101
|
Wang S, Moreau F, Chadee K. Gasdermins in Innate Host Defense Against Entamoeba histolytica and Other Protozoan Parasites. Front Immunol 2022; 13:900553. [PMID: 35795683 PMCID: PMC9251357 DOI: 10.3389/fimmu.2022.900553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Gasdermins (GSDMs) are a group of proteins that are cleaved by inflammatory caspases to induce pore formation in the plasma membrane to cause membrane permeabilization and lytic cell death or pyroptosis. All GSDMs share a conserved structure, containing a cytotoxic N-terminal (NT) pore-forming domain and a C-terminal (CT) repressor domain. Entamoeba histolytica (Eh) in contact with macrophages, triggers outside-in signaling to activate inflammatory caspase-4/1 via the noncanonical and canonical pathway to promote cleavage of gasdermin D (GSDMD). Cleavage of GSDMD removes the auto-inhibition that masks the active pore-forming NT domain in the full-length protein by interactions with GSDM-CT. The cleaved NT-GSDMD monomers then oligomerize to form pores in the plasma membrane to facilitate the release of IL-1β and IL-18 with a measured amount of pyroptosis. Pyroptosis is an effective way to counteract intracellular parasites, which exploit replicative niche to avoid killing. To date, most GSDMs have been verified to perform pore-forming activity and GSDMD-induced pyroptosis is rapidly emerging as a mechanism of anti-microbial host defence. Here, we review our comprehensive and current knowledge on the expression, activation, biological functions, and regulation of GSDMD cleavage with emphases on physiological scenario and related dysfunctions of each GSDM member as executioner of cell death, cytokine secretion and inflammation against Eh and other protozoan parasitic infections.
Collapse
Affiliation(s)
| | | | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
102
|
Seroprevalence and Risk Factors Associated with Toxoplasma gondii Infection in the Population Referred to Rural and Urban Health Care Centers in Zahedan, Primary Referral Level, in Southeastern Iran. J Parasitol Res 2022; 2022:7311905. [PMID: 35601215 PMCID: PMC9119769 DOI: 10.1155/2022/7311905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction. Toxoplasmosis is one of the protozoan diseases caused by Toxoplasma gondii. This study is aimed at evaluating the seroprevalence and associated risk factors of Toxoplasma gondii infection in the population referred to rural and urban health care centers in Zahedan, southeast Iran. Methods. A total of 1,324 blood samples of patients referred to the health care centers were evaluated using the IgG Toxoplasma ELISA Kit, between October 2019 and August 2021. The obtained data were analyzed through univariable and multivariable regression models. Results. The seropositivity of Toxoplasma gondii infection was obtained at 18.8%. In the multivariable logistic regression model, risk factors including age group of 11-30 (
, 95% CI: 1.29-7.06), urban residency (
, 95% CI: 2.9-6.3), students (
, 95% CI: 1.88-4.53), and contact with cat (
, 95% CI: 4.76-12.36) were significantly associated with seropositivity to Toxoplasma gondii infection. Moreover, consumption of washed vegetables with salt or detergents decreases (
, 95% CI: 0.09-0.23) the risk of Toxoplasma gondii infection. According to the results of the multivariable logistic regression, no significant association was observed between seropositivity to Toxoplasma gondii and other risk factors. Conclusion. The results of this study indicated significant seropositivity to Toxoplasma gondii infection in the population referred to rural and urban health care centers in Zahedan, Iran. Therefore, health programs should be considered for raising awareness regarding the risk factors for Toxoplasma gondii infection in this region.
Collapse
|
103
|
Huffman AM, Ayariga JA, Napier A, Robertson BK, Abugri DA. Inhibition of Toxoplasma gondii Growth by Dihydroquinine and Its Mechanisms of Action. Front Cell Infect Microbiol 2022; 12:852889. [PMID: 35646733 PMCID: PMC9131874 DOI: 10.3389/fcimb.2022.852889] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/14/2022] [Indexed: 12/17/2022] Open
Abstract
Toxoplasma gondii is a zoonotic parasite that infects the brain of humans and causes cerebral toxoplasmosis. The recommended drugs for the treatment or prophylaxis of toxoplasmosis are pyrimethamine (PY) and sulfadiazine (SZ), which have serious side effects. Other drugs available for toxoplasmosis are poorly tolerated. Dihydroquinine (DHQ) is a compound closely related to quinine-based drugs that have been shown to inhibit Plasmodium falciparum and Plasmodium berghei in addition to its anti-arrhythmia properties. However, little is known about the effect of DHQ in T. gondii growth and its mechanism of action in vitro. In this study, we report the anti-Toxoplasma and anti-invasion properties of DHQ. DHQ significantly inhibited T. gondii tachyzoite growth with IC50s values of 0.63, 0.67, and 0.00137 µM at 24, 48, and 72 h, respectively. Under similar conditions, SZ and PY, considered as the gold standard drugs for the treatment of toxoplasmosis, had IC50s values of 1.29, 1.55, and 0.95 and 3.19, 3.52, and 2.42 µM, respectively. The rapid dose-dependent inhibition of T. gondii tachyzoites by DHQ compared to the standard drugs (SZ and PY) indicates that DHQ has high selective parasiticidal effects against tachyzoite proliferation. Remarkably, DHQ had an excellent selectivity index (SI) of 149- and 357-fold compared to 24- and 143-fold for PY and SZ, respectively, using fibroblast cells. In addition, DHQ disrupted T. gondii tachyzoite mitochondrial membrane potential and adenosine triphosphate (ATP) production and elicited high reactive oxygen species (ROS) generation. Taking all these findings together, DHQ promises to be an effective and safe lead for the treatment of toxoplasmosis.
Collapse
Affiliation(s)
- Aarin M. Huffman
- Department of Biology, College of Arts and Sciences, Tuskegee University, Tuskegee, AL, United States
| | - Joseph A. Ayariga
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
- Biomedical Engineering Program, Alabama State University, Montgomery, AL, United States
| | - Audrey Napier
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Boakai K. Robertson
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
- Microbiology PhD Program, College of Science, Technology, Engineering and Mathematics, Montgomery, AL, United States
| | - Daniel A. Abugri
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
- Microbiology PhD Program, College of Science, Technology, Engineering and Mathematics, Montgomery, AL, United States
- Laboratory of Ethnomedicine, Parasitology, and Drug Discovery, College of Science, Technology, Engineering and Mathematics, Montgomery, AL, United States
| |
Collapse
|
104
|
Asghari A, Nourmohammadi H, Majidiani H, Shariatzadeh SA, Anvari D, Shamsinia S, Ghasemi E, Shams M, Basati G. Promising effects of parasite-derived compounds on tumor regression: a systematic review of in vitro and in vivo studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32383-32396. [PMID: 35146610 DOI: 10.1007/s11356-021-17090-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/13/2021] [Indexed: 06/14/2023]
Abstract
The parasites are repeatedly confronting their host to take advantage of nutrients for multiplication and survival. In this sense, a wide spectrum of molecules is released from both sides, with immune-regulatory activity, accompanying this biological battle. Such parasites and their valuable molecules can be directed toward microbial-based cancer therapy. Herein, we contrived a systematic review to gather information on the antitumor activity of parasite-derived compounds. Following systematic search in Web of Science, ScienceDirect, Scopus, PubMed, ProQuest and Embase until 31 December 2019, a total number of 51 articles (54 datasets) were finally included in this review. Thirteen parasitic agents were found to possess possible antitumor activity, comprising protozoan species Toxoplasma gondii, Trypanosoma cruzi, Trichomonas vaginalis, Acanthamoeba castellanii, Besnoitia jellisoni, Leishmania major, Plasmodium yoelii, and Plasmodium lophurae, as well as parasitic helminths Toxocara canis, Echinococcus granulosus, Taenia crassiceps, Trichinella spiralis, and Schistosoma mansoni. Most experiments were done based on antigenic preparations from T. gondii (16 studies), E. granulosus (10 studies), T. spiralis (8 studies), and T. cruzi (6 studies). Possible antitumor properties of the selected parasites were revealed in this review. However, precise molecular basis of anticancer activity for each parasite remains to be elucidated in the future.
Collapse
Affiliation(s)
- Ali Asghari
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Nourmohammadi
- Department of Internal Medicine, Shahid Mostafa Khomeini Hospital, Ilam University of Medical Sciences, Ilam, Iran
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Hamidreza Majidiani
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Seyyed Ali Shariatzadeh
- Department of Parasitology, Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Davood Anvari
- Department of Parasitology, Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Sadegh Shamsinia
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ezatollah Ghasemi
- Department of Medical Parasitology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Morteza Shams
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| | - Gholam Basati
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
105
|
Athanasiou LV, Katsogiannou EG, Tsokana CN, Dedousi A, Boutsini S, Papakonstantinou G, Papatsiros VG. Detection of Antibodies Against Toxoplasma gondii in Filter Paper-Dried Blood Dot Spots Compared with Serum in Pigs and Assessment of Variation Associated with Packed Cell Volume. Foodborne Pathog Dis 2022; 19:394-399. [PMID: 35443790 DOI: 10.1089/fpd.2021.0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to assess the agreement between anti-Toxoplasma gondii IgG antibody detection in serum and filter paper (FP) blood spots using the indirect immunofluorescence antibody assay (IFA) and to evaluate the potential impact of the packed cell volume (PCV) on antibody detection in FPs. A pair of a serum and an FP sample was collected from 96 sows at various farms in Greece, with previously identified high seropositivity and/or risk factors associated with high seropositivity against T. gondii. The PCV value was determined using the microhematocrit method. IFA was used for the detection of antibodies against T. gondii. T. gondii-specific antibodies were detected in 45.8% serum samples and 41.6% FP samples showing almost perfect agreement. Detection in FP samples presented high sensitivity (87.1-92.8%) and excellent specificity (100%) when compared with detection in serum, regardless of the PCV values. The findings of this study support the reliability of FPs for the evaluation of the serological status of swine against T. gondii. FPs could be a good alternative sample type compared with serum for large-scale epidemiological studies.
Collapse
Affiliation(s)
- Labrini V Athanasiou
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, Karditsa, Greece
| | - Eleni G Katsogiannou
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, Karditsa, Greece
| | - Constantina N Tsokana
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, Karditsa, Greece
| | - Anna Dedousi
- Veterinary Research Institute, HAO-Demeter, Thessaloniki, Greece
| | - Sofia Boutsini
- Parasitology - Parasitic Diseases, Entomology, and Bee Health Department, Veterinary Center of Athens/General Directorate of Veterinary Services, Athens, Greece
| | - George Papakonstantinou
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, Karditsa, Greece
| | - Vasileios G Papatsiros
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, Karditsa, Greece
| |
Collapse
|
106
|
Singh S, Qureshi IA. Identification of potent inhibitors against chorismate synthase of Toxoplasma gondii using molecular dynamics simulations. J Mol Graph Model 2022; 114:108183. [DOI: 10.1016/j.jmgm.2022.108183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/06/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
|
107
|
Kesari P, Deshmukh A, Pahelkar N, Suryawanshi AB, Rathore I, Mishra V, Dupuis JH, Xiao H, Gustchina A, Abendroth J, Labaied M, Yada RY, Wlodawer A, Edwards TE, Lorimer DD, Bhaumik P. Structures of plasmepsin X from Plasmodium falciparum reveal a novel inactivation mechanism of the zymogen and molecular basis for binding of inhibitors in mature enzyme. Protein Sci 2022; 31:882-899. [PMID: 35048450 PMCID: PMC8927862 DOI: 10.1002/pro.4279] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 11/06/2022]
Abstract
Plasmodium falciparum plasmepsin X (PfPMX), involved in the invasion and egress of this deadliest malarial parasite, is essential for its survival and hence considered as an important drug target. We report the first crystal structure of PfPMX zymogen containing a novel fold of its prosegment. A unique twisted loop from the prosegment and arginine 244 from the mature enzyme is involved in zymogen inactivation; such mechanism, not previously reported, might be common for apicomplexan proteases similar to PfPMX. The maturation of PfPMX zymogen occurs through cleavage of its prosegment at multiple sites. Our data provide thorough insights into the mode of binding of a substrate and a potent inhibitor 49c to PfPMX. We present molecular details of inactivation, maturation, and inhibition of PfPMX that should aid in the development of potent inhibitors against pepsin-like aspartic proteases from apicomplexan parasites.
