101
|
Collignon B, Séguret A, Halloy J. A stochastic vision-based model inspired by zebrafish collective behaviour in heterogeneous environments. ROYAL SOCIETY OPEN SCIENCE 2016; 3:150473. [PMID: 26909173 PMCID: PMC4736928 DOI: 10.1098/rsos.150473] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/01/2015] [Indexed: 05/06/2023]
Abstract
Collective motion is one of the most ubiquitous behaviours displayed by social organisms and has led to the development of numerous models. Recent advances in the understanding of sensory system and information processing by animals impels one to revise classical assumptions made in decisional algorithms. In this context, we present a model describing the three-dimensional visual sensory system of fish that adjust their trajectory according to their perception field. Furthermore, we introduce a stochastic process based on a probability distribution function to move in targeted directions rather than on a summation of influential vectors as is classically assumed by most models. In parallel, we present experimental results of zebrafish (alone or in group of 10) swimming in both homogeneous and heterogeneous environments. We use these experimental data to set the parameter values of our model and show that this perception-based approach can simulate the collective motion of species showing cohesive behaviour in heterogeneous environments. Finally, we discuss the advances of this multilayer model and its possible outcomes in biological, physical and robotic sciences.
Collapse
|
102
|
He X, Lee B, Jiang Y. Cell-ECM Interactions in Tumor Invasion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 936:73-91. [PMID: 27739043 DOI: 10.1007/978-3-319-42023-3_4] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cancer cells obtain their invasion potential not only by genetic mutations, but also by changing their cellular biophysical and biomechanical features and adapting to the surrounding microenvironments. The extracellular matrix, as a crucial component of the tumor microenvironment, provides the mechanical support for the tissue, mediates the cell-microenvironment interactions, and plays a key role in cancer cell invasion. The biomechanics of the extracellular matrix, particularly collagen, have been extensively studied in the biomechanics community. Cell migration has also enjoyed much attention from both the experimental and modeling efforts. However, the detailed mechanistic understanding of tumor cell-ECM interactions, especially during cancer invasion, has been unclear. This chapter reviews the recent advances in the studies of ECM biomechanics, cell migration, and cell-ECM interactions in the context of cancer invasion.
Collapse
Affiliation(s)
- Xiuxiu He
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, 30303, USA
| | - Byoungkoo Lee
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, 30303, USA
| | - Yi Jiang
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
103
|
Abstract
Cell migration is defined as the movement of individual cells, sheets of cells, or clusters of cells from one location to another (Friedl et al., Int J Dev Biol 48:441-449, 2004). This ability of cells to migrate is critical to a wide variety of normal and pathological processes, including embryonic development, wound healing, immune responses, and cancer (Leber et al., Int J Oncol 34:881-895, 2009). Migration of tumor cells is widely thought to be an essential component of the metastatic spread of tumor cells to new sites, and inhibiting metastasis is an important therapeutic goal in cancer treatments (Horwitz and Webb, Curr Biol 13:R756-759, 2003). Therefore, the ability to observe and quantify migration in cancer cells is critical not only for basic cancer biology but especially for drug development (Friedl and Gilmour, Nat Rev Mol Cell Biol 10: 445-457, 2009). Researchers continue to develop new techniques for measuring cell migration in vitro. This chapter will discuss two techniques commonly used to study cell migration: wound healing and Boyden chamber migration assays.
Collapse
Affiliation(s)
| | - Joel Andrews
- Mitchell Cancer Institute, Mobile, AL, 36604, USA
| | - Ming Tan
- Mitchell Cancer Institute, Mobile, AL, 36604, USA. .,Department of Biochemistry and Molecular Biology, University of South Alabama, 1660 Springhill Ave., Mobile, AL, 36604, USA.
