound particles containing nucleic acid and protein cargo which are excreted from cells under a variety of normal and pathological conditions. EVs have garnered substantial research interest in recent years, due to their potential utility as circulating biomarkers for a variety of diseases, including numerous types of cancer. The following review will discuss the current understanding of the form and function of EVs, their specific role in cancer pathogenesis and their potential for non-invasive disease diagnosis and/or monitoring. This review will also highlight several key issues for this field, including the importance of implementing robust and reproducible sample handling protocols, and the challenge of extracting an EV-specific biomarker signal from a complex biological background.
Collapse
Affiliation(s)
- R E Lane
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - D Korbie
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - M M Hill
- The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia.,QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
| | - M Trau
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
106
|
Lovo-Martins MI, Malvezi AD, Zanluqui NG, Lucchetti BFC, Tatakihara VLH, Mörking PA, de Oliveira AG, Goldenberg S, Wowk PF, Pinge-Filho P. Extracellular Vesicles Shed By Trypanosoma cruzi Potentiate Infection and Elicit Lipid Body Formation and PGE 2 Production in Murine Macrophages. Front Immunol 2018; 9:896. [PMID: 29755471 PMCID: PMC5934475 DOI: 10.3389/fimmu.2018.00896] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/11/2018] [Indexed: 12/16/2022] Open
Abstract
During the onset of Trypanosoma cruzi infection, an effective immune response is necessary to control parasite replication and ensure host survival. Macrophages have a central role in innate immunity, acting as an important trypanocidal cell and triggering the adaptive immune response through antigen presentation and cytokine production. However, T. cruzi displays immune evasion mechanisms that allow infection and replication in macrophages, favoring its chronic persistence. One potential mechanism is the release of T. cruzi strain Y extracellular vesicle (EV Y), which participate in intracellular communication by carrying functional molecules that signal host cells and can modulate the immune response. The present work aimed to evaluate immune modulation by EV Y in C57BL/6 mice, a prototype resistant to infection by T. cruzi strain Y, and the effects of direct EV Y stimulation of macrophages in vitro. EV Y inoculation in mice prior to T. cruzi infection resulted in increased parasitemia, elevated cardiac parasitism, decreased plasma nitric oxide (NO), reduced NO production by spleen cells, and modulation of cytokine production, with a reduction in TNF-α in plasma and decreased production of TNF-α and IL-6 by spleen cells from infected animals. In vitro assays using bone marrow-derived macrophages showed that stimulation with EV Y prior to infection by T. cruzi increased the parasite internalization rate and release of infective trypomastigotes by these cells. In this same scenario, EV Y induced lipid body formation and prostaglandin E2 (PGE2) production by macrophages even in the absence of T. cruzi. In infected macrophages, EV Y decreased production of PGE2 and cytokines TNF-α and IL-6 24 h after infection. These results suggest that EV Y modulates the host response in favor of the parasite and indicates a role for lipid bodies and PGE2 in immune modulation exerted by EVs.
Collapse
Affiliation(s)
- Maria Isabel Lovo-Martins
- Instituto Carlos Chagas, Fiocruz - Paraná, Curitiba, Brazil.,Laboratório de Imunopatologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Aparecida Donizette Malvezi
- Laboratório de Imunopatologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Bruno Fernando Cruz Lucchetti
- Laboratório de Imunopatologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Vera Lúcia Hideko Tatakihara
- Laboratório de Imunopatologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Admilton Gonçalves de Oliveira
- Laboratório de Microscopia Eletrônica e Microanálises, Central de Laboratórios de Pesquisa Multiusuários, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Pryscilla Fanini Wowk
- Instituto Carlos Chagas, Fiocruz - Paraná, Curitiba, Brazil.,Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz - Paraná, Curitiba, Brazil
| | - Phileno Pinge-Filho
- Laboratório de Imunopatologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
107
|
The role of extracellular vesicles when innate meets adaptive. Semin Immunopathol 2018; 40:439-452. [PMID: 29616308 PMCID: PMC6208666 DOI: 10.1007/s00281-018-0681-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/19/2018] [Indexed: 12/21/2022]
Abstract
Innate immune cells are recognized for their rapid and critical contribution to the body's first line of defense against invading pathogens and harmful agents. These actions can be further amplified by specific adaptive immune responses adapted to the activating stimulus. Recently, the awareness has grown that virtually all innate immune cells, i.e., mast cells, neutrophils, macrophages, eosinophils, basophils, and NK cells, are able to communicate with dendritic cells (DCs) and/or T and B cells, and thereby significantly contribute to the orchestration of adaptive immune responses. The means of communication that are thus far primarily associated with this function are cell-cell contacts and the release of a broad range of soluble mediators. Moreover, the possible contribution of innate immune cell-derived extracellular vesicles (EVs) to the modulation of adaptive immunity will be outlined in this review. EVs are submicron particles composed of a lipid bilayer, proteins, and nucleic acids released by cells in a regulated fashion. EVs are involved in intercellular communication between multiple cell types, including those of the immune system. A good understanding of the mechanisms by which innate immune cell-derived EVs influence adaptive immune responses, or vice versa, may reveal novel insights in the regulation of the immune system and can open up new possibilities for EVs (or their components) in controlling immune responses, either as a therapy, target, or as an adjuvant in future immune modulating treatments.
Collapse
|
108
|
Extracellular vesicle-mediated MHC cross-dressing in immune homeostasis, transplantation, infectious diseases, and cancer. Semin Immunopathol 2018; 40:477-490. [PMID: 29594331 DOI: 10.1007/s00281-018-0679-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/16/2018] [Indexed: 12/19/2022]
Abstract
Eukaryotic cells employ different types of extracellular vesicles (EVs) to exchange proteins, mRNAs, non-coding regulatory RNAs, carbohydrates, and lipids. Cells of the immune system, in particular antigen (Ag)-presenting cells (APCs), acquire major histocompatibility complex (MHC) class I and II molecules loaded with antigenic peptides from leukocytes and tissue parenchymal and stromal cells, through a mechanism known as MHC cross-dressing. Increasing evidence indicates that cross-dressing of APCs with pre-formed Ag-peptide/MHC complexes (pMHCs) is mediated via passage of clusters of EVs with characteristics of exosomes. A percentage of the transferred EVs remain attached to the acceptor APCs, with the appropriate orientation, at sufficient concentration within localized areas of the plasma membrane, and for sufficient time, so the preformed pMHCs carried by the EVs are presented without further processing, to cognate T cells. Although its biological relevance is not fully understood, numerous studies have demonstrated that MHC cross-dressing of APCs represents a pathway of Ag presentation of acquired pre-formed pMHCs to T cells-alternative to direct and cross-presentation-participate in immune homeostasis and T cell tolerance, cross-regulate alloreactive T cells with different MHC restricted specificities, and is a mechanism of Ag spreading for autologous, allogeneic, microbial, tumor, or vaccine-delivered Ags. Here, we compare MHC cross-dressing with other mechanisms and terminologies used for pMHC transfer, including trogocytosis. We discuss the experimental evidence, mostly from in vitro and ex vivo studies, of the role of MHC cross-dressing of APCs via EVs in positive or negative regulation of T cell immunity in the steady state, transplantation, microbial diseases, and cancer.
Collapse
|
109
|
Lindenbergh MFS, Stoorvogel W. Antigen Presentation by Extracellular Vesicles from Professional Antigen-Presenting Cells. Annu Rev Immunol 2018; 36:435-459. [PMID: 29400984 DOI: 10.1146/annurev-immunol-041015-055700] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The initiation and maintenance of adaptive immunity require multifaceted modes of communication between different types of immune cells, including direct intercellular contact, secreted soluble signaling molecules, and extracellular vesicles (EVs). EVs can be formed as microvesicles directly pinched off from the plasma membrane or as exosomes secreted by multivesicular endosomes. Membrane receptors guide EVs to specific target cells, allowing directional transfer of specific and complex signaling cues. EVs are released by most, if not all, immune cells. Depending on the type and status of their originating cell, EVs may facilitate the initiation, expansion, maintenance, or silencing of adaptive immune responses. This review focusses on EVs from professional antigen-presenting cells, their demonstrated and speculated roles, and their potential for cancer immunotherapy.
Collapse
Affiliation(s)
- Marthe F S Lindenbergh
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, NL-3508 TD Utrecht, The Netherlands;
| | - Willem Stoorvogel
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, NL-3508 TD Utrecht, The Netherlands;
| |
Collapse
|
110
|
Wang J, Faict S, Maes K, De Bruyne E, Van Valckenborgh E, Schots R, Vanderkerken K, Menu E. Extracellular vesicle cross-talk in the bone marrow microenvironment: implications in multiple myeloma. Oncotarget 2018; 7:38927-38945. [PMID: 26950273 PMCID: PMC5122441 DOI: 10.18632/oncotarget.7792] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/21/2016] [Indexed: 12/13/2022] Open
Abstract
The bone marrow (BM) represents a complex microenvironment containing stromal cells, immune cells, osteoclasts, osteoblasts, and hematopoietic cells, which are crucial for the immune response, bone formation, and hematopoiesis. Apart from soluble factors and direct cell-cell contact, extracellular vesicles (EVs), including exosomes, were recently identified as a third mediator for cell communication. Solid evidence has already demonstrated the involvement of various BM-derived cells and soluble factors in the regulation of multiple biological processes whereas the EV-mediated message delivery system from the BM has just been explored in recent decades. These EVs not only perform physiological functions but can also play a role in cancer development, including in Multiple Myeloma (MM) which is a plasma cell malignancy predominantly localized in the BM. This review will therefore focus on the multiple functions of EVs derived from BM cells, the manipulation of the BM by cancer-derived EVs, and the role of BM EVs in MM progression.