Collapse
Affiliation(s)
- Pooja Kesari
- Department of Biosciences and BioengineeringIndian Institute of Technology BombayMumbaiIndia
| | - Anuradha Deshmukh
- Department of Biosciences and BioengineeringIndian Institute of Technology BombayMumbaiIndia
| | - Nikhil Pahelkar
- Department of Biosciences and BioengineeringIndian Institute of Technology BombayMumbaiIndia
| | - Abhishek B. Suryawanshi
- Department of Biosciences and BioengineeringIndian Institute of Technology BombayMumbaiIndia
| | - Ishan Rathore
- Department of Biosciences and BioengineeringIndian Institute of Technology BombayMumbaiIndia
| | - Vandana Mishra
- Department of Biosciences and BioengineeringIndian Institute of Technology BombayMumbaiIndia
| | - John H. Dupuis
- Food, Nutrition, and Health Program, Faculty of Land and Food SystemsUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Huogen Xiao
- Summerland Research and Development CenterAgriculture and Agri‐Food CanadaSummerlandBritish ColumbiaCanada
| | - Alla Gustchina
- Protein Structure Section, Center for Structural BiologyNational Cancer InstituteFrederickMarylandUSA
| | - Jan Abendroth
- UCB PharmaBainbridge IslandWashingtonUSA
- Seattle Structural Genomics Center for Infectious DiseaseSeattleWashingtonUSA
| | - Mehdi Labaied
- UCB PharmaBainbridge IslandWashingtonUSA
- Seattle Structural Genomics Center for Infectious DiseaseSeattleWashingtonUSA
| | - Rickey Y. Yada
- Food, Nutrition, and Health Program, Faculty of Land and Food SystemsUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Alexander Wlodawer
- Protein Structure Section, Center for Structural BiologyNational Cancer InstituteFrederickMarylandUSA
| | - Thomas E. Edwards
- UCB PharmaBainbridge IslandWashingtonUSA
- Seattle Structural Genomics Center for Infectious DiseaseSeattleWashingtonUSA
| | - Donald D. Lorimer
- UCB PharmaBainbridge IslandWashingtonUSA
- Seattle Structural Genomics Center for Infectious DiseaseSeattleWashingtonUSA
| | - Prasenjit Bhaumik
- Department of Biosciences and BioengineeringIndian Institute of Technology BombayMumbaiIndia
| |
Collapse
|
108
|
Investigation of Toxoplasma gondii in wastewater and surface water in the Qinghai-Tibet Plateau, China using real-time PCR and multilocus genotyping. Sci Rep 2022; 12:5428. [PMID: 35361820 PMCID: PMC8971506 DOI: 10.1038/s41598-022-09166-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/30/2021] [Indexed: 01/08/2023] Open
Abstract
Toxoplasma gondii is a protozoan parasite, causing one of the most prevalent parasitic infections in the world. In the present study water sources of the Qinghai-Tibet Plateau (QTP), China, where the hygienic infrastructure is still developing, were investigated. A total of 214 water samples of 10 L volume, were collected from wastewater treatment plants (WWTPs), a slaughterhouse and rivers. The samples were filtered and then analysed using real-time PCR and multilocus genotyping. T. gondii DNA was found in four (1.9%) samples representing T. gondii type I; in one of them T. gondii-like oocysts were also confirmed microscopically. The approximate level of contamination of positive samples ranged between 30 and 2300 T. gondii sporozoites. The results of this study confirmed that T. gondii is present in wastewater in the greater metropolitan area of Xining and a neighbouring county. Contamination of wastewater at this level constitutes rather a moderate source of Toxoplasma infections in humans and animals. It suggests, however, a link between environmental exposure of animals, meat processing facilities and WWTPs. To our knowledge, this is the first investigation describing T. gondii detection in wastewater and environmental water samples collected from the territory of P.R. China using sensitive molecular tools.
Collapse
|
109
|
Khosla A, Singhal S, Jotwani P, Kleyman R. Cerebral Toxoplasmosis As the Initial Presentation of HIV: A Case Series. Cureus 2022; 14:e23359. [PMID: 35475054 PMCID: PMC9018902 DOI: 10.7759/cureus.23359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2022] [Indexed: 11/21/2022] Open
Abstract
The HIV epidemic afflicts millions across the globe, and Sub-Saharan countries bear a disproportionately high burden. Cerebral toxoplasmosis is commonly seen as the disease progresses but is rarely ever reported as the initial manifestation of HIV. The clinical presentation, co-existing risk factors, and outcomes remain underreported. The objective of this article is to report cerebral toxoplasmosis as the initial manifestation of HIV. This is a consecutive series of three patients that presented to a community hospital in Pennsylvania, United States, with a variety of neuropsychiatric symptoms and were found to have cerebral toxoplasmosis. The findings are compared with existing literature on cerebral toxoplasmosis as the initial manifestation of HIV. Cerebral toxoplasmosis as the initial manifestation of HIV is a rarely reported phenomenon. Hyponatremia may be linked with this disease-complex, although further studies are warranted to establish a causal relationship. Co-infection with hepatitis viruses is also a common finding in these patients.
Collapse
|
110
|
Sadooni R, Rezanezhad H, Solhjoo K, Kalantari M, Pourmohammadi B, Erfanian S, Armand B, Esmi Jahromi M. Genotyping of Toxoplasma gondii Strains from Goats in Jahrom District, Southern Iran. Acta Parasitol 2022; 67:454-459. [PMID: 34709540 DOI: 10.1007/s11686-021-00481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Toxoplasma gondii is transmitted congenitally or acquired by consumption of food and water contaminated with cysts or oocysts. This study aimed at genotyping T. gondii strains from slaughtered goats in Jahrom. METHODS A total of 561 specimens (heart, diaphragm, and tongue) from 187 slaughtered goats were collected from Jahrom slaughterhouse. After DNA extraction, the T. gondii strains were genotyped by the nested PCR-RFLP based on GRA6 and 3', and 5' ends of the SAG2 gene. RESULTS T. gondii infection was present in 18.2% of cases. Among the examined organs, the diaphragm was more disposed to the infection (10.2%). Furthermore, infection rates of the heart and tongue were 8.6% and 3.7%, respectively. Concurrent infection in the heart and diaphragm, tongue and diaphragm, and heart and tongue were 3.2%, 0.5%, and 0.5%, respectively. In genotyping experiments, genotype I was the most frequent genotype of T. gondii (58.8%), followed by type II (23.5%), type III (11.8%), and a combination of type I and II (5.9%). CONCLUSIONS The results of this study showed the presence of different genotypes of T. gondii in goats including three major and mixed genotypes. These results can be useful in toxoplasmosis control and prevention.
Collapse
Affiliation(s)
- Riam Sadooni
- Department of Parasitology, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Hassan Rezanezhad
- Department of Parasitology, Jahrom University of Medical Sciences, Jahrom, Iran.
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran.
| | - Kavos Solhjoo
- Department of Parasitology, Jahrom University of Medical Sciences, Jahrom, Iran
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mohsen Kalantari
- Research Center for Health Sciences, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behrad Pourmohammadi
- Department of Health Education and Health Promotion, School of Health, Semnan University of Medical Sciences, Semnan, Iran
| | - Saiedeh Erfanian
- Research Centre for Non-Communicable Diseases, Department of Advanced Medical Sciences and Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Belal Armand
- Department of Parasitology, Jahrom University of Medical Sciences, Jahrom, Iran
| | | |
Collapse
|
111
|
Kidaka T, Sugi T, Hayashida K, Suzuki Y, Xuan X, Dubey JP, Yamagishi J. TSS-seq of Toxoplasma gondii sporozoites revealed a novel motif in stage-specific promoters. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105213. [PMID: 35041968 DOI: 10.1016/j.meegid.2022.105213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Toxoplasma gondii is one of the most common zoonotic protozoan parasites. It has three major infectious stages: rapidly multiplying tachyzoites (Tz), slowly replicating bradyzoites (Bz) and a resting/free-living stage, sporozoites (Sz). The regulatory mechanisms governing stage-specific gene expression are not fully understood. Few transcriptional start sites (TSS) are known for Sz. In this study, we obtained TSS of Sz using an oligo-capping method and RNA-seq analysis. We identified 1,043,503 TSS in the Sz transcriptome. These defined 38,973 TSS clusters, of which, 11,925 were expressed in Sz and 1535 TSS differentially expressed in Sz. Based on these data, we defined promoter regions and novel sporozoite stage-specific motifs using MEME. TGTANNTACA was distributed around -55 to -75 regions from each TSS. Interestingly, the same motif was reported in another apicomplexan, Plasmodium berghei, as a cis-element of female-specific gametocyte genes, implying the presence of common regulatory machinery. Further comparative analysis should better define the distribution and function of these elements in other members of this important parasitic phylum.
Collapse
Affiliation(s)
- Taishi Kidaka
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Tatsuki Sugi
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Kyoko Hayashida
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Jitender P Dubey
- United States Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville, MD, 20705-2350, USA
| | - Junya Yamagishi
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan.
| |
Collapse
|
112
|
A Review on Alaria alata, Toxoplasma gondii and Sarcocystis spp. in Mammalian Game Meat Consumed in Europe: Epidemiology, Risk Management and Future Directions. Animals (Basel) 2022; 12:ani12030263. [PMID: 35158587 PMCID: PMC8833328 DOI: 10.3390/ani12030263] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary In many European countries, game meat consumption is related to the traditional hunting culture. Its demand and consumption are increasing, also due to the growing populations of wild ungulates. However, specific public health issues exist and should be taken into account. This review focuses on the causal agents, epidemiology, potential risk for human health and its management along the supply chain, including parasite detection at slaughtering and inactivation in meat, of three parasites (Alaria alata, Toxoplasma gondii and Sarcocystis spp.), which can be transmitted by the main mammalian game meat species in the EU: wild boar (Sus scrofa), red deer (Cervus elaphus), roe deer (Capreolus capreolus), fallow deer (Dama dama), Alpine chamois (Rupicapra rupicapra), moose (Alces alces), hare (Lepus europaeus) and wild rabbit (Oryctolagus cuniculus). By presenting the main issues and knowledge gaps, this study aims to contribute to an improved control supporting the risk analysis process. Abstract Game meat is increasingly appreciated and consumed in Europe, also due to the growing population of wild ungulates. In addition to interesting nutritional properties and market opportunities, game meat is characterized by some specific public health issues. This review focuses on the etiology, epidemiology, public health aspects and risk management along the supply chain, including parasite detection at slaughtering and inactivation in meat, of three selected foodborne parasitic hazards (Alaria alata, Toxoplasma gondii and Sarcocystis spp.) in the main mammalian game meat species in the EU: wild boar (Sus scrofa), red deer (Cervus elaphus), roe deer (Capreolus capreolus), fallow deer (Dama dama), Alpine chamois (Rupicapra rupicapra), moose (Alces alces), hare (Lepus europaeus) and wild rabbit (Oryctolagus cuniculus). The presented data point out the main issues, and knowledge gaps as well as the potential for improved control in order to contribute to the risk analysis process. To pursue an effective management of these parasitic zoonoses, awareness raising should involve all figures in the supply chain, including hunters, restaurateurs and consumers. Human behaviour and the lack of knowledge regarding meat borne parasitic zoonoses and the health risks they pose seem to be the most important factors responsible for human infections. However, detection methods, starting from the sampling procedure, should be further developed and standardized in order to improve the collection of accurate and up-to-date epidemiological data.