| |
Collapse
|
104
|
Kurniawan NA, Chaudhuri PK, Lim CT. Mechanobiology of cell migration in the context of dynamic two-way cell-matrix interactions. J Biomech 2015; 49:1355-1368. [PMID: 26747513 DOI: 10.1016/j.jbiomech.2015.12.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/30/2015] [Accepted: 12/14/2015] [Indexed: 12/31/2022]
Abstract
Migration of cells is integral in various physiological processes in all facets of life. These range from embryonic development, morphogenesis, and wound healing, to disease pathology such as cancer metastasis. While cell migratory behavior has been traditionally studied using simple assays on culture dishes, in recent years it has been increasingly realized that the physical, mechanical, and chemical aspects of the matrix are key determinants of the migration mechanism. In this paper, we will describe the mechanobiological changes that accompany the dynamic cell-matrix interactions during cell migration. Furthermore, we will review what is to date known about how these changes feed back to the dynamics and biomechanical properties of the cell and the matrix. Elucidating the role of these intimate cell-matrix interactions will provide not only a better multi-scale understanding of cell motility in its physiological context, but also a more holistic perspective for designing approaches to regulate cell behavior.
Collapse
Affiliation(s)
- Nicholas A Kurniawan
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands; Department of Systems Biophysics, FOM Institute AMOLF, Amsterdam, The Netherlands.
| | | | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore.
| |
Collapse
|
105
|
Quera V, Beltran FS, Gimeno E. Modelling the emergence of coordinated collective motion by minimizing dissatisfaction. Math Biosci 2015; 271:154-67. [PMID: 26626359 DOI: 10.1016/j.mbs.2015.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 10/22/2022]
Abstract
Coordinated collective motion (CCM) has been recently studied using agent-based simulations by applying three behavioural rules: repulsion, attraction and alignment. But these rules are so similar to the expected group behaviour that it can hardly be labelled emergent. We developed an agent-based model that produces CCM using a set of low-level dyadic interaction rules. The agents change their positions with regard to other agents in order to minimize their own dissatisfaction with their inter-individual distances. To test the emergence of CCM, several simulation experiments were performed. The results show that the agents were able to achieve CCM after a few thousand time steps, and that the bigger the area perceived by them, the more coordinated and cohesive the group motion became. An increased memory span and capacity to remember other agents' identities improved cohesion and coordination. The relationship with biological referents is discussed.
Collapse
Affiliation(s)
- Vicenç Quera
- Institute for Brain, Cognition and Behavior (IR3C), Adaptive Behavior and Interaction Research Group (GCAI), Department of Behavioral Science Methods, University of Barcelona, Campus Mundet, Passeig Vall d'Hebron 171, 08035 Barcelona, Spain.
| | - Francesc S Beltran
- Institute for Brain, Cognition and Behavior (IR3C), Adaptive Behavior and Interaction Research Group (GCAI), Department of Behavioral Science Methods, University of Barcelona, Campus Mundet, Passeig Vall d'Hebron 171, 08035 Barcelona, Spain.
| | - Elisabet Gimeno
- Institute for Brain, Cognition and Behavior (IR3C), Adaptive Behavior and Interaction Research Group (GCAI), Department of Behavioral Science Methods, University of Barcelona, Campus Mundet, Passeig Vall d'Hebron 171, 08035 Barcelona, Spain.
| |
Collapse
|
106
|
Rossi ÚA, Finocchiaro LME, Glikin GC. Interferon-β gene transfer inhibits melanoma cells adhesion and migration. Cytokine 2015; 89:201-208. [PMID: 26597133 DOI: 10.1016/j.cyto.2015.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/08/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023]
Abstract
We evaluated the effects of expression of interferon-β (IFNβ) after lipofection on melanoma cells adhesion and migration. Three canine mucosal (Ak, Br and Ol) and one human dermal (SB2) melanomas were assayed. By means of the wound healing assay, we found a significant inhibitory effect of canine IFNβ gene expression on cells migration in Br and Ol monolayers. This effect could be reproduced on unlipofected Ol cells with conditioned culture media obtained from canine IFNβ gene-lipofected Ol cells, and with recombinant human IFNβ on unlipofected SB2 cells. Furthermore, IFNβ gene expression of the four tested tumor cells significantly inhibited their adhesion to extracellular matrix (ECM) proteins and their spreading from multicellular spheroids onto gelatin coating. The addition of catalase reverted the increase of reactive oxygen species (ROS) in Ol cells and the inhibition of cell migration in monolayers (Ol) and spheroids (Ol an SB2) produced by canine and human IFNβ expression, suggesting the involvement of ROS as mediators of IFNβ action on the cells interactions with ECM. Together with its known immune, antiangiogenic and cytotoxic effects, the present data strongly support more studies exploring the clinical potential of IFNβ for cancer therapy.