Collapse
Affiliation(s)
- Jinheng Wang
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Sylvia Faict
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Ken Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Els Van Valckenborgh
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Rik Schots
- Department of Clinical Hematology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| |
Collapse
|
111
|
Mother-to-newborn transmission of mycobacterial L-forms and Vδ2 T-cell response in placentobiome of BCG-vaccinated pregnant women. Sci Rep 2017; 7:17366. [PMID: 29234108 PMCID: PMC5727158 DOI: 10.1038/s41598-017-17644-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/28/2017] [Indexed: 12/26/2022] Open
Abstract
The ability of bacteria to exist as a population of self-replicating forms with defective or entirely missing cell wall (L-forms) is an adaptive mechanism for their survival and reproduction under unfavorable conditions. Bacterial mother-to-fetus transfer is a universal phenomenon in the animal kingdom. However, data about vertical transfer of L bacterial forms are extremely scarce. Bacille Calmette-Guérin is an attenuated strain of M. bovis and the only licensed vaccine used for tuberculosis prevention. We already have shown that filterable L-forms of BCG exist freely in the vaccine and are able to reproduce and to form colonies. The present study was focused on the placental microbiome in the context of mother's BCG vaccination. Here we report an isolation of filterable mycobacterial L-form cultures from gestational tissues and blood of healthy newborns delivered by healthy BCG-vaccinated mothers after normal pregnancy. Of note, vertically transmitted mycobacterial L-forms as a part of placentobiome of the pregnant women didn't influence the number of resident pathogen-reactive Vδ2 cells. Placenta colonization with mycobacterial L-forms occurs by maternal blood-to-decidua transfer very early in gestation. Together, these data showed that BCG L-forms have the capacity to pass trans-placental barrier and that maternal BCG vaccination affects the placentobiome.
Collapse
|
112
|
Wen C, Seeger RC, Fabbri M, Wang L, Wayne AS, Jong AY. Biological roles and potential applications of immune cell-derived extracellular vesicles. J Extracell Vesicles 2017; 6:1400370. [PMID: 29209467 PMCID: PMC5706476 DOI: 10.1080/20013078.2017.1400370] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/22/2017] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) deliver bioactive macromolecules (i.e. proteins, lipids and nucleic acids) for intercellular communication in multicellular organisms. EVs are secreted by all cell types including immune cells. Immune cell-derived EVs modulate diverse aspects of the immune system to either enhance or suppress immune activities. The extensive effects of immune cell-derived EVs have become the focus of great interest for various nano-biomedical applications, ranging from the medical use of nanoplatform-based diagnostic agents to the development of therapeutic interventions as well as vaccine applications, and thus may be ideal for ‘immune-theranostic’. Here, we review the latest advances concerning the biological roles of immune cell-derived EVs in innate and acquired immunity. The intercellular communication amongst immune cells through their EVs is highlighted, showing that all immune cell-derived EVs have their unique function(s) in immunity through intricate interaction(s). Natural-killer (NK) cell-derived EVs, for example, contain potent cytotoxic proteins and induce apoptosis to targeted cancer cells. On the other hand, cancer cell-derived EVs bearing NK ligands may evade immune surveillance and responses. Finally, we discuss possible medical uses for the immune cell-derived EVs as a tool for immune-theranostic: as diagnostic biomarkers, for use in therapeutic interventions and for vaccination.
Collapse
Affiliation(s)
- Chuan Wen
- Department of Pediatrics, Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation.,Division of Hematology, Children's Medical Center, The Second Xiangya Hospital, Central South University/Institute of Pediatrics, Central South University, Changsha, Hunan, PR China
| | - Robert C Seeger
- Department of Pediatrics, Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation
| | - Muller Fabbri
- Department of Pediatrics, Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation
| | - Larry Wang
- Department of Pathology, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alan S Wayne
- Department of Pediatrics, Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation
| | - Ambrose Y Jong
- Department of Pediatrics, Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation
| |
Collapse
|
113
|
Tandberg J, Oliver C, Lagos L, Gaarder M, Yáñez AJ, Ropstad E, Winther-Larsen HC. Membrane vesicles from Piscirickettsia salmonis induce protective immunity and reduce development of salmonid rickettsial septicemia in an adult zebrafish model. FISH & SHELLFISH IMMUNOLOGY 2017; 67:189-198. [PMID: 28600194 DOI: 10.1016/j.fsi.2017.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 06/07/2023]
Abstract
Infections caused by the facultative intracellular bacterial pathogen Piscirickettsia salmonis remains an unsolved problem for the aquaculture as no efficient treatments have been developed. As a result, substantial amounts of antibiotic have been used to limit salmonid rickettsial septicemia (SRS) disease outbreaks. The antibiotic usage has not reduced the occurrence, but lead to an increase in resistant strains, underlining the need for new treatment strategies. P. salmonis produce membrane vesicles (MVs); small spherical structures know to contain a variety of bacterial components, including proteins, lipopolysaccharides (LPS), DNA and RNA. MVs mimics' in many aspects their mother cell, and has been reported as alternative vaccine candidates. Here, MVs from P. salmonis was isolated and evaluated as a vaccine candidate against SRS in an adult zebrafish infection model. When zebrafish was immunized with MVs they were protected from subsequent challenge with a lethal dose of P. salmonis. Histological analysis showed a reduced bacterial load upon challenge in the MV immunized group, and the mRNA expression levels of several immune related genes altered, including mpeg1.1, tnfα, il1b, il10 and il6. The MVs induced the secretion of IgM upon immunization, indicating an immunogenic effect of the vesicles. Taken together, the data demonstrate a vaccine potential of MVs against P. salmonis.
Collapse
Affiliation(s)
- Julia Tandberg
- Center of Integrative Microbiology and Evolution, University of Oslo, Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Cristian Oliver
- Institute of Biochemistry and Microbiology, Faculty of Science, Universidad Austral de Chile, Valdivia, Chile; Department of Biological Science, Faculty of Biological Science, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Leidy Lagos
- Center of Integrative Microbiology and Evolution, University of Oslo, Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Mona Gaarder
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Alejandro J Yáñez
- Institute of Biochemistry and Microbiology, Faculty of Science, Universidad Austral de Chile, Valdivia, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile; Austral-OMICS, Faculty of Science, Universidad Austral de Chile, Valdivia, Chile
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Hanne C Winther-Larsen
- Center of Integrative Microbiology and Evolution, University of Oslo, Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway.
| |
Collapse
|
114
|
Abstract
Extracellular vesicles, such as exosomes and microvesicles, are host cell-derived packages of information that allow cell-cell communication and enable cells to rid themselves of unwanted substances. The release and uptake of extracellular vesicles has important physiological functions and may also contribute to the development and propagation of inflammatory, vascular, malignant, infectious and neurodegenerative diseases. This Review describes the different types of extracellular vesicles, how they are detected and the mechanisms by which they communicate with cells and transfer information. We also describe their physiological functions in cellular interactions, such as in thrombosis, immune modulation, cell proliferation, tissue regeneration and matrix modulation, with an emphasis on renal processes. We discuss how the detection of extracellular vesicles could be utilized as biomarkers of renal disease and how they might contribute to disease processes in the kidney, such as in acute kidney injury, chronic kidney disease, renal transplantation, thrombotic microangiopathies, vasculitides, IgA nephropathy, nephrotic syndrome, urinary tract infection, cystic kidney disease and tubulopathies. Finally, we consider how the release or uptake of extracellular vesicles can be blocked, as well as the associated benefits and risks, and how extracellular vesicles might be used to treat renal diseases by delivering therapeutics to specific cells.
Collapse
Affiliation(s)
- Diana Karpman
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Klinikgatan 28, 22184 Lund, Sweden
| | - Anne-Lie Ståhl
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Klinikgatan 28, 22184 Lund, Sweden
| | - Ida Arvidsson
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Klinikgatan 28, 22184 Lund, Sweden
| |
Collapse
|
115
|
Wahlund CJE, Eklund A, Grunewald J, Gabrielsson S. Pulmonary Extracellular Vesicles as Mediators of Local and Systemic Inflammation. Front Cell Dev Biol 2017; 5:39. [PMID: 28491866 PMCID: PMC5405144 DOI: 10.3389/fcell.2017.00039] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/30/2017] [Indexed: 12/31/2022] Open
Abstract
Cells of the airways are constantly exposed to environmental hazards including cigarette smoke, irritants, pathogens, and mechanical insults. Maintaining barrier integrity is vital, and mounting responses to threats depends on intercellular communication. Extracellular vesicles (EVs), including exosomes and microvesicles, are major signal mediators between cells, shuttling cargo in health and disease. Depending on the state of the originating cells, EVs are capable of inducing proinflammatory effects including antigen presentation, cellular migration, apoptosis induction, and inflammatory cytokine release. Cells of the airways release EVs, which can be found in bronchoalveolar lavage fluid. EVs of the airways can support inflammation in the lung, but may also exit into the circulation and carry a cocktail of pro-inflammatory molecules to recipient cells in distant organs. In this review, we discuss the possibility that EVs originating from the airways contribute to dissemination of inflammation in both lung disorders and systemic inflammatory conditions.
