101
|
Oral and Intestinal Bacterial Substances Associated with Disease Activities in Patients with Rheumatoid Arthritis: A Cross-Sectional Clinical Study. J Immunol Res 2022; 2022:6839356. [PMID: 35224112 PMCID: PMC8881124 DOI: 10.1155/2022/6839356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 01/02/2023] Open
Abstract
Intestinal bacterial compositions of rheumatoid arthritis (RA) patients have been reported to be different from those of healthy people. Dysbiosis, imbalance of the microbiota, is widely known to cause gut barrier damage, resulting in an influx of bacteria and their substances into host bloodstreams in animal studies. However, few studies have investigated the effect of bacterial substances on the pathophysiology of RA. In this study, eighty-seven active RA patients who had inadequate responses to conventional synthetic disease-modifying antirheumatic drugs or severe comorbidities were analyzed for correlations between many factors such as disease activities, disease biomarkers, intestinal bacterial counts, fecal and serum lipopolysaccharide (LPS), LPS-binding protein (LBP), endotoxin neutralizing capacity (ENC), and serum antibacterial substance IgG and IgA antibody levels by multiple regression analysis with consideration for demographic factors such as age, sex, smoking, and methotrexate treatment. Serum LBP levels, fecal LPS levels, total bacteria counts, serum anti-LPS from Porphyromonas gingivalis (Pg-LPS) IgG antibody levels, and serum anti-Pg-LPS IgA antibody levels were selected for multiple regression analysis using Spearman’s correlation analysis. Serum LBP levels were correlated with disease biomarker levels, such as erythrocyte sedimentation rate (
), C-reactive protein (
), matrix metalloproteinase-3 (
), and IL-6 (
), and were inversely correlated with hemoglobin (
). Anti-Pg-LPS IgG antibody levels were inversely correlated with activity indices such as patient global assessments using visual analogue scale (VAS) (
) and painVAS (
). Total bacteria counts were correlated with ENC (
), and inversely correlated with serum LPS (
) and anti-Pg-LPS IgA antibody levels (
). These results suggest that substances from oral and gut microbiota may influence disease activity in RA patients.
Collapse
|
102
|
Bhardwaj A, Sapra L, Tiwari A, Mishra PK, Sharma S, Srivastava RK. "Osteomicrobiology": The Nexus Between Bone and Bugs. Front Microbiol 2022; 12:812466. [PMID: 35145499 PMCID: PMC8822158 DOI: 10.3389/fmicb.2021.812466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
A growing body of scientific evidence supports the notion that gut microbiota plays a key role in the regulation of various physiological and pathological processes related to human health. Recent findings have now established that gut microbiota also contributes to the regulation of bone homeostasis. Studies on animal models have unraveled various underlying mechanisms responsible for gut microbiota-mediated bone regulation. Normal gut microbiota is thus required for the maintenance of bone homeostasis. However, dysbiosis of gut microbiota communities is reported to be associated with several bone-related ailments such as osteoporosis, rheumatoid arthritis, osteoarthritis, and periodontitis. Dietary interventions in the form of probiotics, prebiotics, synbiotics, and postbiotics have been reported in restoring the dysbiotic gut microbiota composition and thus could provide various health benefits to the host including bone health. These dietary interventions prevent bone loss through several mechanisms and thus could act as potential therapies for the treatment of bone pathologies. In the present review, we summarize the current knowledge of how gut microbiota and its derived microbial compounds are associated with bone metabolism and their roles in ameliorating bone health. In addition to this, we also highlight the role of various dietary supplements like probiotics, prebiotics, synbiotics, and postbiotics as promising microbiota targeted interventions with the clinical application for leveraging treatment modalities in various inflammatory bone pathologies.
Collapse
Affiliation(s)
- Asha Bhardwaj
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Leena Sapra
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Abhay Tiwari
- Centre for Rural Development & Technology, Indian Institute of Technology (IIT), New Delhi, India
| | - Pradyumna K. Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Satyawati Sharma
- Centre for Rural Development & Technology, Indian Institute of Technology (IIT), New Delhi, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
103
|
Kawamoto D, Borges R, Ribeiro RA, de Souza RF, Amado PPP, Saraiva L, Horliana ACRT, Faveri M, Mayer MPA. Oral Dysbiosis in Severe Forms of Periodontitis Is Associated With Gut Dysbiosis and Correlated With Salivary Inflammatory Mediators: A Preliminary Study. FRONTIERS IN ORAL HEALTH 2022; 2:722495. [PMID: 35048045 PMCID: PMC8757873 DOI: 10.3389/froh.2021.722495] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/01/2021] [Indexed: 12/27/2022] Open
Abstract
Inflammation is a driven force in modulating microbial communities, but little is known about the interplay between colonizing microorganisms and the immune response in periodontitis. Since local and systemic inflammation may play a whole role in disease, we aimed to evaluate the oral and fecal microbiome of patients with periodontitis and to correlate the oral microbiome data with levels of inflammatory mediator in saliva. Methods: Nine patients with periodontitis (P) in Stage 3/Grade B and nine age-matched non-affected controls (H) were evaluated. Microbial communities of oral biofilms (the supra and subgingival from affected and non-affected sites) and feces were determined by sequencing analysis of the 16SrRNA V3-V4 region. Salivary levels of 40 chemokines and cytokines were correlated with oral microbiome data. Results: Supragingival microbial communities of P differed from H (Pielou's evenness index, and Beta diversity, and weighted UniFrac), since relative abundance (RA) of Defluviitaleaceae, Desulfobulbaceae, Mycoplasmataceae, Peptostreococcales-Tissierellales, and Campylobacteraceae was higher in P, whereas Muribaculaceae and Streptococcaceae were more abundant in H. Subgingival non-affected sites of P did not differ from H, except for a lower abundance of Gemellaceae. The microbiome of affected periodontitis sites (PD ≥ 4 mm) clustered apart from the subgingival sites of H. Oral pathobionts was more abundant in sub and supragingival biofilms of P than H. Fecal samples of P were enriched with Acidaminococcus, Clostridium, Lactobacillus, Bifidobacterium, Megasphaera, and Romboutsia when compared to H. The salivary levels of interleukin 6 (IL-6) and inflammatory chemokines were positively correlated with the RA of several recognized and putative pathobionts, whereas the RA of beneficial species, such as Rothia aeria and Haemophilus parainfluenzae was negatively correlated with the levels of Chemokine C-C motif Ligand 2 (CCL2), which is considered protective. Dysbiosis in patients with periodontitis was not restricted to periodontal pockets but was also seen in the supragingival and subgingival non-affected sites and feces. Subgingival dysbiosis revealed microbial signatures characteristic of different immune profiles, suggesting a role for candidate pathogens and beneficial organisms in the inflammatory process of periodontitis.
Collapse
Affiliation(s)
- Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodrigo Borges
- Laboratório de Biologia Computacional e Bioinformática, Centro Internacional de Pesquisa (CIPE) - A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Rodolfo Alvarenga Ribeiro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Robson Franciso de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Pâmela Pontes Penas Amado
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luciana Saraiva
- Division of Periodontology, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | | | - Marcelo Faveri
- Dental Research Division, Department of Periodontology, Guarulhos University, Guarulhos, Brazil
| | - Marcia Pinto Alves Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Division of Periodontology, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
104
|
Oral Health and Liver Disease: Bidirectional Associations—A Narrative Review. Dent J (Basel) 2022; 10:dj10020016. [PMID: 35200242 PMCID: PMC8870998 DOI: 10.3390/dj10020016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 12/04/2022] Open
Abstract
Several links between chronic liver disease and oral health have been described and are discussed in this narrative review. Oral manifestations such as lichen planus, ulcers, xerostomia, erosion and tongue abnormalities seem to be particularly prevalent among patients with chronic liver disease. These may be causal, coincidental, secondary to therapeutic interventions, or attributable to other factors commonly observed in liver disease patients. In addition, findings from both experimental and epidemiological studies suggest that periodontitis can induce liver injury and contribute to the progression of chronic liver disease through periodontitis-induced systemic inflammation, endotoxemia, and gut dysbiosis with increased intestinal translocation. This has brought forward the hypothesis of an oral-gut-liver axis. Preliminary clinical intervention studies indicate that local periodontal treatments may lead to beneficial liver effects, but more human studies are needed to clarify if treatment of periodontitis truly can halt or reverse progression of liver disease and improve liver-related outcomes.
Collapse
|
105
|
Xiao L, Huang L, Zhou X, Zhao D, Wang Y, Min H, Song S, Sun W, Gao Q, Hu Q, Xie S. Experimental Periodontitis Deteriorated Atherosclerosis Associated With Trimethylamine N-Oxide Metabolism in Mice. Front Cell Infect Microbiol 2022; 11:820535. [PMID: 35118014 PMCID: PMC8804528 DOI: 10.3389/fcimb.2021.820535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Background Periodontitis is considered a risk factor for atherosclerosis, but the mechanism is not clear. It was reported that oral administration of Porphyromonas gingivalis altered the gut microbiota in mice. Gut dysbiosis and the intestinal metabolite trimethylamine N-oxide (TMAO) were verified to be associated with atherosclerosis. Therefore, the possible TMAO-related mechanism between periodontitis and atherosclerosis needs to be explored. Methods Experimental periodontitis was established by oral administration of P. gingivalis for 2 months in ApoE−/− mice. Mouse hemi-mandibles were scanned using Micro-CT. Quantification of TMAO was performed using liquid chromatography–tandem mass spectrometry. Mouse feces were collected and the bacterial DNA was extracted, then the gut microbiota was analyzed using 16S rRNA genes. Atherosclerotic lesion areas were quantified. Livers, small intestines, and large intestines were analyzed for gene expression. Results Aggravated atherosclerosis plaques were found in experimental periodontitis mice. Plasma TMAO, a pathogenic factor of atherosclerosis, was initially found to be increased in periodontitis mice. Changes in the composition and abundance of the intestinal microflora of periodontitis mice were found. Flavin monooxygenase 3 (FMO3), the catalyzing enzyme of TMAO in the liver, was significantly increased, accompanied by an increase of IL-6 in liver, the abnormal intestinal integrity and enhanced plasma LPS. The IL-6 and LPS were verified to be able to increase FMO3 in HepG2 cells. Conclusion Our research discovered that experimental periodontitis in ApoE−/− mice induced gut dysbiosis and an increase in TMAO. These results suggest a possible mechanism by which periodontitis may accelerate atherosclerosis by influencing the intestinal microbes and the metabolism, which were triggered by inflammation of the liver and intestine.
Collapse
Affiliation(s)
- Lingling Xiao
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Stomatology, The Second People’s Hospital of Taizhou, Taizhou, China
| | - Lingyan Huang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xin Zhou
- The Affiliated Stomatological Hospital of Soochow University, Suzhou, China
| | - Dan Zhao
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yan Wang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Haiyan Min
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shiyu Song
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Weibin Sun
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qian Gao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Sijing Xie, ; Qingang Hu, ; Qian Gao,
| | - Qingang Hu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Sijing Xie, ; Qingang Hu, ; Qian Gao,
| | - Sijing Xie
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Sijing Xie, ; Qingang Hu, ; Qian Gao,
| |
Collapse
|
106
|
TNF-α, IL-1β, MMP-8 Crevicular Profile in Patients with Chronic Kidney Disease and Periodontitis. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Increasing evidence sustains the potential of periodontitis as a risk factor for chronic kidney disease (CKD). Our study aimed to analyze several periodontal specific inflammatory biomarkers within the gingival crevicular fluid (GCF) of patients with CKD, compared to patients with normal kidney function, providing an inflammatory profile of the dialysis patient. The study comprised 79 patients divided into: group 1 (59 subjects with periodontitis and CKD) and group 2 (20 patients with periodontitis, without other systemic conditions). Clinical diagnosis was performed via dental and periodontal examination. GCF samples were collected from each patient, and the levels of TNF-α, IL-1β and MMP-8 were determined by using ELISA assay. In group 1, the average values were: 22.85 ± 5.87 pg/mL for TNF-α, 33.00 ± 39.68 pg/mL for IL-1β and 18.80 ± 27.75 ng/mL for MMP-8. In group 2, the mean values were: 2.10 ± 1.34 pg/mL for TNF-α, 0.71 ± 2.42 pg/mL for IL-1β and 5.35 ± 0.37 ng/mL for MMP-8. Statistical analysis revealed significant differences between groups as referring to all three biomarkers and, TNF-α and MMP-8, in certain stages of periodontitis. The level of TNF-α, IL-1β and MMP-8 points out the increased inflammatory status of the dialysis patient with PD, supporting the mutual connection of the two pathologies.
