101
|
Wang M, Yu C, Zhao H. Identification of an important motif that controls the activity and specificity of sugar transporters. Biotechnol Bioeng 2016; 113:1460-7. [PMID: 26724683 DOI: 10.1002/bit.25926] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/09/2015] [Accepted: 12/28/2015] [Indexed: 01/15/2023]
Abstract
Efficient glucose-xylose co-utilization is critical for economical biofuel production from lignocellulosic biomass. To enable glucose-xylose co-utilization, a highly active xylose specific transporter without glucose inhibition is desirable. However, our understanding of the structure-activity/specificity relationship of sugar transporters in general is limited, which hinders our ability to engineer xylose-specific transporters. In this study, via homology modeling and analysis of hexose sugar transporter HXT14 mutants, we identified a highly conserved YYX(T/P) motif that plays an important role in controlling the activity and specificity of sugar transporters. We demonstrated that mutating the two tyrosine residues of the motif to phenylalanine, respectively, improved glucose transport capacity across several different sugar transporters. Furthermore, we illustrated that by engineering the fourth position in the YYX(T/P) motif, the sugar specificity of transporters was significantly altered or even reversed towards xylose. Finally, using the engineered sugar transporter, genuine glucose-xylose co-fermentation was achieved. Biotechnol. Bioeng. 2016;113: 1460-1467. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Meng Wang
- Department of Chemical and Biomolecular Engineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Chenzhao Yu
- School of Molecular and Cellular Biology, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois. .,Department of Biochemistry, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois. .,Departments of Chemistry and Bioengineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana 61801, Illinois.
| |
Collapse
|
102
|
Liu ZH, Chen HZ. Simultaneous saccharification and co-fermentation for improving the xylose utilization of steam exploded corn stover at high solid loading. BIORESOURCE TECHNOLOGY 2016; 201:15-26. [PMID: 26615497 DOI: 10.1016/j.biortech.2015.11.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/07/2015] [Accepted: 11/09/2015] [Indexed: 05/17/2023]
Abstract
Simultaneous saccharification and co-fermentation (SSCF) of steam exploded corn stover (SECS) was investigated at 5-25% solid loadings compared with other conversion processes. SECS was washed with a 15-fold excess of deionized water to remove inhibitors of hydrolysis and fermentation. The concentration, yield, and productivity of ethanol was 34.3g/L, 90.0%, 2.61g/L/h in the co-fermentation of 60g/L glucose and 10g/L xylose by Saccharomyces cerevisiae IPE003. Ethanol concentration and productivity increased with increasing solid loading while ethanol yield decreased in all conversion processes of SECS. Glucan and xylan conversion was 82.0% and 82.1% in SSCF at 20% solid loading, respectively, while the concentration, yield and productivity of ethanol was 60.8g/L, 75.3% and 0.63g/L/h. The feeding strategy of SECS addition within 24h improved the SSCF performance. Therefore, SSCF increased ethanol productivity and was an effective conversion process for ethanol production at high solid loading.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Hong-Zhang Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
103
|
Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering. Appl Environ Microbiol 2016; 82:2156-2166. [PMID: 26826231 DOI: 10.1128/aem.03718-15] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/25/2016] [Indexed: 11/20/2022] Open
Abstract
Development of acetic acid-resistant Saccharomyces cerevisiae is important for economically viable production of biofuels from lignocellulosic biomass, but the goal remains a critical challenge due to limited information on effective genetic perturbation targets for improving acetic acid resistance in the yeast. This study employed a genomic-library-based inverse metabolic engineering approach to successfully identify a novel gene target, WHI2 (encoding a cytoplasmatic globular scaffold protein), which elicited improved acetic acid resistance in S. cerevisiae. Overexpression of WHI2 significantly improved glucose and/or xylose fermentation under acetic acid stress in engineered yeast. The WHI2-overexpressing strain had 5-times-higher specific ethanol productivity than the control in glucose fermentation with acetic acid. Analysis of the expression of WHI2 gene products (including protein and transcript) determined that acetic acid induced endogenous expression of Whi2 in S. cerevisiae. Meanwhile, the whi2Δ mutant strain had substantially higher susceptibility to acetic acid than the wild type, suggesting the important role of Whi2 in the acetic acid response in S. cerevisiae. Additionally, overexpression of WHI2 and of a cognate phosphatase gene, PSR1, had a synergistic effect in improving acetic acid resistance, suggesting that Whi2 might function in combination with Psr1 to elicit the acetic acid resistance mechanism. These results improve our understanding of the yeast response to acetic acid stress and provide a new strategy to breed acetic acid-resistant yeast strains for renewable biofuel production.
Collapse
|
104
|
Comparison of xylose fermentation by two high-performance engineered strains of Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2016; 9:53-56. [PMID: 28352592 PMCID: PMC5360988 DOI: 10.1016/j.btre.2016.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/04/2016] [Accepted: 01/20/2016] [Indexed: 12/21/2022]
Abstract
Economical biofuel production from plant biomass requires the conversion of both cellulose and hemicellulose in the plant cell wall. The best industrial fermentation organism, the yeast Saccharomyces cerevisiae, has been developed to utilize xylose by heterologously expressing either a xylose reductase/xylitol dehydrogenase (XR/XDH) pathway or a xylose isomerase (XI) pathway. Although it has been proposed that the optimal means for fermenting xylose into biofuels would use XI instead of the XR/XDH pathway, no clear comparison of the best publicly-available yeast strains engineered to use XR/XDH or XI has been published. We therefore compared two of the best-performing engineered yeast strains in the public domain-one using the XR/XDH pathway and another using XI-in anaerobic xylose fermentations. We find that, regardless of conditions, the strain using XR/XDH has substantially higher productivity compared to the XI strain. By contrast, the XI strain has better yields in nearly all conditions tested.
Collapse
|
105
|
Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae. Sci Rep 2016; 6:19512. [PMID: 26781725 PMCID: PMC4726032 DOI: 10.1038/srep19512] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/09/2015] [Indexed: 12/24/2022] Open
Abstract
Enhancing xylose utilization has been a major focus in Saccharomyces cerevisiae strain-engineering efforts. The incentive for these studies arises from the need to use all sugars in the typical carbon mixtures that comprise standard renewable plant-biomass-based carbon sources. While major advances have been made in developing utilization pathways, the efficient import of five carbon sugars into the cell remains an important bottleneck in this endeavor. Here we use an engineered S. cerevisiae BY4742 strain, containing an established heterologous xylose utilization pathway, and imposed a laboratory evolution regime with xylose as the sole carbon source. We obtained several evolved strains with improved growth phenotypes and evaluated the best candidate using genome resequencing. We observed remarkably few single nucleotide polymorphisms in the evolved strain, among which we confirmed a single amino acid change in the hexose transporter HXT7 coding sequence to be responsible for the evolved phenotype. The mutant HXT7(F79S) shows improved xylose uptake rates (Vmax = 186.4 ± 20.1 nmol•min−1•mg−1) that allows the S. cerevisiae strain to show significant growth with xylose as the sole carbon source, as well as partial co-utilization of glucose and xylose in a mixed sugar cultivation.