Collapse
Affiliation(s)
- Casper J E Wahlund
- Unit of Immunology and Allergy, Department of Medicine, Karolinska InstituteStockholm, Sweden
| | - Anders Eklund
- Respiratory Unit, Department of Medicine, Karolinska Institute and Karolinska University HospitalStockholm, Sweden
| | - Johan Grunewald
- Respiratory Unit, Department of Medicine, Karolinska Institute and Karolinska University HospitalStockholm, Sweden
| | - Susanne Gabrielsson
- Unit of Immunology and Allergy, Department of Medicine, Karolinska InstituteStockholm, Sweden
| |
Collapse
|
116
|
Maus RLG, Jakub JW, Nevala WK, Christensen TA, Noble-Orcutt K, Sachs Z, Hieken TJ, Markovic SN. Human Melanoma-Derived Extracellular Vesicles Regulate Dendritic Cell Maturation. Front Immunol 2017; 8:358. [PMID: 28424693 PMCID: PMC5372822 DOI: 10.3389/fimmu.2017.00358] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/14/2017] [Indexed: 12/11/2022] Open
Abstract
Evolution of melanoma from a primary tumor to widespread metastasis is crucially dependent on lymphatic spread. The mechanisms regulating the initial step in metastatic dissemination via regional lymph nodes remain largely unknown; however, evidence supporting the establishment of a pre-metastatic niche is evolving. We have previously described a dysfunctional immune profile including reduced expression of dendritic cell (DC) maturation markers in the first node draining from the primary tumor, the sentinel lymph node (SLN). Importantly, this phenotype is present prior to evidence of nodal metastasis. Herein, we evaluate melanoma-derived extracellular vesicles (EVs) as potential mediators of the premetastatic niche through cargo-specific polarization of DCs. DCs matured in vitro in the presence of melanoma EVs demonstrated significantly impaired expression of CD83 and CD86 as well as decreased expression of Th1 polarizing chemokines Flt3L and IL15 and migration chemokines MIP-1α and MIP-1β compared to liposome-treated DCs. Profiling of melanoma EV cargo identified shared proteomic and RNA signatures including S100A8 and S100A9 protein cargo, which in vitro compromised DC maturation similar to melanoma EVs. Early evidence demonstrates that similar EVs can be isolated from human afferent lymphatic fluid ex vivo. Taken together, here, we propose melanoma EV cargo as a mechanism by which DC maturation is compromised warranting further study to consider this as a potential mechanism enabled by the primary tumor to establish the premetastatic niche in tumor-draining SLNs of patients.
Collapse
Affiliation(s)
- Rachel L G Maus
- Department of Immunology, Mayo Graduate School, Mayo Clinic, Rochester, MN, USA
| | - James W Jakub
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | - Klara Noble-Orcutt
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Zohar Sachs
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Tina J Hieken
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
117
|
Smith VL, Cheng Y, Bryant BR, Schorey JS. Exosomes function in antigen presentation during an in vivo Mycobacterium tuberculosis infection. Sci Rep 2017; 7:43578. [PMID: 28262829 PMCID: PMC5338015 DOI: 10.1038/srep43578] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/25/2017] [Indexed: 01/03/2023] Open
Abstract
Mycobacterium tuberculosis-infected macrophages and dendritic cells are limited in their ability to present antigen to CD4+ T cells suggesting that other mechanism of antigen presentation are driving the robust T cell response observed during an M. tuberculosis infection. These mechanisms could include antigens present in apoptotic bodies, necrotic debris, exosomes or even release of non-vesicular antigen from infected cells. However, there is limited data to support any of these mechanisms as important in driving T cell activation in vivo. In the present study we use Rab27a-deficient mice which show diminished trafficking of mycobacterial components to exosomes as well as M. tuberculosis strains that express recombinant proteins which traffic or fail to traffic to exosomes. We observed that exosomes released during a mouse M. tuberculosis infection contribute significantly to its T cell response. These finding imply that exosomes function to promote T cell immunity during a bacterial infection and are an important source of extracellular antigen.
Collapse
Affiliation(s)
- Victoria L Smith
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Yong Cheng
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Barry R Bryant
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Jeffrey S Schorey
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
118
|
Jaiswal R, Johnson MS, Pokharel D, Krishnan SR, Bebawy M. Microparticles shed from multidrug resistant breast cancer cells provide a parallel survival pathway through immune evasion. BMC Cancer 2017; 17:104. [PMID: 28166767 PMCID: PMC5294826 DOI: 10.1186/s12885-017-3102-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 02/01/2017] [Indexed: 12/21/2022] Open
Abstract
Background Breast cancer is the most frequently diagnosed cancer in women. Resident macrophages at distant sites provide a highly responsive and immunologically dynamic innate immune response against foreign infiltrates. Despite extensive characterization of the role of macrophages and other immune cells in malignant tissues, there is very little known about the mechanisms which facilitate metastatic breast cancer spread to distant sites of immunological integrity. The mechanisms by which a key healthy defense mechanism fails to protect distant sites from infiltration by metastatic cells in cancer patients remain undefined. Breast tumors, typical of many tumor types, shed membrane vesicles called microparticles (MPs), ranging in size from 0.1–1 μm in diameter. MPs serve as vectors in the intercellular transfer of functional proteins and nucleic acids and in drug sequestration. In addition, MPs are also emerging to be important players in the evasion of cancer cell immune surveillance. Methods A comparative analysis of effects of MPs isolated from human breast cancer cells and non-malignant human brain endothelial cells were examined on THP-1 derived macrophages in vitro. MP-mediated effects on cell phenotype and functionality was assessed by cytokine analysis, cell chemotaxis and phagocytosis, immunolabelling, flow cytometry and confocal imaging. Student’s t-test or a one-way analysis of variance (ANOVA) was used for comparison and statistical analysis. Results In this paper we report on the discovery of a new cellular basis for immune evasion, which is mediated by breast cancer derived MPs. MPs shed from multidrug resistant (MDR) cells were shown to selectively polarize macrophage cells to a functionally incapacitated state and facilitate their engulfment by foreign cells. Conclusions We propose this mechanism may serve to physically disrupt the inherent immune response prior to cancer cell colonization whilst releasing mediators required for the recruitment of distant immune cells. These findings introduce a new paradigm in cancer cell biology with significant implications in understanding breast cancer colonization at distant sites. Most importantly, this is also the first demonstration that MPs serve as conduits in a parallel pathway supporting the cellular survival of MDR cancer cells through immune evasion.
Collapse
Affiliation(s)
- Ritu Jaiswal
- Discipline of Pharmacy, The Graduate School of Health, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW, 2007, Australia
| | - Michael S Johnson
- iThree Institute, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Deep Pokharel
- Discipline of Pharmacy, The Graduate School of Health, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW, 2007, Australia
| | - S Rajeev Krishnan
- Discipline of Pharmacy, The Graduate School of Health, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW, 2007, Australia
| | - Mary Bebawy
- Discipline of Pharmacy, The Graduate School of Health, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW, 2007, Australia.
| |
Collapse
|
119
|
Athman JJ, Sande OJ, Groft SG, Reba SM, Nagy N, Wearsch PA, Richardson ET, Rojas R, Boom WH, Shukla S, Harding CV. Mycobacterium tuberculosis Membrane Vesicles Inhibit T Cell Activation. THE JOURNAL OF IMMUNOLOGY 2017; 198:2028-2037. [PMID: 28122965 DOI: 10.4049/jimmunol.1601199] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/22/2016] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis utilizes multiple mechanisms to evade host immune responses, and inhibition of effector CD4+ T cell responses by M. tuberculosis may contribute to immune evasion. TCR signaling is inhibited by M. tuberculosis cell envelope lipoglycans, such as lipoarabinomannan and lipomannan, but a mechanism for lipoglycans to traffic from M. tuberculosis within infected macrophages to reach T cells is unknown. In these studies, we found that membrane vesicles produced by M. tuberculosis and released from infected macrophages inhibited the activation of CD4+ T cells, as indicated by reduced production of IL-2 and reduced T cell proliferation. Flow cytometry and Western blot demonstrated that lipoglycans from M. tuberculosis-derived bacterial vesicles (BVs) are transferred to T cells, where they inhibit T cell responses. Stimulation of CD4+ T cells in the presence of BVs induced expression of GRAIL, a marker of T cell anergy; upon restimulation, these T cells showed reduced ability to proliferate, confirming a state of T cell anergy. Furthermore, lipoarabinomannan was associated with T cells after their incubation with infected macrophages in vitro and when T cells were isolated from lungs of M. tuberculosis-infected mice, confirming the occurrence of lipoarabinomannan trafficking to T cells in vivo. These studies demonstrate a novel mechanism for the direct regulation of CD4+ T cells by M. tuberculosis lipoglycans conveyed by BVs that are produced by M. tuberculosis and released from infected macrophages. These lipoglycans are transferred to T cells to inhibit T cell responses, providing a mechanism that may promote immune evasion.
Collapse
Affiliation(s)
- Jaffre J Athman
- Department of Pathology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Obondo J Sande
- Department of Pathology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106.,Department of Molecular Biology and Microbiology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Sarah G Groft
- Department of Pathology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Scott M Reba
- Department of Molecular Biology and Microbiology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Nancy Nagy
- Department of Pathology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Pamela A Wearsch
- Department of Pathology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Edward T Richardson
- Department of Pathology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106.,Medical Scientist Training Program, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Roxana Rojas
- Department of Molecular Biology and Microbiology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106.,Center for AIDS Research, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106; and
| | - W Henry Boom
- Department of Molecular Biology and Microbiology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106.,Center for AIDS Research, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106; and.,Division of Infectious Diseases and HIV Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Supriya Shukla
- Department of Pathology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Clifford V Harding
- Department of Pathology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106; .,Center for AIDS Research, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106; and.,Division of Infectious Diseases and HIV Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| |
Collapse
|
120
|
Rutter BD, Innes RW. Extracellular Vesicles Isolated from the Leaf Apoplast Carry Stress-Response Proteins. PLANT PHYSIOLOGY 2017; 173:728-741. [PMID: 27837092 PMCID: PMC5210723 DOI: 10.1104/pp.16.01253] [Citation(s) in RCA: 327] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/03/2016] [Indexed: 05/14/2023]
Abstract
Exosomes are extracellular vesicles (EVs) that play a central role in intercellular signaling in mammals by transporting proteins and small RNAs. Plants are also known to produce EVs, particularly in response to pathogen infection. The contents of plant EVs have not been analyzed, however, and their function is unknown. Here, we describe a method for purifying EVs from the apoplastic fluids of Arabidopsis (Arabidopsis thaliana) leaves. Proteomic analyses of these EVs revealed that they are highly enriched in proteins involved in biotic and abiotic stress responses. Consistent with this finding, EV secretion was enhanced in plants infected with Pseudomonas syringae and in response to treatment with salicylic acid. These findings suggest that EVs may represent an important component of plant immune responses.