Collapse
|
107
|
Nobuhara H, Matsugu Y, Tanaka J, Akita T, Ito K. The preventive effects of perioperative oral care on surgical site infections after pancreatic cancer surgery: a retrospective study. Support Care Cancer 2022; 30:3337-3344. [PMID: 34988706 DOI: 10.1007/s00520-021-06791-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 12/30/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is the most malignant cancer of the gastrointestinal system, and is associated with high rates of postoperative complications, including surgical site infections (SSIs). Perioperative oral care is an effective measure for preventing postoperative pneumonia. However, the preventive effects of perioperative oral care on SSIs have not been reported. We investigated the preventive effects of perioperative oral care on SSIs after pancreatic cancer surgery. METHODS A total of 103 patients with PDAC who underwent radical resection at Hiroshima Prefectural Hospital (2011-2018) were enrolled in this retrospective study. Of the 103 patients, 75 received perioperative oral care by dentists and dental hygienists (oral care group), whereas 28 did not (control group). Univariate and multivariate analyses with propensity score as a covariate were used to investigate the incidence and risk factors of SSIs in the oral care and control groups. RESULTS The incidence of SSIs was significantly lower in the oral care group than in the control group (12.0% vs. 39.3%, P = 0.004). Logistic regression analysis revealed that a soft pancreas, the surgical procedure (pancreaticoduodenectomy), blood transfusion, diabetes mellitus, and the absence of oral care intervention were risk factors for SSIs. The odds ratio for the absence of oral care intervention was 6.090 (95% confidence interval: 1.750-21.200, P = 0.004). CONCLUSION Our results suggest that perioperative oral care may reduce the risk of developing SSIs after pancreatic cancer surgery. These findings need to be evaluated in future prospective studies. TRIAL REGISTRATION UMIN registration number: UMIN000042082; October 15, 2020, retrospectively registered.
Collapse
Affiliation(s)
- Hiroshi Nobuhara
- Department of Dentistry, Hiroshima Prefectural Hospital, 1-5-54 Ujina-Kanda, Minami-ku, Hiroshima, 734-8530, Japan
| | - Yasuhiro Matsugu
- Department of Clinical Nutrition, Hiroshima Prefectural Hospital, 1-5-54 Ujina-Kanda, Minami-ku, Hiroshima, 734-8530, Japan. .,Department of Gastroenterological, Breast and Transplant Surgery, Hiroshima Prefectural Hospital, 1-5-54 Ujina-Kanda, Minami-ku, Hiroshima, 734-8530, Japan.
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Tomoyuki Akita
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Keiko Ito
- Department of Clinical Nutrition, Hiroshima Prefectural Hospital, 1-5-54 Ujina-Kanda, Minami-ku, Hiroshima, 734-8530, Japan
| |
Collapse
|
108
|
Wang T, Ishikawa T, Sasaki M, Chiba T. Oral and Gut Microbial Dysbiosis and Non-alcoholic Fatty Liver Disease: The Central Role of Porphyromonas gingivalis. Front Med (Lausanne) 2022; 9:822190. [PMID: 35308549 PMCID: PMC8924514 DOI: 10.3389/fmed.2022.822190] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
Gut microbiota play many important roles, such as the regulation of immunity and barrier function in the intestine, and are crucial for maintaining homeostasis in living organisms. The disruption in microbiota is called dysbiosis, which has been associated with various chronic inflammatory conditions, food allergies, colorectal cancer, etc. The gut microbiota is also affected by several other factors such as diet, antibiotics and other medications, or bacterial and viral infections. Moreover, there are some reports on the oral-gut-liver axis indicating that the disruption of oral microbiota affects the intestinal biota. Non-alcoholic fatty liver disease (NAFLD) is one of the systemic diseases caused due to the dysregulation of the oral-gut-liver axis. NAFLD is the most common liver disease reported in the developed countries. It includes liver damage ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), cirrhosis, and cancer. Recently, accumulating evidence supports an association between NAFLD and dysbiosis of oral and gut microbiota. Periodontopathic bacteria, especially Porphyromonas gingivalis, have been correlated with the pathogenesis and development of NAFLD based on the clinical and basic research, and immunology. P. gingivalis was detected in the liver, and lipopolysaccharide from this bacteria has been shown to be involved in the progression of NAFLD, thereby indicating a direct role of P. gingivalis in NAFLD. Moreover, P. gingivalis induces dysbiosis of gut microbiota, which promotes the progression of NAFLD, through disrupting both metabolic and immunologic pathways. Here, we review the roles of microbial dysbiosis in NAFLD. Focusing on P. gingivalis, we evaluate and summarize the most recent advances in our understanding of the relationship between oral-gut microbiome symbiosis and the pathogenesis and progression of non-alcoholic fatty liver disease, as well as discuss novel strategies targeting both P. gingivalis and microbial dysbiosis.
Collapse
Affiliation(s)
- Ting Wang
- Division of Internal Medicine, Department of Oral Medicine, Iwate Medical University, Morioka, Japan
- Ting Wang
| | - Taichi Ishikawa
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Morioka, Japan
| | - Minoru Sasaki
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Morioka, Japan
| | - Toshimi Chiba
- Division of Internal Medicine, Department of Oral Medicine, Iwate Medical University, Morioka, Japan
- *Correspondence: Toshimi Chiba
| |
Collapse
|
109
|
Zhang M, Hu R, Huang Y, Zhou F, Li F, Liu Z, Geng Y, Dong H, Ma W, Song K, Song Y. Present and Future: Crosstalks Between Polycystic Ovary Syndrome and Gut Metabolites Relating to Gut Microbiota. Front Endocrinol (Lausanne) 2022; 13:933110. [PMID: 35928893 PMCID: PMC9343597 DOI: 10.3389/fendo.2022.933110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common disease, affecting 8%-13% of the females of reproductive age, thereby compromising their fertility and long-term health. However, the pathogenesis of PCOS is still unclear. It is not only a reproductive endocrine disease, dominated by hyperandrogenemia, but also is accompanied by different degrees of metabolic abnormalities and insulin resistance. With a deeper understanding of its pathogenesis, more small metabolic molecules, such as bile acids, amino acids, and short-chain fatty acids, have been reported to be involved in the pathological process of PCOS. Recently, the critical role of gut microbiota in metabolism has been focused on. The gut microbiota-related metabolic pathways can significantly affect inflammation levels, insulin signaling, glucose metabolism, lipid metabolism, and hormonal secretions. Although the abnormalities in gut microbiota and metabolites might not be the initial factors of PCOS, they may have a significant role in the pathological process of PCOS. The dysbiosis of gut microbiota and disturbance of gut metabolites can affect the progression of PCOS. Meanwhile, PCOS itself can adversely affect the function of gut, thereby contributing to the aggravation of the disease. Inhibiting this vicious cycle might alleviate the symptoms of PCOS. However, the role of gut microbiota in PCOS has not been fully explored yet. This review aims to summarize the potential effects and modulative mechanisms of the gut metabolites on PCOS and suggests its potential intervention targets, thus providing more possible treatment options for PCOS in the future.
Collapse
Affiliation(s)
- Mingmin Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fanru Zhou
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuo Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoxu Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenwen Ma
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kunkun Song
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufan Song
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yufan Song,
| |
Collapse
|
110
|
Probiotics During the Therapeutic Management of Periodontitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:353-375. [DOI: 10.1007/978-3-030-96881-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
111
|
Qi Y, Wu HM, Yang Z, Zhou YF, Jin L, Yang MF, Wang FY. New Insights into the Role of Oral Microbiota Dysbiosis in the Pathogenesis of Inflammatory Bowel Disease. Dig Dis Sci 2022; 67:42-55. [PMID: 33527328 DOI: 10.1007/s10620-021-06837-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 01/09/2021] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD) is a group of chronic intestinal inflammatory disorders with a prolonged duration characterized by recurrent relapse and remission. The exact etiology of IBD remains poorly understood despite the identification of relevant risk factors, including individual genetic susceptibility, environmental triggers, and disruption of immune homeostasis. Dysbiosis of the gut microbiota is believed to exacerbate the progression of IBD. Recently, increasing evidence has also linked oral microbiota dysbiosis with the development of IBD. On the one hand, IBD patients show significantly unbalanced composition and function of the oral microbiota known as dysbiosis. On the other, overabundances of oral commensal bacteria with opportunistic pathogenicity have been found in the gut microbiota of IBD patients. Herein, we review the current information on the causative factors of IBD, especially recent evidence of IBD-associated oral microbiota dysbiosis, which has seldom been covered in the previous literature review, highlighting the pathogenic mechanisms of specific oral bacteria in the development of IBD. Ectopic colonization of several oral bacteria, including a subset of Porphyromonas gingivalis, Streptococcus mutans, Fusobacterium nucleatum, Campylobacter concisus, and Klebsiella pneumoniae, may lead to destruction of the intestinal epithelial barrier, excessive secretion of inflammatory cytokines, disruption of the host immune system, and dysbiosis of gut microbiota, consequently aggravating chronic intestinal inflammation. Studying oral microbiota dysbiosis may open future horizons for understanding IBD pathogenesis and provide novel biomarkers for IBD. This review also presents the current treatment and new perspectives for IBD treatment.
Collapse
Affiliation(s)
- Ying Qi
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Zhongshan East Road 305, Nanjing, 210002, China
| | - Hui-Min Wu
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Zhongshan East Road 305, Nanjing, 210002, China
| | - Zhao Yang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Zhongshan East Road 305, Nanjing, 210002, China
| | - Yi-Fei Zhou
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Zhongshan East Road 305, Nanjing, 210002, China
| | - Lei Jin
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Miao-Fang Yang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Zhongshan East Road 305, Nanjing, 210002, China
| | - Fang-Yu Wang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Zhongshan East Road 305, Nanjing, 210002, China.
| |
Collapse
|
112
|
Sohn J, Li L, Zhang L, Settem PR, Honma K, Sharma A, Falkner KL, Novak JM, Sun Y, Kirkwood KL. Porphyromonas gingivalis
indirectly elicits intestinal inflammation by altering the gut microbiota and disrupting epithelial barrier function through IL9‐producing CD4
+
T cells. Mol Oral Microbiol 2021; 37:42-52. [DOI: 10.1111/omi.12359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/29/2021] [Accepted: 12/22/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Jiho Sohn
- Genetics, Genomics, and Bioinformatics Program State University of New York at Buffalo University at Buffalo NY USA
- Department of Medicine State University of New York at Buffalo University at Buffalo NY USA
- Department of Oral Biology State University of New York at Buffalo University at Buffalo NY USA
| | - Lu Li
- Department of Oral Biology State University of New York at Buffalo University at Buffalo NY USA
| | - Lixia Zhang
- Department of Oral Biology State University of New York at Buffalo University at Buffalo NY USA
| | - Prasad R. Settem
- Department of Medicine State University of New York at Buffalo University at Buffalo NY USA
| | - Kiyonobu Honma
- Department of Oral Biology State University of New York at Buffalo University at Buffalo NY USA
| | - Ashu Sharma
- Department of Oral Biology State University of New York at Buffalo University at Buffalo NY USA
| | - Karen L. Falkner
- Department of Oral Biology State University of New York at Buffalo University at Buffalo NY USA
| | - Jan M. Novak
- Department of Medicine State University of New York at Buffalo University at Buffalo NY USA
| | - Yijun Sun
- Department of Microbiology and Immunology State University of New York at Buffalo University at Buffalo NY USA
| | - Keith L. Kirkwood
- Department of Medicine State University of New York at Buffalo University at Buffalo NY USA
- Department of Head & Neck/Plastic & Reconstructive Surgery Roswell Park Comprehensive Cancer Center Buffalo NY USA
| |
Collapse
|
113
|
Rodriguez-Hernandez CJ, Sokoloski KJ, Stocke KS, Dukka H, Jin S, Metzler MA, Zaitsev K, Shpak B, Shen D, Miller DP, Artyomov MN, Lamont RJ, Bagaitkar J. Microbiome-mediated incapacitation of interferon lambda production in the oral mucosa. Proc Natl Acad Sci U S A 2021; 118:e2105170118. [PMID: 34921113 PMCID: PMC8713781 DOI: 10.1073/pnas.2105170118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 11/03/2021] [Indexed: 09/29/2023] Open
Abstract
Here, we show that Porphyromonas gingivalis (Pg), an endogenous oral pathogen, dampens all aspects of interferon (IFN) signaling in a manner that is strikingly similar to IFN suppression employed by multiple viral pathogens. Pg suppressed IFN production by down-regulating several IFN regulatory factors (IRFs 1, 3, 7, and 9), proteolytically degrading STAT1 and suppressing the nuclear translocation of the ISGF3 complex, resulting in profound and systemic repression of multiple interferon-stimulated genes. Pg-induced IFN paralysis was not limited to murine models but was also observed in the oral tissues of human periodontal disease patients, where overabundance of Pg correlated with suppressed IFN generation. Mechanistically, multiple virulence factors and secreted proteases produced by Pg transcriptionally suppressed IFN promoters and also cleaved IFN receptors, making cells refractory to exogenous IFN and inducing a state of broad IFN paralysis. Thus, our data show a bacterial pathogen with equivalence to viruses in the down-regulation of host IFN signaling.