Collapse
|
113
|
Lunghi M, Kloehn J, Krishnan A, Varesio E, Vadas O, Soldati-Favre D. Pantothenate biosynthesis is critical for chronic infection by the neurotropic parasite Toxoplasma gondii. Nat Commun 2022; 13:345. [PMID: 35039477 PMCID: PMC8764084 DOI: 10.1038/s41467-022-27996-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 01/03/2022] [Indexed: 11/16/2022] Open
Abstract
Coenzyme A (CoA) is an essential molecule acting in metabolism, post-translational modification, and regulation of gene expression. While all organisms synthesize CoA, many, including humans, are unable to produce its precursor, pantothenate. Intriguingly, like most plants, fungi and bacteria, parasites of the coccidian subgroup of Apicomplexa, including the human pathogen Toxoplasma gondii, possess all the enzymes required for de novo synthesis of pantothenate. Here, the importance of CoA and pantothenate biosynthesis for the acute and chronic stages of T. gondii infection is dissected through genetic, biochemical and metabolomic approaches, revealing that CoA synthesis is essential for T. gondii tachyzoites, due to the parasite's inability to salvage CoA or intermediates of the pathway. In contrast, pantothenate synthesis is only partially active in T. gondii tachyzoites, making the parasite reliant on its uptake. However, pantothenate synthesis is crucial for the establishment of chronic infection, offering a promising target for intervention against the persistent stage of T. gondii.
Collapse
Affiliation(s)
- Matteo Lunghi
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Aarti Krishnan
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Emmanuel Varesio
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
- Mass Spectrometry Core Facility (MZ 2.0), University of Geneva, 1211, Geneva, Switzerland
| | - Oscar Vadas
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
- Protein and peptide purification platform, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland.
| |
Collapse
|
114
|
Stadler RV, Nelson SR, Warshaw DM, Ward GE. A circular zone of attachment to the extracellular matrix provides directionality to the motility of Toxoplasma gondii in 3D. eLife 2022; 11:85171. [PMID: 36519527 PMCID: PMC9839348 DOI: 10.7554/elife.85171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Toxoplasma gondii is a protozoan parasite that infects 30-40% of the world's population. Infections are typically subclinical but can be severe and, in some cases, life threatening. Central to the virulence of T. gondii is an unusual form of substrate-dependent motility that enables the parasite to invade cells of its host and to disseminate throughout the body. A hetero-oligomeric complex of proteins that functions in motility has been characterized, but how these proteins work together to drive forward motion of the parasite remains controversial. A key piece of information needed to understand the underlying mechanism(s) is the directionality of the forces that a moving parasite exerts on the external environment. The linear motor model of motility, which has dominated the field for the past two decades, predicts continuous anterior-to-posterior force generation along the length of the parasite. We show here using three-dimensional traction force mapping that the predominant forces exerted by a moving parasite are instead periodic and directed in toward the parasite at a fixed circular location within the extracellular matrix. These highly localized forces, which are generated by the parasite pulling on the matrix, create a visible constriction in the parasite's plasma membrane. We propose that the ring of inward-directed force corresponds to a circumferential attachment zone between the parasite and the matrix, through which the parasite propels itself to move forward. The combined data suggest a closer connection between the mechanisms underlying parasite motility and host cell invasion than previously recognized. In parasites lacking the major surface adhesin, TgMIC2, neither the inward-directed forces nor the constriction of the parasite membrane are observed. The trajectories of the TgMIC2-deficient parasites are less straight than those of wild-type parasites, suggesting that the annular zone of TgMIC2-mediated attachment to the extracellular matrix normally constrains the directional options available to the parasite as it migrates through its surrounding environment.
Collapse
Affiliation(s)
- Rachel V Stadler
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of MedicineBurlingtonUnited States
| | - Shane R Nelson
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of MedicineBurlingtonUnited States
| | - David M Warshaw
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of MedicineBurlingtonUnited States
| | - Gary E Ward
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of MedicineBurlingtonUnited States
| |
Collapse
|
115
|
Nayeri T, Sarvi S, Daryani A. Toxoplasmosis: Targeting neurotransmitter systems in psychiatric disorders. Metab Brain Dis 2022; 37:123-146. [PMID: 34476718 DOI: 10.1007/s11011-021-00824-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/14/2021] [Indexed: 12/30/2022]
Abstract
The most common form of the disease caused by Toxoplasma gondii (T. gondii) is latent toxoplasmosis due to the formation of tissue cysts in various organs, such as the brain. Latent toxoplasmosis is probably a risk factor in the development of some neuropsychiatric disorders. Behavioral changes after infection are caused by the host immune response, manipulation by the parasite, central nervous system (CNS) inflammation, as well as changes in hormonal and neuromodulator relationships. The present review focused on the exact mechanisms of T. gondii effect on the alteration of behavior and neurotransmitter levels, their catabolites and metabolites, as well as the interaction between immune responses and this parasite in the etiopathogenesis of psychiatric disorders. The dysfunction of neurotransmitters in the neural transmission is associated with several neuropsychiatric disorders. However, further intensive studies are required to determine the effect of this parasite on altering the level of neurotransmitters and the role of neurotransmitters in the etiology of host behavioral changes.
Collapse
Affiliation(s)
- Tooran Nayeri
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
116
|
Serosurvey and Molecular Detection of Toxoplasma gondii in Dogs in Rural Areas of Kazeroun District, Fars Province, Southern Iran. J Parasitol Res 2021; 2021:4499086. [PMID: 34956666 PMCID: PMC8695019 DOI: 10.1155/2021/4499086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022] Open
Abstract
Background. Toxoplasma gondii is an intracellular protozoan parasite responsible for systemic disease in a wide range of warm-blooded animals. The current study is aimed at evaluating the prevalence of Toxoplasma infection in dogs, using serological and molecular methods in rural areas in Kazeroun Township, Fars province, southern Iran. Methods. Blood samples were obtained from 60 clinically healthy dogs with an age range of 1 to 7 years in three rural areas of Fars province, southern Iran. Sera and buffy coats were used to assess the T. gondii infection using both modified agglutination test (MAT) and real-time PCR. Results. Antibodies against T. gondii were detected in 5 out of 60 (8.3%) dogs by the MAT method, and T. gondii DNA was detected in 17 out of 60 (28.3%) studied animals. There was no significant association between sex and seropositivity to Toxoplasma (p > 0.05). Fair agreement (kappa = 0.27) was seen between molecular and serological findings where three dogs with positive serological results had a positive molecular test. Conclusion. Findings of the present study show a relatively high prevalence of T. gondii infection in dogs in rural areas in Fars province, southern Iran. Finding the parasite genotype in dogs deserves further study.
Collapse
|
117
|
Thakur R, Sharma R, Aulakh RS, Gill JPS, Singh BB. Seroprevalence and risk factor investigation for the exposure of Toxoplasma gondii among veterinary personnel in Punjab, India. Comp Immunol Microbiol Infect Dis 2021; 80:101739. [PMID: 34929411 DOI: 10.1016/j.cimid.2021.101739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022]
Abstract
Toxoplasma gondii, a globally important food borne zoonotic parasite, infects most of the warm-blooded animals as well as people. Veterinarians and para vets are considered at risk of T. gondii exposure. We determined the seroprevalence of T. gondii in veterinary personnel and investigated the associated risk factors in Punjab, India. Two hundred and five blood samples collected from veterinary personnel were tested for the presence of Toxoplasma IgG and IgM antibodies using ELISA. The apparent and true seroprevalence of T. gondii with 95% confidence interval (CI) were estimated. Information about participant demographics, and possible routes of exposure was collected using a self-completed questionnaire at the time of blood collection. For risk factor investigation, a veterinary person was considered Toxoplasma seropositive using a combination of tests in parallel, i.e. if it was positive in either IgG or IgM ELISA. A mixed effects logistic regression model was constructed to evaluate the association of demography, occupational and non-occupational factors with Toxoplasma seropositive status. The apparent and estimated true seroprevalence of T. gondii antibodies using Toxoplasma IgG ELISA was 8.78% (95% CI 5.63-13.45%) and 7.36% (95% CI 4.04-12.29%), respectively. The apparent and estimated true seroprevalence using Toxoplasma IgM ELISA was 0.49% (95% CI inestimable - 2.71%) and 0.51% (95% CI inestimable - 2.83%), respectively. After adjusting other variables in the final model, consuming mutton and owning a cat were associated with large odds of being Toxoplasma seropositive. In this study occupational exposure does not seem to play an important role for the exposure of T. gondii in veterinary personnel in Punjab state of India. The seroprevalence of toxoplasmosis in veterinary personnel is comparatively low in occupationally exposed veterinary personnel in Punjab, India.
Collapse
Affiliation(s)
- R Thakur
- Centre for One Health, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India.
| | - R Sharma
- Centre for One Health, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India
| | - R S Aulakh
- Centre for One Health, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India
| | - J P S Gill
- Centre for One Health, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India
| | - B B Singh
- Centre for One Health, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India; Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia
| |
Collapse
|
118
|
San-Juan R, Aguado JM. Pre-emptive approach against toxoplasmosis in allogeneic haematopoietic cell transplantation. Still far away from experience in CMV. Clin Microbiol Infect 2021; 28:319-320. [PMID: 34826622 DOI: 10.1016/j.cmi.2021.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 11/03/2022]
Affiliation(s)
- Rafael San-Juan
- Unit of Infectious Diseases, Hospital Universitario '12 de Octubre', Instituto de Investigación Sanitaria Hospital '12 de Octubre' (imas12), Madrid, Spain; Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain.
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario '12 de Octubre', Instituto de Investigación Sanitaria Hospital '12 de Octubre' (imas12), Madrid, Spain; Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
119
|
Wang ZJ, Yu SM, Gao JM, Zhang P, Hide G, Yamamoto M, Lai DH, Lun ZR. High resistance to Toxoplasma gondii infection in inducible nitric oxide synthase knockout rats. iScience 2021; 24:103280. [PMID: 34765911 PMCID: PMC8571494 DOI: 10.1016/j.isci.2021.103280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/08/2021] [Accepted: 10/13/2021] [Indexed: 11/29/2022] Open
Abstract
Nitric oxide (NO) is an important immune molecule that acts against extracellular and intracellular pathogens in most hosts. However, after the knockout of inducible nitric oxide synthase (iNOS−/−) in Sprague Dawley (SD) rats, these iNOS−/− rats were found to be completely resistant to Toxoplasma gondii infection. Once the iNOS−/− rat peritoneal macrophages (PMs) were infected with T. gondii, they produced high levels of reactive oxygen species (ROS) triggered by GRA43 secreted by T. gondii, which damaged the parasitophorous vacuole membrane and PM mitochondrial membranes within a few hours post-infection. Further evidence indicated that the high levels of ROS caused mitochondrial superoxide dismutase 2 depletion and induced PM pyroptosis and cell death. This discovery of complete resistance to T. gondii infection, in the iNOS−/−-SD rat, demonstrates a strong link between NO and ROS in immunity to T. gondii infection and showcases a potentially novel and effective backup innate immunity system. iNOS−/−-SD rats show strong resistance to Toxoplasma gondii infection iNOS−/−-SD rat PMs resist T. gondii infection through ROS upregulation The T. gondii infection results in PM pyroptosis in iNOS−/−-SD rats GRAs play a key role in the activation of resistance in iNOS−/−-SD rat PMs
Collapse
Affiliation(s)
- Zhen-Jie Wang
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Shao-Meng Yu
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Jiang-Mei Gao
- Department of Parasitology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, The People's Republic of China
| | - Peng Zhang
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Geoff Hide
- Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Salford M5 4WT, UK
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - De-Hua Lai
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Zhao-Rong Lun
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China.,Department of Parasitology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, The People's Republic of China.,Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Salford M5 4WT, UK
| |
Collapse
|
120
|
Deng Y, Mu H, Li HB, Fu LZ, Tang D, Wu T, Huang SH, Li CH. In Vitro Anti-Toxoplasma gondii Activity Evaluation of a New Series of Quinazolin-4(3H)-one Derivatives. Chem Biodivers 2021; 18:e2100687. [PMID: 34726832 DOI: 10.1002/cbdv.202100687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/01/2021] [Indexed: 12/27/2022]
Abstract
Toxoplasmosis post serious threaten to human health, leading to severely eye and brain disease, especially for immunocompromised patients and pregnant women. The multiple side effects and long dosing period of current main treatment regiments calls for high effective and low toxicity anti-toxoplasmosis drugs. Herein, we report our efforts to synthesize a series of 2-(piperazin-1-yl)quinazolin-4(3H)-one derivatives and investigate their activity against Toxoplasma gondii tachyzoites in vitro based on cell phenotype screening. Among the 26 compounds, 8w and 8x with diaryl ether moiety at the side chain of piperazine exhibited good efficacy to inhibit T. gondii, with IC50 values of 4 μM and 3 μM, respectively. Structure-activity relationship (SAR) studies implies that hydrophobic aryl at the side chain would be preferred for improvement of activity. Molecular docking study reveals these two compounds appeared high affinity to TgCDPK1 by interaction with the hydrophobic pocket of ATP-binding cleft.