Collapse
Affiliation(s)
- Úrsula A Rossi
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Argentina
| | - Liliana M E Finocchiaro
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Argentina
| | - Gerardo C Glikin
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Argentina.
| |
Collapse
|
107
|
Sharma Y, Vargas DA, Pegoraro AF, Lepzelter D, Weitz DA, Zaman MH. Collective motion of mammalian cell cohorts in 3D. Integr Biol (Camb) 2015; 7:1526-33. [PMID: 26549557 DOI: 10.1039/c5ib00208g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Collective cell migration is ubiquitous in biology, from development to cancer; it occurs in complex systems comprised of heterogeneous cell types, signals and matrices, and requires large scale regulation in space and time. Understanding how cells achieve organized collective motility is crucial to addressing cellular and tissue function and disease progression. While current two-dimensional model systems recapitulate the dynamic properties of collective cell migration, quantitative three-dimensional equivalent model systems have proved elusive. To establish such a model system, we study cell collectives by tracking individuals within cell cohorts embedded in three dimensional collagen scaffolding. We develop a custom algorithm to quantify the temporal and spatial heterogeneity of motion in cell cohorts during motility events. In the absence of external driving agents, we show that these cohorts rotate in short bursts, <2 hours, and translate for up to 6 hours. We observe, track, and analyze three dimensional motion of cell cohorts composed of 3-31 cells, and pave a path toward understanding cell collectives in 3D as a complex emergent system.
Collapse
Affiliation(s)
- Yasha Sharma
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | |
Collapse
|
108
|
Anandi VL, Ashiq KA, Nitheesh K, Lahiri M. Platelet-activating factor promotes motility in breast cancer cells and disrupts non-transformed breast acinar structures. Oncol Rep 2015; 35:179-88. [PMID: 26531049 DOI: 10.3892/or.2015.4387] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/04/2015] [Indexed: 11/06/2022] Open
Abstract
A plethora of studies have demonstrated that chronic inflammatory microenvironment influences the genesis and progression of tumors. Such microenvironments are enriched with various lipid mediators. Platelet activating factor (PAF, 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is one such lipid mediator that is secreted by different immune cell types during inflammation and by breast cancer cells upon stimulation with growth factors. Overexpression of PAF-receptor has also been observed in many other cancers. Here we report the possible roles of PAF in tumor initiation and progression. MCF10A, a non-transformed and non-malignant mammary epithelial cell line, when grown as 3D 'on-top' cultures form spheroids that have a distinct hollow lumen surrounded by a monolayer of epithelial cells. Exposure of these spheroids to PAF resulted in the formation of large deformed acinar structures with disrupted lumen, implying transformation. We then examined the response of transformed cells such as MDA-MB 231 to stimulation with PAF. We observed collective cell migration as well as motility at the single cell level on PAF induction, suggesting its role during metastasis. This increase in collective cell migration is mediated via PI3-kinase and/or JNK pathway and is independent of the MAP-kinase pathway. Taken together this study signifies a novel role of PAF in inducing transformation of non-tumorigenic cells and the vital role in promotion of breast cancer cell migration.