Collapse
Affiliation(s)
- Brian D Rutter
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Roger W Innes
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
121
|
Devhare PB, Ray RB. A novel role of exosomes in the vaccination approach. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:23. [PMID: 28164108 DOI: 10.21037/atm.2016.12.75] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Pradip B Devhare
- Department of Pathology, Saint Louis University, Saint Louis, Missouri, USA
| | - Ratna B Ray
- Department of Pathology, Saint Louis University, Saint Louis, Missouri, USA
| |
Collapse
|
122
|
Markova N, Slavchev G, Djerov L, Nikolov A, Dimova T. Mycobacterial L-forms are found in cord blood: A potential vertical transmission of BCG from vaccinated mothers. Hum Vaccin Immunother 2016; 12:2565-2571. [PMID: 27294392 DOI: 10.1080/21645515.2016.1193658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Our previous studies showed that mycobacterial L-forms persist in the blood of BCG vaccinated people and that BCG vaccine is able to produce, under appropriate conditions, filterable, self-replicating L-bodies with virus-like size. Because filterability is one of the characteristics of L-forms, considerable interest has been shown in their capacity to cross the maternal-fetal barrier. The current study demonstrated isolation of mycobacterial L-form cultures from umbilical cord blood of 5 healthy newborns of healthy mothers vaccinated previously with BCG. The isolated cultures showed distinctive growth characteristics of cell wall deficient L-form bacteria. Transmission electron microscopy demonstrated presence of L-bodies with extremely small size of 100 nm and revealed morphological transformations, typical for L-forms. IS6110 Real Time PCR assay confirmed that all L-form isolates were of mycobacterial origin and belonged to Mycobacterium tuberculosis complex which includes vaccinal BCG substrains. In conclusion, we could suggest that reproductive filterable L-bodies of BCG origin are able to fall in blood circulation of the fetus by vertical transmitted pathway and colonize newborns.
Collapse
Affiliation(s)
- Nadya Markova
- a Institute of Microbiology, Bulgarian Academy of Sciences , Sofia , Bulgaria
| | - Georgi Slavchev
- a Institute of Microbiology, Bulgarian Academy of Sciences , Sofia , Bulgaria
| | | | | | - Tanya Dimova
- c Institute of Biology and Immunology of Reproduction , Sofia , Bulgaria
| |
Collapse
|
123
|
Robbins PD, Dorronsoro A, Booker CN. Regulation of chronic inflammatory and immune processes by extracellular vesicles. J Clin Invest 2016; 126:1173-80. [PMID: 27035808 DOI: 10.1172/jci81131] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Almost all cell types release extracellular vesicles (EVs), which are derived either from multivesicular bodies or from the plasma membrane. EVs contain a subset of proteins, lipids, and nucleic acids from the cell from which they are derived. EV factors, particularly small RNAs such as miRNAs, likely play important roles in cell-to-cell communication both locally and systemically. Most of the functions associated with EVs are in the regulation of immune responses to pathogens and cancer, as well as in regulating autoimmunity. This Review will focus on the different modes of immune regulation, both direct and indirect, by EVs. The therapeutic utility of EVs for the regulation of immune responses will also be discussed.
Collapse
|
124
|
Pitt JM, Kroemer G, Zitvogel L. Extracellular vesicles: masters of intercellular communication and potential clinical interventions. J Clin Invest 2016; 126:1139-43. [PMID: 27035805 DOI: 10.1172/jci87316] [Citation(s) in RCA: 355] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Intercellular signaling via extracellular vesicles (EVs) is an underappreciated modality of cell-cell crosstalk that enables cells to convey packages of complex instructions to specific recipient cells. EVs transmit these instructions through their cargoes of multiple proteins, nucleic acids, and specialized lipids, which are derived from their cells of origin and allow for combinatorial effects upon recipient cells. This Review series brings together the recent progress in our understanding of EV signaling in physiological and pathophysiological conditions, highlighting how certain EVs, particularly exosomes, can promote or regulate infections, host immune responses, development, and various diseases - notably cancer. Given the diverse nature of EVs and their abilities to profoundly modulate host cells, this series puts particular emphasis on the clinical applications of EVs as therapeutics and as diagnostic biomarkers.
Collapse
|
125
|
Schorey JS, Harding CV. Extracellular vesicles and infectious diseases: new complexity to an old story. J Clin Invest 2016; 126:1181-9. [PMID: 27035809 DOI: 10.1172/jci81132] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Exosomes and other extracellular microvesicles (ExMVs) have important functions in intercellular communication and regulation. During the course of infection, these vesicles can convey pathogen molecules that serve as antigens or agonists of innate immune receptors to induce host defense and immunity, or that serve as regulators of host defense and mediators of immune evasion. These molecules may include proteins, nucleic acids, lipids, and carbohydrates. Pathogen molecules may be disseminated by incorporation into vesicles that are created and shed by host cells, or they may be incorporated into vesicles shed from microbial cells. Involvement of ExMVs in the induction of immunity and host defense is widespread among many pathogens, whereas their involvement in immune evasion mechanisms is prominent among pathogens that establish chronic infection and is found in some that cause acute infection. Because of their immunogenicity and enrichment of pathogen molecules, exosomes may also have potential in vaccine preparations and as diagnostic markers. Additionally, the ability of exosomes to deliver molecules to recipient cells raises the possibility of their use for drug/therapy delivery. Thus, ExMVs play a major role in the pathogenesis of infection and provide exciting potential for the development of novel diagnostic and therapeutic approaches.
Collapse
|
126
|
Wang J, Yao Y, Wu J, Deng Z, Gu T, Tang X, Cheng Y, Li G. The mechanism of cytoskeleton protein β-actin and cofilin-1 of macrophages infected by Mycobacterium avium. Am J Transl Res 2016; 8:1055-1063. [PMID: 27158391 PMCID: PMC4846948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 01/12/2016] [Indexed: 06/05/2023]
Abstract
Cytoskeleton proteins and their regulation proteins could be influenced seriously in Mycobacterium tuberculosis infection host cells leading to the apoptosis of host cells. Macrophages infected by Mycobacterium avium were detected from cell morphology and genome levels to analyze changes of the cytoskeleton of M. avium infection macrophages. Then the expression of β-actin, cofilin-1 proteins in M. avium infected macrophages were analyzed by western blotting, and the apoptosis of M. avium infection macrophages were tested by flow cytometry. Results indicated that the morphology and genomic DNA of M. avium infection macrophages were not damaged significantly. Meanwhile, β-actin gene and its proteins in M. avium infection macrophages were both decreased, but its regulatory protein cofilin-1 was expressed conversely. Furthermore, macrophages could be induced to apoptosis due to M. avium infection by cytoskeleton changes. These findings contributed us to understand that macrophages infected by M. avium could be lead to apoptosis by regulating cytoskeleton protein β-actin or its regulatory protein cofilin-1.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Clinical Laboratory, Kunshan First People’s Hospital, Affiliated to Jiangsu UniversityKunshan 215300, People’s Republic of China
| | - Yongliang Yao
- Department of Clinical Laboratory, Kunshan First People’s Hospital, Affiliated to Jiangsu UniversityKunshan 215300, People’s Republic of China
| | - Jianhong Wu
- Department of Clinical Laboratory, Kunshan First People’s Hospital, Affiliated to Jiangsu UniversityKunshan 215300, People’s Republic of China
| | - Zhiyong Deng
- Department of Clinical Laboratory, Kunshan First People’s Hospital, Affiliated to Jiangsu UniversityKunshan 215300, People’s Republic of China
| | - Tao Gu
- Department of Clinical Laboratory, Kunshan First People’s Hospital, Affiliated to Jiangsu UniversityKunshan 215300, People’s Republic of China
| | - Xin Tang
- Department of Clinical Laboratory, Kunshan First People’s Hospital, Affiliated to Jiangsu UniversityKunshan 215300, People’s Republic of China
| | - Yang Cheng
- Department of Clinical Laboratory, Kunshan First People’s Hospital, Affiliated to Jiangsu UniversityKunshan 215300, People’s Republic of China
| | - Guangxin Li
- Department of Pathology, Chong Qing Cancer InstituteChongqing 400030, People’s Republic of China
| |
Collapse
|
127
|
Kalra H, Drummen GPC, Mathivanan S. Focus on Extracellular Vesicles: Introducing the Next Small Big Thing. Int J Mol Sci 2016; 17:170. [PMID: 26861301 PMCID: PMC4783904 DOI: 10.3390/ijms17020170] [Citation(s) in RCA: 569] [Impact Index Per Article: 71.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/12/2015] [Indexed: 12/20/2022] Open
Abstract
Intercellular communication was long thought to be regulated exclusively through direct contact between cells or via release of soluble molecules that transmit the signal by binding to a suitable receptor on the target cell, and/or via uptake into that cell. With the discovery of small secreted vesicular structures that contain complex cargo, both in their lumen and the lipid membrane that surrounds them, a new frontier of signal transduction was discovered. These “extracellular vesicles” (EV) were initially thought to be garbage bags through which the cell ejected its waste. Whilst this is a major function of one type of EV, i.e., apoptotic bodies, many EVs have intricate functions in intercellular communication and compound exchange; although their physiological roles are still ill-defined. Additionally, it is now becoming increasingly clear that EVs mediate disease progression and therefore studying EVs has ignited significant interests among researchers from various fields of life sciences. Consequently, the research effort into the pathogenic roles of EVs is significantly higher even though their protective roles are not well established. The “Focus on extracellular vesicles” series of reviews highlights the current state of the art regarding various topics in EV research, whilst this review serves as an introductory overview of EVs, their biogenesis and molecular composition.