Collapse
Affiliation(s)
- Yu Deng
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, 402460, China
| | - Hao Mu
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, 402460, China
| | - Hong-Bo Li
- Chengdu Hyperway Pharmaceuticals Co., Ltd., Chengdu, China
| | - Li-Zhi Fu
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, 402460, China
| | - Da Tang
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, 402460, China
| | - Tao Wu
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, 402460, China
| | - Shu-Heng Huang
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Cheng-Hong Li
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, 402460, China
| |
Collapse
|
121
|
Wilson AG, Wilson S, Alavi N, Lapen DR. Human density is associated with the increased prevalence of a generalist zoonotic parasite in mammalian wildlife. Proc Biol Sci 2021; 288:20211724. [PMID: 34666519 PMCID: PMC8527198 DOI: 10.1098/rspb.2021.1724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/23/2021] [Indexed: 01/24/2023] Open
Abstract
Macroecological approaches can provide valuable insight into the epidemiology of globally distributed, multi-host pathogens. Toxoplasma gondii is a zoonotic protozoan that infects any warm-blooded animal, including humans, in almost every ecosystem worldwide. There is substantial geographical variation in T. gondii prevalence in wildlife populations and the mechanisms driving this variation are poorly understood. We implemented Bayesian phylogenetic mixed models to determine the association between species' ecology, phylogeny and climatic and anthropogenic factors on T. gondii prevalence. Toxoplasma gondii prevalence data were compiled for free-ranging wild mammal species from 202 published studies, encompassing 45 079 individuals from 54 taxonomic families and 238 species. We found that T. gondii prevalence was positively associated with human population density and warmer temperatures at the sampling location. Terrestrial species had a lower overall prevalence, but there were no consistent patterns between trophic level and prevalence. The relationship between human density and T. gondii prevalence is probably mediated by higher domestic cat abundance and landscape degradation leading to increased environmental oocyst contamination. Landscape restoration and limiting free-roaming in domestic cats could synergistically increase the resiliency of wildlife populations and reduce wildlife and human infection risks from one of the world's most common parasitic infections.
Collapse
Affiliation(s)
- Amy G. Wilson
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
- Canadian Wildlife Health Cooperative, Abbotsford, British Columbia, Canada V3G 2M3
| | - Scott Wilson
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
- Environment and Climate Change Canada, Delta, British Columbia, Canada V4 K 3N2 0H3
| | - Niloofar Alavi
- Environment and Climate Change Canada, Ottawa, Ontario, Canada K1S 5B6
| | - David R. Lapen
- Ottawa Research Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada K1A 0C6
| |
Collapse
|
122
|
Kjær LJ, Jensen LM, Chriél M, Bødker R, Petersen HH. The raccoon dog ( Nyctereutes procyonoides) as a reservoir of zoonotic diseases in Denmark. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 16:175-182. [PMID: 34660192 PMCID: PMC8502833 DOI: 10.1016/j.ijppaw.2021.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022]
Abstract
Raccoon dogs have successfully invaded Europe, including Denmark. Raccoon dogs are potential vectors and reservoir hosts of several zoonotic pathogens and thus have the potential for posing a threat to both human and animal health. This study includes analysis of four zoonotic parasites, 16 tick-borne pathogens and two pathogen groups from 292 raccoon dogs collected from January 2018 to December 2018. The raccoon dogs were received as a part of the Danish national wildlife surveillance program and were hunted, found dead or road killed. The raccoon dogs were screened for Alaria alata and Echinococcus multilocularis eggs in faeces by microscopy and PCR, respectively, Trichinella spp. larvae in muscles by digestion, antibodies against Toxoplasma gondii by ELISA and screening of ticks for pathogens by fluidigm real-time PCR. All raccoon dogs tested negative for E. multilocularis and Trichinella spp., while 32.9% excreted A. alata eggs and 42.7% were T. gondii sero-positive. Five tick-borne pathogens were identified in ticks collected from 15 raccoon dogs, namely Anaplasma phagocytophilum (20.0%), Babesia venatorum (6.7%), Borrelia miyamotoi (6.7%), Neoehrlichia mikurensis (6.7%) and Rickettsia helvetica (60.0%). We identified raccoon dogs from Denmark as an important reservoir of T. gondii and A. alata infection to other hosts, including humans, while raccoon dogs appear as a negligible reservoir of E. multilocularis and Trichinella spp. infections. Our results suggest that raccoon dogs may be a reservoir of A. phagocytophilum.
Collapse
Affiliation(s)
- Lene Jung Kjær
- Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Laura Mark Jensen
- Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Marian Chriél
- Centre for Diagnostics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - René Bødker
- Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Heidi Huus Petersen
- Centre for Diagnostics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- Corresponding author. Tel.: +45 93 51 16 45.
| |
Collapse
|
123
|
Ekawasti F, Cahyaningsih U, Dharmayanti NLPI, Sa'diah S, Subekti DT, Azmi Z, Desem MI. Restriction fragment length polymorphism analysis of genes of virulent strain isolate of Toxoplasma gondii using enzyme DdeI. INTERNATIONAL JOURNAL OF ONE HEALTH 2021. [DOI: 10.14202/ijoh.2021.196-203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Toxoplasma gondii is a unicellular coccidian parasite distributed globally and is an important zoonotic pathogen. Approximately 30% of the human population worldwide is chronically infected with T. gondii. The pathogenicity of this species depends on the type originating from the clonal population. Techniques for more accurately determining the type of T. gondii have recently been developed using genetic markers. Specifically, T. gondii has been typed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). This study aimed to identify sets of PCR-RFLP markers that have high power to discriminate genotyping of T. gondii and are easy to use and are easy to use. The objective of this study was to characterize virulent strain isolates of T. gondii by PCR-RFLP using 10 markers with DdeI.
Materials and Methods: T. gondii tachyzoites (RH virulent strain) were derived from culture cells at the Indonesian Research Center for Veterinary Sciences. Genotyping was performed on T. gondii DNA extracted from cell cultured tachyzoites using 10 genetic markers of PCR-RFLP, namely, B1#1, B1#2, B1#3, SAG1#1, SAG1#2, P30, BAG1, ROP1, GRA1, and GRA7, with digestion using the restriction enzyme DdeI.
Results: The 10 genes were amplified by PCR. Among them, three genetic markers, B1#3, ROP1, and GRA1, were genotyped by the PCR-RFLP using restriction enzyme DdeI. Overall, the findings showed that the specific RFLP profile of digestion of gene regions by DdeI could be used as a specific marker for the virulent biotype causative of toxoplasmosis. In addition, virulent strains of T. gondii can be easily detected by these markers.
Conclusion: Three pairs of primers (B1#3, ROP1, and GRA1) with DdeI have proven useful for the diagnosis of acute toxoplasmosis (virulent strain biotype I). This proposed method is relatively simple, rapid, cheap, and can be performed in most laboratories, providing a practical approach for the routine analysis of T. gondii strains.
Collapse
Affiliation(s)
- Fitrine Ekawasti
- Indonesian Research Center for Veterinary Sciences, Indonesia Agency Agriculture Research and Development, Agricultural of Ministry, Bogor, 16167, Indonesia; Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Bogor, 16680, Indonesia
| | - Umi Cahyaningsih
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Bogor, 16680, Indonesia
| | - N. L. P. Indi Dharmayanti
- Indonesian Research Center for Veterinary Sciences, Indonesia Agency Agriculture Research and Development, Agricultural of Ministry, Bogor, 16167, Indonesia
| | - Siti Sa'diah
- Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor, 16680, Indonesia
| | - Didik Tulus Subekti
- Indonesian Research Center for Veterinary Sciences, Indonesia Agency Agriculture Research and Development, Agricultural of Ministry, Bogor, 16167, Indonesia
| | - Zul Azmi
- Indonesian Research Center for Veterinary Sciences, Indonesia Agency Agriculture Research and Development, Agricultural of Ministry, Bogor, 16167, Indonesia
| | - Muhammad Ibrahim Desem
- Indonesian Research Center for Veterinary Sciences, Indonesia Agency Agriculture Research and Development, Agricultural of Ministry, Bogor, 16167, Indonesia
| |
Collapse
|
124
|
Aerts R, Mercier T, Beckers M, Schoemans H, Lagrou K, Maertens J. Toxoplasmosis after allogeneic haematopoietic cell transplantation: experience using a PCR-guided pre-emptive approach. Clin Microbiol Infect 2021; 28:440-445. [PMID: 34634458 DOI: 10.1016/j.cmi.2021.09.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Prophylaxis with trimethoprim-sulphamethoxazole (TMP-SMZ) is recommended in Toxoplasma-seropositive allogeneic haematopoietic cell transplant (HCT) recipients to prevent reactivation, but it is associated with numerous side effects. We report our experience of a pre-emptive approach guided by a polymerase chain reaction (PCR) in patients not receiving prophylaxis. METHODS In this retrospective, single-centre experience, seropositive recipients and seronegative recipients receiving a graft from a seropositive donor were screened by PCR for the presence of Toxoplasma gondii DNA in peripheral blood until at least 6 months after transplantation. Confirmed PCR positivity triggered a pre-emptive anti-Toxoplasma therapy. Cases of Toxoplasma reactivation (using the European Society for Blood and Marrow Transplantation definitions) were compared with four controls (without reactivation), matched in time and recipient serostatus, to identify risk factors for reactivation by multivariate analysis. RESULTS From November 2001 to August 2020, 1455 consecutive adult patients (59 cases and 1396 controls) were screened. The overall 1-year cumulative incidence of toxoplasmosis was 4.1% and the 1-year cumulative incidence in the seropositive recipients was 8.5%. Reactivation was associated with second transplant (OR 2.51, 95%CI 1.28-4.94, p 0.011), myeloablative conditioning (OR 2.24, 95%CI 1.17-4.41, p 0.011), total body irradiation (OR 2.29, 95%CI 1.17-4.44, p 0.010), acute graft-versus-host disease (GvHD) (OR 2.27, 95%CI 1.26-4.08, p 0.008) and use of high-dose corticosteroids (OR 2.08, 95%CI 1.14-3.78, p 0.018). In multivariate analysis only acute GvHD remained significant (adjusted OR 2.54, 95%CI 1.16-5.71, p 0.021). CONCLUSIONS A PCR-based pre-emptive approach might serve as an acceptable alternative for patients unable to start with or to continue TMP-SMZ prophylaxis. Acute GvHD was identified as the single independent predictor for reactivation.