Collapse
|
106
|
Chen Y, Sheng J, Jiang T, Stevens J, Feng X, Wei N. Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:9. [PMID: 26766964 PMCID: PMC4710983 DOI: 10.1186/s13068-015-0418-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/15/2015] [Indexed: 05/07/2023]
Abstract
BACKGROUND Lignocellulosic biomass is a promising source of renewable biofuels. However, pretreatment of lignocellulosic biomass generates fermentation inhibitors that adversely affect the growth of industrial microorganisms such as Saccharomyces cerevisiae and prevent economic production of lignocellulosic biofuels. A critical challenge on developing S. cerevisiae with improved inhibitor resistance lies in incomplete understanding of molecular basis for inhibitor stress response and limited information on effective genetic targets for increasing yeast resistance to mixed fermentation inhibitors. In this study, we applied comparative transcriptomic analysis to determine the molecular basis for acetic acid and/or furfural resistance in S. cerevisiae. RESULTS We recently developed a yeast strain YC1 with superior resistance to acetic acid, furfural, and their mixture through inverse metabolic engineering. In this study, we first determined transcriptional changes through RNA sequencing in YC1 versus the wild-type strain S-C1 under three different inhibitor conditions, including acetic acid alone, furfural alone, and mixture of acetic acid and furfural. The genes associated with stress responses of S. cerevisiae to single and mixed inhibitors were revealed. Specifically, we identified 184 consensus genes that were differentially regulated in response to the distinct inhibitor resistance between YC1 and S-C1. Bioinformatic analysis next revealed key transcription factors (TFs) that regulate these consensus genes. The top TFs identified, Sfp1p and Ace2p, were experimentally tested as overexpression targets for strain optimization. Overexpression of the SFP1 gene improved specific ethanol productivity by nearly four times, while overexpression of the ACE2 gene enhanced the rate by three times in the presence of acetic acid and furfural. Overexpression of SFP1 gene in the resistant strain YC1 further resulted in 42 % increase in ethanol productivity in the presence of acetic acid and furfural, suggesting the effect of Sfp1p in optimizing the yeast strain for improved tolerance to mixed fermentation inhibitor. CONCLUSIONS Transcriptional regulation underlying yeast resistance to acetic acid and furfural was determined. Two transcription factors, Sfp1p and Ace2p, were uncovered for the first time for their functions in improving yeast resistance to mixed fermentation inhibitors. The study demonstrated an omics-guided metabolic engineering framework, which could be developed as a promising strategy to improve complex microbial phenotypes.
Collapse
Affiliation(s)
- Yingying Chen
- />Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 106E Cushing Hall of Engineering, Notre Dame, South Bend, IN 46556 USA
| | - Jiayuan Sheng
- />Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Tao Jiang
- />Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA USA
| | - Joseph Stevens
- />Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Xueyang Feng
- />Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Na Wei
- />Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 106E Cushing Hall of Engineering, Notre Dame, South Bend, IN 46556 USA
| |
Collapse
|
107
|
Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion. Curr Opin Chem Biol 2015; 29:49-57. [DOI: 10.1016/j.cbpa.2015.09.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/09/2015] [Accepted: 09/15/2015] [Indexed: 11/18/2022]
|
108
|
Turner TL, Zhang GC, Oh EJ, Subramaniam V, Adiputra A, Subramaniam V, Skory CD, Jang JY, Yu BJ, Park I, Jin YS. Lactic acid production from cellobiose and xylose by engineeredSaccharomyces cerevisiae. Biotechnol Bioeng 2015; 113:1075-83. [DOI: 10.1002/bit.25875] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/29/2015] [Accepted: 10/29/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Timothy L. Turner
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana; Illinois
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana 61801; Illinois
| | - Guo-Chang Zhang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana; Illinois
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana 61801; Illinois
| | - Eun Joong Oh
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana; Illinois
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana 61801; Illinois
| | - Vijay Subramaniam
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana 61801; Illinois
| | - Andrew Adiputra
- Department of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana; Illinois
| | - Vimal Subramaniam
- Department of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana; Illinois
| | - Christopher D. Skory
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Renewable Product Technology (RPT) Research Unit, Peoria; Illinois
| | - Ji Yeon Jang
- IT Convergence Materials R&D Group, Research Institute of Sustainable Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan; Korea
| | - Byung Jo Yu
- IT Convergence Materials R&D Group, Research Institute of Sustainable Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan; Korea
| | - In Park
- IT Convergence Materials R&D Group, Research Institute of Sustainable Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan; Korea
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana; Illinois
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana 61801; Illinois
| |
Collapse
|
109
|
Lindquist MR, López-Núñez JC, Jones MA, Cox EJ, Pinkelman RJ, Bang SS, Moser BR, Jackson MA, Iten LB, Kurtzman CP, Bischoff KM, Liu S, Qureshi N, Tasaki K, Rich JO, Cotta MA, Saha BC, Hughes SR. Irradiation of Yarrowia lipolytica NRRL YB-567 creating novel strains with enhanced ammonia and oil production on protein and carbohydrate substrates. Appl Microbiol Biotechnol 2015; 99:9723-43. [PMID: 26272089 PMCID: PMC4628078 DOI: 10.1007/s00253-015-6852-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/12/2015] [Accepted: 07/15/2015] [Indexed: 01/05/2023]
Abstract
Increased interest in sustainable production of renewable diesel and other valuable bioproducts is redoubling efforts to improve economic feasibility of microbial-based oil production. Yarrowia lipolytica is capable of employing a wide variety of substrates to produce oil and valuable co-products. We irradiated Y. lipolytica NRRL YB-567 with UV-C to enhance ammonia (for fertilizer) and lipid (for biodiesel) production on low-cost protein and carbohydrate substrates. The resulting strains were screened for ammonia and oil production using color intensity of indicators on plate assays. Seven mutant strains were selected (based on ammonia assay) and further evaluated for growth rate, ammonia and oil production, soluble protein content, and morphology when grown on liver infusion medium (without sugars), and for growth on various substrates. Strains were identified among these mutants that had a faster doubling time, produced higher maximum ammonia levels (enzyme assay) and more oil (Sudan Black assay), and had higher maximum soluble protein levels (Bradford assay) than wild type. When grown on plates with substrates of interest, all mutant strains showed similar results aerobically to wild-type strain. The mutant strain with the highest oil production and the fastest doubling time was evaluated on coffee waste medium. On this medium, the strain produced 0.12 g/L ammonia and 0.20 g/L 2-phenylethanol, a valuable fragrance/flavoring, in addition to acylglycerols (oil) containing predominantly C16 and C18 residues. These mutant strains will be investigated further for potential application in commercial biodiesel production.