Collapse
Affiliation(s)
- V Libi Anandi
- Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra 411008, India
| | - K A Ashiq
- Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra 411008, India
| | - K Nitheesh
- Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra 411008, India
| | - M Lahiri
- Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra 411008, India
| |
Collapse
|
109
|
Puliafito A, De Simone A, Seano G, Gagliardi PA, Di Blasio L, Chianale F, Gamba A, Primo L, Celani A. Three-dimensional chemotaxis-driven aggregation of tumor cells. Sci Rep 2015; 5:15205. [PMID: 26471876 PMCID: PMC4607978 DOI: 10.1038/srep15205] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/21/2015] [Indexed: 12/11/2022] Open
Abstract
One of the most important steps in tumor progression involves the transformation from a differentiated epithelial phenotype to an aggressive, highly motile phenotype, where tumor cells invade neighboring tissues. Invasion can occur either by isolated mesenchymal cells or by aggregates that migrate collectively and do not lose completely the epithelial phenotype. Here, we show that, in a three-dimensional cancer cell culture, collective migration of cells eventually leads to aggregation in large clusters. We present quantitative measurements of cluster velocity, coalescence rates, and proliferation rates. These results cannot be explained in terms of random aggregation. Instead, a model of chemotaxis-driven aggregation - mediated by a diffusible attractant - is able to capture several quantitative aspects of our results. Experimental assays of chemotaxis towards culture conditioned media confirm this hypothesis. Theoretical and numerical results further suggest an important role for chemotactic-driven aggregation in spreading and survival of tumor cells.
Collapse
Affiliation(s)
| | - Alessandro De Simone
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Giorgio Seano
- Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy.,Edwin L. Steele Laboratory for Tumor Biology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Paolo Armando Gagliardi
- Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy.,Department of Oncology, University of Turin, Turin 10060, Italy
| | - Laura Di Blasio
- Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy.,Department of Oncology, University of Turin, Turin 10060, Italy
| | | | - Andrea Gamba
- Institute of Condensed Matter Physics and Complex Systems, Department of Applied Science and Technology, Polytechnic University of Turin, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy.,Human Genetics Foundation (HuGeF), Via Nizza 52, Torino, Italy.,Istituto Nazionale di Fisica Nucleare (INFN), Torino, Via Giuria 1, 10125 Torino, Italy
| | - Luca Primo
- Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy.,Department of Oncology, University of Turin, Turin 10060, Italy
| | - Antonio Celani
- Quantitative Life Sciences Unit, The Abdus Salam Center for Theoretical Physics (ICTP), Strada Costiera 11, I-34151 Trieste, Italy
| |
Collapse
|
110
|
Integrative Utilization of Microenvironments, Biomaterials and Computational Techniques for Advanced Tissue Engineering. J Biotechnol 2015; 212:71-89. [DOI: 10.1016/j.jbiotec.2015.08.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 08/02/2015] [Accepted: 08/11/2015] [Indexed: 01/13/2023]
|
111
|
Ravasio A, Le AP, Saw TB, Tarle V, Ong HT, Bertocchi C, Mège RM, Lim CT, Gov N, Ladoux B. Regulation of epithelial cell organization by tuning cell-substrate adhesion. Integr Biol (Camb) 2015; 7:1228-41. [PMID: 26402903 PMCID: PMC5423524 DOI: 10.1039/c5ib00196j] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Collective migration of cells is of fundamental importance for a number of biological functions such as tissue development and regeneration, wound healing and cancer metastasis. The movement of cell groups consisting of multiple cells connected by cell-cell junctions depends on both extracellular and intercellular contacts. Epithelial cell assemblies are thus regulated by a cross-talk between cell-substrate and cell-cell interactions. Here, we investigated the onset of collective migration in groups of cells as they expand from a few cells into large colonies as a function of extracellular matrix (ECM) protein coating. By varying the amount of ECM presented to the cells, we observe that the mode of colony expansion, as well as their overall geometry, is strongly dependent on substrate adhesiveness. On high ECM protein coated surfaces, cells at the edges of the colonies are well spread exhibiting large outward-pointing protrusive activity, whereas cellular colonies display more circular and convex shapes on less adhesive surfaces. Actin structures at the edge of the colonies also show different organizations with the formation of lamellipodial structures on highly adhesive surfaces and a pluricellular actin cable on less adhesive ones. The analysis of traction forces and cell velocities within the cellular assemblies confirm these results. By increasing ECM protein density, cells exert higher traction forces together with a higher outward motility at the edges. Furthermore, tuning cell-cell adhesion of epithelial cells modified the mode of expansion of the colonies. Finally, we used a recently developed computational model to recapitulate the emergent experimental behaviors of expanding cell colonies and extract that the main effect of the different cell-substrate interactions is on the ability of edge cells to form outward lamellipodia-driven motility. Overall, our data suggest that switching behaviors of epithelial cell assemblies result in a tug-of-war between friction forces at the cell-substrate interface and cell-cell interactions.