Collapse
Affiliation(s)
- Robina Aerts
- Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Toine Mercier
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Haematology, University Hospitals Leuven, Leuven, Belgium
| | - Mariëlle Beckers
- Department of Haematology, University Hospitals Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Hélène Schoemans
- Department of Haematology, University Hospitals Leuven, Leuven, Belgium; Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Laboratory Medicine, University Hospitals, Belgium
| | - Johan Maertens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Haematology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
125
|
Zhu YC, Ma LJ, Zhang JL, Liu JF, He Y, Feng JY, Chen J. Protective Immunity Induced by TgMIC5 and TgMIC16 DNA Vaccines Against Toxoplasmosis. Front Cell Infect Microbiol 2021; 11:686004. [PMID: 34595126 PMCID: PMC8476850 DOI: 10.3389/fcimb.2021.686004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite, which is responsible for a widely distributed zoonosis. Effective vaccines against toxoplasmosis are necessary to protect the public health. The aim of this study is to evaluate the immune efficacy of DNA vaccines encoding TgMIC5 and TgMIC16 genes against T. gondii infection. The recombinant plasmid pVAX-MIC5 and pVAX-MIC16 were constructed and injected intramuscularly in mice. The specific immune responses and protection against challenge with T. gondii RH tachyzoites were evaluated by measuring the cytokine levels, serum antibody concentrations, lymphocyte proliferation, lymphocyte populations, and the survival time. The protection against challenge with the T. gondii RH tchyzoites and PRU cysts was examined by evaluation of the reduction in the brain cyst burden. The results indicated that immunized mice showed significantly increased levels of IgG, IFN-γ, IL-2, IL-12p70, and IL-12p40 and percentages of CD4+ and CD8+ T cells. Additionally, vaccination prolonged the mouse survival time and reduced brain cysts compared with controls. Mouse groups immunized with a two-gene cocktail of pVAX-MIC5 + pVAX-MIC16 were more protected than mouse groups immunized with a single gene of pVAX-MIC5 or pVAX-MIC16. These results demonstrate that TgMIC5 and TgMIC16 induce effective immunity against toxoplasmosis and may serve as a good vaccine candidate against T. gondii infection.
Collapse
Affiliation(s)
- Yu-Chao Zhu
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo University School of Medicine, Ningbo, China
| | - Li-Juan Ma
- Department of Integrated Chinese and Western Medicine Oncology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Ji-Li Zhang
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo University School of Medicine, Ningbo, China
| | - Jian-Fa Liu
- Immunology Innovation Team, Ningbo University School of Medicine, Ningbo, China
| | - Yong He
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo University School of Medicine, Ningbo, China
| | - Ji-Ye Feng
- Department of Hepatobiliary Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Jia Chen
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo University School of Medicine, Ningbo, China.,Immunology Innovation Team, Ningbo University School of Medicine, Ningbo, China
| |
Collapse
|
126
|
Aldana-Bitar J, Moore J, Budoff MJ. LDL receptor and pathogen processes: Functions beyond normal lipids. J Clin Lipidol 2021; 15:773-781. [PMID: 34645587 DOI: 10.1016/j.jacl.2021.09.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
Although the role of the LDL receptor concerning lipids is well known, its role in various viral and parasitic infections, and in regulating the inflammatory response is poorly understood. Several infectious agents use the LDL receptor as a port of entry, and others depend on it for their cycle of infection. In this review, we focus on the discovery, structure, and normal function of the LDL receptor, as well as its role in a selection of infections. The LDL receptor plays an important role in certain infections and is a potential target for treatment deserving further research.
Collapse
Affiliation(s)
- Jairo Aldana-Bitar
- Division of Cardiology, The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA.
| | - Jeff Moore
- Division of Cardiology, The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
| | - Matthew J Budoff
- Division of Cardiology, The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA.
| |
Collapse
|
127
|
Borkens Y. Toxoplasma gondii in Australian macropods ( Macropodidae) and its implication to meat consumption. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 16:153-162. [PMID: 34567970 PMCID: PMC8449172 DOI: 10.1016/j.ijppaw.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/13/2021] [Accepted: 09/08/2021] [Indexed: 11/19/2022]
Abstract
Toxoplasma gondii is a worldwide occurring apicomplexan parasite. Due to its high seroprevalence in livestock as well as in game animals, T. gondii is an important food-borne pathogen and can have significant health implications for humans as well as for pets. This article describes the prevalence of T. gondii in free-ranging macropods hunted for consumption. All hunted macropod species (commercial as well as non-commercial hunt) show a positive seroprevalence for T. gondii. This seroprevalence is influenced by various factors, such as sex or habitat. Furthermore, the parasite shows a high level of genetic variability in macropods. Genetically variable strains have already caused outbreaks of toxoplasmosis in the past (Canada and the US). These were attributed to undercooked game meat like venison. Despite this risk, neither Australia nor New Zealand currently have food safety checks against foodborne pathogens. These conditions scan pose a significant health risk to the population. Especially, since cases of toxoplasmosis have already been successfully traced back to insufficiently cooked kangaroo meat in the past. The kangaroo hunt is an important industry in Australia. 7 species of kangaroos and wallabies are hunted for commercial purpose (for human and pet consumption). Food security checks against foodborne pathogens (including T. gondii) are not a requirement of the Australia New Zealand Food Standard Code. The databases Medline, Web of Science, SCOPUS and Informit were used. 6 scientific publications were reviewed in this publication.
Collapse
|
128
|
Flegr J. Toxoplasmosis is a risk factor for acquiring SARS-CoV-2 infection and a severe course of COVID-19 in the Czech and Slovak population: a preregistered exploratory internet cross-sectional study. Parasit Vectors 2021; 14:508. [PMID: 34583758 PMCID: PMC8477627 DOI: 10.1186/s13071-021-05021-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/14/2021] [Indexed: 11/25/2022] Open
Abstract
Background Latent toxoplasmosis, i.e. a lifelong infection with the protozoan parasite Toxoplasma gondii, affects about a third of the human population worldwide. In the past 10 years, numerous studies have shown that infected individuals have a significantly higher incidence of mental and physical health problems and are more prone to exhibiting the adverse effects of various diseases. Methods A cross-sectional internet study was performed on a population of 4499 (786 Toxoplasma-infected) participants and looked for factors which positively or negatively affect the risk of SARS-CoV-2 infection and likelihood of a severe course of COVID-19. Results Logistic regression and partial Kendall correlation controlling for sex, age, and size of the place of residence showed that latent toxoplasmosis had the strongest effect on the risk of infection (OR = 1.50) before sport (OR = 1.30) and borreliosis (1.27). It also had the strongest effect on the risk of severe course of infection (Tau = 0.146), before autoimmunity, immunodeficiency, male sex, keeping a cat, being overweight, borreliosis, higher age, or chronic obstructive pulmonary disease. Toxoplasmosis augmented the adverse effects of other risk factors but was not the proximal cause of the effect of cat-keeping on higher likelihood of COVID infection and higher severity of the course of infection because the effect of cat-keeping was also observed (and in particular) in a subset of Toxoplasma-infected respondents (Tau = 0.153). Effects of keeping a cat were detected only in respondents from multi-member families, suggesting that a cat could be a vector for the transmission of SARS-CoV-2 within a family. Conclusions Toxoplasmosis is currently not considered a risk factor for COVID-19, and Toxoplasma-infected individuals are neither informed about their higher risk nor prioritised in vaccination programs. Because toxoplasmosis affects a large segment of the human population, its impact on COVID-19-associated effects on public health could be considerable. Graphical abstract ![]()
Collapse
Affiliation(s)
- Jaroslav Flegr
- Laboratory of Evolutionary Biology, Division of Biology, Department of Philosophy and History of Sciences, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic. .,National Institute of Mental Health, Klecany, 250 67, Czech Republic.
| |
Collapse
|
129
|
Martynowicz J, Sullivan WJ. Rebound of cyst number following discontinuation of guanabenz treatment for latent toxoplasmosis. Mol Biochem Parasitol 2021; 245:111411. [PMID: 34492239 DOI: 10.1016/j.molbiopara.2021.111411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 11/19/2022]
Abstract
Toxoplasma gondii is a protozoan parasite that causes opportunistic infection in immunocompromised individuals. The parasite forms latent tissue cysts that are refractory to current treatments and give rise to life-threatening reactivated infection following immune suppression. Previously, we showed that guanabenz sharply reduces brain cyst count in BALB/c mice harboring latent toxoplasmosis; however, whether cyst count would change once drug treatment stopped was not addressed. In the present study, we observed a rebound in brain cysts following the discontinuation of guanabenz or a guanabenz-pyrimethamine combination therapy. The re-expansion of brain cysts was not accompanied by symptoms of acute toxoplasmosis. We also tested whether the rebound in cyst counts could be ameliorated by administering pyrimethamine during or after guanabenz treatment.
Collapse
Affiliation(s)
- Jennifer Martynowicz
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - William J Sullivan
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA; Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA.
| |
Collapse
|
130
|
Borkens Y. [Toxoplasma gondii-Current drugs and future vaccines against an underestimated protozoan infection]. Internist (Berl) 2021; 62:1123-1132. [PMID: 34467425 DOI: 10.1007/s00108-021-01155-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 12/01/2022]
Abstract
Toxoplasma gondii is a unicellular organism of the Apicomplexa that occurs worldwide and is therefore a close relative of the malaria pathogen Plasmodium. As T. gondii infests every warm-blooded vertebrate species as an intermediate host and has a very high prevalence worldwide, toxoplasmosis is one of the most important international foodborne diseases. Potential vaccines (human as well as veterinary) play a crucial role in controlling this disease.
Collapse
Affiliation(s)
- Yannick Borkens
- College of Public Health, Medical and Veterinary Science, James Cook University, 1 James Cook Drive, 4811, Townsville, Queensland, Australien.
| |
Collapse
|
131
|
Hamed EFA, Mostafa NE, Fawzy EM, Ibrahim MN, Attia R, Salama MA. The delayed death-causing nature of Rosmarinus officinalis leaf extracts and their mixture within experimental chronic toxoplasmosis: Therapeutic and prophylactic implications. Acta Trop 2021; 221:105992. [PMID: 34089696 DOI: 10.1016/j.actatropica.2021.105992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND The restricted effect, significant toxicity, and emerging resistance of anti-toxoplasmosis synthetic agents impose the search for alternatives. The current research aimed to evaluate the prophylactic and therapeutic efficacy of Rosmarinus officinalis extracts and their mixtures against chronic murine toxoplasmosis and to clarify the phenomenon of delayed death. METHODS This research included two experimental designs, the first to test the preventive and curative efficacy of the extracts and the second to assess delayed death in mice infected with the ME49 strain of Toxoplasma gondii. The essential oils of the plant were analyzed by gas chromatography/mass spectrometry. RESULTS Treatment with a mixture of rosemary extracts displayed reduction rates of 81% for T. gondii cyst burden and 23% for cyst viability. The reinfected group with the pretreated cysts reported 93.4% reduction in cyst burden and 95.4% in cyst viability. Moreover, 90% reduction of the infectivity rate was obtained. The therapeutic efficacy of this mixture was superior to its valuable prophylactic effect. Histopathological examination of liver and brain tissue exhibited marked improvement. Both extracts possess free radical scavenging and antioxidant activities evidenced by high expression of iNOS stain. Our results were signified by low BAG-1 gene expression and massive mutilation of T. gondii cyst in the targeted group using scanning electron microscopy. Analysis of R. officinalis revealed the presence of isobornylformate as a novel ingredient. CONCLUSIONS R. officinalis displays a therapeutic rather than prophylactic potential, indicating the emergence of an effective safe alternative therapy.