Collapse
Affiliation(s)
- Mitch R Lindquist
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Renewable Product Technology Research Unit, 1815 North University Street, Peoria, IL, 61604, USA
| | - Juan Carlos López-Núñez
- National Coffee Research Centre - Cenicafe, National Federation of Coffee Growers of Colombia - FNC, Cenicafé Planalto Km 4 vía Antigua Chinchiná, Manizales, Caldas, Colombia
| | - Marjorie A Jones
- 4160 Department of Chemistry, Illinois State University, 214 Julian Hall, Normal, IL, 61790-4160, USA
| | - Elby J Cox
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Renewable Product Technology Research Unit, 1815 North University Street, Peoria, IL, 61604, USA
| | - Rebecca J Pinkelman
- South Dakota School of Mines & Technology, Chemical and Biological Engineering, 501 East Saint Joseph Street, Rapid City, SD, 57701-3995, USA
| | - Sookie S Bang
- South Dakota School of Mines & Technology, Chemical and Biological Engineering, 501 East Saint Joseph Street, Rapid City, SD, 57701-3995, USA
| | - Bryan R Moser
- USDA, ARS, NCAUR, Bio-oils Research Unit, 1815 North University Street, Peoria, IL, 61604, USA
| | - Michael A Jackson
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Renewable Product Technology Research Unit, 1815 North University Street, Peoria, IL, 61604, USA
| | - Loren B Iten
- USDA, ARS, NCAUR, Bioenergy Research Unit, 1815 North University Street, Peoria, IL, 61604, USA
| | - Cletus P Kurtzman
- USDA, ARS, NCAUR, Bacterial Foodborne Pathogens and Mycology Research Unit, 1815 North University Street, Peoria, IL, 61604, USA
| | - Kenneth M Bischoff
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Renewable Product Technology Research Unit, 1815 North University Street, Peoria, IL, 61604, USA
| | - Siqing Liu
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Renewable Product Technology Research Unit, 1815 North University Street, Peoria, IL, 61604, USA
| | - Nasib Qureshi
- USDA, ARS, NCAUR, Bioenergy Research Unit, 1815 North University Street, Peoria, IL, 61604, USA
| | - Kenneth Tasaki
- Mitsubishi Chemical, USMC Research & Innovation, 410 Palos Verdes Blvd, Redondo Beach, CA, 90277, USA
| | - Joseph O Rich
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Renewable Product Technology Research Unit, 1815 North University Street, Peoria, IL, 61604, USA
| | - Michael A Cotta
- USDA, ARS, NCAUR, Bioenergy Research Unit, 1815 North University Street, Peoria, IL, 61604, USA
| | - Badal C Saha
- USDA, ARS, NCAUR, Bioenergy Research Unit, 1815 North University Street, Peoria, IL, 61604, USA
| | - Stephen R Hughes
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Renewable Product Technology Research Unit, 1815 North University Street, Peoria, IL, 61604, USA.
| |
Collapse
|
110
|
Li X, Chomvong K, Yu VY, Liang JM, Lin Y, Cate JHD. Cellobionic acid utilization: from Neurospora crassa to Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:120. [PMID: 26279678 PMCID: PMC4537572 DOI: 10.1186/s13068-015-0303-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/31/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Economical production of fuels and chemicals from plant biomass requires the efficient use of sugars derived from the plant cell wall. Neurospora crassa, a model lignocellulosic degrading fungus, is capable of breaking down the complex structure of the plant cell wall. In addition to cellulases and hemicellulases, N. crassa secretes lytic polysaccharide monooxygenases (LPMOs), which cleave cellulose by generating oxidized sugars-particularly aldonic acids. However, the strategies N. crassa employs to utilize these sugars are unknown. RESULTS We identified an aldonic acid utilization pathway in N. crassa, comprised of an extracellular hydrolase (NCU08755), cellobionic acid transporter (CBT-1, NCU05853) and cellobionic acid phosphorylase (CAP, NCU09425). Extracellular cellobionic acid could be imported directly by CBT-1 or cleaved to gluconic acid and glucose by a β-glucosidase (NCU08755) outside the cells. Intracellular cellobionic acid was further cleaved to glucose 1-phosphate and gluconic acid by CAP. However, it remains unclear how N. crassa utilizes extracellular gluconic acid. The aldonic acid pathway was successfully implemented in Saccharomyces cerevisiae when N. crassa gluconokinase was co-expressed, resulting in cellobionic acid consumption in both aerobic and anaerobic conditions. CONCLUSIONS We successfully identified a branched aldonic acid utilization pathway in N. crassa and transferred its essential components into S. cerevisiae, a robust industrial microorganism.
Collapse
Affiliation(s)
- Xin Li
- />Department of Molecular and Cell Biology, University of California, Berkeley, CA USA
| | - Kulika Chomvong
- />Department of Plant and Microbial Biology, University of California, Berkeley, CA USA
| | - Vivian Yaci Yu
- />Department of Molecular and Cell Biology, University of California, Berkeley, CA USA
| | - Julie M Liang
- />Department of Chemistry, University of California, Berkeley, CA USA
| | - Yuping Lin
- />Department of Molecular and Cell Biology, University of California, Berkeley, CA USA
| | - Jamie H D Cate
- />Department of Molecular and Cell Biology, University of California, Berkeley, CA USA
- />Department of Chemistry, University of California, Berkeley, CA USA
- />Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| |
Collapse
|
111
|
Tsai CS, Kong II, Lesmana A, Million G, Zhang GC, Kim SR, Jin YS. Rapid and marker-free refactoring of xylose-fermenting yeast strains with Cas9/CRISPR. Biotechnol Bioeng 2015; 112:2406-11. [DOI: 10.1002/bit.25632] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/24/2015] [Accepted: 04/30/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Ching-Sung Tsai
- Carl R. Woese Institute for Genomic Biology; University of Illinois at Urbana-Champaign; Urbana Illinois
| | - In Iok Kong
- Department of Food Science and Human Nutrition; University of Illinois at Urbana-Champaign; Urbana Illinois 61801
| | - Anastashia Lesmana
- Department of Food Science and Human Nutrition; University of Illinois at Urbana-Champaign; Urbana Illinois 61801
| | - Gyver Million
- Department of Food Science and Human Nutrition; University of Illinois at Urbana-Champaign; Urbana Illinois 61801
| | - Guo-Chang Zhang
- Carl R. Woese Institute for Genomic Biology; University of Illinois at Urbana-Champaign; Urbana Illinois
| | - Soo Rin Kim
- Carl R. Woese Institute for Genomic Biology; University of Illinois at Urbana-Champaign; Urbana Illinois
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology; University of Illinois at Urbana-Champaign; Urbana Illinois
- Department of Food Science and Human Nutrition; University of Illinois at Urbana-Champaign; Urbana Illinois 61801
| |
Collapse
|
112
|
Wei N, Oh EJ, Million G, Cate JHD, Jin YS. Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform. ACS Synth Biol 2015; 4:707-13. [PMID: 25587748 DOI: 10.1021/sb500364q] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The inability of fermenting microorganisms to use mixed carbon components derived from lignocellulosic biomass is a major technical barrier that hinders the development of economically viable cellulosic biofuel production. In this study, we integrated the fermentation pathways of both hexose and pentose sugars and an acetic acid reduction pathway into one Saccharomyces cerevisiae strain for the first time using synthetic biology and metabolic engineering approaches. The engineered strain coutilized cellobiose, xylose, and acetic acid to produce ethanol with a substantially higher yield and productivity than the control strains, and the results showed the unique synergistic effects of pathway coexpression. The mixed substrate coutilization strategy is important for making complete and efficient use of cellulosic carbon and will contribute to the development of consolidated bioprocessing for cellulosic biofuel. The study also presents an innovative metabolic engineering approach whereby multiple substrate consumption pathways can be integrated in a synergistic way for enhanced bioconversion.