Collapse
Affiliation(s)
- Andrea Ravasio
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Anh Phuong Le
- Mechanobiology Institute, National University of Singapore, Singapore
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Thuan Beng Saw
- Mechanobiology Institute, National University of Singapore, Singapore
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Victoria Tarle
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Hui Ting Ong
- Mechanobiology Institute, National University of Singapore, Singapore
| | | | - René-Marc Mège
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Nir Gov
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Benoit Ladoux
- Mechanobiology Institute, National University of Singapore, Singapore
- Institut Jacques Monod, University Paris Diderot, Paris, France
| |
Collapse
|
112
|
Alexandrova AY. Plasticity of tumor cell migration: acquisition of new properties or return to the past? BIOCHEMISTRY (MOSCOW) 2015; 79:947-63. [PMID: 25385021 DOI: 10.1134/s0006297914090107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
During tumor development cancer cells pass through several stages when cell morphology and migration abilities change remarkably. These stages are named epithelial-mesenchymal and mesenchymal-amoeboid transitions. The molecular mechanisms underlying cell motility are changing during these transitions. As result of transitions the cells acquire new characteristics and modes of motility. Cell migration becomes more independent from the environmental conditions, and thus cell dissemination becomes more aggressive, which leads to formation of distant metastases. In this review we discuss the characteristics of each of the transitions, cell morphology, and the specificity of cellular structures responsible for different modes of cell motility as well as molecular mechanisms regulating each transition.
Collapse
Affiliation(s)
- A Y Alexandrova
- Institute of Carcinogenesis, Blokhin Cancer Research Center, Russian Academy of Medical Sciences, Moscow, 115478, Russia.
| |
Collapse
|
113
|
Giverso C, Verani M, Ciarletta P. Branching instability in expanding bacterial colonies. J R Soc Interface 2015; 12:20141290. [PMID: 25652464 DOI: 10.1098/rsif.2014.1290] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Self-organization in developing living organisms relies on the capability of cells to duplicate and perform a collective motion inside the surrounding environment. Chemical and mechanical interactions coordinate such a cooperative behaviour, driving the dynamical evolution of the macroscopic system. In this work, we perform an analytical and computational analysis to study pattern formation during the spreading of an initially circular bacterial colony on a Petri dish. The continuous mathematical model addresses the growth and the chemotactic migration of the living monolayer, together with the diffusion and consumption of nutrients in the agar. The governing equations contain four dimensionless parameters, accounting for the interplay among the chemotactic response, the bacteria-substrate interaction and the experimental geometry. The spreading colony is found to be always linearly unstable to perturbations of the interface, whereas branching instability arises in finite-element numerical simulations. The typical length scales of such fingers, which align in the radial direction and later undergo further branching, are controlled by the size parameters of the problem, whereas the emergence of branching is favoured if the diffusion is dominant on the chemotaxis. The model is able to predict the experimental morphologies, confirming that compact (resp. branched) patterns arise for fast (resp. slow) expanding colonies. Such results, while providing new insights into pattern selection in bacterial colonies, may finally have important applications for designing controlled patterns.