Collapse
Affiliation(s)
- Carlos J Rodriguez-Hernandez
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202
| | - Kevin J Sokoloski
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202
| | - Kendall S Stocke
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202
| | - Himabindu Dukka
- Department of Diagnosis and Oral Health, University of Louisville, Louisville, KY 40202
| | - Shunying Jin
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202
| | - Melissa A Metzler
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202
| | - Konstantin Zaitsev
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Boris Shpak
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Daonan Shen
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202
| | - Daniel P Miller
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202;
| | - Juhi Bagaitkar
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202;
| |
Collapse
|
114
|
Sansores-España LD, Melgar-Rodríguez S, Olivares-Sagredo K, Cafferata EA, Martínez-Aguilar VM, Vernal R, Paula-Lima AC, Díaz-Zúñiga J. Oral-Gut-Brain Axis in Experimental Models of Periodontitis: Associating Gut Dysbiosis With Neurodegenerative Diseases. FRONTIERS IN AGING 2021; 2:781582. [PMID: 35822001 PMCID: PMC9261337 DOI: 10.3389/fragi.2021.781582] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
Periodontitis is considered a non-communicable chronic disease caused by a dysbiotic microbiota, which generates a low-grade systemic inflammation that chronically damages the organism. Several studies have associated periodontitis with other chronic non-communicable diseases, such as cardiovascular or neurodegenerative diseases. Besides, the oral bacteria considered a keystone pathogen, Porphyromonas gingivalis, has been detected in the hippocampus and brain cortex. Likewise, gut microbiota dysbiosis triggers a low-grade systemic inflammation, which also favors the risk for both cardiovascular and neurodegenerative diseases. Recently, the existence of an axis of Oral-Gut communication has been proposed, whose possible involvement in the development of neurodegenerative diseases has not been uncovered yet. The present review aims to compile evidence that the dysbiosis of the oral microbiota triggers changes in the gut microbiota, which creates a higher predisposition for the development of neuroinflammatory or neurodegenerative diseases.The Oral-Gut-Brain axis could be defined based on anatomical communications, where the mouth and the intestine are in constant communication. The oral-brain axis is mainly established from the trigeminal nerve and the gut-brain axis from the vagus nerve. The oral-gut communication is defined from an anatomical relation and the constant swallowing of oral bacteria. The gut-brain communication is more complex and due to bacteria-cells, immune and nervous system interactions. Thus, the gut-brain and oral-brain axis are in a bi-directional relationship. Through the qualitative analysis of the selected papers, we conclude that experimental periodontitis could produce both neurodegenerative pathologies and intestinal dysbiosis, and that periodontitis is likely to induce both conditions simultaneously. The severity of the neurodegenerative disease could depend, at least in part, on the effects of periodontitis in the gut microbiota, which could strengthen the immune response and create an injurious inflammatory and dysbiotic cycle. Thus, dementias would have their onset in dysbiotic phenomena that affect the oral cavity or the intestine. The selected studies allow us to speculate that oral-gut-brain communication exists, and bacteria probably get to the brain via trigeminal and vagus nerves.
Collapse
Affiliation(s)
- Luis Daniel Sansores-España
- Periodontal Biology Laboratory, Faculty of Dentistry, University of Chile, Santiago, Chile
- Faculty of Dentistry, Autonomous University of Yucatán, Mérida, México
| | | | | | - Emilio A. Cafferata
- Department of Periodontology, School of Dentistry, Universidad Científica Del Sur, Lima, Perú
| | | | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Andrea Cristina Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Jaime Díaz-Zúñiga
- Periodontal Biology Laboratory, Faculty of Dentistry, University of Chile, Santiago, Chile
- Department of Medicine, Faculty of Medicine, University of Atacama, Copiapó, Chile
- *Correspondence: Jaime Díaz-Zúñiga, ,
| |
Collapse
|
115
|
Kouki MA, Pritchard AB, Alder JE, Crean S. Do Periodontal Pathogens or Associated Virulence Factors Have a Deleterious Effect on the Blood-Brain Barrier, Contributing to Alzheimer's Disease? J Alzheimers Dis 2021; 85:957-973. [PMID: 34897087 DOI: 10.3233/jad-215103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The central nervous system (CNS) is protected by a highly selective barrier, the blood-brain barrier (BBB), that regulates the exchange and homeostasis of bloodborne molecules, excluding xenobiotics. This barrier forms the first line of defense by prohibiting pathogens from crossing to the CNS. Aging and chronic exposure of the BBB to pathogens renders it permeable, and this may give rise to pathology in the CNS such as Alzheimer's disease (AD). Researchers have linked pathogens associated with periodontitis to neuroinflammation and AD-like pathology in vivo and in vitro. Although the presence of periodontitis-associated bacteria has been linked to AD in several clinical studies as DNA and virulence factors were confirmed in brain samples of human AD subjects, the mechanism by which the bacteria traverse to the brain and potentially influences neuropathology is unknown. In this review, we present current knowledge about the association between periodontitis and AD, the mechanism whereby periodontal pathogens might provoke neuroinflammation and how periodontal pathogens could affect the BBB. We suggest future studies, with emphasis on the use of human in vitro models of cells associated with the BBB to unravel the pathway of entry for these bacteria to the CNS and to reveal the molecular and cellular pathways involved in initiating the AD-like pathology. In conclusion, evidence demonstrate that bacteria associated with periodontitis and their virulence factors are capable of inflecting damage to the BBB and have a role in giving rise to pathology similar to that found in AD.
Collapse
Affiliation(s)
- Mhd Ammar Kouki
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Anna Barlach Pritchard
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Jane Elizabeth Alder
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - StJohn Crean
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| |
Collapse
|
116
|
Park E, Ha J, Lim S, Kim G, Yoon Y. Development of postbiotics by whey bioconversion with Enterococcus faecalis M157 KACC81148BP and Lactococcus lactis CAU2013 KACC81152BP for treating periodontal disease and improving gut health. J Dairy Sci 2021; 104:12321-12331. [PMID: 34600708 DOI: 10.3168/jds.2021-20616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022]
Abstract
This study developed postbiotics with whey bioconversion product produced by Enterococcus faecalis M157 KACC 81148BP, and mixed whey bioconversion products produced by E. faecalis M157 KACC 81148BP and Lactococcus lactis ssp. lactis CAU2013 KACC 81152BP to alleviate periodontitis (PD) and to improve gut health. The powdered whey bioconversion product (EF) produced by E. faecalis M157 KACC 81148BP, mixed whey bioconversion products (EF+LL) from E. faecalis M157 KACC 81148BP and L. lactis CAU2013 KACC 81152BP, and phosphate-buffered saline (PBS; control) were administered orally to PD-induced rats for 8 wk. Infiltration of inflammatory cells and epithelial proliferation in periodontal tissue were found in control, but the lesions were reduced in PD+EF group (administration of EF to PD-induced rats), and no lesions were observed in PD+EF+LL group (administration of EF+LL to PD-induced rats). The bone loss volumes in PD+EF and PD+EF+LL groups were lower than in control. Cytokine production levels related to inflammation were lower and antioxidative stress markers were higher in PD+EF and PD+EF+LL groups than in control for both periodontal tissue and gut. The ratios of Lactobacillus spp. in gut microbiome of PD+EF and PD+EF+LL groups were higher than in control. These results indicate that the whey bioconversion product produced by E. faecalis M157 KACC 81148BP, and mixed whey bioconversion products produced by E. faecalis M157 KACC 81148BP and L. lactis CAU2013 KACC 81152BP are effective on relieving periodontitis and improving the gut health.
Collapse
Affiliation(s)
- E Park
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea
| | - J Ha
- Center for Consumer Health Research, CHA Advanced Research Institute, Seongnam 13488, Korea
| | - S Lim
- Food Standard Research Center, Korea Food Research Institute, Jeollabuk-do 55365, Korea
| | - G Kim
- Department of Animal Science and and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Y Yoon
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea; Risk Analysis Research Center, Sookmyung Women's University, Seoul 04310, Korea.
| |
Collapse
|
117
|
Qian J, Lu J, Huang Y, Wang M, Chen B, Bao J, Wang L, Cui D, Luo B, Yan F. Periodontitis Salivary Microbiota Worsens Colitis. J Dent Res 2021; 101:559-568. [PMID: 34796773 DOI: 10.1177/00220345211049781] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Evidence suggests that periodontitis contributes to the pathogenesis of inflammatory bowel disease, including Crohn's disease and ulcerative colitis. However, few studies have examined the role of swallowing and saliva in the pathogenesis of gastrointestinal diseases. Saliva contains an enormous number of oral bacteria and is swallowed directly into the intestine. Here, we explored the influence of periodontitis salivary microbiota on colonic inflammation and possible mechanisms in dextran sulfate sodium (DSS)-induced colitis. The salivary microbiota was collected from healthy individuals and those with periodontitis and gavaged to C57BL/6 mice. Periodontitis colitis was induced by DSS for 5 d and ligature for 1 wk. The degree of colon inflammation was evaluated through hematoxylin and eosin staining, ELISA, and quantitative real-time polymerase chain reaction. Immune parameters were measured with quantitative real-time polymerase chain reaction, flow cytometry, and immunofluorescence. The gut microbiota and metabolome analyses were performed via 16S rRNA gene sequencing and liquid chromatography-mass spectrometry. Although no significant colitis-associated phenotypic changes were found under physiologic conditions, periodontitis salivary microbiota exacerbated colitis in a periodontitis colitis model after DSS induction. The immune response more closely resembled the pathology of ulcerative colitis, including aggravated macrophage M2 polarization and Th2 cell induction (T helper 2). Inflammatory bowel disease-associated microbiota, such as Blautia, Helicobacter, and Ruminococcus, were changed in DSS-induced colitis after periodontitis salivary microbiota gavage. Periodontitis salivary microbiota decreased unsaturated fatty acid levels and increased arachidonic acid metabolism in DSS-induced colitis, which was positively correlated with Aerococcus and Ruminococcus, suggesting the key role of these metabolic events and microbes in the exacerbating effect of periodontitis salivary microbiota on experimental colitis. Our study demonstrated that periodontitis contributes to the pathogenesis of colitis through the swallowing of salivary microbiota, confirming the role of periodontitis in systemic disease and providing new insights into the etiology of gastrointestinal inflammatory diseases.
Collapse
Affiliation(s)
- J Qian
- Affiliated Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - J Lu
- Affiliated Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Y Huang
- Affiliated Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - M Wang
- Affiliated Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - B Chen
- Affiliated Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - J Bao
- Affiliated Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - L Wang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - D Cui
- Affiliated Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - B Luo
- Affiliated Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - F Yan
- Affiliated Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
118
|
Yamazaki K, Kato T, Tsuboi Y, Miyauchi E, Suda W, Sato K, Nakajima M, Yokoji-Takeuchi M, Yamada-Hara M, Tsuzuno T, Matsugishi A, Takahashi N, Tabeta K, Miura N, Okuda S, Kikuchi J, Ohno H, Yamazaki K. Oral Pathobiont-Induced Changes in Gut Microbiota Aggravate the Pathology of Nonalcoholic Fatty Liver Disease in Mice. Front Immunol 2021; 12:766170. [PMID: 34707622 PMCID: PMC8543001 DOI: 10.3389/fimmu.2021.766170] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Background & Aims Periodontitis increases the risk of nonalcoholic fatty liver disease (NAFLD); however, the underlying mechanisms are unclear. Here, we show that gut dysbiosis induced by oral administration of Porphyromonas gingivalis, a representative periodontopathic bacterium, is involved in the aggravation of NAFLD pathology. Methods C57BL/6N mice were administered either vehicle, P. gingivalis, or Prevotella intermedia, another periodontopathic bacterium with weaker periodontal pathogenicity, followed by feeding on a choline-deficient, l-amino acid-defined, high-fat diet with 60 kcal% fat and 0.1% methionine (CDAHFD60). The gut microbial communities were analyzed by pyrosequencing the 16S ribosomal RNA genes. Metagenomic analysis was used to determine the relative abundance of the Kyoto Encyclopedia of Genes and Genomes pathways encoded in the gut microbiota. Serum metabolites were analyzed using nuclear magnetic resonance-based metabolomics coupled with multivariate statistical analyses. Hepatic gene expression profiles were analyzed via DNA microarray and quantitative polymerase chain reaction. Results CDAHFD60 feeding induced hepatic steatosis, and in combination with bacterial administration, it further aggravated NAFLD pathology, thereby increasing fibrosis. Gene expression analysis of liver samples revealed that genes involved in NAFLD pathology were perturbed, and the two bacteria induced distinct expression profiles. This might be due to quantitative and qualitative differences in the influx of bacterial products in the gut because the serum endotoxin levels, compositions of the gut microbiota, and serum metabolite profiles induced by the ingested P. intermedia and P. gingivalis were different. Conclusions Swallowed periodontopathic bacteria aggravate NAFLD pathology, likely due to dysregulation of gene expression by inducing gut dysbiosis and subsequent influx of gut bacteria and/or bacterial products.