Collapse
Affiliation(s)
- Na Wei
- Department
of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | | | | | - Jamie H. D. Cate
- Departments
of Molecular and Cell Biology and Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
- Physical
Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | |
Collapse
|
113
|
Kuznetsova E, Nocek B, Brown G, Makarova KS, Flick R, Wolf YI, Khusnutdinova A, Evdokimova E, Jin K, Tan K, Hanson AD, Hasnain G, Zallot R, de Crécy-Lagard V, Babu M, Savchenko A, Joachimiak A, Edwards AM, Koonin EV, Yakunin AF. Functional Diversity of Haloacid Dehalogenase Superfamily Phosphatases from Saccharomyces cerevisiae: BIOCHEMICAL, STRUCTURAL, AND EVOLUTIONARY INSIGHTS. J Biol Chem 2015; 290:18678-98. [PMID: 26071590 DOI: 10.1074/jbc.m115.657916] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Indexed: 12/15/2022] Open
Abstract
The haloacid dehalogenase (HAD)-like enzymes comprise a large superfamily of phosphohydrolases present in all organisms. The Saccharomyces cerevisiae genome encodes at least 19 soluble HADs, including 10 uncharacterized proteins. Here, we biochemically characterized 13 yeast phosphatases from the HAD superfamily, which includes both specific and promiscuous enzymes active against various phosphorylated metabolites and peptides with several HADs implicated in detoxification of phosphorylated compounds and pseudouridine. The crystal structures of four yeast HADs provided insight into their active sites, whereas the structure of the YKR070W dimer in complex with substrate revealed a composite substrate-binding site. Although the S. cerevisiae and Escherichia coli HADs share low sequence similarities, the comparison of their substrate profiles revealed seven phosphatases with common preferred substrates. The cluster of secondary substrates supporting significant activity of both S. cerevisiae and E. coli HADs includes 28 common metabolites that appear to represent the pool of potential activities for the evolution of novel HAD phosphatases. Evolution of novel substrate specificities of HAD phosphatases shows no strict correlation with sequence divergence. Thus, evolution of the HAD superfamily combines the conservation of the overall substrate pool and the substrate profiles of some enzymes with remarkable biochemical and structural flexibility of other superfamily members.
Collapse
Affiliation(s)
- Ekaterina Kuznetsova
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Boguslaw Nocek
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Greg Brown
- the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Kira S Makarova
- the National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Robert Flick
- the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Yuri I Wolf
- the National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Anna Khusnutdinova
- the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Elena Evdokimova
- the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Ke Jin
- the Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan S4S 0A2, Canada, and
| | - Kemin Tan
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Andrew D Hanson
- the Horticultural Sciences Department, Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Ghulam Hasnain
- the Horticultural Sciences Department, Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Rémi Zallot
- the Horticultural Sciences Department, Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Valérie de Crécy-Lagard
- the Horticultural Sciences Department, Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Mohan Babu
- the Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan S4S 0A2, Canada, and
| | - Alexei Savchenko
- the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Andrzej Joachimiak
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Aled M Edwards
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada, the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Eugene V Koonin
- the National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Alexander F Yakunin
- the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada,
| |
Collapse
|
114
|
Bauer S, Ibáñez AB. Does size matter? Separations on guard columns for fast sample analysis applied to bioenergy research. BMC Biotechnol 2015; 15:38. [PMID: 26016474 PMCID: PMC4445503 DOI: 10.1186/s12896-015-0159-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/01/2015] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Increasing sample throughput is needed when large numbers of samples have to be processed. In chromatography, one strategy is to reduce column length for decreased analysis time. Therefore, the feasibility of analyzing samples simply on a guard column was explored using refractive index and ultraviolet detection. Results from the guard columns were compared to the analyses using the standard 300 mm Aminex HPX-87H column which is widely applied to the analysis of samples from many biotechnology- and bioenergy-related experiments such as biomass conversions or fermentations. RESULTS The 50 mm Rezex RFQ Fast Acid H(+) guard column was able to separate the most common fermentation products (ethanol, acetone, iso- and n-butanol) and promising precursors (furfural and 5-hydroxymethylfurfural) of biofuels and value-added chemicals. Compound profiles in fermentation samples were analyzed with similar accuracy compared to results using the 300 mm column. However, separation of glucose and xylose was not achieved. Nevertheless, it was possible to monitor the consumption of one of the two sugars during fermentation if the other one was absent or remained constant over the course of the experiment. If correct peak integration and interference subtraction was applied, concentration profiles from enzymatic digestibility experiments and even more complex samples (e.g. acetone-butanol-ethanol (ABE) fermentation) were reliably obtained. With the 50 mm guard column, samples were analyzed up to ten-times faster compared to the 300 mm column. A further decrease in analysis time was achieved by using the 30 mm Micro Guard Cation H guard column. This column is especially suitable for the rapid analysis of compounds with long elution times on the standard 300 mm column, such as biofuel-related alcohols (e.g., n-butanol, n-hexanol) and furan- and tetrahydrofuran-type molecules. CONCLUSION Applied to a suitable set of samples, separations on a guard column can give rapid and sufficiently accurate information on compound changes over the course of an experiment. Therefore, it is an inexpensive and ideal tool for processing a large amount of samples, such as in screening or discovery experiments, where detecting relative changes is often sufficient to identify promising candidates for further analysis.
Collapse
Affiliation(s)
- Stefan Bauer
- Energy Biosciences Institute, University of California, Berkeley, CA, 94720, USA.
| | - Ana B Ibáñez
- Energy Biosciences Institute, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
115
|
Kim SM, Guo J, Kwak S, Jin YS, Lee DK, Singh V. Effects of genetic variation and growing condition of prairie cordgrass on feedstock composition and ethanol yield. BIORESOURCE TECHNOLOGY 2015; 183:70-77. [PMID: 25723129 DOI: 10.1016/j.biortech.2015.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 06/04/2023]
Abstract
Prairie cordgrass (Spartina pectinata L.) has the potential to be a feedstock for bioethanol. It is native to North America, and has extensive genetic diversity. Eleven natural populations of prairie cordgrass harvested in 2011 and 2012 were studied. Compositions of the samples showed significant differences within the same year, and between the two years. Two highest, one medium and two lowest glucan concentration samples from each year were selected to evaluate ethanol yield after dilute acid pretreatment and simultaneous saccharification and co-fermentation using Saccharomycescerevisiae SR8 that can ferment both glucose and xylose. Up to 88% of theoretical ethanol yields were achieved. Our research demonstrates the potential of prairie cordgrass as a dedicated energy crop with ethanol yields of 205.0-275.6 g/kg biomass and 1748-4368 L/ha, depending on feedstock composition and biomass yield. These ethanol yields are comparable with those of switchgrass, corn stover and bagasse.
Collapse
Affiliation(s)
- Sun Min Kim
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 West Pennsylvania Avenue, Urbana, IL 61801, United States
| | - Jia Guo
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1102 South Goodwin Avenue, Urbana, IL 61801, United States
| | - Suryang Kwak
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 905 South Goodwin Avenue, Urbana, IL 61801, United States
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 905 South Goodwin Avenue, Urbana, IL 61801, United States; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, United States
| | - D K Lee
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1102 South Goodwin Avenue, Urbana, IL 61801, United States
| | - Vijay Singh
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 West Pennsylvania Avenue, Urbana, IL 61801, United States.