Collapse
Affiliation(s)
- Chiara Giverso
- MOX, Politecnico di Milano, P.za Leonardo da Vinci, 32, 20133 Milan, Italy Fondazione CEN, P.za Leonardo da Vinci, 32, 20133 Milan, Italy
| | - Marco Verani
- MOX, Politecnico di Milano, P.za Leonardo da Vinci, 32, 20133 Milan, Italy
| | - Pasquale Ciarletta
- Fondazione CEN, P.za Leonardo da Vinci, 32, 20133 Milan, Italy CNRS and Sorbonne Universités, Institut Jean le Rond d'Alembert, UPMC Univ Paris 06, UMR 7190, 4 place Jussieu case 162, 75005 Paris, France
| |
Collapse
|
114
|
Aceto N, Toner M, Maheswaran S, Haber DA. En Route to Metastasis: Circulating Tumor Cell Clusters and Epithelial-to-Mesenchymal Transition. Trends Cancer 2015; 1:44-52. [DOI: 10.1016/j.trecan.2015.07.006] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/18/2015] [Accepted: 07/20/2015] [Indexed: 02/07/2023]
|
115
|
|
116
|
Emerging morphologies in round bacterial colonies: comparing volumetric versus chemotactic expansion. Biomech Model Mechanobiol 2015; 15:643-61. [PMID: 26296713 DOI: 10.1007/s10237-015-0714-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/27/2015] [Indexed: 10/23/2022]
Abstract
Biological experiments performed on living bacterial colonies have demonstrated the microbial capability to develop finger-like shapes and highly irregular contours, even starting from an homogeneous inoculum. In this work, we study from the continuum mechanics viewpoint the emergence of such branched morphologies in an initially circular colony expanding on the top of a Petri dish coated with agar. The bacterial colony expansion, based on either a source term, representing volumetric mitotic processes, or a nonconvective mass flux, describing chemotactic expansion, is modeled at the continuum scale. We demonstrate that the front of the colony is always linearly unstable, having similar dispersion curves to the ones characterizing branching instabilities. We also perform finite element simulations, which not only prove the emergence of branching, but also highlight dramatic differences between the two mechanisms of colony expansion in the nonlinear regime. Furthermore, the proposed combination of analytical and numerical analysis allowed studying the influence of different model parameters on the selection of specific patterns. A very good agreement has been found between the resulting simulations and the typical structures observed in biological assays. Finally, this work provides a new interpretation of the emergence of branched patterns in living aggregates, depicted as the results of a complex interplay among chemical, mechanical and size effects.
Collapse
|
117
|
Ravid S. The tumor suppressor Lgl1 regulates front-rear polarity of migrating cells. Cell Adh Migr 2015; 8:378-83. [PMID: 25482644 DOI: 10.4161/cam.29387] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cell migration is a highly integrated, multistep process that plays an important role in physiological and pathological processes. The migrating cell is highly polarized, with complex regulatory pathways that integrate its component processes spatially and temporally. The Drosophila tumor suppressor, Lethal (2) giant larvae (Lgl), regulates apical-basal polarity in epithelia and asymmetric cell division. But little is known about the role of Lgl in establishing cell polarity in migrating cells. Recently, we showed that the mammalian Lgl1 interacts directly with non-muscle myosin IIA (NMIIA), inhibiting its ability to assemble into filaments in vitro. Lgl1 also regulates the cellular localization of NMIIA, the maturation of focal adhesions, and cell migration. We further showed that phosphorylation of Lgl1 by aPKCζ prevents its interaction with NMIIA and is important for Lgl1 and acto-NMII cytoskeleton cellular organization. Lgl is a critical downstream target of the Par6-aPKC cell polarity complex; we showed that Lgl1 forms two distinct complexes in vivo, Lgl1-NMIIA and Lgl1-Par6-aPKCζ in different cellular compartments. We further showed that aPKCζ and NMIIA compete to bind directly to Lgl1 through the same domain. These data provide new insights into the role of Lgl1, NMIIA, and Par6-aPKCζ in establishing front-rear polarity in migrating cells. In this commentary, I discuss the role of Lgl1 in the regulation of the acto-NMII cytoskeleton and its regulation by the Par6-aPKCζ polarity complex, and how Lgl1 activity may contribute to the establishment of front-rear polarity in migrating cells.