Collapse
Affiliation(s)
- Kyoko Yamazaki
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tamotsu Kato
- Laboratory for Intestinal Ecosystem, RIKEN Centre for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Yuuri Tsuboi
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Eiji Miyauchi
- Laboratory for Intestinal Ecosystem, RIKEN Centre for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Wataru Suda
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Keisuke Sato
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mayuka Nakajima
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mai Yokoji-Takeuchi
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Miki Yamada-Hara
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takahiro Tsuzuno
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Aoi Matsugishi
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoki Takahashi
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Koichi Tabeta
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Nobuaki Miura
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Medical AI Center, Niigata University School of Medicine, Niigata, Japan
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Centre for Integrative Medical Sciences (IMS), Yokohama, Japan
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
| | - Kazuhisa Yamazaki
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Laboratory for Intestinal Ecosystem, RIKEN Centre for Integrative Medical Sciences (IMS), Yokohama, Japan
| |
Collapse
|
119
|
Regulation of meprin metalloproteases in mucosal homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119158. [PMID: 34626680 DOI: 10.1016/j.bbamcr.2021.119158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
Mucus is covering the entire epithelium of the gastrointestinal tract (GIT), building the interface for the symbiosis between microorganisms and their host. Hence, a disrupted mucosal barrier or alterations of proper mucus composition, including the gut microbiota, can cause severe infection and inflammation. Meprin metalloproteases are well-known to cleave various pro-inflammatory molecules, contributing to the onset and progression of pathological conditions including sepsis, pulmonary hypertension or inflammatory bowel disease (IBD). Moreover, meprins have an impact on migration and infiltration of immune cells like monocytes or leukocytes during intestinal inflammation by cleaving tight junction proteins or cell adhesion molecules, thereby disrupting epithelial cell barrier and promoting transendothelial cell migration. Interestingly, both meprin α and meprin β are susceptibility genes for IBD. However, both genes are significantly downregulated in inflamed intestinal tissue in contrast to healthy donors. Therefore, a detailed understanding of the underlying molecular mechanisms is the basis for developing new and effective therapies against manifold pathologies like IBD. This review focuses on the regulation of meprin metalloproteases and its impact on physiological and pathological conditions related to mucosal homeostasis.
Collapse
|
120
|
Porphyromonas gingivalis exacerbates ulcerative colitis via Porphyromonas gingivalis peptidylarginine deiminase. Int J Oral Sci 2021; 13:31. [PMID: 34593756 PMCID: PMC8484350 DOI: 10.1038/s41368-021-00136-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 11/09/2022] Open
Abstract
Ulcerative Colitis (UC) has been reported to be related to Porphyromonas gingivalis (P. gingivalis). Porphyromonas gingivalis peptidylarginine deiminase (PPAD), a virulence factor released by P. gingivalis, is known to induce inflammatory responses. To explore the pathological relationships between PPAD and UC, we used homologous recombination technology to construct a P. gingivalis strain in which the PPAD gene was deleted (Δppad) and a Δppad strain in which the PPAD gene was restored (comΔppad). C57BL/6 mice were orally gavaged with saline, P. gingivalis, Δppad, or comΔppad twice a week for the entire 40 days (days 0-40), and then, UC was induced by dextran sodium sulfate (DSS) solution for 10 days (days 31-40). P. gingivalis and comΔppad exacerbated DDS-induced colitis, which was determined by assessing the parameters of colon length, disease activity index, and histological activity index, but Δppad failed to exacerbate DDS-induced colitis. Flow cytometry and ELISA revealed that compared with Δppad, P. gingivalis, and comΔppad increased T helper 17 (Th17) cell numbers and interleukin (IL)-17 production but decreased regulatory T cells (Tregs) numbers and IL-10 production in the spleens of mice with UC. We also cocultured P. gingivalis, Δppad, or comΔppad with T lymphocytes in vitro and found that P. gingivalis and comΔppad significantly increased Th17 cell numbers and decreased Treg cell numbers. Immunofluorescence staining of colon tissue paraffin sections also confirmed these results. The results suggested that P. gingivalis exacerbated the severity of UC in part via PPAD.
Collapse
|
121
|
Fischer RG, Gomes Filho IS, Cruz SSD, Oliveira VB, Lira-Junior R, Scannapieco FA, Rego RO. What is the future of Periodontal Medicine? Braz Oral Res 2021; 35:e102. [PMID: 34586216 DOI: 10.1590/1807-3107bor-2021.vol35.0102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 01/14/2023] Open
Abstract
In the last five decades, considerable progress has been made towards understanding the etiology and pathogenesis of periodontal diseases and their interactions with the host. The impact of an individual periodontal condition on systemic homeostasis became more evident because of this knowledge and prompted advances in studies that associate periodontitis with systemic diseases and conditions. The term Periodontal Medicine describes how periodontal infection/inflammation can affect extraoral health. This review presents the current scientific evidence on the most investigated associations between periodontitis and systemic diseases and conditions, such as cardiovascular diseases, diabetes, preterm birth and low birth weight, and pneumonia. Additionally, other associations between periodontitis and chronic inflammatory bowel disease, colorectal cancer, and Alzheimer's disease that were recently published and are still poorly studied were described. Thus, the aim of this review was to answer the following question: What is the future of Periodontal Medicine? Epidemiological evidence and the evidence of biological plausibility between periodontitis and general health reinforce the rationale that the study of Periodontal Medicine should continue to advance, along with improvements in the epidemiological method, highlighting the statistical power of the studies, the method for data analysis, the case definition of periodontitis, and the type of periodontal therapy to be applied in intervention studies.
Collapse
Affiliation(s)
- Ricardo Guimarães Fischer
- Universidade do Estado do Rio de Janeiro - UERJ, Department of Periodontology, Rio de Janeiro, RJ, Brazil
| | - Isaac Suzart Gomes Filho
- Universidade Estadual de Feira de Santana - UEFS, Department of Health, Feira de Santana, BA, Brazil
| | - Simone Seixas da Cruz
- Universidade Federal do Recôncavo da Bahia - UFRB, Health Sciences Center, Santo Antônio de Jesus, BA, Brazil
| | - Victor Bento Oliveira
- Universidade Federal do Ceará - UFC, Faculty of Pharmacy, Dentistry and Nursing, Graduate Program in Dentistry, Fortaleza, CE, Brazil
| | | | - Frank Andrew Scannapieco
- The State University of New York, Univeristy at Buffalo, School of Dental Medicine, Department of Oral Biology, Buffalo, NY, USA
| | - Rodrigo Otávio Rego
- Universidade Federal do Ceará - UFC, School of Dentistry, Department of Dentistry, Sobral, CE, Brazil
| |
Collapse
|
122
|
Zhou J, Chen S, Ren J, Zou H, Liu Y, Chen Y, Qiu Y, Zhuang W, Tao J, Yang J. Association of enhanced circulating trimethylamine N-oxide with vascular endothelial dysfunction in periodontitis patients. J Periodontol 2021; 93:770-779. [PMID: 34472093 DOI: 10.1002/jper.21-0159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Accumulating evidences indicate that periodontitis is closely associated with endothelial dysfunction. Trimethylamine-N-oxide (TMAO), a harmful microbiota generated metabolite, has been implicated as a nontraditional risk factor for impaired endothelial function. However, whether increased circulating levels of TMAO in periodontitis patients induces endothelial dysfunction remains unknown. METHODS Patients with periodontitis and periodontally healthy controls were enrolled. Periodontal inflamed surface area (PISA) was calculated to assess the inflammatory burden posed by periodontitis. The circulating TMAO was measured by high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). Vascular endothelial function including peripheral endothelial progenitor cells (EPCs), brachial arterial flow-mediated vasodilation (FMD), and brachial-ankle pulse wave velocity (baPWV) were assessed. We also isolated and cultured EPCs from participants' peripheral blood to investigate the effect of TMAO on EPC functions in vitro. RESULTS One hundred and twenty two patients with Stage III-IV periodontitis and 81 healthy controls were included. Patients with periodontitis presented elevated TMAO (P = 0.002), lower EPCs (P = 0.025), and declined FMD levels (P = 0.005). The TMAO concentrations were correlated with reduced circulating EPCs and FMD levels. Moreover, TMAO can injury EPCs function in vitro, and may induce cell pyroptosis via Bax/caspase-3/GSDME pathway. CONCLUSIONS The present study demonstrates for the first time that circulating TMAO levels are increased in patients with Stage III-IV periodontitis, and correlated with vascular endothelial dysfunction. These findings may provide a novel insight into the mechanism of vascular endothelial dysfunction in patient with periodontitis via TMAO-downregulated EPC functions.
Collapse
Affiliation(s)
- Jiamin Zhou
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shan Chen
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jing Ren
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huiqiong Zou
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yafang Liu
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yanbin Chen
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yumin Qiu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weijie Zhuang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Jun Tao
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Junying Yang
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
123
|
Kuraji R, Sekino S, Kapila Y, Numabe Y. Periodontal disease-related nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: An emerging concept of oral-liver axis. Periodontol 2000 2021; 87:204-240. [PMID: 34463983 PMCID: PMC8456799 DOI: 10.1111/prd.12387] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Periodontal disease, a chronic inflammatory disease of the periodontal tissues, is not only a major cause of tooth loss, but it is also known to exacerbate/be associated with various metabolic disorders, such as obesity, diabetes, dyslipidemia, and cardiovascular disease. Recently, growing evidence has suggested that periodontal disease has adverse effects on the pathophysiology of liver disease. In particular, nonalcoholic fatty liver disease, a hepatic manifestation of metabolic syndrome, has been associated with periodontal disease. Nonalcoholic fatty liver disease is characterized by hepatic fat deposition in the absence of a habitual drinking history, viral infections, or autoimmune diseases. A subset of nonalcoholic fatty liver diseases can develop into more severe and progressive forms, namely nonalcoholic steatohepatitis. The latter can lead to cirrhosis and hepatocellular carcinoma, which are end‐stage liver diseases. Extensive research has provided plausible mechanisms to explain how periodontal disease can negatively affect nonalcoholic fatty liver disease and nonalcoholic steatohepatitis, namely via hematogenous or enteral routes. During periodontitis, the liver is under constant exposure to various pathogenic factors that diffuse systemically from the oral cavity, such as bacteria and their by‐products, inflammatory cytokines, and reactive oxygen species, and these can be involved in disease promotion of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Also, gut microbiome dysbiosis induced by enteral translocation of periodontopathic bacteria may impair gut wall barrier function and promote the transfer of hepatotoxins and enterobacteria to the liver through the enterohepatic circulation. Moreover, in a population with metabolic syndrome, the interaction between periodontitis and systemic conditions related to insulin resistance further strengthens the association with nonalcoholic fatty liver disease. However, most of the pathologic links between periodontitis and nonalcoholic fatty liver disease in humans are provided by epidemiologic observational studies, with the causal relationship not yet being established. Several systematic and meta‐analysis studies also show conflicting results. In addition, the effect of periodontal treatment on nonalcoholic fatty liver disease has hardly been studied. Despite these limitations, the global burden of periodontal disease combined with the recent nonalcoholic fatty liver disease epidemic has important clinical and public health implications. Emerging evidence suggests an association between periodontal disease and liver diseases, and thus we propose the term periodontal disease–related nonalcoholic fatty liver disease or periodontal disease–related nonalcoholic steatohepatitis. Continued efforts in this area will pave the way for new diagnostic and therapeutic approaches based on a periodontologic viewpoint to address this life‐threatening liver disease.
Collapse
Affiliation(s)
- Ryutaro Kuraji
- Department of Life Science Dentistry, The Nippon Dental University, Tokyo, Japan.,Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.,Department of Orofacial Sciences, University of California San Francisco School of Dentistry, San Francisco, California, USA
| | - Satoshi Sekino
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Yvonne Kapila
- Department of Orofacial Sciences, University of California San Francisco School of Dentistry, San Francisco, California, USA
| | - Yukihiro Numabe
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| |
Collapse
|
124
|
Zanatta CAR, Fritz PC, Comelli EM, Ward WE. Intervention with inulin prior to and during sanative therapy to further support periodontal health: study protocol for a randomized controlled trial. Trials 2021; 22:527. [PMID: 34376241 PMCID: PMC8353927 DOI: 10.1186/s13063-021-05504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 08/02/2021] [Indexed: 11/18/2022] Open
Abstract
Background Periodontal disease is a chronic state of inflammation that can destroy the supporting tissues around the teeth, leading to the resorption of alveolar bone. The initial strategy for treating periodontal disease is non-surgical sanative therapy (ST). Periodontal disease can also induce dysbiosis in the gut microbiota and contribute to low-grade systemic inflammation. Prebiotic fibers such as inulin can selectively alter the intestinal microbiota and support homeostasis by improving gut barrier functions and preventing inflammation. Providing an inulin supplement prior to and post-ST may influence periodontal health while providing insight into the complex relationship between periodontal disease and the gut microbiota. The primary objective is to determine if inulin is more effective than the placebo at improving clinical periodontal outcomes including probing depth (PD) and bleeding on probing (BOP). Secondary objectives include determining the effects of inulin supplementation pre- and post-ST on salivary markers of inflammation and periodontal-associated pathogens, as these outcomes reflect more rapid changes that can occur. Methods We will employ a single-center, randomized, double-blind, placebo-controlled study design and recruit and randomize 170 participants who are receiving ST to manage the periodontal disease to the intervention (inulin) or placebo (maltodextrin) group. A pilot study will be embedded within the randomized controlled trial using the first 48 participants to test the feasibility for the larger, powered trial. The intervention period will begin 4 weeks before ST through to their follow-up appointment at 10 weeks post-ST. Clinical outcomes of periodontal disease including the number of sites with PD ≥ 4 mm and the presence of BOP will be measured at baseline and post-ST. Salivary markers of inflammation, periodontal-associated pathogens, body mass index, and diet will be measured at baseline, pre-ST (after 4 weeks of intervention), and post-ST (after 14 weeks of intervention). Discussion We expect that inulin will enhance the positive effect of ST on the management of periodontal disease. The results of the study will provide guidance regarding the use of prebiotics prior to and as a supportive adjunct to ST for periodontal health. Trial registration ClinicalTrials.gov NCT04670133. Registered on 17 December 2020.