| |
Collapse
|
116
|
Hughes SR, Cox EJ, Bang SS, Pinkelman RJ, López-Núñez JC, Saha BC, Qureshi N, Gibbons WR, Fry MR, Moser BR, Bischoff KM, Liu S, Sterner DE, Butt TR, Riedmuller SB, Jones MA, Riaño-Herrera NM. Process for Assembly and Transformation into Saccharomyces cerevisiae of a Synthetic Yeast Artificial Chromosome Containing a Multigene Cassette to Express Enzymes That Enhance Xylose Utilization Designed for an Automated Platform. ACTA ACUST UNITED AC 2015; 20:621-35. [PMID: 25720598 DOI: 10.1177/2211068215573188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Indexed: 01/26/2023]
Abstract
A yeast artificial chromosome (YAC) containing a multigene cassette for expression of enzymes that enhance xylose utilization (xylose isomerase [XI] and xylulokinase [XKS]) was constructed and transformed into Saccharomyces cerevisiae to demonstrate feasibility as a stable protein expression system in yeast and to design an assembly process suitable for an automated platform. Expression of XI and XKS from the YAC was confirmed by Western blot and PCR analyses. The recombinant and wild-type strains showed similar growth on plates containing hexose sugars, but only recombinant grew on D-xylose and L-arabinose plates. In glucose fermentation, doubling time (4.6 h) and ethanol yield (0.44 g ethanol/g glucose) of recombinant were comparable to wild type (4.9 h and 0.44 g/g). In whole-corn hydrolysate, ethanol yield (0.55 g ethanol/g [glucose + xylose]) and xylose utilization (38%) for recombinant were higher than for wild type (0.47 g/g and 12%). In hydrolysate from spent coffee grounds, yield was 0.46 g ethanol/g (glucose + xylose), and xylose utilization was 93% for recombinant. These results indicate introducing a YAC expressing XI and XKS enhanced xylose utilization without affecting integrity of the host strain, and the process provides a potential platform for automated synthesis of a YAC for expression of multiple optimized genes to improve yeast strains.
Collapse
Affiliation(s)
- Stephen R Hughes
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Renewable Product Technology Research Unit, Peoria, IL, USA
| | - Elby J Cox
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Renewable Product Technology Research Unit, Peoria, IL, USA Department of Chemistry and Biochemistry, Bradley University, Peoria, IL, USA
| | - Sookie S Bang
- South Dakota School of Mines & Technology, Chemical and Biological Engineering, Rapid City, SD, USA
| | - Rebecca J Pinkelman
- South Dakota School of Mines & Technology, Chemical and Biological Engineering, Rapid City, SD, USA
| | - Juan Carlos López-Núñez
- National Coffee Research Centre (Cenicafe), National Federation of Coffee Growers of Colombia (FNC), Manizales, Caldas, Colombia
| | - Badal C Saha
- USDA, ARS, NCAUR, Bioenergy Research Unit, Peoria, IL, USA
| | - Nasib Qureshi
- USDA, ARS, NCAUR, Bioenergy Research Unit, Peoria, IL, USA
| | - William R Gibbons
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Michelle R Fry
- Department of Chemistry and Biochemistry, Bradley University, Peoria, IL, USA
| | - Bryan R Moser
- USDA, ARS, NCAUR, Bio-Oils Research Unit, Peoria, IL, USA
| | - Kenneth M Bischoff
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Renewable Product Technology Research Unit, Peoria, IL, USA
| | - Siqing Liu
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Renewable Product Technology Research Unit, Peoria, IL, USA
| | | | | | | | - Marjorie A Jones
- Department of Chemistry, Illinois State University, Normal, IL, USA
| | - Néstor M Riaño-Herrera
- National Coffee Research Centre (Cenicafe), National Federation of Coffee Growers of Colombia (FNC), Manizales, Caldas, Colombia
| |
Collapse
|
117
|
Li X, Yu VY, Lin Y, Chomvong K, Estrela R, Park A, Liang JM, Znameroski EA, Feehan J, Kim SR, Jin YS, Glass NL, Cate JHD. Expanding xylose metabolism in yeast for plant cell wall conversion to biofuels. eLife 2015; 4. [PMID: 25647728 PMCID: PMC4338637 DOI: 10.7554/elife.05896] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/02/2015] [Indexed: 12/18/2022] Open
Abstract
Sustainable biofuel production from renewable biomass will require the efficient and complete use of all abundant sugars in the plant cell wall. Using the cellulolytic fungus Neurospora crassa as a model, we identified a xylodextrin transport and consumption pathway required for its growth on hemicellulose. Reconstitution of this xylodextrin utilization pathway in Saccharomyces cerevisiae revealed that fungal xylose reductases act as xylodextrin reductases, producing xylosyl-xylitol oligomers as metabolic intermediates. These xylosyl-xylitol intermediates are generated by diverse fungi and bacteria, indicating that xylodextrin reduction is widespread in nature. Xylodextrins and xylosyl-xylitol oligomers are then hydrolyzed by two hydrolases to generate intracellular xylose and xylitol. Xylodextrin consumption using a xylodextrin transporter, xylodextrin reductases and tandem intracellular hydrolases in cofermentations with sucrose and glucose greatly expands the capacity of yeast to use plant cell wall-derived sugars and has the potential to increase the efficiency of both first-generation and next-generation biofuel production. DOI:http://dx.doi.org/10.7554/eLife.05896.001 Plants can be used to make ‘biofuels’, which are more sustainable alternatives to traditional fuels made from petroleum. Unfortunately, most biofuels are currently made from simple sugars or starch extracted from parts of plants that we also use for food, such as the grains of cereal crops. Making biofuels from the parts of the plant that are not used for food—for example, the stems or leaves—would enable us to avoid a trade-off between food and fuel production. However, most of the sugars in these parts of the plant are locked away in the form of large, complex carbohydrates called cellulose and hemicellulose, which form the rigid cell wall surrounding each plant cell. Currently, the industrial processes that can be used to make biofuels from plant cell walls are expensive and use a lot of energy. They involve heating or chemically treating the plant material to release the cellulose and hemicellulose. Then, large quantities of enzymes are added to break these carbohydrates down into simple sugars that can then be converted into alcohol (a biofuel) by yeast. Fungi may be able to provide us with a better solution. Many species are able to grow on plants because they can break down cellulose and hemicellulose into simple sugars they can use for energy. If the genes involved in this process could be identified and inserted into yeast it may provide a new, cheaper method to make biofuels from plant cell walls. To address this challenge, Li et al. studied how the fungus Neurospora crassa breaks down hemicellulose. This study identified a protein that can transport molecules of xylodextrin—which is found in hemicellulose—into the cells of the fungus, and two enzymes that break down the xylodextrin to make simple sugars, using a previously unknown chemical intermediate. When Li et al. inserted the genes that make the transport protein and the enzymes into yeast, the yeast were able to use plant cell wall material to make simple sugars and convert these to alcohol. The yeast used more of the xylodextrin when they were grown with an additional source of energy, such as the sugars glucose or sucrose. Li et al.'s findings suggest that giving yeast the ability to break down hemicellulose has the potential to improve the efficiency of biofuel production. The next challenge will be to improve the process so that the yeast can convert the xylodextrin and simple sugars more rapidly. DOI:http://dx.doi.org/10.7554/eLife.05896.002
Collapse
Affiliation(s)
- Xin Li
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Vivian Yaci Yu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Yuping Lin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Kulika Chomvong
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
| | - Raíssa Estrela
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Annsea Park
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Julie M Liang
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Elizabeth A Znameroski
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Joanna Feehan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Soo Rin Kim
- Institute for Genomic Biology, University of Illinois, Urbana, United States
| | - Yong-Su Jin
- Institute for Genomic Biology, University of Illinois, Urbana, United States
| | - N Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
| | - Jamie H D Cate
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
118
|
Kim TY, Oh EJ, Jin YS, Oh MK. Improved resistance against oxidative stress of engineered cellobiose-fermenting Saccharomyces cerevisiae revealed by metabolite profiling. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0301-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
119
|
Tsai CS, Kwak S, Turner TL, Jin YS. Yeast synthetic biology toolbox and applications for biofuel production. FEMS Yeast Res 2015; 15:1-15. [PMID: 25195615 DOI: 10.1111/1567-1364.12206] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/16/2014] [Accepted: 08/31/2014] [Indexed: 01/04/2023] Open
Abstract
Yeasts are efficient biofuel producers with numerous advantages outcompeting bacterial counterparts. While most synthetic biology tools have been developed and customized for bacteria especially for Escherichia coli, yeast synthetic biological tools have been exploited for improving yeast to produce fuels and chemicals from renewable biomass. Here we review the current status of synthetic biological tools and their applications for biofuel production, focusing on the model strain Saccharomyces cerevisiae We describe assembly techniques that have been developed for constructing genes, pathways, and genomes in yeast. Moreover, we discuss synthetic parts for allowing precise control of gene expression at both transcriptional and translational levels. Applications of these synthetic biological approaches have led to identification of effective gene targets that are responsible for desirable traits, such as cellulosic sugar utilization, advanced biofuel production, and enhanced tolerance against toxic products for biofuel production from renewable biomass. Although an array of synthetic biology tools and devices are available, we observed some gaps existing in tool development to achieve industrial utilization. Looking forward, future tool development should focus on industrial cultivation conditions utilizing industrial strains.