Collapse
Affiliation(s)
- Hina Kalra
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
| | - Gregor P C Drummen
- Cellular Stress and Ageing Program, Bionanoscience and Bio-Imaging Program, Bio&Nano-Solutions, D-33647 Bielefeld, Germany.
| | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
128
|
Holder B, Jones T, Sancho Shimizu V, Rice TF, Donaldson B, Bouqueau M, Forbes K, Kampmann B. Macrophage Exosomes Induce Placental Inflammatory Cytokines: A Novel Mode of Maternal–Placental Messaging. Traffic 2016; 17:168-78. [PMID: 26602702 PMCID: PMC4738478 DOI: 10.1111/tra.12352] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/18/2015] [Accepted: 11/18/2015] [Indexed: 12/12/2022]
Abstract
Exosome trafficking from the placenta into the maternal circulation is well documented; the possibility that this trafficking is bi‐directional was unknown. We demonstrated clathrin‐mediated endocytosis of macrophage exosomes by the human placenta. We also demonstrated that macrophage exosomes induced placental production of cytokines interleukin (IL)‐6, IL‐8 and IL‐10. Exosomes therefore comprise an additional mechanism of immune cell signalling to the placenta, potentially facilitating protective responses to maternal inflammation and infection in pregnancy. This represents a novel mode of maternal–placental messaging.
![]()
Collapse
Affiliation(s)
- Beth Holder
- Section of Paediatrics, Division of Infectious Diseases Department of Medicine, Imperial College London London UK
| | - Tessa Jones
- Section of Paediatrics, Division of Infectious Diseases Department of Medicine, Imperial College London London UK
| | - Vanessa Sancho Shimizu
- Section of Paediatrics, Division of Infectious Diseases Department of Medicine, Imperial College London London UK
- Virology, Division of Infectious Diseases Department of Medicine, Imperial College London London UK
| | - Thomas F. Rice
- Section of Paediatrics, Division of Infectious Diseases Department of Medicine, Imperial College London London UK
| | - Beverly Donaldson
- Section of Paediatrics, Division of Infectious Diseases Department of Medicine, Imperial College London London UK
| | - Marielle Bouqueau
- Section of Paediatrics, Division of Infectious Diseases Department of Medicine, Imperial College London London UK
| | - Karen Forbes
- Division of Reproduction and Early Development Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), The University of Leeds Leeds UK
- Maternal and Fetal Health Research Centre, Institute of Human Development The University of Manchester Manchester UK
| | - Beate Kampmann
- Section of Paediatrics, Division of Infectious Diseases Department of Medicine, Imperial College London London UK
- Vaccines & Immunity Theme MRC Unit Banjul The Gambia
| |
Collapse
|
129
|
Carrière J, Barnich N, Nguyen HTT. Exosomes: From Functions in Host-Pathogen Interactions and Immunity to Diagnostic and Therapeutic Opportunities. Rev Physiol Biochem Pharmacol 2016; 172:39-75. [PMID: 27600934 DOI: 10.1007/112_2016_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since their first description in the 1980s, exosomes, small endosomal-derived extracellular vesicles, have been involved in innate and adaptive immunity through modulating immune responses and mediating antigen presentation. Increasing evidence has reported the role of exosomes in host-pathogen interactions and particularly in the activation of antimicrobial immune responses. The growing interest concerning exosomes in infectious diseases, their accessibility in various body fluids, and their capacity to convey a rich content (e.g., proteins, lipids, and nucleic acids) to distant recipient cells led the scientific community to consider the use of exosomes as potential new diagnostic and therapeutic tools. In this review, we summarize current understandings of exosome biogenesis and their composition and highlight the function of exosomes as immunomodulators in pathological states such as in infectious disorders. The potential of using exosomes as diagnostic and therapeutic tools is also discussed.
Collapse
Affiliation(s)
- Jessica Carrière
- University of Clermont Auvergne, M2iSH, UMR 1071 INSERM/University of Auvergne, Clermont-Ferrand, 63001, France.,INRA USC 2018, Clermont-Ferrand, 63001, France
| | - Nicolas Barnich
- University of Clermont Auvergne, M2iSH, UMR 1071 INSERM/University of Auvergne, Clermont-Ferrand, 63001, France.,INRA USC 2018, Clermont-Ferrand, 63001, France
| | - Hang Thi Thu Nguyen
- University of Clermont Auvergne, M2iSH, UMR 1071 INSERM/University of Auvergne, Clermont-Ferrand, 63001, France. .,INRA USC 2018, Clermont-Ferrand, 63001, France.
| |
Collapse
|
130
|
Exosomes and Other Extracellular Vesicles: The New Communicators in Parasite Infections. Trends Parasitol 2015; 31:477-489. [PMID: 26433251 PMCID: PMC4685040 DOI: 10.1016/j.pt.2015.06.009] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) have emerged as a ubiquitous mechanism for transferring information between cells and organisms across all three kingdoms of life. In addition to their roles in normal physiology, vesicles also transport molecules from pathogens to hosts and can spread antigens as well as infectious agents. Although initially described in the host-pathogen context for their functions in immune surveillance, vesicles enable multiple modes of communication by, and between, parasites. Here we review the literature demonstrating that EVs are secreted by intracellular and extracellular eukaryotic parasites, as well as their hosts, and detail the functional properties of these vesicles in maturation, pathogenicity and survival. We further describe the prospects for targeting or exploiting these complexes in therapeutic and vaccine strategies.
Collapse
|
131
|
Wang H, Zhang D, Han Q, Zhao X, Zeng X, Xu Y, Sun Z, Chen Q. Role of distinct CD4(+) T helper subset in pathogenesis of oral lichen planus. J Oral Pathol Med 2015; 45:385-93. [PMID: 26693958 DOI: 10.1111/jop.12405] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2015] [Indexed: 02/05/2023]
Abstract
Oral lichen planus (OLP) is one of the most common chronic inflammatory oral mucosal diseases with T-cell-mediated immune pathogenesis. In subepithelial and lamina propria of OLP local lesions, the presence of CD4(+) T helper (CD4(+) Th) cells appeared as the major lymphocytes. These CD4(+) T lymphocytes can differentiate into distinct Th cell types such as Th1, Th2, Treg, Th17, Th22, Th9, and Tfh within the context of certain cytokines environment. Growing evidence indicated that Th1/Th2 imbalance may greatly participate into the cytokine network of OLP immunopathology. In addition, Th1/Th2 imbalance can be regulated by the Treg subset and also greatly influenced by the emerging novel CD4(+) Th subset Th17. Furthermore, the presence of novel subsets Th22, Th9 and Tfh in OLP patients is yet to be clarified. All these Th subsets and their specific cytokines may play a critical role in determining the character, extent and duration of immune responses in OLP pathogenesis. Therefore, we review the roles of distinct CD4(+) Th subsets and their signature cytokines in determining disease severity and susceptibility of OLP and also reveal the novel therapeutic strategies based on T lymphocytes subsets in OLP treatment.
Collapse
Affiliation(s)
- Hui Wang
- Department of Oral Medicine, School of Stomatology, Capital Medical University, Beijing, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dunfang Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Qi Han
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zheng Sun
- Department of Oral Medicine, School of Stomatology, Capital Medical University, Beijing, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
132
|
Cheng Y, Schorey JS. Targeting soluble proteins to exosomes using a ubiquitin tag. Biotechnol Bioeng 2015; 113:1315-24. [PMID: 26574179 DOI: 10.1002/bit.25884] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/21/2015] [Accepted: 11/10/2015] [Indexed: 02/06/2023]
Abstract
As "natural" antigen carriers in the body, exosomes are potential vaccine vectors. A number of animal studies indicate that antigen-containing exosomes can induce a specific immune response which can protect against tumor progression or various infections. Exosomes that carry the protective antigens can be purified from cells that release them including tumor cells, dendritic cells, and macrophages. However, this strategy is restricted to proteins that are naturally targeted to exosomes and is therefore limited in the number of antigens present within exosomes. Therefore, with the goal of developing an exosome-based vaccine that is more flexible in its antigen composition and has the potential to be scalable, we have developed a new approach where recombinant soluble proteins can be packaged into exosomes and released from a transformed cell line. In this study, we determined that a C-terminal fusion of ubiquitin to EGFP, tumor antigenic protein nHer2 and Mycobacterium tuberculosis proteins Ag85B and ESAT6 served as an efficient delivery sequence into exosomes when expressed in a human embryonic kidney (HEK 293) cell line, a cell line widely used in industrial recombinant protein production. Two stably transgenic HEK293 cell lines were generated using a retroviral vector to express the Ag85B-ESAT6 fusion protein either alone or tagged at the C-terminus with ubiquitin. Both transformants released exosomes containing the fusion proteins. However, the concentration of Ag85B and ESAT6 in exosomes was increased approximately 10-fold when they were coupled to ubiquitin. Moreover, when the exosomes were used for immunization, there was a direct correlation between the amount of fusion protein within the exosomes and the number of Ag85B and ESAT6 specific INFɣ-secreting T lymphocytes in the lung and spleen. This suggests that exosomes containing recombinant antigen can be used to elicit a T cell response. In summary our data indicates that a ubiquitin-based exosomal protein delivery strategy could represent a unique approach to generate antigen-specific exosomes with the potential to be used as novel vaccines. Biotechnol. Bioeng. 2016;113: 1315-1324. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yong Cheng
- Department of Biological Sciences, Eck Institute for Global Health, Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, 46556
| | - Jeffery S Schorey
- Department of Biological Sciences, Eck Institute for Global Health, Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, 46556.
| |
Collapse
|
133
|
Smith VL, Jackson L, Schorey JS. Ubiquitination as a Mechanism To Transport Soluble Mycobacterial and Eukaryotic Proteins to Exosomes. THE JOURNAL OF IMMUNOLOGY 2015; 195:2722-30. [PMID: 26246139 DOI: 10.4049/jimmunol.1403186] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 07/08/2015] [Indexed: 01/06/2023]
Abstract
Exosomes are extracellular vesicles of endocytic origin that function in intercellular communication. Our previous studies indicate that exosomes released from Mycobacterium tuberculosis-infected macrophages contain soluble mycobacterial proteins. However, it was unclear how these secreted proteins were targeted to exosomes. In this study, we determined that exosome production by the murine macrophage cell line RAW264.7 requires the endosomal sorting complexes required for transport and that trafficking of mycobacterial proteins from phagocytosed bacilli to exosomes was dependent on protein ubiquitination. Moreover, soluble mycobacterial proteins, when added exogenously to RAW264.7 or human HEK293 cells, were endocytosed, ubiquitinated, and released via exosomes. This suggested that endocytosed proteins could be recycled from cells through exosomes. This hypothesis was supported using the tumor-associated protein He4, which, when endocytosed by RAW264.7 or HEK293 cells, was transported to exosomes in a ubiquitin-dependent manner. Our data suggest that ubiquitination is a modification sufficient for trafficking soluble proteins within the phagocytic/endocytic network to exosomes.