Collapse
|
132
|
Alves E, Benns HJ, Magnus L, Dominicus C, Dobai T, Blight J, Wincott CJ, Child MA. An Extracellular Redox Signal Triggers Calcium Release and Impacts the Asexual Development of Toxoplasma gondii. Front Cell Infect Microbiol 2021; 11:728425. [PMID: 34447699 PMCID: PMC8382974 DOI: 10.3389/fcimb.2021.728425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
The ability of an organism to sense and respond to environmental redox fluctuations relies on a signaling network that is incompletely understood in apicomplexan parasites such as Toxoplasma gondii. The impact of changes in redox upon the development of this intracellular parasite is not known. Here, we provide a revised collection of 58 genes containing domains related to canonical antioxidant function, with their encoded proteins widely dispersed throughout different cellular compartments. We demonstrate that addition of exogenous H2O2 to human fibroblasts infected with T. gondii triggers a Ca2+ flux in the cytosol of intracellular parasites that can induce egress. In line with existing models, egress triggered by exogenous H2O2 is reliant upon both Calcium-Dependent Protein Kinase 3 and diacylglycerol kinases. Finally, we show that the overexpression a glutaredoxin-roGFP2 redox sensor fusion protein in the parasitophorous vacuole severely impacts parasite replication. These data highlight the rich redox network that exists in T. gondii, evidencing a link between extracellular redox and intracellular Ca2+ signaling that can culminate in parasite egress. Our findings also indicate that the redox potential of the intracellular environment contributes to normal parasite growth. Combined, our findings highlight the important role of redox as an unexplored regulator of parasite biology.
Collapse
Affiliation(s)
- Eduardo Alves
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Henry J Benns
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Department of Chemistry, Imperial College London, London, United Kingdom
| | - Lilian Magnus
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Caia Dominicus
- Signaling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Tamás Dobai
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Joshua Blight
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Ceire J Wincott
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Matthew A Child
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
133
|
Alomar ML, Yañuk JG, Angel SO, Gonzalez MM, Cabrerizo FM. In vitro Effect of Harmine Alkaloid and Its N-Methyl Derivatives Against Toxoplasma gondii. Front Microbiol 2021; 12:716534. [PMID: 34421876 PMCID: PMC8375385 DOI: 10.3389/fmicb.2021.716534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022] Open
Abstract
Toxoplasmosis is one of the most prevalent and neglected zoonotic global diseases caused by Toxoplasma gondii. The current pharmacological treatments show clinical limitations, and therefore, the search for new drugs is an urgent need in order to eradicate this infection. Due to their intrinsic biological activities, β-carboline (βC) alkaloids might represent a good alternative that deserves further investigations. In this context, the in vitro anti-T. gondii activity of three βCs, harmine (1), 2-methyl-harminium (2), and 9-methyl-harmine (3), was evaluated herein. Briefly, the three alkaloids exerted direct effects on the parasite invasion and/or replication capability. Replication rates of intracellular treated tachyzoites were also affected in a dose-dependent manner, at noncytotoxic concentrations for host cells. Additionally, cell cycle analysis revealed that both methyl-derivatives 2 and 3 induce parasite arrest in S/M phases. Compound 3 showed the highest irreversible parasite growth inhibition, with a half maximal inhibitory concentration (IC50) value of 1.8 ± 0.2 μM and a selectivity index (SI) of 17.2 at 4 days post infection. Due to high replication rates, tachyzoites are frequently subjected to DNA double-strand breaks (DSBs). This highly toxic lesion triggers a series of DNA damage response reactions, starting with a kinase cascade that phosphorylates a large number of substrates, including the histone H2A.X to lead the early DSB marker γH2A.X. Western blot studies showed that basal expression of γH2A.X was reduced in the presence of 3. Interestingly, the typical increase in γH2A.X levels produced by camptothecin (CPT), a drug that generates DSB, was not observed when CPT was co-administered with 3. These findings suggest that 3 might disrupt Toxoplasma DNA damage response.
Collapse
Affiliation(s)
- Maria L Alomar
- Laboratorio de Fotoquímica y Fotobiología Molecular, Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Juan G Yañuk
- Laboratorio de Fotoquímica y Fotobiología Molecular, Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Sergio O Angel
- Laboratorio de Parasitología Molecular, INTECH, UNSAM - CONICET, Chascomús, Argentina
| | - M Micaela Gonzalez
- Laboratorio de Fotoquímica y Fotobiología Molecular, Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Franco M Cabrerizo
- Laboratorio de Fotoquímica y Fotobiología Molecular, Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| |
Collapse
|
134
|
Relationship between Latent Toxoplasmosis and Depression in Clients of a Center for Assisted Reproduction. Pathogens 2021; 10:pathogens10081052. [PMID: 34451515 PMCID: PMC8399658 DOI: 10.3390/pathogens10081052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022] Open
Abstract
Latent infection of the globally spread parasite Toxoplasma gondii in humans has been associated with changes in personality and behavior. Numerous studies have investigated the effect of toxoplasmosis on depression, but their results are inconsistent. Our study focused on the effect of latent toxoplasmosis on depression in men and women in association with their fertility. In 2016-2018, we recruited clients (677 men and 664 women) of the Center for Assisted Reproduction and asked them to complete a standardized Beck Depression Inventory-II. In women without fertility problems, we found higher depression scores in Toxoplasma-positive than in Toxoplasma-negative (p = 0.010, Cohen's d = 0.48). Toxoplasma-positive infertile men, on the other hand, had lower depression scores than Toxoplasma-negative infertile men (p ≤ 0.001, Cohen's d = 0.48). Our results are consistent with the previously described effects of latent toxoplasmosis, which seem to go in opposite directions regarding the effect on personality and behavior of men and women. Our results could be explained by gender-contrasting reactions to chronic stress associated with lifelong infection. This suggests that due to gender differences in the impact of latent toxoplasmosis, future studies ought to perform separate analyses for women and men.
Collapse
|
135
|
Toxoplasma gondii could have a possible role in the cancer mechanism by modulating the host's cell response. Acta Trop 2021; 220:105966. [PMID: 34023305 DOI: 10.1016/j.actatropica.2021.105966] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022]
Abstract
Toxoplasma gondii, which manipulates many signaling pathways to achieve persistence in host cells, is intimately linked to immune and inflammation responses. However, there is still lack of information about the impact of T. gondii on cellular and immune responses. This study was designed to seek the impact of T. gondii infection causing life-long inflammation in brain, on cancer mechanism. To identify molecular effects of the T. gondii and understand the association between the functional perturbations occurring during infection and cancer development, the transcriptomic datasets obtained mice infected with T. gondii were downloaded from GEO. The differentially expressed genes (DEGs) were identified and functional enrichment analysis was performed using IPA platform, then all results were evaluated with comparison analyses. Subsequently, a T. gondii infection model with human neuroepithelioma cell culture was performed in order to validate top DEGs participated in common networks/pathways in cancer mechanism. Transcriptomic analyses of infected mice and in vitro cell culture model revealed a strong immune response and inflammation occurred by parasite-induced damage and parasite-associated immunopathology in host cell and tissue. T. gondii infection could modulate certain signaling pathways of host, which were also common to those perturbed in carcinogenesis. Interestingly, the network analysis of the data sets predicted an activation in development of solid cancer vice versa inhibition in hematological cancer during T. gondii infection. Parasite might also control the tumor growth due to its potent immune-stimulant effects. As result, T. gondii infection generating a continual inflammation in tissues might potentially contribute to cancer development by regulating critical host signaling pathways or reveal an anti-tumoral activity.
Collapse
|
136
|
The Level of Knowledge about Toxoplasmosis among University Students in Rabat in Morocco. J Parasitol Res 2021; 2021:5553977. [PMID: 34350032 PMCID: PMC8328697 DOI: 10.1155/2021/5553977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/01/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this descriptive cross-sectional study is to evaluate the knowledge of toxoplasmosis among medical, biology, and veterinary students in Rabat in Morocco. The data was collected by using a questionnaire which includes demographic characteristics, epidemiology, diagnosis, and clinical issues related to knowledge of toxoplasmosis. During analysis, the study groups were divided based upon their specialty of students who were medical, biology, and veterinary students. Out of 230 students, 55.2% were female and 44.8% were male. The average age of the study population is 21.7 ± 02 years. Less than half (42.6%) have heard of the disease; most of them have heard from faculty during studies in classrooms with 75.8%, and 3.2% were from the internet. Only 36.5% knew the correct causative agent of toxoplasmosis, and 32.1% were aware of the definitive host. The current study documented that there are gaps in the knowledge of the students regarding toxoplasmosis. Therefore, the present study puts the basis for future studies highlighting the importance of educating students to improve knowledge and attitudes towards toxoplasmosis.
Collapse
|
137
|
Kloehn J, Lunghi M, Varesio E, Dubois D, Soldati-Favre D. Untargeted Metabolomics Uncovers the Essential Lysine Transporter in Toxoplasma gondii. Metabolites 2021; 11:metabo11080476. [PMID: 34436417 PMCID: PMC8399914 DOI: 10.3390/metabo11080476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022] Open
Abstract
Apicomplexan parasites are responsible for devastating diseases, including malaria, toxoplasmosis, and cryptosporidiosis. Current treatments are limited by emerging resistance to, as well as the high cost and toxicity of existing drugs. As obligate intracellular parasites, apicomplexans rely on the uptake of many essential metabolites from their host. Toxoplasma gondii, the causative agent of toxoplasmosis, is auxotrophic for several metabolites, including sugars (e.g., myo-inositol), amino acids (e.g., tyrosine), lipidic compounds and lipid precursors (cholesterol, choline), vitamins, cofactors (thiamine) and others. To date, only few apicomplexan metabolite transporters have been characterized and assigned a substrate. Here, we set out to investigate whether untargeted metabolomics can be used to identify the substrate of an uncharacterized transporter. Based on existing genome- and proteome-wide datasets, we have identified an essential plasma membrane transporter of the major facilitator superfamily in T. gondii-previously termed TgApiAT6-1. Using an inducible system based on RNA degradation, TgApiAT6-1 was depleted, and the mutant parasite's metabolome was compared to that of non-depleted parasites. The most significantly reduced metabolite in parasites depleted in TgApiAT6-1 was identified as the amino acid lysine, for which T. gondii is predicted to be auxotrophic. Using stable isotope-labeled amino acids, we confirmed that TgApiAT6-1 is required for efficient lysine uptake. Our findings highlight untargeted metabolomics as a powerful tool to identify the substrate of orphan transporters.
Collapse
Affiliation(s)
- Joachim Kloehn
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (M.L.); (D.D.)
- Correspondence: (J.K.); (D.S.-F.); Tel.: +41-22-379-57-16 (J.K.); +41-22-379-56-72 (D.S.-F.)
| | - Matteo Lunghi
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (M.L.); (D.D.)
| | - Emmanuel Varesio
- Institute of Pharmaceutical Sciences of Western Switzerland, School of Pharmaceutical Sciences, Mass Spectrometry Core Facility (MZ 2.0), University of Geneva, 1211 Geneva, Switzerland;
| | - David Dubois
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (M.L.); (D.D.)
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (M.L.); (D.D.)
- Correspondence: (J.K.); (D.S.-F.); Tel.: +41-22-379-57-16 (J.K.); +41-22-379-56-72 (D.S.-F.)
| |
Collapse
|
138
|
Biochemical Studies of Mitochondrial Malate: Quinone Oxidoreductase from Toxoplasma gondii. Int J Mol Sci 2021; 22:ijms22157830. [PMID: 34360597 PMCID: PMC8345934 DOI: 10.3390/ijms22157830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022] Open
Abstract
Toxoplasma gondii is a protozoan parasite that causes toxoplasmosis and infects almost one-third of the global human population. A lack of effective drugs and vaccines and the emergence of drug resistant parasites highlight the need for the development of new drugs. The mitochondrial electron transport chain (ETC) is an essential pathway for energy metabolism and the survival of T. gondii. In apicomplexan parasites, malate:quinone oxidoreductase (MQO) is a monotopic membrane protein belonging to the ETC and a key member of the tricarboxylic acid cycle, and has recently been suggested to play a role in the fumarate cycle, which is required for the cytosolic purine salvage pathway. In T. gondii, a putative MQO (TgMQO) is expressed in tachyzoite and bradyzoite stages and is considered to be a potential drug target since its orthologue is not conserved in mammalian hosts. As a first step towards the evaluation of TgMQO as a drug target candidate, in this study, we developed a new expression system for TgMQO in FN102(DE3)TAO, a strain deficient in respiratory cytochromes and dependent on an alternative oxidase. This system allowed, for the first time, the expression and purification of a mitochondrial MQO family enzyme, which was used for steady-state kinetics and substrate specificity analyses. Ferulenol, the only known MQO inhibitor, also inhibited TgMQO at IC50 of 0.822 μM, and displayed different inhibition kinetics compared to Plasmodium falciparum MQO. Furthermore, our analysis indicated the presence of a third binding site for ferulenol that is distinct from the ubiquinone and malate sites.