Collapse
Affiliation(s)
- Ching-Sung Tsai
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Suryang Kwak
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Timothy L Turner
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yong-Su Jin
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA .,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
120
|
Saratale GD, Oh MK. Improving alkaline pretreatment method for preparation of whole rice waste biomass feedstock and bioethanol production. RSC Adv 2015. [DOI: 10.1039/c5ra17797a] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sequential NaOH + ASC + SB as an effective pretreatment method for whole rice waste biomass hydrolysis and ethanol production.
Collapse
Affiliation(s)
- Ganesh D. Saratale
- Department of Chemical and Biological Engineering
- Korea University
- Seoul
- South Korea 136-713
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering
- Korea University
- Seoul
- South Korea 136-713
| |
Collapse
|
121
|
Integrated Automation for Continuous High-Throughput Synthetic Chromosome Assembly and Transformation to Identify Improved Yeast Strains for Industrial Production of Biofuels and Bio-based Chemicals. Fungal Biol 2015. [DOI: 10.1007/978-3-319-10503-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
122
|
Deletion of PHO13, encoding haloacid dehalogenase type IIA phosphatase, results in upregulation of the pentose phosphate pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 2014; 81:1601-9. [PMID: 25527558 DOI: 10.1128/aem.03474-14] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The haloacid dehalogenase (HAD) superfamily is one of the largest enzyme families, consisting mainly of phosphatases. Although intracellular phosphate plays important roles in many cellular activities, the biological functions of HAD enzymes are largely unknown. Pho13 is 1 of 16 putative HAD enzymes in Saccharomyces cerevisiae. Pho13 has not been studied extensively, but previous studies have identified PHO13 to be a deletion target for the generation of industrially attractive phenotypes, namely, efficient xylose fermentation and high tolerance to fermentation inhibitors. In order to understand the molecular mechanisms underlying the improved xylose-fermenting phenotype produced by deletion of PHO13 (pho13Δ), we investigated the response of S. cerevisiae to pho13Δ at the transcriptomic level when cells were grown on glucose or xylose. Transcriptome sequencing analysis revealed that pho13Δ resulted in upregulation of the pentose phosphate (PP) pathway and NADPH-producing enzymes when cells were grown on glucose or xylose. We also found that the transcriptional changes induced by pho13Δ required the transcription factor Stb5, which is activated specifically under NADPH-limiting conditions. Thus, pho13Δ resulted in the upregulation of the PP pathway and NADPH-producing enzymes as a part of an oxidative stress response mediated by activation of Stb5. Because the PP pathway is the primary pathway for xylose, its upregulation by pho13Δ might explain the improved xylose metabolism. These findings will be useful for understanding the biological function of S. cerevisiae Pho13 and the HAD superfamily enzymes and for developing S. cerevisiae strains with industrially attractive phenotypes.
Collapse
|
123
|
Yang S, Liu G, Meng Y, Wang P, Zhou S, Shang H. Utilization of xylose as a carbon source for mixotrophic growth of Scenedesmus obliquus. BIORESOURCE TECHNOLOGY 2014; 172:180-185. [PMID: 25261865 DOI: 10.1016/j.biortech.2014.08.122] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/28/2014] [Accepted: 08/30/2014] [Indexed: 05/07/2023]
Abstract
Mixotrophic cultivation is one potential mode for microalgae production, and an economically acceptable and environmentally sustainable organic carbon source is essential. The potential use of xylose for culturing Scenedesmus obliquus in a mixotrophic mode and physiological features of xylose-grown S. obliquus were studied. S. obliquus had a certain xylose tolerance, and was capable of utilizing xylose for growth. At a xylose concentration of 4gL(-1), the maximal cell density was 2.2gL(-1), being 2.9-fold of that under photoautotrophic condition and arriving to the level of mixotrophic growth using 4gL(-1) glucose. No changes in cellular morphology of the cells grown with or without xylose were detected. Fluorescence emission from photosystem II (PS II) relative to photosystem I (PS I) was decreased in mixotrophic cells, implying that the PSII activity was decreased. The biomass lipid content was enhanced and carbohydrate concentration was decreased, in relation to photoautotrophic controls.
Collapse
Affiliation(s)
- Suling Yang
- Beijing Radiation Center, Beijing Academy of Science and Technology, Beijing 100015, PR China.
| | - Guijun Liu
- Beijing Radiation Center, Beijing Academy of Science and Technology, Beijing 100015, PR China
| | - Youting Meng
- Beijing Radiation Center, Beijing Academy of Science and Technology, Beijing 100015, PR China
| | - Ping Wang
- Beijing Radiation Center, Beijing Academy of Science and Technology, Beijing 100015, PR China
| | - Sijing Zhou
- Beijing Radiation Center, Beijing Academy of Science and Technology, Beijing 100015, PR China
| | - Hongzhong Shang
- Beijing Radiation Center, Beijing Academy of Science and Technology, Beijing 100015, PR China
| |
Collapse
|
124
|
Hughes SR, López-Núñez JC, Jones MA, Moser BR, Cox EJ, Lindquist M, Galindo-Leva LA, Riaño-Herrera NM, Rodriguez-Valencia N, Gast F, Cedeño DL, Tasaki K, Brown RC, Darzins A, Brunner L. Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using coupled biochemical and thermochemical processes in a multi-stage biorefinery concept. Appl Microbiol Biotechnol 2014; 98:8413-31. [PMID: 25204861 PMCID: PMC4192581 DOI: 10.1007/s00253-014-5991-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 01/15/2023]
Abstract
The environmental impact of agricultural waste from the processing of food and feed crops is an increasing concern worldwide. Concerted efforts are underway to develop sustainable practices for the disposal of residues from the processing of such crops as coffee, sugarcane, or corn. Coffee is crucial to the economies of many countries because its cultivation, processing, trading, and marketing provide employment for millions of people. In coffee-producing countries, improved technology for treatment of the significant amounts of coffee waste is critical to prevent ecological damage. This mini-review discusses a multi-stage biorefinery concept with the potential to convert waste produced at crop processing operations, such as coffee pulping stations, to valuable biofuels and bioproducts using biochemical and thermochemical conversion technologies. The initial bioconversion stage uses a mutant Kluyveromyces marxianus yeast strain to produce bioethanol from sugars. The resulting sugar-depleted solids (mostly protein) can be used in a second stage by the oleaginous yeast Yarrowia lipolytica to produce bio-based ammonia for fertilizer and are further degraded by Y. lipolytica proteases to peptides and free amino acids for animal feed. The lignocellulosic fraction can be ground and treated to release sugars for fermentation in a third stage by a recombinant cellulosic Saccharomyces cerevisiae, which can also be engineered to express valuable peptide products. The residual protein and lignin solids can be jet cooked and passed to a fourth-stage fermenter where Rhodotorula glutinis converts methane into isoprenoid intermediates. The residues can be combined and transferred into pyrocracking and hydroformylation reactions to convert ammonia, protein, isoprenes, lignins, and oils into renewable gas. Any remaining waste can be thermoconverted to biochar as a humus soil enhancer. The integration of multiple technologies for treatment of coffee waste has the potential to contribute to economic and environmental sustainability.