Collapse
Affiliation(s)
- Carly A R Zanatta
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada.,Center for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Peter C Fritz
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada.,Center for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada.,Periodontal Wellness & Implant Surgery, Fonthill, ON, Canada
| | - Elena M Comelli
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada.,Department of Nutritional Sciences and Joannah and Brian Lawson Centre for Child Nutrition, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Wendy E Ward
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada. .,Center for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada.
| |
Collapse
|
125
|
Thomas C, Minty M, Vinel A, Canceill T, Loubières P, Burcelin R, Kaddech M, Blasco-Baque V, Laurencin-Dalicieux S. Oral Microbiota: A Major Player in the Diagnosis of Systemic Diseases. Diagnostics (Basel) 2021; 11:1376. [PMID: 34441309 PMCID: PMC8391932 DOI: 10.3390/diagnostics11081376] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023] Open
Abstract
The oral cavity is host to a complex and diverse microbiota community which plays an important role in health and disease. Major oral infections, i.e., caries and periodontal diseases, are both responsible for and induced by oral microbiota dysbiosis. This dysbiosis is known to have an impact on other chronic systemic diseases, whether triggering or aggravating them, making the oral microbiota a novel target in diagnosing, following, and treating systemic diseases. In this review, we summarize the major roles that oral microbiota can play in systemic disease development and aggravation and also how novel tools can help investigate this complex ecosystem. Finally, we describe new therapeutic approaches based on oral bacterial recolonization or host modulation therapies. Collaboration in diagnosis and treatment between oral specialists and general health specialists is of key importance in bridging oral and systemic health and disease and improving patients' wellbeing.
Collapse
Affiliation(s)
- Charlotte Thomas
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Matthieu Minty
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Alexia Vinel
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Thibault Canceill
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- UMR CNRS 5085, Centre Interuniversitaire de Recherche et d’Ingénierie des Matériaux (CIRIMAT), Université Paul Sabatier, 35 Chemin des Maraichers, CEDEX 9, 31062 Toulouse, France
| | - Pascale Loubières
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
| | - Remy Burcelin
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
| | - Myriam Kaddech
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Vincent Blasco-Baque
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Sara Laurencin-Dalicieux
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- INSERM UMR 1295, Centre d’Epidémiologie et de Recherche en Santé des Populations de Toulouse (CERPOP), Epidémiologie et Analyse en Santé Publique, Risques, Maladies Chroniques et Handicaps, 37 Allées Jules Guesdes, 31000 Toulouse, France
| |
Collapse
|
126
|
Jiménez C, Garrido M, Pussinen P, Bordagaray MJ, Fernández A, Vega C, Chaparro A, Hoare A, Hernández M. Systemic burden and cardiovascular risk to Porphyromonas species in apical periodontitis. Clin Oral Investig 2021; 26:993-1001. [PMID: 34313848 DOI: 10.1007/s00784-021-04083-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Porphyromonas (P.) species (spp.) are a major etiological agent of apical periodontitis (AP), which in turn represents a risk factor for cardiovascular diseases. This study explored the associations between endodontic infection with Porphyromonas species, the systemic bacterial burden, and cardiovascular risk, based on high-sensitivity C-reactive protein (hsCRP), in young adults with AP. MATERIALS AND METHODS Cross-sectional study. Otherwise, healthy individuals with AP and controls (n = 80, ≤ 40 years) were recruited at the University Dental Clinic. Oral parameters and classic cardiovascular risk factors were registered. Endodontic Porphyromonas endodontalis and Porphyromonas gingivalis were identified using conventional PCR. Serum concentrations of anti-P. endodontalis and anti-P. gingivalis antibodies, and endotoxins were determined through ELISA and Limulus-amebocyte assays. Serum hsCRP was determined for cardiovascular risk stratification. RESULTS Intracanal detection of P. endodontalis and P. gingivalis in AP were 33.3% and 22.9%, respectively. Serum anti-P. endodontalis and anti-P. gingivalis IgG was higher in AP than controls (p < 0.05 and p = 0.057, respectively). Intracanal P. endodontalis associated with higher endotoxemia (p < 0.05). Among endodontic factors, the presence (OR 4.2-5.5, p < 0.05) and the number of apical lesions (OR 2.3, p < 0.05) associated with moderate-severe cardiovascular risk, whereas anti-P. endodontalis IgG were protective (OR 0.3, p > 0.05). CONCLUSIONS AP and infection with P. endodontalis positively associated with cardiovascular risk based on hsCRP levels and endotoxemia, respectively, whereas anti-P. endodontalis IgG response seems to be protective against low-grade systemic inflammation. CLINICAL RELEVANCE Apical periodontitis and endodontic P. endodontalis can influence the systemic burden with impact on the surrogate cardiovascular risk marker hsCRP, providing mechanistic links.
Collapse
Affiliation(s)
- Constanza Jiménez
- Department of Oral Pathology, Faculty of Dentistry, Universidad Andrés Bello, Santiago, Chile.,Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Mauricio Garrido
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Pirkko Pussinen
- Department of Oral and Maxillofacial Diseases, Helsinki University and Helsinki University Central Hospital, Helsinki, Finland
| | - María José Bordagaray
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Alejandra Fernández
- Department of Oral Pathology, Faculty of Dentistry, Universidad Andrés Bello, Santiago, Chile.,Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Claudia Vega
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Alejandra Chaparro
- Department of Periodontology, Centro de Investigación E Innovación Biomédica (CIIB), Faculty of Dentistry, Universidad de Los Andes, Santiago, Chile
| | - Anilei Hoare
- Laboratory of Oral Microbiology, Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Olivos 943, Box 8380492, Independencia , Santiago, Chile.
| | - Marcela Hernández
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile. .,Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Olivos 943, Box 8380492, Independencia , Santiago, Chile.
| |
Collapse
|
127
|
Liu Y, Huang W, Wang J, Ma J, Zhang M, Lu X, Liu J, Kou Y. Multifaceted Impacts of Periodontal Pathogens in Disorders of the Intestinal Barrier. Front Immunol 2021; 12:693479. [PMID: 34386004 PMCID: PMC8353228 DOI: 10.3389/fimmu.2021.693479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Periodontal disease, a common inflammatory disease, is considered a hazardous factor that contributes to the development of diseases of the digestive system as well as other systems. The bridge between periodontitis and systemic diseases is believed to be periodontal pathogens. The intestine, as part of the lower gastrointestinal tract, has a close connection with the oral cavity. Within the intestine, the intestinal barrier acts as a multifunctional system including microbial, mucous, physical and immune barrier. The intestinal barrier forms the body's first line of defense against external pathogens; its breakdown can lead to pathological changes in the gut and other organs or systems. Reports in the literature have described how oral periodontal pathogens and pathobiont-reactive immune cells can transmigrate to the intestinal mucosa, causing the destruction of intestinal barrier homeostasis. Such findings might lead to novel ideas for investigating the relationship between periodontal disease and other systemic diseases. This review summarizes studies on the effects of periodontal pathogens on the intestinal barrier, which might contribute to understanding the link between periodontitis and gastrointestinal diseases.
Collapse
Affiliation(s)
- Yingman Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Wenxuan Huang
- School of Stomatology, Shenyang Medical College, Shenyang, China
| | - Jiaqi Wang
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Jiaojiao Ma
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Manman Zhang
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xiaoying Lu
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Jie Liu
- Science Experiment Center, China Medical University, Shenyang, China
| | - Yurong Kou
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
128
|
Involvement of Gut Microbiota in Schizophrenia and Treatment Resistance to Antipsychotics. Biomedicines 2021; 9:biomedicines9080875. [PMID: 34440078 PMCID: PMC8389684 DOI: 10.3390/biomedicines9080875] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/26/2022] Open
Abstract
The gut microbiota is constituted by more than 40,000 bacterial species involved in key processes including high order brain functions. Altered composition of gut microbiota has been implicated in psychiatric disorders and in modulating the efficacy and safety of psychotropic medications. In this work we characterized the composition of the gut microbiota in 38 patients with schizophrenia (SCZ) and 20 healthy controls (HC), and tested if SCZ patients with different response to antipsychotics (18 patients with treatment resistant schizophrenia (TRS), and 20 responders (R)) had specific patterns of gut microbiota composition associated with different response to antipsychotics. Moreover, we also tested if patients treated with typical antipsychotics (n = 20) presented significant differences when compared to patients treated with atypical antipsychotics (n = 31). Our findings showed the presence of distinct composition of gut microbiota in SCZ versus HC, with several bacteria at the different taxonomic levels only present in either one group or the other. Similar findings were observed also depending on treatment response and exposure to diverse classes of antipsychotics. Our results suggest that composition of gut microbiota could constitute a biosignatures of SCZ and TRS.
Collapse
|
129
|
Suárez LJ, Arboleda S, Angelov N, Arce RM. Oral Versus Gastrointestinal Mucosal Immune Niches in Homeostasis and Allostasis. Front Immunol 2021; 12:705206. [PMID: 34290715 PMCID: PMC8287884 DOI: 10.3389/fimmu.2021.705206] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
Different body systems (epidermis, respiratory tract, cornea, oral cavity, and gastrointestinal tract) are in continuous direct contact with innocuous and/or potentially harmful external agents, exhibiting dynamic and highly selective interaction throughout the epithelia, which function as both a physical and chemical protective barrier. Resident immune cells in the epithelia are constantly challenged and must distinguish among antigens that must be either tolerated or those to which a response must be mounted for. When such a decision begins to take place in lymphoid foci and/or mucosa-associated lymphoid tissues, the epithelia network of immune surveillance actively dominates both oral and gastrointestinal compartments, which are thought to operate in the same immune continuum. However, anatomical variations clearly differentiate immune processes in both the mouth and gastrointestinal tract that demonstrate a wide array of independent immune responses. From single vs. multiple epithelia cell layers, widespread cell-to-cell junction types, microbial-associated recognition receptors, dendritic cell function as well as related signaling, the objective of this review is to specifically contrast the current knowledge of oral versus gut immune niches in the context of epithelia/lymphoid foci/MALT local immunity and systemic output. Related differences in 1) anatomy 2) cell-to-cell communication 3) antigen capture/processing/presentation 4) signaling in regulatory vs. proinflammatory responses and 5) systemic output consequences and its relations to disease pathogenesis are discussed.
Collapse
Affiliation(s)
- Lina J Suárez
- Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Silie Arboleda
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nikola Angelov
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Roger M Arce
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
130
|
Fernandez-Cantos MV, Garcia-Morena D, Iannone V, El-Nezami H, Kolehmainen M, Kuipers OP. Role of microbiota and related metabolites in gastrointestinal tract barrier function in NAFLD. Tissue Barriers 2021; 9:1879719. [PMID: 34280073 PMCID: PMC8489918 DOI: 10.1080/21688370.2021.1879719] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 11/06/2022] Open
Abstract
The Gastrointestinal (GI) tract is composed of four main barriers: microbiological, chemical, physical and immunological. These barriers play important roles in maintaining GI tract homeostasis. In the crosstalk between these barriers, microbiota and related metabolites have been shown to influence GI tract barrier integrity, and alterations of the gut microbiome might lead to an increase in intestinal permeability. As a consequence, translocation of bacteria and their products into the circulatory system increases, reaching proximal and distal tissues, such as the liver. One of the most prevalent chronic liver diseases, Nonalcoholic Fatty Liver Disease (NAFLD), has been associated with an altered gut microbiota and barrier integrity. However, the causal link between them has not been fully elucidated yet. In this review, we aim to highlight relevant bacterial taxa and their related metabolites affecting the GI tract barriers in the context of NAFLD, discussing their implications in gut homeostasis and in disease.