Collapse
Affiliation(s)
- Victoria L Smith
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Liam Jackson
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Jeffrey S Schorey
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
134
|
Srivastava S, Ernst JD. Cell-to-cell transfer of M. tuberculosis antigens optimizes CD4 T cell priming. Cell Host Microbe 2015; 15:741-52. [PMID: 24922576 DOI: 10.1016/j.chom.2014.05.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 03/16/2014] [Accepted: 04/11/2014] [Indexed: 11/16/2022]
Abstract
During Mycobacterium tuberculosis and other respiratory infections, optimal T cell activation requires pathogen transport from the lung to a local draining lymph node (LN). However, the infected inflammatory monocyte-derived dendritic cells (DCs) that transport M. tuberculosis to the local lymph node are relatively inefficient at activating CD4 T cells, possibly due to bacterial inhibition of antigen presentation. We found that infected migratory DCs release M. tuberculosis antigens as soluble, unprocessed proteins for uptake and presentation by uninfected resident lymph node DCs. This transfer of bacterial proteins from migratory to local DCs results in optimal priming of antigen-specific CD4 T cells, which are essential in controlling tuberculosis. Additionally, this mechanism does not involve transfer of the whole bacterium and is distinct from apoptosis or exosome shedding. These findings reveal a mechanism that bypasses pathogen inhibition of antigen presentation by infected cells and generates CD4 T cell responses that control the infection.
Collapse
Affiliation(s)
- Smita Srivastava
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Joel D Ernst
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA; Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
135
|
Wang J, Wang Z, Yao Y, Wu J, Tang X, Gu T, Li G. The fibroblast growth factor-2 arrests Mycobacterium avium sp. paratuberculosis growth and immunomodulates host response in macrophages. Tuberculosis (Edinb) 2015; 95:505-14. [DOI: 10.1016/j.tube.2015.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 03/28/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
|
136
|
Athman JJ, Wang Y, McDonald DJ, Boom WH, Harding CV, Wearsch PA. Bacterial Membrane Vesicles Mediate the Release of Mycobacterium tuberculosis Lipoglycans and Lipoproteins from Infected Macrophages. THE JOURNAL OF IMMUNOLOGY 2015; 195:1044-53. [PMID: 26109643 DOI: 10.4049/jimmunol.1402894] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/24/2015] [Indexed: 12/21/2022]
Abstract
Mycobacterium tuberculosis is an intracellular pathogen that infects lung macrophages and releases microbial factors that regulate host defense. M. tuberculosis lipoproteins and lipoglycans block phagosome maturation, inhibit class II MHC Ag presentation, and modulate TLR2-dependent cytokine production, but the mechanisms for their release during infection are poorly defined. Furthermore, these molecules are thought to be incorporated into host membranes and released from infected macrophages within exosomes, 40-150-nm extracellular vesicles that derive from multivesicular endosomes. However, our studies revealed that extracellular vesicles released from infected macrophages include two distinct, largely nonoverlapping populations: one containing host cell markers of exosomes (CD9, CD63) and the other containing M. tuberculosis molecules (lipoglycans, lipoproteins). These vesicle populations are similar in size but have distinct densities, as determined by separation on sucrose gradients. Release of lipoglycans and lipoproteins from infected macrophages was dependent on bacterial viability, implicating active bacterial mechanisms in their secretion. Consistent with recent reports of extracellular vesicle production by bacteria (including M. tuberculosis), we propose that bacterial membrane vesicles are secreted by M. tuberculosis within infected macrophages and subsequently are released into the extracellular environment. Furthermore, extracellular vesicles released from M. tuberculosis-infected cells activate TLR2 and induce cytokine responses by uninfected macrophages. We demonstrate that these activities derive from the bacterial membrane vesicles rather than exosomes. Our findings suggest that bacterial membrane vesicles are the primary means by which M. tuberculosis exports lipoglycans and lipoproteins to impair effector functions of infected macrophages and circulate bacterial components beyond the site of infection to regulate immune responses by uninfected cells.
Collapse
Affiliation(s)
- Jaffre J Athman
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, OH
| | - Ying Wang
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, OH
| | - David J McDonald
- Department of Molecular Biology and Microbiology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, OH; Center for AIDS Research, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, OH; and
| | - W Henry Boom
- Center for AIDS Research, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, OH; and Division of Infectious Diseases, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, OH
| | - Clifford V Harding
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, OH; Center for AIDS Research, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, OH; and
| | - Pamela A Wearsch
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, OH; Center for AIDS Research, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, OH; and
| |
Collapse
|
137
|
|
138
|
De Toro J, Herschlik L, Waldner C, Mongini C. Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front Immunol 2015; 6:203. [PMID: 25999947 PMCID: PMC4418172 DOI: 10.3389/fimmu.2015.00203] [Citation(s) in RCA: 433] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/14/2015] [Indexed: 12/16/2022] Open
Abstract
From the time when they were first described in the 1970s by the group of Johnstone and Stahl, exosomes are a target of constant research. Exosomes belong to the family of nanovesicles which are of great interest for their many functions and potential for diagnosis and therapy in multiples diseases. Exosomes originate from the intraluminal vesicles of late endosomal compartments named multivesicular bodies and the fusion of these late endosomes with the cell membrane result in the release of the vesicles into the extracellular compartment. Moreover, their generation can be induced by many factors including extracellular stimuli, such as microbial attack and other stress conditions. The primary role attributed to exosomes was the removal of unnecessary proteins from the cells. Now, several studies have demonstrated that exosomes are involved in cell–cell communication, even though their biological function is not completely clear. The participation of exosomes in cancer is the field of microvesicle research that has expanded more over the last years. Evidence proving that exosomes derived from tumor-pulsed dendritic cells, neoplastic cells, and malignant effusions are able to present antigens to T-cells, has led to numerous studies using them as cell-free cancer vaccines. Because exosomes derive from all cell types, they contain proteins, lipids, and micro RNA capable of regulating a variety of target genes. Much research is being conducted, which focuses on the employment of these vesicles as biomarkers in the diagnosis of cancer in addition to innovative biomarkers for diagnosis, prognosis, and management of cardiovascular diseases. Interesting findings indicating the role of exosomes in the pathogenesis of several diseases have encouraged researchers to consider their therapeutic potential not only in oncology but also in the treatment of autoimmune syndromes and neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease, in addition to infectious diseases such as tuberculosis, diphtheria, and toxoplasmosis as well as infections caused by prions or viruses such as HIV. The aim of this review is to disclose the emerging roles of exosomes in normal and pathological conditions and to discuss their potential therapeutic applications.
Collapse
Affiliation(s)
- Julieta De Toro
- Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Leticia Herschlik
- Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Claudia Waldner
- Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Claudia Mongini
- Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires , Buenos Aires , Argentina
| |
Collapse
|
139
|
Singh PP, Li L, Schorey JS. Exosomal RNA from Mycobacterium tuberculosis-Infected Cells Is Functional in Recipient Macrophages. Traffic 2015; 16:555-71. [PMID: 25753779 DOI: 10.1111/tra.12278] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 02/04/2015] [Accepted: 02/06/2015] [Indexed: 12/31/2022]
Abstract
Exosomes are extracellular vesicles released by cells that carry proteins, lipids and nucleic acids and function in intercellular communication. Previously, we determined that exosomes released from Mycobacterium tuberculosis (M.tb)-infected macrophages carry mycobacterial proteins and lipids. However, the RNA composition within these exosomes has not been defined. In this study, we characterized the exosomes released from M.tb-infected macrophages and identified a cohort of mouse messenger RNA (mRNA) and microRNA (miRNA). Quantitative reverse-transcriptase polymerase chain reaction analysis showed less abundance of miRNAs in exosomes released from infected compared with uninfected macrophages. Moreover, more than 100 transcripts were found to be enriched or unique to exosomes from infected cells including transcripts involved in regulating an immune response. The exosomal RNA could be transferred and expressed in naïve macrophages and was biologically active, stimulating production of inflammatory mediators and inducing apoptosis in recipient cells. Interestingly, we also identified mycobacterial transcripts in exosomes released from infected macrophages. To our knowledge, this is the first study to identify bacterial-derived RNA in exosomes. Our results suggest that exosomal RNA released from M.tb-infected macrophages may have functional and diagnostic potential in the context of a mycobacterial infection.