Collapse
Affiliation(s)
- Stephen R Hughes
- Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Renewable Product Technology (RPT) Research Unit, United States Department of Agriculture (USDA), 1815 North University Street, Peoria, IL, 61604, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover. PLoS One 2014; 9:e107499. [PMID: 25222864 PMCID: PMC4164640 DOI: 10.1371/journal.pone.0107499] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/23/2014] [Indexed: 12/30/2022] Open
Abstract
The inability of the yeast Saccharomyces cerevisiae to ferment xylose effectively under anaerobic conditions is a major barrier to economical production of lignocellulosic biofuels. Although genetic approaches have enabled engineering of S. cerevisiae to convert xylose efficiently into ethanol in defined lab medium, few strains are able to ferment xylose from lignocellulosic hydrolysates in the absence of oxygen. This limited xylose conversion is believed to result from small molecules generated during biomass pretreatment and hydrolysis, which induce cellular stress and impair metabolism. Here, we describe the development of a xylose-fermenting S. cerevisiae strain with tolerance to a range of pretreated and hydrolyzed lignocellulose, including Ammonia Fiber Expansion (AFEX)-pretreated corn stover hydrolysate (ACSH). We genetically engineered a hydrolysate-resistant yeast strain with bacterial xylose isomerase and then applied two separate stages of aerobic and anaerobic directed evolution. The emergent S. cerevisiae strain rapidly converted xylose from lab medium and ACSH to ethanol under strict anaerobic conditions. Metabolomic, genetic and biochemical analyses suggested that a missense mutation in GRE3, which was acquired during the anaerobic evolution, contributed toward improved xylose conversion by reducing intracellular production of xylitol, an inhibitor of xylose isomerase. These results validate our combinatorial approach, which utilized phenotypic strain selection, rational engineering and directed evolution for the generation of a robust S. cerevisiae strain with the ability to ferment xylose anaerobically from ACSH.
Collapse
|
126
|
Employing a combinatorial expression approach to characterize xylose utilization in Saccharomyces cerevisiae. Metab Eng 2014; 25:20-9. [DOI: 10.1016/j.ymben.2014.06.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/07/2014] [Accepted: 06/04/2014] [Indexed: 12/24/2022]
|
127
|
Lee SM, Jellison T, Alper HS. Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:122. [PMID: 25170344 PMCID: PMC4147937 DOI: 10.1186/s13068-014-0122-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 08/04/2014] [Indexed: 05/26/2023]
Abstract
BACKGROUND Efficient xylose fermentation by yeast would improve the economical and sustainable nature of biofuels production from lignocellulosic biomass. However, the efficiency of xylose fermentation by the yeast Saccharomyces cerevisiae is suboptimal, especially in conversion yield, despite decades of research. Here, we present an improved performance of S. cerevisiae in xylose fermentation through systematic and evolutionary engineering approaches. RESULTS The engineering of S. cerevisiae harboring xylose isomerase-based pathway significantly improved the xylose fermentation performance without the need for intensive downstream pathway engineering. This strain contained two integrated copies of a mutant xylose isomerase, gre3 and pho13 deletion and XKS1 and S. stipitis tal1 overexpression. This strain was subjected to rapid adaptive evolution to yield the final, evolved strain (SXA-R2P-E) which could efficiently convert xylose to ethanol with a yield of 0.45 g ethanol/g xylose, the highest yield reported to date. The xylose consumption and ethanol production rates, 0.98 g xylose g cell(-1) h(-1) and 0.44 g ethanol g cell(-1) h(-1), respectively, were also among the highest reported. During this process, the positive effect of a pho13 deletion was identified for a xylose isomerase-containing strain and resulted in up to an 8.2-fold increase in aerobic growth rate on xylose. Moreover, these results demonstrated that low inoculum size and the cell transfer at exponential phase was found to be the most effective adaptation strategy during a batch culture adaptation process. CONCLUSIONS These results suggest that the xylose isomerase pathway should be the pathway of choice for efficient xylose fermentation in S. cerevisiae as it can outperform strains with the oxidoreductase pathway in terms of yield and ethanol production and xylose consumption rates. Consequently, the strain developed in this study could significantly improve the prospect of biofuels production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Sun-Mi Lee
- />McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street, Stop C0400, Austin, TX 78712 USA
- />Clean Energy Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seoul, 136-791 Seongbuk-gu Korea
| | - Taylor Jellison
- />McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street, Stop C0400, Austin, TX 78712 USA
| | - Hal S Alper
- />McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street, Stop C0400, Austin, TX 78712 USA
- />Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712 USA
| |
Collapse
|
128
|
Cao L, Tang X, Zhang X, Zhang J, Tian X, Wang J, Xiong M, Xiao W. Two-stage transcriptional reprogramming in Saccharomyces cerevisiae for optimizing ethanol production from xylose. Metab Eng 2014; 24:150-9. [DOI: 10.1016/j.ymben.2014.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/23/2014] [Accepted: 05/01/2014] [Indexed: 11/16/2022]
|
129
|
Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast. Nat Commun 2014; 4:2580. [PMID: 24105024 DOI: 10.1038/ncomms3580] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 09/09/2013] [Indexed: 12/31/2022] Open
Abstract
The anticipation for substituting conventional fossil fuels with cellulosic biofuels is growing in the face of increasing demand for energy and rising concerns of greenhouse gas emissions. However, commercial production of cellulosic biofuel has been hampered by inefficient fermentation of xylose and the toxicity of acetic acid, which constitute substantial portions of cellulosic biomass. Here we use a redox balancing strategy to enable efficient xylose fermentation and simultaneous in situ detoxification of cellulosic feedstocks. By combining a nicotinamide adenine dinucleotide (NADH)-consuming acetate consumption pathway and an NADH-producing xylose utilization pathway, engineered yeast converts cellulosic sugars and toxic levels of acetate together into ethanol under anaerobic conditions. The results demonstrate a breakthrough in making efficient use of carbon compounds in cellulosic biomass and present an innovative strategy for metabolic engineering whereby an undesirable redox state can be exploited to drive desirable metabolic reactions, even improving productivity and yield.