Collapse
Affiliation(s)
- Maria Victoria Fernandez-Cantos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Diego Garcia-Morena
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Valeria Iannone
- Institute of Public Health and Clinical Nutrition, Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Hani El-Nezami
- Molecular and Cell Biology Division, School of Biological Sciences, University of Hong Kong, Hong Kong SAR
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Oscar P. Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
131
|
Yoshizawa K, Moroi A, Iguchi R, Yokomichi H, Ogihara S, Watanabe K, Nakajima K, Kirito K, Ueki K. Association between the point-rating system used for oral health and the prevalence of Gram-negative bacilli in hematological inpatients: A retrospective cohort study. Medicine (Baltimore) 2021; 100:e26111. [PMID: 34087858 PMCID: PMC8183721 DOI: 10.1097/md.0000000000026111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/10/2021] [Indexed: 01/04/2023] Open
Abstract
Gram-negative bacteremia is a major cause of death among hematology inpatients who require heavy-dose chemotherapy and hematopoietic stem cell transplantation. Gram-negative bacillus (GNB) is more likely to be detected when the oral health is poor. However, there is a dearth of studies on the relationship between oral assessment and prevalence of GNB in hematology inpatients.This retrospective study aimed to evaluate the relationship between the original point-rating system for oral health examinations (point-oral exam) and the prevalence of GNB in hematology inpatients at the hematology ward of the Yamanashi University Hospital. GNB was detected by cultivating samples from the sputum and blood of each patient.A total of 129 subjects underwent a medical checkup and point-oral exam. The sputum and blood culture results of 55 patients were included in this study. The total points of patients positive for GNB (n = 25, 45.5%) were significantly higher than those who were negative for GNB (total score: median, 25th, 75th, percentile; 6 [4, 7] vs 2 [1, 4]; P = .00016). Based on the receiver operating characteristic analysis, a cutoff score of 5 proved to be most useful to detect GNB.An oral evaluation with a cutoff value of 5 or higher in the point-oral exam might indicate the need for a more thorough oral management to prevent the development of systemic infections from GNB.
Collapse
Affiliation(s)
- Kunio Yoshizawa
- Department of Oral and Maxillofacial Surgery, Division of Medicine, Interdisciplinary Graduate School, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi
| | - Akinori Moroi
- Department of Oral and Maxillofacial Surgery, Division of Medicine, Interdisciplinary Graduate School, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi
| | - Ran Iguchi
- Department of Oral and Maxillofacial Surgery, Division of Medicine, Interdisciplinary Graduate School, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi
| | | | | | | | - Kei Nakajima
- Department of Hematology and Oncology, University of Yamanashi, Japan
| | - Keita Kirito
- Department of Hematology and Oncology, University of Yamanashi, Japan
| | - Koichiro Ueki
- Department of Oral and Maxillofacial Surgery, Division of Medicine, Interdisciplinary Graduate School, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi
| |
Collapse
|
132
|
Mkaouar H, Mariaule V, Rhimi S, Hernandez J, Kriaa A, Jablaoui A, Akermi N, Maguin E, Lesner A, Korkmaz B, Rhimi M. Gut Serpinome: Emerging Evidence in IBD. Int J Mol Sci 2021; 22:ijms22116088. [PMID: 34200095 PMCID: PMC8201313 DOI: 10.3390/ijms22116088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are incurable disorders whose prevalence and global socioeconomic impact are increasing. While the role of host genetics and immunity is well documented, that of gut microbiota dysbiosis is increasingly being studied. However, the molecular basis of the dialogue between the gut microbiota and the host remains poorly understood. Increased activity of serine proteases is demonstrated in IBD patients and may contribute to the onset and the maintenance of the disease. The intestinal proteolytic balance is the result of an equilibrium between the proteases and their corresponding inhibitors. Interestingly, the serine protease inhibitors (serpins) encoded by the host are well reported; in contrast, those from the gut microbiota remain poorly studied. In this review, we provide a concise analysis of the roles of serine protease in IBD physiopathology and we focus on the serpins from the gut microbiota (gut serpinome) and their relevance as a promising therapeutic approach.
Collapse
Affiliation(s)
- Héla Mkaouar
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (H.M.); (V.M.); (S.R.); (A.K.); (A.J.); (N.A.); (E.M.)
| | - Vincent Mariaule
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (H.M.); (V.M.); (S.R.); (A.K.); (A.J.); (N.A.); (E.M.)
| | - Soufien Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (H.M.); (V.M.); (S.R.); (A.K.); (A.J.); (N.A.); (E.M.)
| | - Juan Hernandez
- Department of Clinical Sciences, Nantes-Atlantic College of Veterinary Medicine and Food Sciences (Oniris), University of Nantes, 101 Route de Gachet, 44300 Nantes, France;
| | - Aicha Kriaa
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (H.M.); (V.M.); (S.R.); (A.K.); (A.J.); (N.A.); (E.M.)
| | - Amin Jablaoui
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (H.M.); (V.M.); (S.R.); (A.K.); (A.J.); (N.A.); (E.M.)
| | - Nizar Akermi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (H.M.); (V.M.); (S.R.); (A.K.); (A.J.); (N.A.); (E.M.)
| | - Emmanuelle Maguin
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (H.M.); (V.M.); (S.R.); (A.K.); (A.J.); (N.A.); (E.M.)
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Uniwersytet Gdanski, Chemistry, Wita Stwosza 63, PL80-308 Gdansk, Poland;
| | - Brice Korkmaz
- INSERM UMR-1100, “Research Center for Respiratory Diseases” and University of Tours, 37032 Tours, France;
| | - Moez Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (H.M.); (V.M.); (S.R.); (A.K.); (A.J.); (N.A.); (E.M.)
- Correspondence:
| |
Collapse
|
133
|
Obesity-Related Gut Microbiota Aggravates Alveolar Bone Destruction in Experimental Periodontitis through Elevation of Uric Acid. mBio 2021; 12:e0077121. [PMID: 34061595 PMCID: PMC8262938 DOI: 10.1128/mbio.00771-21] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Obesity is a risk factor for periodontal disease (PD). Initiation and progression of PD are modulated by complex interactions between oral dysbiosis and host responses. Although obesity is associated with increased susceptibility to bacterial infection, the detailed mechanisms that connect obesity and susceptibility to PD remain elusive. Using fecal microbiota transplantation and a ligature-induced PD model, we demonstrated that gut dysbiosis-associated metabolites from high-fat diet (HFD)-fed mice worsen alveolar bone destruction. Fecal metabolomics revealed elevated purine degradation pathway activity in HFD-fed mice, and recipient mice had elevated levels of serum uric acid upon PD induction. Furthermore, PD induction caused more severe bone destruction in hyperuricemic than normouricemic mice, and the worsened bone destruction was completely abrogated by allopurinol, a xanthine oxidase inhibitor. Thus, obesity increases the risk of PD by increasing production of uric acid mediated by gut dysbiosis.
Collapse
|
134
|
de Oliveira AM, Lourenço TGB, Colombo APV. Impact of systemic probiotics as adjuncts to subgingival instrumentation on the oral-gut microbiota associated with periodontitis: A randomized controlled clinical trial. J Periodontol 2021; 93:31-44. [PMID: 34028826 DOI: 10.1002/jper.21-0078] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/25/2021] [Accepted: 05/16/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND The oral-gut axis may be a route linking periodontal and systemic diseases. Probiotics could be an alternative for the treatment of microbial dysbiotic conditions, including periodontitis. This randomized placebo-controlled clinical trial evaluated the short-term efficacy of systemic probiotics adjunctive to subgingival instrumentation (SI) in promoting a better restoration of the oral-gut microbiotas and greater periodontal clinical outcome. METHODS Systemically healthy adults with untreated periodontitis were recruited from a Dental School setting and allocated to receive SI plus placebo (n = 24) or probiotics (n = 24), one capsule/day for 30 days. Subgingival biofilm and stool were obtained at baseline and 2-months post-therapy for microbiological analyses by checkerboard and 16S rRNA gene sequencing. Differences in all parameters between placebo (n = 23) and probiotics (n = 19) groups were assessed by non-parametric tests. RESULTS Most subgingival species and α-diversity decreased after therapies (P <0.05), whereas gut composition/diversity were slightly or not affected by treatments. In parallel, significant clinical improvement (P <0.05) was similar between groups, although a trend for a higher proportion of poor responders in the placebo (60.8%) than the probiotic group (31.5%) was observed (P = 0.07). Strong correlations between oral and fecal species were found (P <0.01), and distinct species related to poor response for different therapies (P <0.05). Patients were classified into five periodontitis oral-gut microbial clusters, which correlated differently with attachment loss after therapies (P <0.05). CONCLUSION Systemic probiotics combined with SI did not provide short-term additional clinical or microbiological benefits in the treatment of periodontitis; however, response to therapies seemed to correlate with distinct oral-gut microbial profiles.
Collapse
Affiliation(s)
- Adriana Miranda de Oliveira
- Division of post-graduate Periodontics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Oral Microbiology Laboratory, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Talita Gomes Baêta Lourenço
- Oral Microbiology Laboratory, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana Paula Vieira Colombo
- Division of post-graduate Periodontics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Oral Microbiology Laboratory, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
135
|
Oral Microbiota of Children Is Conserved across Han, Tibetan and Hui Groups and Is Correlated with Diet and Gut Microbiota. Microorganisms 2021; 9:microorganisms9051030. [PMID: 34064692 PMCID: PMC8151815 DOI: 10.3390/microorganisms9051030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 01/12/2023] Open
Abstract
The oral microbiota can be affected by several factors; however, little is known about the relationship between diet, ethnicity and commensal oral microbiota among school children living in close geographic proximity. In addition, the relationship between the oral and gut microbiota remains unclear. We collected saliva from 60 school children from the Tibetan, Han and Hui ethnicities for a 16S rRNA gene sequencing analysis and comparison with previously collected fecal samples. The study revealed that Bacteroidetes and Proteobacteria were the dominant phyla in the oral microbiota. The Shannon diversity was lowest in the Tibetan group. A PCA showed a substantial overlap in the distribution of the taxa, indicating a high degree of conservation among the oral microbiota across ethnic groups while the enrichment of a few specific taxa was observed across different ethnic groups. The consumption of seafood, poultry, sweets and vegetables was significantly correlated with multiple oral microbiotas. Furthermore, 123 oral genera were significantly associated with 191 gut genera. A principal coordinate analysis revealed that the oral microbiota clustered separately from the gut microbiota. This work extends the findings of previous studies comparing microbiota from human populations and provides a basis for the exploration of the interactions governing the tri-partite relationship between diet, oral microbiota and gut microbiota.
Collapse
|
136
|
Park SY, Hwang BO, Lim M, Ok SH, Lee SK, Chun KS, Park KK, Hu Y, Chung WY, Song NY. Oral-Gut Microbiome Axis in Gastrointestinal Disease and Cancer. Cancers (Basel) 2021; 13:2124. [PMID: 33924899 PMCID: PMC8125773 DOI: 10.3390/cancers13092124] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
It is well-known that microbiota dysbiosis is closely associated with numerous diseases in the human body. The oral cavity and gut are the two largest microbial habitats, playing a major role in microbiome-associated diseases. Even though the oral cavity and gut are continuous regions connected through the gastrointestinal tract, the oral and gut microbiome profiles are well-segregated due to the oral-gut barrier. However, the oral microbiota can translocate to the intestinal mucosa in conditions of the oral-gut barrier dysfunction. Inversely, the gut-to-oral microbial transmission occurs as well in inter- and intrapersonal manners. Recently, it has been reported that oral and gut microbiomes interdependently regulate physiological functions and pathological processes. Oral-to-gut and gut-to-oral microbial transmissions can shape and/or reshape the microbial ecosystem in both habitats, eventually modulating pathogenesis of disease. However, the oral-gut microbial interaction in pathogenesis has been underappreciated to date. Here, we will highlight the oral-gut microbiome crosstalk and its implications in the pathogenesis of the gastrointestinal disease and cancer. Better understanding the role of the oral-gut microbiome axis in pathogenesis will be advantageous for precise diagnosis/prognosis and effective treatment.
Collapse
Affiliation(s)
- Se-Young Park
- Department of Applied Life Science, The Graduate School, Yonsei University, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea; (S.-Y.P.); (B.-O.H.); (S.-H.O.)
| | - Byeong-Oh Hwang
- Department of Applied Life Science, The Graduate School, Yonsei University, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea; (S.-Y.P.); (B.-O.H.); (S.-H.O.)
| | - Mihwa Lim
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| | - Seung-Ho Ok
- Department of Applied Life Science, The Graduate School, Yonsei University, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea; (S.-Y.P.); (B.-O.H.); (S.-H.O.)
| | - Sun-Kyoung Lee
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42601, Korea;
| | - Kwang-Kyun Park
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| | - Yinling Hu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA;
| | - Won-Yoon Chung
- Department of Oral Biology, Oral Cancer Research Institute, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea;
| | - Na-Young Song
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| |
Collapse
|
137
|
Abstract
The intestinal surface is constitutively exposed to diverse antigens, such as food antigens, food-borne pathogens, and commensal microbes. Intestinal epithelial cells have developed unique barrier functions that prevent the translocation of potentially hostile antigens into the body. Disruption of the epithelial barrier increases intestinal permeability, resulting in leaky gut syndrome (LGS). Clinical reports have suggested that LGS contributes to autoimmune diseases such as type 1 diabetes, multiple sclerosis, rheumatoid arthritis, and celiac disease. Furthermore, the gut commensal microbiota plays a critical role in regulating host immunity; abnormalities of the microbial community, known as dysbiosis, are observed in patients with autoimmune diseases. However, the pathological links among intestinal dysbiosis, LGS, and autoimmune diseases have not been fully elucidated. This review discusses the current understanding of how commensal microbiota contributes to the pathogenesis of autoimmune diseases by modifying the epithelial barrier.