Collapse
Affiliation(s)
- Prachi Pratap Singh
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Li Li
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Jeffrey Scott Schorey
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
140
|
Evaluation of the inflammatory response in macrophages stimulated with exosomes secreted by Mycobacterium avium-infected macrophages. BIOMED RESEARCH INTERNATIONAL 2015; 2015:658421. [PMID: 25861639 PMCID: PMC4378337 DOI: 10.1155/2015/658421] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 11/29/2022]
Abstract
Exosomes secreted from Mycobacterium avium-infected macrophages contain numerous antigens of both M. avium and the host cell and are involved in the induction and expression of the inflammatory responses in macrophages. The interaction between exosomes secreted from M. avium-infected macrophages and macrophage phagocytosis, cytokine secretion, immunostimulation, and apoptosis was analyzed. Upon stimulation with exosomes secreted from M. avium-infected macrophages, the phagocytosis of dextran by treated macrophages was increased. Furthermore, the expression of CD40, CD80, CD81, CD86, HLA-DR, and most notably CD195 was enhanced. Additionally, the secretion of IL-6, IL-8, IL-10, IFN-γ, and TNF-α was increased by stimulated macrophages. Exosome stimulation did not induce macrophage apoptosis when compared with macrophages infected with M. avium. Caspase expression, including that of caspases 3, 6, and 8, was also not altered in exosome stimulated macrophages. Thus exosomes trigger the inflammatory response in macrophages owing to the presence of bacterial antigens but have no effect on macrophage viability.
Collapse
|
141
|
Schorey JS, Cheng Y, Singh PP, Smith VL. Exosomes and other extracellular vesicles in host-pathogen interactions. EMBO Rep 2014; 16:24-43. [PMID: 25488940 DOI: 10.15252/embr.201439363] [Citation(s) in RCA: 513] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An effective immune response requires the engagement of host receptors by pathogen-derived molecules and the stimulation of an appropriate cellular response. Therefore, a crucial factor in our ability to control an infection is the accessibility of our immune cells to the foreign material. Exosomes-which are extracellular vesicles that function in intercellular communication-may play a key role in the dissemination of pathogen- as well as host-derived molecules during infection. In this review, we highlight the composition and function of exosomes and other extracellular vesicles produced during viral, parasitic, fungal and bacterial infections and describe how these vesicles could function to either promote or inhibit host immunity.
Collapse
Affiliation(s)
- Jeffrey S Schorey
- Department of Biological Sciences, Eck Institute for Global Health University of Notre Dame, Notre Dame, IN, USA
| | - Yong Cheng
- Department of Biological Sciences, Eck Institute for Global Health University of Notre Dame, Notre Dame, IN, USA
| | - Prachi P Singh
- Department of Biological Sciences, Eck Institute for Global Health University of Notre Dame, Notre Dame, IN, USA
| | - Victoria L Smith
- Department of Biological Sciences, Eck Institute for Global Health University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
142
|
Lai FW, Lichty BD, Bowdish DME. Microvesicles: ubiquitous contributors to infection and immunity. J Leukoc Biol 2014; 97:237-45. [PMID: 25473096 DOI: 10.1189/jlb.3ru0513-292rr] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MVs, which can be subgrouped into exosomes, SVs, and OMVs, are secreted by eukaryotic and prokaryotic cells. Many previously inexplicable phenomena can be explained by the existence of these vesicles, as they appear to be important in a wide range of biologic processes, such as intercellular communication and transfer of functional genetic information. In this review, we discuss the immunologic roles of MVs during sterile insult and infectious disease. MVs contribute to clotting initiation, cell recruitment, and neovascularization during wound healing. In the context of pathogen infection, both the host and the pathogen use MVs for communication and defense. MVs are exploited by various viruses to evade the host immune response and contribute to viral spread. Bacteria produce MVs that contain virulence factors that contribute to disease pathology and antibiotic resistance. This review summarizes the role of MVs in the pathology and resolution of disease.
Collapse
Affiliation(s)
- Frances W Lai
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Brian D Lichty
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Dawn M E Bowdish
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
143
|
Kruh-Garcia NA, Wolfe LM, Dobos KM. Deciphering the role of exosomes in tuberculosis. Tuberculosis (Edinb) 2014; 95:26-30. [PMID: 25496995 DOI: 10.1016/j.tube.2014.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/27/2014] [Indexed: 12/21/2022]
Abstract
Exosomes were originally described as small vesicles released from reticulocytes during the maturation process. These 40-200 nm microvesicles were hypothesized to be a mechanism for the removal of membrane proteins in lieu of intracellular degradation by Harding et al. (1984) and Johnstone et al. (1987) [1,2]. Exosomes can be distinguished from other extracellular vesicles (ectosomes, apoptotic blebs) based on their size and the protein indicators intercalated in their membrane (also, linking their derivation from the endocytic pathway) by Simpson (2012) [3]. The exact role which exosomes play in cell-to-cell communication and immune modulation is a topic of intense study. However, the focus of most reports has been directed towards discovering aberrations in exosomal protein and RNA content linked to disease onset and progression, and also primarily related to cancer. Nonetheless, exosomes are now documented to be released from a wide variety of cell types by Mathivanan et al. (2012), Simpson et al. (2012) and Kalra et al. (2012) [4-6] and have been isolated from all bodily fluids; thus, exosomes are an excellent source of biomarkers. Here we describe the discoveries related to the role exosomes play in tuberculosis disease, as well as translational work in vaccine development and how circulation of these dynamic vesicles can be harnessed for diagnostic purposes.
Collapse
Affiliation(s)
- Nicole A Kruh-Garcia
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Lisa M Wolfe
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO 80523, USA; Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO 80523, USA
| | - Karen M Dobos
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
144
|
Jaworski E, Narayanan A, Van Duyne R, Shabbeer-Meyering S, Iordanskiy S, Saifuddin M, Das R, Afonso PV, Sampey GC, Chung M, Popratiloff A, Shrestha B, Sehgal M, Jain P, Vertes A, Mahieux R, Kashanchi F. Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein. J Biol Chem 2014; 289:22284-305. [PMID: 24939845 DOI: 10.1074/jbc.m114.549659] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. The HTLV-1 transactivator protein Tax controls many critical cellular pathways, including host cell DNA damage response mechanisms, cell cycle progression, and apoptosis. Extracellular vesicles called exosomes play critical roles during pathogenic viral infections as delivery vehicles for host and viral components, including proteins, mRNA, and microRNA. We hypothesized that exosomes derived from HTLV-1-infected cells contain unique host and viral proteins that may contribute to HTLV-1-induced pathogenesis. We found exosomes derived from infected cells to contain Tax protein and proinflammatory mediators as well as viral mRNA transcripts, including Tax, HBZ, and Env. Furthermore, we observed that exosomes released from HTLV-1-infected Tax-expressing cells contributed to enhanced survival of exosome-recipient cells when treated with Fas antibody. This survival was cFLIP-dependent, with Tax showing induction of NF-κB in exosome-recipient cells. Finally, IL-2-dependent CTLL-2 cells that received Tax-containing exosomes were protected from apoptosis through activation of AKT. Similar experiments with primary cultures showed protection and survival of peripheral blood mononuclear cells even in the absence of phytohemagglutinin/IL-2. Surviving cells contained more phosphorylated Rb, consistent with the role of Tax in regulation of the cell cycle. Collectively, these results suggest that exosomes may play an important role in extracellular delivery of functional HTLV-1 proteins and mRNA to recipient cells.
Collapse
Affiliation(s)
- Elizabeth Jaworski
- From the School of Systems Biology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110
| | - Aarthi Narayanan
- From the School of Systems Biology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110
| | - Rachel Van Duyne
- From the School of Systems Biology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110, the Department of Microbiology, Immunology, and Tropical Medicine and
| | - Shabana Shabbeer-Meyering
- From the School of Systems Biology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110
| | - Sergey Iordanskiy
- From the School of Systems Biology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110, the Department of Microbiology, Immunology, and Tropical Medicine and
| | - Mohammed Saifuddin
- From the School of Systems Biology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110
| | - Ravi Das
- From the School of Systems Biology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110
| | - Philippe V Afonso
- the Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Département de Virologie, Institut Pasteur, F-75015 Paris, France, CNRS, UMR3569, F-75015 Paris, France, and
| | - Gavin C Sampey
- From the School of Systems Biology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110
| | - Myung Chung
- From the School of Systems Biology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110
| | - Anastas Popratiloff
- the Department of Chemistry, George Washington University, Washington, D. C. 20037
| | - Bindesh Shrestha
- Center for Microscopy and Image Analysis, George Washington University Medical Center, Washington, D. C. 20037
| | - Mohit Sehgal
- the Department of Microbiology and Immunology, Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Doylestown, Pennsylvania 18902
| | - Pooja Jain
- the Department of Microbiology and Immunology, Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Doylestown, Pennsylvania 18902
| | - Akos Vertes
- Center for Microscopy and Image Analysis, George Washington University Medical Center, Washington, D. C. 20037
| | - Renaud Mahieux
- the Equipe Oncogenèse Rétrovirale, Equipe labelisée "Ligue Nationale Contre le Cancer," International Center for Research in Infectiology, INSERM U1111-CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon 1, Lyon 69364 Cedex 07, France
| | - Fatah Kashanchi
- From the School of Systems Biology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110,
| |
Collapse
|
145
|
Vojtech L, Woo S, Hughes S, Levy C, Ballweber L, Sauteraud RP, Strobl J, Westerberg K, Gottardo R, Tewari M, Hladik F. Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res 2014; 42:7290-304. [PMID: 24838567 PMCID: PMC4066774 DOI: 10.1093/nar/gku347] [Citation(s) in RCA: 413] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/01/2014] [Accepted: 04/11/2014] [Indexed: 12/21/2022] Open
Abstract
Semen contains relatively ill-defined regulatory components that likely aid fertilization, but which could also interfere with defense against infection. Each ejaculate contains trillions of exosomes, membrane-enclosed subcellular microvesicles, which have immunosuppressive effects on cells important in the genital mucosa. Exosomes in general are believed to mediate inter-cellular communication, possibly by transferring small RNA molecules. We found that seminal exosome (SE) preparations contain a substantial amount of RNA from 20 to 100 nucleotides (nts) in length. We sequenced 20-40 and 40-100 nt fractions of SE RNA separately from six semen donors. We found various classes of small non-coding RNA, including microRNA (21.7% of the RNA in the 20-40 nt fraction) as well as abundant Y RNAs and tRNAs present in both fractions. Specific RNAs were consistently present in all donors. For example, 10 (of ∼2600 known) microRNAs constituted over 40% of mature microRNA in SE. Additionally, tRNA fragments were strongly enriched for 5'-ends of 18-19 or 30-34 nts in length; such tRNA fragments repress translation. Thus, SE could potentially deliver regulatory signals to the recipient mucosa via transfer of small RNA molecules.