Collapse
|
130
|
Directed evolution of a cellodextrin transporter for improved biofuel production under anaerobic conditions inSaccharomyces cerevisiae. Biotechnol Bioeng 2014; 111:1521-31. [DOI: 10.1002/bit.25214] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 01/06/2014] [Accepted: 02/03/2014] [Indexed: 12/12/2022]
|
131
|
Chomvong K, Kordić V, Li X, Bauer S, Gillespie AE, Ha SJ, Oh EJ, Galazka JM, Jin YS, Cate JHD. Overcoming inefficient cellobiose fermentation by cellobiose phosphorylase in the presence of xylose. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:85. [PMID: 24944578 PMCID: PMC4061319 DOI: 10.1186/1754-6834-7-85] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/21/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND Cellobiose and xylose co-fermentation holds promise for efficiently producing biofuels from plant biomass. Cellobiose phosphorylase (CBP), an intracellular enzyme generally found in anaerobic bacteria, cleaves cellobiose to glucose and glucose-1-phosphate, providing energetic advantages under the anaerobic conditions required for large-scale biofuel production. However, the efficiency of CBP to cleave cellobiose in the presence of xylose is unknown. This study investigated the effect of xylose on anaerobic CBP-mediated cellobiose fermentation by Saccharomyces cerevisiae. RESULTS Yeast capable of fermenting cellobiose by the CBP pathway consumed cellobiose and produced ethanol at rates 61% and 42% slower, respectively, in the presence of xylose than in its absence. The system generated significant amounts of the byproduct 4-O-β-d-glucopyranosyl-d-xylose (GX), produced by CBP from glucose-1-phosphate and xylose. In vitro competition assays identified xylose as a mixed-inhibitor for cellobiose phosphorylase activity. The negative effects of xylose were effectively relieved by efficient cellobiose and xylose co-utilization. GX was also shown to be a substrate for cleavage by an intracellular β-glucosidase. CONCLUSIONS Xylose exerted negative impacts on CBP-mediated cellobiose fermentation by acting as a substrate for GX byproduct formation and a mixed-inhibitor for cellobiose phosphorylase activity. Future efforts will require efficient xylose utilization, GX cleavage by a β-glucosidase, and/or a CBP with improved substrate specificity to overcome the negative impacts of xylose on CBP in cellobiose and xylose co-fermentation.
Collapse
Affiliation(s)
- Kulika Chomvong
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Vesna Kordić
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Xin Li
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Stefan Bauer
- Energy Biosciences Institute, University of California, Berkeley, CA, USA
| | - Abigail E Gillespie
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Suk-Jin Ha
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, USA
- Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, Republic of Korea
| | - Eun Joong Oh
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, USA
- Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Jonathan M Galazka
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, USA
- Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Jamie H D Cate
- Department of Chemistry, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
132
|
Lin Y, Chomvong K, Acosta-Sampson L, Estrela R, Galazka JM, Kim SR, Jin YS, Cate JHD. Leveraging transcription factors to speed cellobiose fermentation by Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:126. [PMID: 25435910 PMCID: PMC4243952 DOI: 10.1186/s13068-014-0126-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/06/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND Saccharomyces cerevisiae, a key organism used for the manufacture of renewable fuels and chemicals, has been engineered to utilize non-native sugars derived from plant cell walls, such as cellobiose and xylose. However, the rates and efficiencies of these non-native sugar fermentations pale in comparison with those of glucose. Systems biology methods, used to understand biological networks, hold promise for rational microbial strain development in metabolic engineering. Here, we present a systematic strategy for optimizing non-native sugar fermentation by recombinant S. cerevisiae, using cellobiose as a model. RESULTS Differences in gene expression between cellobiose and glucose metabolism revealed by RNA deep sequencing indicated that cellobiose metabolism induces mitochondrial activation and reduces amino acid biosynthesis under fermentation conditions. Furthermore, glucose-sensing and signaling pathways and their target genes, including the cAMP-dependent protein kinase A pathway controlling the majority of glucose-induced changes, the Snf3-Rgt2-Rgt1 pathway regulating hexose transport, and the Snf1-Mig1 glucose repression pathway, were at most only partially activated under cellobiose conditions. To separate correlations from causative effects, the expression levels of 19 transcription factors perturbed under cellobiose conditions were modulated, and the three strongest promoters under cellobiose conditions were applied to fine-tune expression of the heterologous cellobiose-utilizing pathway. Of the changes in these 19 transcription factors, only overexpression of SUT1 or deletion of HAP4 consistently improved cellobiose fermentation. SUT1 overexpression and HAP4 deletion were not synergistic, suggesting that SUT1 and HAP4 may regulate overlapping genes important for improved cellobiose fermentation. Transcription factor modulation coupled with rational tuning of the cellobiose consumption pathway significantly improved cellobiose fermentation. CONCLUSIONS We used systems-level input to reveal the regulatory mechanisms underlying suboptimal metabolism of the non-glucose sugar cellobiose. By identifying key transcription factors that cause suboptimal cellobiose fermentation in engineered S. cerevisiae, and by fine-tuning the expression of a heterologous cellobiose consumption pathway, we were able to greatly improve cellobiose fermentation by engineered S. cerevisiae. Our results demonstrate a powerful strategy for applying systems biology methods to rapidly identify metabolic engineering targets and overcome bottlenecks in performance of engineered strains.
Collapse
Affiliation(s)
- Yuping Lin
- />Departments of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| | - Kulika Chomvong
- />Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Ligia Acosta-Sampson
- />Departments of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| | - Raíssa Estrela
- />Departments of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| | - Jonathan M Galazka
- />Departments of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| | - Soo Rin Kim
- />Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
- />Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
| | - Yong-Su Jin
- />Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
- />Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
| | - Jamie HD Cate
- />Departments of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
- />Chemistry, University of California, Berkeley, CA 94720 USA
- />Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| |
Collapse
|
133
|
Kim SR, Park YC, Jin YS, Seo JH. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol Adv 2013; 31:851-61. [DOI: 10.1016/j.biotechadv.2013.03.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/23/2013] [Accepted: 03/04/2013] [Indexed: 12/27/2022]
|
134
|
Deletion of FPS1, encoding aquaglyceroporin Fps1p, improves xylose fermentation by engineered Saccharomyces cerevisiae. Appl Environ Microbiol 2013; 79:3193-201. [PMID: 23475614 DOI: 10.1128/aem.00490-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Accumulation of xylitol in xylose fermentation with engineered Saccharomyces cerevisiae presents a major problem that hampers economically feasible production of biofuels from cellulosic plant biomass. In particular, substantial production of xylitol due to unbalanced redox cofactor usage by xylose reductase (XR) and xylitol dehydrogenase (XDH) leads to low yields of ethanol. While previous research focused on manipulating intracellular enzymatic reactions to improve xylose metabolism, this study demonstrated a new strategy to reduce xylitol formation and increase carbon flux toward target products by controlling the process of xylitol secretion. Using xylitol-producing S. cerevisiae strains expressing XR only, we determined the role of aquaglyceroporin Fps1p in xylitol export by characterizing extracellular and intracellular xylitol. In addition, when FPS1 was deleted in a poorly xylose-fermenting strain with unbalanced XR and XDH activities, the xylitol yield was decreased by 71% and the ethanol yield was substantially increased by nearly four times. Experiments with our optimized xylose-fermenting strain also showed that FPS1 deletion reduced xylitol production by 21% to 30% and increased ethanol yields by 3% to 10% under various fermentation conditions. Deletion of FPS1 decreased the xylose consumption rate under anaerobic conditions, but the effect was not significant in fermentation at high cell density. Deletion of FPS1 resulted in higher intracellular xylitol concentrations but did not significantly change the intracellular NAD(+)/NADH ratio in xylose-fermenting strains. The results demonstrate that Fps1p is involved in xylitol export in S. cerevisiae and present a new gene deletion target, FPS1, and a mechanism different from those previously reported to engineer yeast for improved xylose fermentation.
Collapse
|