Collapse
|
139
|
Carvalho MDC, Ribeiro-Andrade M, Melo RPBD, Guedes DM, Pinheiro Junior JW, Cavalcanti EFTSF, Magalhães FJR, Mota RA. Cross-sectional survey for Toxoplasma gondii infection in humans in Fernando de Noronha island, Brazil. ACTA ACUST UNITED AC 2021; 30:e005121. [PMID: 34259739 DOI: 10.1590/s1984-29612021062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
Toxoplasmosis, caused by the protozoan Toxoplasma gondii, is zoonotic disease and is one of the most important foodborne parasitic diseases globally. The prevalence in humans is highly variable, being influenced by cultural habits, socioeconomic, and environmental conditions. The objective of this study was to estimate the prevalence of T. gondii infection in humans on the archipelago of Fernando de Noronha, Pernambuco State, Brazil, and to identify the risk factors associated with this infection. The seroprevalence of immunoglobulin G anti-T. gondii antibodies was 50.4% (172/341, 95% CI: 45.2%-55.7%). Factors associated with the infection were consumption of well water or rainwater (odds ratio [OR]: 2.43, p=0.020) and consumption of game meat (OR: 1.80, p=0.026). This is the first study to provide epidemiological information of T. gondii infection among the residents of the Island of Fernando de Noronha, revealing a considerable antibody seroprevalence in this population. This study provides information for the adoption of prevention and control measures in island environments.
Collapse
Affiliation(s)
| | - Müller Ribeiro-Andrade
- Setor de Parasitologia e Patologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas - UFAL, Campus A. C. Simões, Maceió, AL, Brasil
| | | | - Dandara Matias Guedes
- Superintendência em Saúde, Administração do Distrito Estadual de Fernando de Noronha, Fernando de Noronha, PE, Brasil
| | | | | | | | - Rinaldo Aparecido Mota
- Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco - UFRPE, Recife, PE, Brasil
| |
Collapse
|
140
|
Handaye-Dessus A, Gattoussi S, Korobelnik JF, Delyfer MN, Rougier MB. [Intravitreal clindamycin injection in toxoplasma retinochoroiditis: About 9 cases in the ophthalmology department of the CHU de Bordeaux]. J Fr Ophtalmol 2021; 44:968-976. [PMID: 34247873 DOI: 10.1016/j.jfo.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Toxoplasma retinochoroiditis (TRC) is the main cause of posterior uveitis in immunocompetent patients. Several studies have shown safety and efficacy of treatment with intravitreal clindamycin injection in patients with contraindications, inadequate response or side effects with classic oral therapy. The goal of this study is to describe anatomic and functional results of local treatment with intravitreal clindamycin injection. MATERIALS AND METHODS We performed an observational, retrospective, single-center study in the ophthalmology service of Bordeaux university medical center between December 2017 and January 2020 on management of toxoplasma retinochoroiditis by intravitreal clindamycin injection. We analyzed the efficacy of this treatment on improvement in visual acuity, decrease in size of the retinal lesion and decrease in macular thickness. RESULTS A total of 10 eyes of 9 patients were injected. Only a single injection was required in 9 of the 10 cases. Injections demonstrated improvement in the 3 study criteria; visual acuity went from a mean of 1 LogMAR (1.07±0.77) pre-injection to 0.4 LogMAR (0.43±0.53) at 6 months, lesion size decreased by 51%, and macular thickness decreased by 78μm over the follow-up period. CONCLUSION Intravitreal clindamycin injections are safe and effective for the treatment of TRC. They offer an alternative in patients with allergies, side effects or inadequate response to classic oral therapy.
Collapse
Affiliation(s)
- A Handaye-Dessus
- Centre hospitalier universitaire de Bordeaux, place Amélie-Rabat-Léon, 33000 Bordeaux, France.
| | - S Gattoussi
- Centre hospitalier universitaire de Bordeaux, place Amélie-Rabat-Léon, 33000 Bordeaux, France
| | - J-F Korobelnik
- Centre hospitalier universitaire de Bordeaux, place Amélie-Rabat-Léon, 33000 Bordeaux, France
| | - M-N Delyfer
- Centre hospitalier universitaire de Bordeaux, place Amélie-Rabat-Léon, 33000 Bordeaux, France
| | - M-B Rougier
- Centre hospitalier universitaire de Bordeaux, place Amélie-Rabat-Léon, 33000 Bordeaux, France
| |
Collapse
|
141
|
Boeckmans J, Rombaut M, Demuyser T, Declerck B, Piérard D, Rogiers V, De Kock J, Waumans L, Magerman K, Cartuyvels R, Rummens JL, Rodrigues RM, Vanhaecke T. Infections at the nexus of metabolic-associated fatty liver disease. Arch Toxicol 2021; 95:2235-2253. [PMID: 34027561 PMCID: PMC8141380 DOI: 10.1007/s00204-021-03069-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a chronic liver disease that affects about a quarter of the world population. MAFLD encompasses different disease stadia ranging from isolated liver steatosis to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis and hepatocellular carcinoma. Although MAFLD is considered as the hepatic manifestation of the metabolic syndrome, multiple concomitant disease-potentiating factors can accelerate disease progression. Among these risk factors are diet, lifestyle, genetic traits, intake of steatogenic drugs, male gender and particular infections. Although infections often outweigh the development of fatty liver disease, pre-existing MAFLD could be triggered to progress towards more severe disease stadia. These combined disease cases might be underreported because of the high prevalence of both MAFLD and infectious diseases that can promote or exacerbate fatty liver disease development. In this review, we portray the molecular and cellular mechanisms by which the most relevant viral, bacterial and parasitic infections influence the progression of fatty liver disease and steatohepatitis. We focus in particular on how infectious diseases, including coronavirus disease-19, hepatitis C, acquired immunodeficiency syndrome, peptic ulcer and periodontitis, exacerbate MAFLD. We specifically underscore the synergistic effects of these infections with other MAFLD-promoting factors.
Collapse
Affiliation(s)
- Joost Boeckmans
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
- Clinical Laboratory, Jessa Hospital, Stadsomvaart 11, 3500, Hasselt, Belgium.
| | - Matthias Rombaut
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Thomas Demuyser
- Department of Microbiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
- Center for Neurosciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Baptist Declerck
- Department of Microbiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Denis Piérard
- Department of Microbiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Vera Rogiers
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Luc Waumans
- Clinical Laboratory, Jessa Hospital, Stadsomvaart 11, 3500, Hasselt, Belgium
| | - Koen Magerman
- Clinical Laboratory, Jessa Hospital, Stadsomvaart 11, 3500, Hasselt, Belgium
- Department of Immunology and Infection, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Reinoud Cartuyvels
- Clinical Laboratory, Jessa Hospital, Stadsomvaart 11, 3500, Hasselt, Belgium
| | - Jean-Luc Rummens
- Clinical Laboratory, Jessa Hospital, Stadsomvaart 11, 3500, Hasselt, Belgium
| | - Robim M Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| |
Collapse
|
142
|
Maleki B, Ahmadi N, Olfatifar M, Gorgipour M, Taghipour A, Abdoli A, Khorshidi A, Foroutan M, Mirzapour A. Toxoplasma oocysts in the soil of public places worldwide: a systematic review and meta-analysis. Trans R Soc Trop Med Hyg 2021; 115:471-481. [PMID: 33205208 DOI: 10.1093/trstmh/traa133] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/27/2020] [Accepted: 10/26/2020] [Indexed: 11/14/2022] Open
Abstract
Toxoplasmosis is a zoonotic and cosmopolitan infection. Although a few studies have evaluated the prevalence of Toxoplasma oocysts in the soil of public places, the present study was conducted to provide insights into environmental contamination levels and its potential transmission to humans on a global scale. A systematic search was conducted using bibliographic databases through 30 August 2020. A random effects model was utilized to estimate pooled prevalence with 95% confidence intervals (CIs). Subgroup analysis and meta-regressions were also performed on the geographical and environmental parameters. Finally, 22 articles, wherein 15 420 soil samples were examined, met the systematic review and meta-analysis requirements. The mean pooled prevalence of Toxoplasma oocysts was estimated at 16% (95% CI 10 to 26) in public places. The estimated prevalences in Europe, South America, Asia and North America were 23% (95% CI 4 to 65), 22% (95% CI 18 to 26), 15% (95% CI 0.06 to 33) and 8% (95% CI 0.00 to 97), respectively. An increasing trend was observed in the prevalence of Toxoplasma oocysts with increasing latitude (41-56°), decreasing longitude (0-40°) and increasing relative humidity (≥76%). Loop-mediated isothermal amplification and polymerase chain reaction methods revealed the highest and lowest prevalence rates, respectively, in the detection of Toxoplasma oocysts. Awareness of the health authorities and people about Toxoplasma prevalence in the soil of public places and its risk factors is of great importance to developing effective strategies to prevent infection.
Collapse
Affiliation(s)
- Bahman Maleki
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nayebali Ahmadi
- Proteomics Research Center, Department of Medical Lab Technology, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Olfatifar
- Gastroenterology and Liver Diseases Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Gorgipour
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Taghipour
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Abdoli
- Department of Parasitology and Mycology, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Ali Khorshidi
- Department of Epidemiology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Aliyar Mirzapour
- Innovative Medical Research Center, Department of Medical Parasitology, School of Medicine, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
143
|
Zhu S, Shapiro K, VanWormer E. Dynamics and epidemiology of Toxoplasma gondii oocyst shedding in domestic and wild felids. Transbound Emerg Dis 2021; 69:2412-2423. [PMID: 34153160 DOI: 10.1111/tbed.14197] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 11/30/2022]
Abstract
Oocyst shedding in domestic and wild felids is a critical yet understudied topic in Toxoplasma gondii ecology and epidemiology that shapes human and animal disease burden. We synthesized published literature dating from the discovery of felids as the definitive hosts of T. gondii in the 1960s through March 2021 to examine shedding prevalence, oocyst genotypes, and risk factors for shedding. Oocyst shedding prevalence in many geographic regions exceeded the commonly accepted 1% reported for domestic cats; crude prevalence from cross-sectional field studies of domestic cat shedding ranged from 0% in Australia to 18.8% in Africa, with greater variation in reports of oocyst shedding in free-ranging, wild felids. Shedding in wild felid species has primarily been described in captive animals, with attempted detection of oocyst shedding reported in at least 31 species. Differences in lifestyle and diet play an important role in explaining shedding variation between free-ranging unowned domestic cats, owned domestic cats and wild felids. Additional risk factors for shedding include the route of infection, diet, age and immune status of the host. It is widely reported that cats only shed oocysts after initial infection with T. gondii, but experimental studies have shown that repeat oocyst shedding can occur. Factors associated with repeat shedding are common amongst free-ranging felids (domestic and wild), which are more likely to eat infected prey, be exposed to diverse T. gondii genotypes, and have coinfections with other parasites. Repeat shedding events could play a significant yet currently ignored role in shaping environmental oocyst loading with implications for human and animal exposure. Oocyst presence in the environment is closely linked to climate variables such as temperature and precipitation, so in quantifying risk of exposure, it is important to consider the burden of T. gondii oocysts that can accumulate over time in diverse environmental matrices and sites, as well as the spatial heterogeneity of free-ranging cat populations. Key directions for future research include investigating oocyst shedding in under-sampled regions, genotyping of oocysts detected in faeces and longitudinal studies of oocyst shedding in free-ranging felids.