Collapse
Affiliation(s)
- Yusuke Kinashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan,International Research and Developmental Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan,*Correspondence: Koji Hase,
| |
Collapse
|
138
|
Kinashi Y, Hase K. Partners in Leaky Gut Syndrome: Intestinal Dysbiosis and Autoimmunity. Front Immunol 2021; 12:673708. [PMID: 33968085 PMCID: PMC8100306 DOI: 10.3389/fimmu.2021.673708] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal surface is constitutively exposed to diverse antigens, such as food antigens, food-borne pathogens, and commensal microbes. Intestinal epithelial cells have developed unique barrier functions that prevent the translocation of potentially hostile antigens into the body. Disruption of the epithelial barrier increases intestinal permeability, resulting in leaky gut syndrome (LGS). Clinical reports have suggested that LGS contributes to autoimmune diseases such as type 1 diabetes, multiple sclerosis, rheumatoid arthritis, and celiac disease. Furthermore, the gut commensal microbiota plays a critical role in regulating host immunity; abnormalities of the microbial community, known as dysbiosis, are observed in patients with autoimmune diseases. However, the pathological links among intestinal dysbiosis, LGS, and autoimmune diseases have not been fully elucidated. This review discusses the current understanding of how commensal microbiota contributes to the pathogenesis of autoimmune diseases by modifying the epithelial barrier.
Collapse
Affiliation(s)
- Yusuke Kinashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan.,International Research and Developmental Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
139
|
Drift of the Subgingival Periodontal Microbiome during Chronic Periodontitis in Type 2 Diabetes Mellitus Patients. Pathogens 2021; 10:pathogens10050504. [PMID: 33922308 PMCID: PMC8145315 DOI: 10.3390/pathogens10050504] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Since periodontitis and type 2 diabetes mellitus are complex diseases, a thorough understanding of their pathogenesis requires knowing the relationship of these pathologies with other disorders and environmental factors. In this study, the representability of the subgingival periodontal microbiome of 46 subjects was studied by 16S rRNA gene sequencing and shotgun sequencing of pooled samples. We examined 15 patients with chronic periodontitis (CP), 15 patients with chronic periodontitis associated with type 2 diabetes mellitus (CPT2DM), and 16 healthy subjects (Control). The severity of generalized chronic periodontitis in both periodontitis groups of patients (CP and CPT2DM) was moderate (stage II). The male to female ratios were approximately equal in each group (22 males and 24 females); the average age of the subjects was 53.9 ± 7.3 and 54.3 ± 7.2 years, respectively. The presence of overweight patients (Body Mass Index (BMI) 30–34.9 kg/m2) and patients with class 1–2 obesity (BMI 35–45.9 kg/m2) was significantly higher in the CPT2DM group than in patients having only chronic periodontitis or in the Control group. However, there was no statistically significant difference in all clinical indices between the CP and CPT2DM groups. An analysis of the metagenomic data revealed that the alpha diversity in the CPT2DM group was increased compared to that in the CP and Control groups. The microbiome biomarkers associated with experimental groups were evaluated. In both groups of patients with periodontitis, the relative abundance of Porphyromonadaceae was increased compared to that in the Control group. The CPT2DM group was characterized by a lower relative abundance of Streptococcaceae/Pasteurellaceae and a higher abundance of Leptotrichiaceae compared to those in the CP and Control groups. Furthermore, the CP and CPT2DM groups differed in terms of the relative abundance of Veillonellaceae (which was decreased in the CPT2DM group compared to CP) and Neisseriaceae (which was increased in the CPT2DM group compared to CP). In addition, differences in bacterial content were identified by a combination of shotgun sequencing of pooled samples and genome-resolved metagenomics. The results indicate that there are subgingival microbiome-specific features in patients with chronic periodontitis associated with type 2 diabetes mellitus.
Collapse
|
140
|
Liu H, Xu Y, Cui Q, Liu N, Chu F, Cong B, Wu Y. Effect of Psoralen on the Intestinal Barrier and Alveolar Bone Loss in Rats With Chronic Periodontitis. Inflammation 2021; 44:1843-1855. [PMID: 33839980 DOI: 10.1007/s10753-021-01462-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/25/2022]
Abstract
To study the effects of psoralen on the intestinal barrier and alveolar bone loss (ABL) in rats with chronic periodontitis. Fifty-two 8-week-old specific pathogen-free (SPF) male Sprague-Dawley (SD) rats were randomly divided into the following four groups: Control group (Control), psoralen group of healthy rats (Pso), periodontitis model group (Model), and psoralen group of periodontitis rats (Peri+Pso). The alveolar bone resorption of maxillary molars was observed via haematoxylin-eosin staining and micro-computed tomography. The expression level of receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) in periodontal tissues was evaluated by immunofluorescence staining. The changes in serum tumour necrosis factor (TNF)-α, interleukin (IL)-10, IL-6, intestinal mucosal occludin, and claudin-5 were detected using enzyme-linked immunosorbent assay (ELISA). The level of intestinal mucosal NOD2 was detected using immunohistochemical methods. DNA was extracted from the intestinal contents and the 16s rRNA gene was sequenced using an Illumina MiSeq platform. The expression of NOD2 protein in the intestinal tract of periodontitis rats decreased after intragastric psoralen administration. Psoralen increased the intestinal microbiota diversity of rats. The level of serum pro-inflammatory factor TNF-α decreased and the level of anti-inflammatory factor IL-10 increased. ABL was observed to be significantly decreased in rats treated with psoralen. Psoralen decreased the RANKL/OPG ratio of periodontitis rats. Psoralen may affect the intestinal immune barrier and ecological barrier, mediate immune response, promote the secretion of anti-inflammatory factor IL-10, and reduce the secretion of the pro-inflammatory factor TNF-α, thus reducing ABL in experimental periodontitis in rats.
Collapse
Affiliation(s)
- Hua Liu
- Department of Stomatology, School of Stomatology of Qingdao University, Qingdao, 266003, Shandong Province, China
| | - Yingjie Xu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, No.17 Dexian Road, Shinan District, Qingdao, 266001, Shandong Province, China
| | - Qi Cui
- Qingdao Stomatological Hospital Affiliated to Qingdao University, No.17 Dexian Road, Shinan District, Qingdao, 266001, Shandong Province, China
| | - Ning Liu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, No.17 Dexian Road, Shinan District, Qingdao, 266001, Shandong Province, China
| | - Fuhang Chu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, No.17 Dexian Road, Shinan District, Qingdao, 266001, Shandong Province, China
| | - Beibei Cong
- Qingdao Stomatological Hospital Affiliated to Qingdao University, No.17 Dexian Road, Shinan District, Qingdao, 266001, Shandong Province, China
| | - Yingtao Wu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, No.17 Dexian Road, Shinan District, Qingdao, 266001, Shandong Province, China.
| |
Collapse
|
141
|
Oral–Gut Microbiome Axis in Gastrointestinal Disease and Cancer. Cancers (Basel) 2021. [DOI: 10.3390/cancers13071748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is well-known that microbiota dysbiosis is closely associated with numerous diseases in the human body. The oral cavity and gut are the two largest microbial habitats, playing a major role in microbiome-associated diseases. Even though the oral cavity and gut are continuous regions connected through the gastrointestinal tract, the oral and gut microbiome profiles are well-segregated due to the oral–gut barrier. However, the oral microbiota can translocate to the intestinal mucosa in conditions of the oral–gut barrier dysfunction. Inversely, the gut-to-oral microbial transmission occurs as well in inter- and intrapersonal manners. Recently, it has been reported that oral and gut microbiomes interdependently regulate physiological functions and pathological processes. Oral-to-gut and gut-to-oral microbial transmissions can shape and/or reshape the microbial ecosystem in both habitats, eventually modulating pathogenesis of disease. However, the oral–gut microbial interaction in pathogenesis has been underappreciated to date. Here, we will highlight the oral–gut microbiome crosstalk and its implications in the pathogenesis of the gastrointestinal disease and cancer. Better understanding the role of the oral–gut microbiome axis in pathogenesis will be advantageous for precise diagnosis/prognosis and effective treatment.
Collapse
|
142
|
Zaiss MM, Joyce Wu HJ, Mauro D, Schett G, Ciccia F. The gut-joint axis in rheumatoid arthritis. Nat Rev Rheumatol 2021; 17:224-237. [PMID: 33674813 DOI: 10.1038/s41584-021-00585-3] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disorder that primarily affects the joints. One hypothesis for the pathogenesis of RA is that disease begins at mucosal sites as a consequence of interactions between the mucosal immune system and an aberrant local microbiota, and then transitions to involve the synovial joints. Alterations in the composition of the microbial flora in the lungs, mouth and gut in individuals with preclinical and established RA suggest a role for mucosal dysbiosis in the development and perpetuation of RA, although establishing whether these alterations are the specific consequence of intestinal involvement in the setting of a systemic inflammatory process, or whether they represent a specific localization of disease, is an ongoing challenge. Data from mouse models of RA and investigations into the preclinical stages of disease also support the hypothesis that these alterations to the microbiota predate the onset of disease. In addition, several therapeutic options widely used for the treatment of RA are associated with alterations in intestinal microbiota, suggesting that modulation of intestinal microbiota and/or intestinal barrier function might be useful in preventing or treating RA.
Collapse
Affiliation(s)
- Mario M Zaiss
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hsin-Jung Joyce Wu
- Department of Immunobiology, Arizona Arthritis Center, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Daniele Mauro
- Dipartimento di Medicina di Precisione, University della Campania L. Vanvitelli, Naples, Italy
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Francesco Ciccia
- Dipartimento di Medicina di Precisione, University della Campania L. Vanvitelli, Naples, Italy.
| |
Collapse
|
143
|
Ghorbani M, Rajandas H, Parimannan S, Stephen Joseph GB, Tew MM, Ramly SS, Muhamad Rasat MA, Lee SY. Understanding the role of gut microbiota in the pathogenesis of schizophrenia. Psychiatr Genet 2021; 31:39-49. [PMID: 33252574 DOI: 10.1097/ypg.0000000000000270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Schizophrenia is a chronic mental disorder with marked symptoms of hallucination, delusion, and impaired cognitive behaviors. Although multidimensional factors have been associated with the development of schizophrenia, the principal cause of the disorder remains debatable. Microbiome involvement in the etiology of schizophrenia has been widely researched due to the advancement in sequencing technologies. This review describes the contribution of the gut microbiome in the development of schizophrenia that is facilitated by the gut-brain axis. The gut microbiota is connected to the gut-brain axis via several pathways and mechanisms, that are discussed in this review. The role of the oral microbiota, probiotics and prebiotics in shaping the gut microbiota are also highlighted. Lastly, future perspectives for microbiome research in schizophrenia are addressed.
Collapse
Affiliation(s)
- Mahin Ghorbani
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University
| | - Heera Rajandas
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University
| | - Sivachandran Parimannan
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University
| | - Gerard Benedict Stephen Joseph
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University
| | - Mei Mei Tew
- Clinical Research Centre (CRC), Hospital Sultanah Bahiyah, Alor Setar
| | - Siti Salwa Ramly
- Psychiatry and Mental Health Department, Hospital Sultan Abdul Halim, Sungai Petani
| | | | - Su Yin Lee
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University
| |
Collapse
|
144
|
Wadhawan A, Reynolds MA, Makkar H, Scott AJ, Potocki E, Hoisington AJ, Brenner LA, Dagdag A, Lowry CA, Dwivedi Y, Postolache TT. Periodontal Pathogens and Neuropsychiatric Health. Curr Top Med Chem 2021; 20:1353-1397. [PMID: 31924157 DOI: 10.2174/1568026620666200110161105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023]
Abstract
Increasing evidence incriminates low-grade inflammation in cardiovascular, metabolic diseases, and neuropsychiatric clinical conditions, all important causes of morbidity and mortality. One of the upstream and modifiable precipitants and perpetrators of inflammation is chronic periodontitis, a polymicrobial infection with Porphyromonas gingivalis (P. gingivalis) playing a central role in the disease pathogenesis. We review the association between P. gingivalis and cardiovascular, metabolic, and neuropsychiatric illness, and the molecular mechanisms potentially implicated in immune upregulation as well as downregulation induced by the pathogen. In addition to inflammation, translocation of the pathogens to the coronary and peripheral arteries, including brain vasculature, and gut and liver vasculature has important pathophysiological consequences. Distant effects via translocation rely on virulence factors of P. gingivalis such as gingipains, on its synergistic interactions with other pathogens, and on its capability to manipulate the immune system via several mechanisms, including its capacity to induce production of immune-downregulating micro-RNAs. Possible targets for intervention and drug development to manage distal consequences of infection with P. gingivalis are also reviewed.