Collapse
Affiliation(s)
- Lucia Vojtech
- Department of Obstetrics and Gynecology, University of Washington, Seattle, USA
| | - Sangsoon Woo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Sean Hughes
- Department of Obstetrics and Gynecology, University of Washington, Seattle, USA
| | - Claire Levy
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Lamar Ballweber
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Renan P Sauteraud
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Johanna Strobl
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Katharine Westerberg
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA Department of Medicine, University of Washington, Seattle, USA
| | - Muneesh Tewari
- Department of Medicine, University of Washington, Seattle, USA Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, USA Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA Department of Medicine, University of Washington, Seattle, USA
| |
Collapse
|
146
|
Gehrmann U, Näslund TI, Hiltbrunner S, Larssen P, Gabrielsson S. Harnessing the exosome-induced immune response for cancer immunotherapy. Semin Cancer Biol 2014; 28:58-67. [PMID: 24859748 DOI: 10.1016/j.semcancer.2014.05.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/08/2014] [Indexed: 12/14/2022]
Abstract
In recent years exosomes have emerged as potent stimulators of immune responses and as agents for cancer therapy. Exosomes can carry a broad variety of immunostimulatory molecules depending on the cell of origin and in vitro culture conditions. Dendritic cell-derived exosomes (dexosomes) have been shown to carry NK cell activating ligands and can be loaded with antigen to activate invariant NKT cells and to induce antigen-specific T and B cell responses. Dexosomes have been investigated as therapeutic agents against cancer in two phase I clinical trials, with a phase II clinical trial currently ongoing. Dexosomes were well tolerated but therapeutic success and immune activation were limited. Several reports suggest that multiple factors need to be considered in order to improve exosomal immunogenicity for cancer immunotherapy. These include antigen-loading strategies, exosome composition and exosomal trafficking in vivo. Hence, a better understanding of how to engineer and deliver exosomes to specific cells is crucial to generate strong immune responses and to improve the immunotherapeutic potential of exosomes.
Collapse
Affiliation(s)
- Ulf Gehrmann
- Translational Immunology Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Tanja I Näslund
- Translational Immunology Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Stefanie Hiltbrunner
- Translational Immunology Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Pia Larssen
- Translational Immunology Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Gabrielsson
- Translational Immunology Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
147
|
Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol 2014. [PMID: 24566916 DOI: 10.1038/nri362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Extracellular vesicles, including exosomes, are small membrane vesicles derived from multivesicular bodies or from the plasma membrane. Most, if not all, cell types release extracellular vesicles, which then enter the bodily fluids. These vesicles contain a subset of proteins, lipids and nucleic acids that are derived from the parent cell. It is thought that extracellular vesicles have important roles in intercellular communication, both locally and systemically, as they transfer their contents, including proteins, lipids and RNAs, between cells. Extracellular vesicles are involved in numerous physiological processes, and vesicles from both non-immune and immune cells have important roles in immune regulation. Moreover, extracellular vesicle-based therapeutics are being developed and clinically tested for the treatment of inflammatory diseases, autoimmune disorders and cancer. Given the tremendous therapeutic potential of extracellular vesicles, this Review focuses on their role in modulating immune responses, as well as their potential therapeutic applications.
Collapse
Affiliation(s)
- Paul D Robbins
- Department of Metabolism and Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter, Florida 33458, USA
| | - Adrian E Morelli
- Departments of Surgery and Immunology and T.E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
148
|
Abstract
Extracellular vesicles, including exosomes, are small membrane vesicles derived from multivesicular bodies or from the plasma membrane. Most, if not all, cell types release extracellular vesicles, which then enter the bodily fluids. These vesicles contain a subset of proteins, lipids and nucleic acids that are derived from the parent cell. It is thought that extracellular vesicles have important roles in intercellular communication, both locally and systemically, as they transfer their contents, including proteins, lipids and RNAs, between cells. Extracellular vesicles are involved in numerous physiological processes, and vesicles from both non-immune and immune cells have important roles in immune regulation. Moreover, extracellular vesicle-based therapeutics are being developed and clinically tested for the treatment of inflammatory diseases, autoimmune disorders and cancer. Given the tremendous therapeutic potential of extracellular vesicles, this Review focuses on their role in modulating immune responses, as well as their potential therapeutic applications.
Collapse
Affiliation(s)
- Paul D. Robbins
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida
| | - Adrian E. Morelli
- Departments of Surgery and Immunology and T.E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
149
|
Fiole D, Deman P, Trescos Y, Mayol JF, Mathieu J, Vial JC, Douady J, Tournier JN. Two-photon intravital imaging of lungs during anthrax infection reveals long-lasting macrophage-dendritic cell contacts. Infect Immun 2014; 82:864-72. [PMID: 24478099 PMCID: PMC3911401 DOI: 10.1128/iai.01184-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/02/2013] [Indexed: 12/27/2022] Open
Abstract
The dynamics of the lung immune system at the microscopic level are largely unknown because of inefficient methods of restraining chest motion during image acquisition. In this study, we developed an improved intravital method for two-photon lung imaging uniquely based on a posteriori parenchymal tissue motion correction. We took advantage of the alveolar collagen pattern given by the second harmonic generation signal as a reference for frame registration. We describe here for the first time a detailed dynamic account of two major lung immune cell populations, alveolar macrophages and CD11b-positive dendritic cells, during homeostasis and infection by spores of Bacillus anthracis, the agent of anthrax. We show that after alveolar macrophages capture spores, CD11b-positive dendritic cells come in prolonged contact with infected macrophages. Dendritic cells are known to carry spores to the draining lymph nodes and elicit the immune response in pulmonary anthrax. The intimate and long-lasting contacts between these two lines of defense may therefore coordinate immune responses in the lung through an immunological synapse-like process.
Collapse
Affiliation(s)
- Daniel Fiole
- Unité Interactions Hôte-Agents Pathogènes, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
- Laboratoire Interdisciplinaire de Physique, UMR 5588 CNRS/Université Joseph Fourier Grenoble 1, St-Martin-d'Hères, France
| | - Pierre Deman
- Unité Interactions Hôte-Agents Pathogènes, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Yannick Trescos
- Unité Interactions Hôte-Agents Pathogènes, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
- Ecole du Val-de-Grâce, Paris, France
| | - Jean-François Mayol
- Unité de Radiobiologie Tissulaire, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Jacques Mathieu
- Unité Interactions Hôte-Agents Pathogènes, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
- Laboratoire Pathogénie des Toxi-Infections Bactériennes, Institut Pasteur, Paris, France
| | - Jean-Claude Vial
- Laboratoire Interdisciplinaire de Physique, UMR 5588 CNRS/Université Joseph Fourier Grenoble 1, St-Martin-d'Hères, France
| | - Julien Douady
- Laboratoire Interdisciplinaire de Physique, UMR 5588 CNRS/Université Joseph Fourier Grenoble 1, St-Martin-d'Hères, France
| | - Jean-Nicolas Tournier
- Unité Interactions Hôte-Agents Pathogènes, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
- Ecole du Val-de-Grâce, Paris, France
- Laboratoire Pathogénie des Toxi-Infections Bactériennes, Institut Pasteur, Paris, France
| |
Collapse
|
150
|
Seto S, Tsujimura K, Horii T, Koide Y. Autophagy adaptor protein p62/SQSTM1 and autophagy-related gene Atg5 mediate autophagosome formation in response to Mycobacterium tuberculosis infection in dendritic cells. PLoS One 2013; 8:e86017. [PMID: 24376899 PMCID: PMC3871604 DOI: 10.1371/journal.pone.0086017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/04/2013] [Indexed: 02/05/2023] Open
Abstract
Mycobacterium tuberculosis is an intracellular pathogen that can survive within phagocytic cells by inhibiting phagolysosome biogenesis. However, host cells can control the intracellular M. tuberculosis burden by the induction of autophagy. The mechanism of autophagosome formation to M. tuberculosis has been well studied in macrophages, but remains unclear in dendritic cells. We therefore characterized autophagosome formation in response to M. tuberculosis infection in dendritic cells. Autophagy marker protein LC3, autophagy adaptor protein p62/SQSTM1 (p62) and ubiquitin co-localized to M. tuberculosis in dendritic cells. Mycobacterial autophagosomes fused with lysosomes during infection, and major histcompatibility complex class II molecules (MHC II) also localized to mycobacterial autophagosomes. The proteins p62 and Atg5 function in the initiation and progression of autophagosome formation to M. tuberculosis, respectively; p62 mediates ubiquitination of M. tuberculosis and Atg5 is involved in the trafficking of degradative vesicles and MHC II to mycobacterial autophagosomes. These results imply that the autophagosome formation to M. tuberculosis in dendritic cells promotes the antigen presentation of mycobacterial peptides to CD4+ T lymphocytes via MHC II.
Collapse
Affiliation(s)
- Shintaro Seto
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
- * E-mail:
| | - Kunio Tsujimura
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Toshinobu Horii
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yukio Koide
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|