Collapse
Affiliation(s)
- Sophie Zhu
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Karen Shapiro
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Elizabeth VanWormer
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,School of Natural Resources, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
144
|
Păunescu E, Boubaker G, Desiatkina O, Anghel N, Amdouni Y, Hemphill A, Furrer J. The quest of the best - A SAR study of trithiolato-bridged dinuclear Ruthenium(II)-Arene compounds presenting antiparasitic properties. Eur J Med Chem 2021; 222:113610. [PMID: 34144354 DOI: 10.1016/j.ejmech.2021.113610] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 12/31/2022]
Abstract
A structure activity relationship (SAR) study of a library of 56 compounds (54 ruthenium and 2 osmium derivatives) based on the trithiolato-bridged dinuclear ruthenium(II)-arene scaffold (general formula [(η6-arene)2Ru2(μ2-SR)3]+, symmetric and [(η6-arene)2Ru2(μ2-SR1)2(μ2-SR2)]+, mixed, respectively) is reported. The 56 compounds (of which 34 are newly designed drug candidates) were synthesized by introducing chemical modifications at the level of bridge thiols, and they were grouped into eight families according to their structural features. The selected fittings were guided by previous results and focused on a fine-tuning of the physico-chemical and steric properties. Newly synthesized complexes were characterized by NMR spectroscopy, mass spectrometry and elemental analysis, and four single-crystal X-ray structures were obtained. The in vitro biological assessment of the compounds was realized by applying a three-step screening cascade: (i) evaluation of the activity against Toxoplasma gondii RH strain tachyzoites expressing β-galactosidase (T. gondii-β-gal) grown in human foreskin fibroblast monolayers (HFF) and assessment of toxicity in non-infected HFF host cells; (ii) dose-response assays using selected compound, and (iii) studies on the effects in murine splenocytes. A primary screening was performed at 1 and 0.1 μM, and resulted in the selection of 39 compounds that inhibited parasite proliferation at 1 μM by more than 95% and reduced the viability of HFF by less than 49%. In the secondary screening, dose-response assays showed that the selected compounds exhibited half maximal inhibitory concentration (IC50) values for T. gondii-β-gal between 0.01 μM and 0.45 μM, with 30 compounds displaying an IC50 lower than 0.1 μM. When applied to non-infected HFF monolayers at 2.5 μM, 8 compounds caused more than 90% and 31 compounds more than 30% viability impairment. The tertiary screening included 14 compounds that did not cause HFF viability loss higher than 50% at 2.5 μM. These derivatives were assessed for potential immunosuppressive activities. First, splenocyte viability was assessed after treatment of cells with concanavalin A (ConA) and lipopolysaccharide (LPS) with compounds applied at 0.1 and 0.5 μM. Subsequently, the 5 compounds exhibiting the lowest splenocyte toxicity were further evaluated for their potential to inhibit B and T cell proliferation. Overall, compound 55 [(η6-p-MeC6H4Pri)2Ru2(μ2-SC6H4-o-CF3)2(μ2-SC6H4-p-OH)]Cl exhibited the most favorable features, and will be investigated as a scaffold for further optimization in terms of anti-parasitic efficacy and drug-like properties.
Collapse
Affiliation(s)
- Emilia Păunescu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.
| | - Ghalia Boubaker
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012, Bern, Switzerland
| | - Oksana Desiatkina
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Nicoleta Anghel
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012, Bern, Switzerland
| | - Yosra Amdouni
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012, Bern, Switzerland; Laboratoire de Parasitologie, Université de la Manouba, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, École Nationale de Médecine Vétérinaire de Sidi Thabet, Sidi Thabet, 2020, Tunisia
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012, Bern, Switzerland.
| | - Julien Furrer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.
| |
Collapse
|
145
|
Sahimin N, Mohd Hanapi IR, Nurikhan ZA, Behnke JM, Mohd Zain SN. Seroprevalence and Associated Risk Factors for Toxoplasma gondii Infections Among Urban Poor Communities in Peninsular Malaysia. Acta Parasitol 2021; 66:524-534. [PMID: 33219942 DOI: 10.1007/s11686-020-00304-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/22/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE Toxoplasmosis is a zoonotic infection linked to compromised hygiene and sanitation via the handling of infected cat faeces, eating undercooked contaminated meat or transplacental transmission. We conducted a study to determine seroprevalence and risk factors associated with toxoplasmosis among the urban poor communities in Malaysia. METHODS The demographic profiles for each participant were obtained through a questionnaire survey prior to blood collection. A total of 389 participants were recruited and blood samples screened for the presence of anti-Toxoplasma IgG and IgM antibody using an ELISA commercial kit, SERION ELISA classic Toxoplasma gondii IgG and IgM. RESULTS The overall T. gondii seroprevalence was 69.6% with 56.8% seropositive for anti-Toxoplasma IgG, 7.7% seropositive for anti-Toxoplasma IgM and 5.1% seropositive for both IgG and IgM antibodies. The presence of both antibody classes in blood samples indicated high avidity, suggesting latent infection. Univariate analysis revealed significant associations that included; age, ethnicity, location and employment status while, significant lifestyle factors included source of drinking water and eating style. A multifactorial statistical model that incorporated all the significant effects from the first-stage univariate analyses listed above revealed that age and ethnicity were the two dominant and independent effects on IgG seroprevalence. For seroprevalence of IgM, the multifactorial model revealed a significant interaction between work and accommodation. IgM seroprevalence was higher among the unemployed inhabitants of PPR (Program Perumahan Rakyat) than those living in non-PPR accommodation, and higher than among the employed irrespective of their accommodation. CONCLUSION High seroprevalence of Toxoplasmosis in the community calls for increased awareness of disease transmission and improvements in hygiene and sanitation.
Collapse
Affiliation(s)
- Norhidayu Sahimin
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Izzah Ruzana Mohd Hanapi
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Zarin Amalina Nurikhan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jerzy M Behnke
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Siti Nursheena Mohd Zain
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
146
|
Szewczyk-Golec K, Pawłowska M, Wesołowski R, Wróblewski M, Mila-Kierzenkowska C. Oxidative Stress as a Possible Target in the Treatment of Toxoplasmosis: Perspectives and Ambiguities. Int J Mol Sci 2021; 22:ijms22115705. [PMID: 34071892 PMCID: PMC8198901 DOI: 10.3390/ijms22115705] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022] Open
Abstract
Toxoplasma gondii is an apicomplexan parasite causing toxoplasmosis, a common disease, which is most typically asymptomatic. However, toxoplasmosis can be severe and even fatal in immunocompromised patients and fetuses. Available treatment options are limited, so there is a strong impetus to develop novel therapeutics. This review focuses on the role of oxidative stress in the pathophysiology and treatment of T. gondii infection. Chemical compounds that modify redox status can reduce the parasite viability and thus be potential anti-Toxoplasma drugs. On the other hand, oxidative stress caused by the activation of the inflammatory response may have some deleterious consequences in host cells. In this respect, the potential use of natural antioxidants is worth considering, including melatonin and some vitamins, as possible novel anti-Toxoplasma therapeutics. Results of in vitro and animal studies are promising. However, supplementation with some antioxidants was found to promote the increase in parasitemia, and the disease was then characterized by a milder course. Undoubtedly, research in this area may have a significant impact on the future prospects of toxoplasmosis therapy.
Collapse
|
147
|
Neospora caninum and/or Toxoplasma gondii Seroprevalence: Vaccination against PCV2 and Muscle Enzyme Activity in Seropositive and Seronegative Pigs. Microorganisms 2021; 9:microorganisms9051097. [PMID: 34065192 PMCID: PMC8160920 DOI: 10.3390/microorganisms9051097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 11/17/2022] Open
Abstract
Neospora caninum and Toxoplasma gondii affect both humans and animals worldwide. To investigate their seroprevalence and differences in seropositivity between pigs vaccinated and unvaccinated against porcine circovirus 2 (PCV2), as well as differences in muscle enzyme activity between seropositive and seronegative pigs, blood samples were collected from 380 sows. Antibodies against T. gondii and N. caninum were detected by an indirect immunofluorescence antibody (IFA) assay, while the activities of creatine kinase (CK) and aspartate aminotransferase (AST) were biochemically assessed. Out of the 364 sows finally included in the study, 4.4%, 3.5%, and 0.5% were seropositive to T. gondii, N. caninum, or both. A significantly higher percentage of seropositivity against T. gondii and/or N. caninum in PCV2 unvaccinated pigs compared with vaccinated pigs was observed. Increased serum activities of CK and AST were detected in 71.43% and 100% of only against T. gondii (T+) and 63.64% and 90.91% of only against N. caninum (N+) seropositive sows, respectively, and were significantly higher compared to seronegative animals. T. gondii and N. caninum seropositivity, especially in presumed immunocompromised pigs, and the evidence of muscle damage highlight their importance as a zoonotic pathogen and animal model of human infection, respectively.
Collapse
|
148
|
Veras PST, Descoteaux A, Colombo MI, P B de Menezes J. Editorial: Early Events During Host Cell-Pathogen Interaction. Front Cell Infect Microbiol 2021; 11:680557. [PMID: 34095001 PMCID: PMC8170679 DOI: 10.3389/fcimb.2021.680557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Patrícia S T Veras
- Laboratory of Parasite-Host Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador, Brazil
| | - Albert Descoteaux
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Quebec, QC, Canada
| | - Maria Isabel Colombo
- Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Juliana P B de Menezes
- Laboratory of Parasite-Host Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador, Brazil
| |
Collapse
|
149
|
Memariani H, Memariani M. Melittin as a promising anti-protozoan peptide: current knowledge and future prospects. AMB Express 2021; 11:69. [PMID: 33983454 PMCID: PMC8119515 DOI: 10.1186/s13568-021-01229-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022] Open
Abstract
Protozoan diseases such as malaria, leishmaniasis, Chagas disease, and sleeping sickness still levy a heavy toll on human lives. Deplorably, only few classes of anti-protozoan drugs have thus far been developed. The problem is further compounded by their intrinsic toxicity, emergence of drug resistance, and the lack of licensed vaccines. Thus, there is a genuine exigency to develop novel anti-protozoan medications. Over the past years, melittin, the major constituent in the venom of European honeybee Apis mellifera, has gathered the attention of researchers due to its potential therapeutic applications. Insofar as we are aware, there has been no review pertinent to anti-protozoan properties of melittin. The present review outlines the current knowledge about anti-protozoan effects of melittin and its underlying mechanisms. The peptide has proven to be efficacious in killing different protozoan parasites such as Leishmania, Plasmodium, Toxoplasma, and Trypanosoma in vitro. Apart from direct membrane-disruptive activity, melittin is capable of destabilizing calcium homeostasis, reducing mitochondrial membrane potential, disorganizing kinetoplast DNA, instigating apoptotic cell death, and induction of autophagy in protozoan pathogens. Emerging evidence suggests that melittin is a promising candidate for future vaccine adjuvants. Transmission-blocking activity of melittin against vector-borne pathogens underscores its potential utility for both transgenic and paratransgenic manipulations. Nevertheless, future research should focus upon investigating anti-microbial activities of melittin, alone or in combination with the current anti-protozoan medications, against a far broader spectrum of protozoan parasites as well as pre-clinical testing of the peptide in animal models.
Collapse
|
150
|
Abstract
Acute intracranial infections of the central nervous system and skull base are uncommon but time sensitive diagnoses that may present to the emergency department. As symptoms are frequently nonspecific or lack typical features of an infectious process, a high index of suspicion is required to confidently make the diagnosis, and imaging may not only serve as the first clue to an intracranial infection, but is often necessary to completely characterize the disease process and exclude any confounding conditions. Although computed tomography is typically the initial imaging modality for many of these patients, magnetic resonance imaging offers greater sensitivity and specificity in diagnosing intracranial infections, characterizing the full extent of infection, and identifying potential complications. The aim of this article is to serve as a review of the typical and most important imaging manifestations of these infections that can be encountered in the emergent setting.
Collapse
|