Collapse
Affiliation(s)
- Abhishek Wadhawan
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States.,Department of Psychiatry, Saint Elizabeths Hospital, Washington, D.C. 20032, United States
| | - Mark A Reynolds
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore 21201, United States
| | - Hina Makkar
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Alison J Scott
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, United States
| | - Eileen Potocki
- VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, United States
| | - Andrew J Hoisington
- Air Force Institute of Technology, Wright-Patterson Air Force Base, United States
| | - Lisa A Brenner
- Departments of Psychiatry, Neurology, and Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States
| | - Aline Dagdag
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Christopher A Lowry
- Departments of Psychiatry, Neurology, and Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States.,Department of Integrative Physiology, Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, United States
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Alabama, United States
| | - Teodor T Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States.,Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, United States
| |
Collapse
|
145
|
Effects of Exercise on the Oral Microbiota and Saliva of Patients with Non-Alcoholic Fatty Liver Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073470. [PMID: 33810609 PMCID: PMC8036855 DOI: 10.3390/ijerph18073470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Exercise can be hypothesized to play an important role in non-alcoholic fatty liver disease (NAFLD) treatment by changing the oral bacterial flora and in the mechanism underlying periodontal disease. We performed salivary component analysis before and after an exercise regimen, and genome analysis of the oral bacterial flora to elucidate the underlying mechanism. Obese middle-aged men with NAFLD and periodontal disease were allocated to 12-week exercise (n = 49) or dietary restriction (n = 21) groups. We collected saliva to compare the oral microflora; performed predictive analysis of metagenomic functions; and, measured the salivary immunoglobulin A, cytokine, bacterial lipopolysaccharide (LPS), and lactoferrin concentrations. The exercise group showed improvements in the clinical indices of oral environment. Salivary component analysis revealed significant reductions in LPS, and lactoferrin during the exercise regimen. Diversity analysis of oral bacterial flora revealed higher alpha- and beta-diversity after the exercise regimen. Analysis of the microbial composition revealed that the numbers of Campylobacter (+83.9%), Corynebacterium (+142.3%), Actinomyces (+75.9%), and Lautropia (+172.9%) were significantly higher, and that of Prevotella (−28.3%) was significantly lower. The findings suggest that an exercise regimen improves the oral environment of NAFLD patients by increasing the diversity of the oral microflora and reducing the number of periodontal bacteria that produce LPS and its capability.
Collapse
|
146
|
New Studies of Pathogenesis of Rheumatoid Arthritis with Collagen-Induced and Collagen Antibody-Induced Arthritis Models: New Insight Involving Bacteria Flora. Autoimmune Dis 2021; 2021:7385106. [PMID: 33833871 PMCID: PMC8016593 DOI: 10.1155/2021/7385106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/30/2020] [Accepted: 03/04/2021] [Indexed: 12/23/2022] Open
Abstract
Much public research suggests that autoimmune diseases such as rheumatoid arthritis (RA) are induced by aberrant “self” immune responses attacking autologous tissues and organ components. However, recent studies have reported that autoimmune diseases may be triggered by dysbiotic composition changes of the intestinal bacteria and an imbalance between these bacteria and intestinal immune systems. However, there are a few solid concepts or methods to study the putative involvement and relationship of these inner environmental factors in RA pathogenesis. Fortunately, Collagen-Induced Arthritis (CIA) and Collagen Antibody-Induced Arthritis (CAIA) models have been widely used as animal models for studying the pathogenesis of RA. In addition to RA, these models can be extensively used as animal models for studying complicated hypotheses in many diseases. In this review, we introduce some basic information about the CIA and CAIA models as well as how to apply these models effectively to investigate relationships between the pathogenesis of autoimmune diseases, especially RA, and the dysbiosis of intestinal bacterial flora.
Collapse
|
147
|
Wang X, Jia Y, Wen L, Mu W, Wu X, Liu T, Liu X, Fang J, Luan Y, Chen P, Gao J, Nguyen KA, Cui J, Zeng G, Lan P, Chen Q, Cheng B, Wang Z. Porphyromonas gingivalis Promotes Colorectal Carcinoma by Activating the Hematopoietic NLRP3 Inflammasome. Cancer Res 2021; 81:2745-2759. [PMID: 34003774 DOI: 10.1158/0008-5472.can-20-3827] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/11/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022]
Abstract
Porphyromonas gingivalis (P. gingivalis) is a keystone periodontal pathogen associated with various digestive cancers. However, whether P. gingivalis can promote colorectal cancer and the underlying mechanism associated with such promotion remains unclear. In this study, we found that P. gingivalis was enriched in human feces and tissue samples from patients with colorectal cancer compared with those from patients with colorectal adenoma or healthy subjects. Cohort studies demonstrated that P. gingivalis infection was associated with poor prognosis in colorectal cancer. P. gingivalis increased tumor counts and tumor volume in the ApcMin/+ mouse model and increased tumor growth in orthotopic rectal and subcutaneous carcinoma models. Furthermore, orthotopic tumors from mice exposed to P. gingivalis exhibited tumor-infiltrating myeloid cell recruitment and a proinflammatory signature. P. gingivalis promoted colorectal cancer via NLRP3 inflammasome activation in vitro and in vivo. NLRP3 chimeric mice harboring orthotopic tumors showed that the effect of NLRP3 on P. gingivalis pathogenesis was mediated by hematopoietic sources. Collectively, these data suggest that P. gingivalis contributes to colorectal cancer neoplasia progression by activating the hematopoietic NLRP3 inflammasome. SIGNIFICANCE: This study demonstrates that the periodontal pathogen P. gingivalis can promote colorectal tumorigenesis by recruiting myeloid cells and creating a proinflammatory tumor microenvironment. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/10/2745/F1.large.jpg.
Collapse
Affiliation(s)
- Xi Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yiqun Jia
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Stomatology Center, Shenzhen People's Hospital, the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Liling Wen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenxin Mu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xianrui Wu
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiangqi Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Juan Fang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yizhao Luan
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ping Chen
- Department of Gastroenterology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Jinlong Gao
- Institute of Dental Research, Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ky-Anh Nguyen
- Institute of Dental Research, Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Gucheng Zeng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ping Lan
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qianming Chen
- The Affiliated Hospital of Stomatology, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Zhi Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
148
|
Zhang Y, Qiao D, Chen R, Zhu F, Gong J, Yan F. The Association between Periodontitis and Inflammatory Bowel Disease: A Systematic Review and Meta-analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6692420. [PMID: 33778080 PMCID: PMC7981176 DOI: 10.1155/2021/6692420] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/13/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND It has been reported that patients with inflammatory bowel disease (IBD) are more susceptible to periodontitis. However, data regarding the risk of periodontitis in IBD patients are scarce, and results from individual studies remain controversial. The aim of this study is to investigate the risk of periodontitis in IBD patients. METHODS Web of Science, PubMed, and Embase were searched for studies investigating the risk of periodontitis in the IBD patient population from Jan. 2000 to Nov. 2020. Articles were included if they contained the number of people with IBD diagnosed with periodontitis (or periodontal disease parameters) compared with a control group. Case reports, reviews, animal studies, and articles without available abstracts were excluded. A pooled odds ratio (OR) and 95% confidence interval (CI) were calculated to assess the association between periodontitis and IBD. RESULTS Six studies were included in the meta-analysis. The overall risk of periodontitis was significantly higher in IBD patients than controls (OR: 2.10, 95% CI: 1.60-2.74; I 2 = 27%). In particular, Crohn's disease (CD) and ulcerative colitis (UC) were both linked to an increased risk of periodontitis (OR: 1.72, 95% CI: 1.36-2.19; I 2 = 0% for CD vs. OR:2.39, 95% CI: 1.19-4.80; I 2 = 85% for UC). CONCLUSIONS IBD patients are at higher risk of periodontitis than controls. After subgroup analysis, the elevated risk remained significant when analyzing CD or UC alone. UC patients were at higher risk of developing periodontitis than CD patients.
Collapse
Affiliation(s)
- Yangheng Zhang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Dan Qiao
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Rixin Chen
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Feng Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Jianfeng Gong
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Fuhua Yan
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| |
Collapse
|
149
|
Khor B, Snow M, Herrman E, Ray N, Mansukhani K, Patel KA, Said-Al-Naief N, Maier T, Machida CA. Interconnections Between the Oral and Gut Microbiomes: Reversal of Microbial Dysbiosis and the Balance Between Systemic Health and Disease. Microorganisms 2021; 9:496. [PMID: 33652903 PMCID: PMC7996936 DOI: 10.3390/microorganisms9030496] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
The human microbiota represents a complex array of microbial species that influence the balance between the health and pathology of their surrounding environment. These microorganisms impart important biological benefits to their host, such as immune regulation and resistance to pathogen colonization. Dysbiosis of microbial communities in the gut and mouth precede many oral and systemic diseases such as cancer, autoimmune-related conditions, and inflammatory states, and can involve the breakdown of innate barriers, immune dysregulation, pro-inflammatory signaling, and molecular mimicry. Emerging evidence suggests that periodontitis-associated pathogens can translocate to distant sites to elicit severe local and systemic pathologies, which necessitates research into future therapies. Fecal microbiota transplantation, probiotics, prebiotics, and synbiotics represent current modes of treatment to reverse microbial dysbiosis through the introduction of health-related bacterial species and substrates. Furthermore, the emerging field of precision medicine has been shown to be an effective method in modulating host immune response through targeting molecular biomarkers and inflammatory mediators. Although connections between the human microbiome, immune system, and systemic disease are becoming more apparent, the complex interplay and future innovations in treatment modalities will become elucidated through continued research and cross-disciplinary collaboration.
Collapse
Affiliation(s)
- Brandon Khor
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Michael Snow
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Elisa Herrman
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Nicholas Ray
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Kunal Mansukhani
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Karan A. Patel
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Nasser Said-Al-Naief
- Department of Integrative Biomedical and Diagnostic Sciences, School of Dentistry, Oregon Health & Science University 2730 SW Moody Avenue, Portland, OR 97201, USA; (N.S.-A.-N.); (T.M.)
| | - Tom Maier
- Department of Integrative Biomedical and Diagnostic Sciences, School of Dentistry, Oregon Health & Science University 2730 SW Moody Avenue, Portland, OR 97201, USA; (N.S.-A.-N.); (T.M.)
| | - Curtis A. Machida
- Department of Integrative Biomedical and Diagnostic Sciences, School of Dentistry, Oregon Health & Science University 2730 SW Moody Avenue, Portland, OR 97201, USA; (N.S.-A.-N.); (T.M.)
| |
Collapse
|
150
|
Park JK, Chang DH, Rhee MS, Jeong H, Song J, Ku BJ, Kim SB, Lee M, Kim BC. Heminiphilus faecis gen. nov., sp. nov., a member of the family Muribaculaceae, isolated from mouse faeces and emended description of the genus Muribaculum. Antonie van Leeuwenhoek 2021; 114:275-286. [PMID: 33566238 DOI: 10.1007/s10482-021-01521-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/19/2021] [Indexed: 11/26/2022]
Abstract
The novel strain AM35T was isolated from the faeces of C57BL/6 mice. These cells are strictly anaerobic, gram negative, oxidase negative, catalase positive, rod-shaped and non-motile. The strain produced creamy yellowish colonies on brain heart infusion (BHI) agar with hemin. Growth was investigated at 30-41 °C in the presence of 0.5-1.5% (w/v) NaCl at pH 6.5-8.5. Taxonomic analysis based on 16S rRNA gene sequencing revealed that strain AM35T is affiliated with the family Muribaculaceae and closely related to the genus Muribaculum. The genomic DNA G + C content of strain AM35T was 47.8 mol%. We detected the whole-cell sugars ribose and galactose; meso-2,6-diaminopimelic acid was absent. The major fatty acids (> 10%) were anteiso-C15:0 and iso-C15:0; the major polar lipid was phosphatidylethanolamine. The major respiratory quinones were MK-10 and MK-11. Based on our phylogenetic, phenotypic and chemotaxonomic analyses, strain AM35T represents a novel genus within the family Muribaculaceae, for which we propose the name Heminiphilus faecis gen. nov., sp. nov. The type strain of Heminiphilus faecis gen. nov., sp. nov. is AM35T (= KCTC 15907 T = DSM 110151 T).
Collapse
Affiliation(s)
- Jun Kyu Park
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- 114 Bioventure Center, HealthBiome, Inc, Daejeon, South Korea
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Dong-Ho Chang
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Moon-Soo Rhee
- Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Haeyoung Jeong
- Infectious Disease Research Center, KRIBB, Daejeon, South Korea
- Gwanggyo R&D Center, Medytox Inc, 114 Central town-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16506, Republic of Korea
| | - Jinhoi Song
- 114 Bioventure Center, HealthBiome, Inc, Daejeon, South Korea
| | - Bon Jeong Ku
- Department of Internal Medicine, Chungnam National University School of Medicine, 282 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea
| | - Seung Bum Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Mina Lee
- Department of Obstetrics and Gynecology, Chungnam National University College of Medicine, Daejeon, South Korea.
| | - Byoung-Chan Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- 114 Bioventure Center, HealthBiome, Inc, Daejeon, South Korea.
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, UST, Daejeon, Republic of Korea.
| |
Collapse
|