Collapse
Affiliation(s)
- Shoshana Ravid
- a Department of Biochemistry and Molecular Biology; The Institute of Medical Research Israel-Canada ; The Hebrew University-Hadassah Medical School ; Jerusalem , Israel
| |
Collapse
|
118
|
Ham SL, Nasrollahi S, Shah KN, Soltisz A, Paruchuri S, Yun YH, Luker GD, Bishayee A, Tavana H. Phytochemicals potently inhibit migration of metastatic breast cancer cells. Integr Biol (Camb) 2015; 7:792-800. [PMID: 26120051 PMCID: PMC5474751 DOI: 10.1039/c5ib00121h] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cell migration is a major process that drives metastatic progression of cancers, the major cause of cancer death. Existing chemotherapeutic drugs have limited efficacy to prevent and/or treat metastasis, emphasizing the need for new treatments. We focus on triple negative breast cancer (TNBC), the subtype of breast cancer with worst prognosis and no standard chemotherapy protocols. Here we demonstrate that a group of natural compounds, known as phytochemicals, effectively block migration of metastatic TNBC cells. Using a novel cell micropatterning technology, we generate consistent migration niches in standard 96-well plates where each well contains a cell-excluded gap within a uniform monolayer of cells. Over time, cells migrate into and occupy the gap. Treating TNBC cells with non-toxic concentrations of phytochemicals significantly blocks motility of cells. Using a molecular analysis approach, we show that anti-migratory property of phytochemicals is partly due to their inhibitory effects on phosphorylation of ERK1/2. This study provides a framework for future studies to understand molecular targets of phytochemicals and evaluate their effectiveness in inhibiting metastasis in animal models of cancer.
Collapse
Affiliation(s)
- Stephanie Lemmo Ham
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
The regulatory roles of ROCK and MRCK kinases in the plasticity of cancer cell migration. Cancer Lett 2015; 361:185-96. [DOI: 10.1016/j.canlet.2015.03.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 12/29/2022]
|
120
|
Koos B, Kamali-Moghaddam M, David L, Sobrinho-Simões M, Dimberg A, Nilsson M, Wählby C, Söderberg O. Next-Generation Pathology—Surveillance of Tumor Microecology. J Mol Biol 2015; 427:2013-22. [DOI: 10.1016/j.jmb.2015.02.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 11/30/2022]
|
121
|
Phenomenological approaches to collective behavior in epithelial cell migration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3143-52. [PMID: 26028592 DOI: 10.1016/j.bbamcr.2015.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/18/2015] [Indexed: 11/21/2022]
Abstract
Collective cell migration in epithelial tissues resembles fluid-like behavior in time-lapse recordings. In the last years, hydrodynamic velocity fields in living matter have been studied intensely. The emergent properties were remarkably similar to phenomena known from active soft matter systems. Here, we review migration experiments of large cellular ensembles as well as of mesoscopic cohorts in micro-structured environments. Concepts such as diffusion, velocity correlations, swirl strength and polarization are metrics to quantify the cellular dynamics both in experiments as well as in computational simulations. We discuss challenges relating collective migration to single cell and oligocellular behavior as well as linking the phenotypic parameters to the underlying cytoskeleton dynamics and signaling networks. This article is part of a Special Issue entitled: Mechanobiology.
Collapse
|
122
|
Abstract
Swarming or collective motion of living entities is one of the most common and spectacular manifestations of living systems that have been extensively studied in recent years. A number of general principles have been established. The interactions at the level of cells are quite different from those among individual animals, therefore the study of collective motion of cells is likely to reveal some specific important features which we plan to overview in this paper. In addition to presenting the most appealing results from the quickly growing related literature we also deliver a critical discussion of the emerging picture and summarize our present understanding of collective motion at the cellular level. Collective motion of cells plays an essential role in a number of experimental and real-life situations. In most cases the coordinated motion is a helpful aspect of the given phenomenon and results in making a related process more efficient (e.g., embryogenesis or wound healing), while in the case of tumor cell invasion it appears to speed up the progression of the disease. In these mechanisms cells both have to be motile and adhere to one another, the adherence feature being the most specific to this sort of collective behavior. One of the central aims of this review is to present the related experimental observations and treat them in light of a few basic computational models so as to make an interpretation of the phenomena at a quantitative level as well.
Collapse
Affiliation(s)
- Előd Méhes
- Department of Biological Physics, Eötvös University, Budapest, Hungary.
| | | |
Collapse
|
123
|
Barriga EH, Mayor R. Embryonic cell-cell adhesion: a key player in collective neural crest migration. Curr Top Dev Biol 2015; 112:301-23. [PMID: 25733144 DOI: 10.1016/bs.ctdb.2014.11.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell migration is essential for morphogenesis, adult tissue remodeling, wound healing, and cancer cell migration. Cells can migrate as individuals or groups. When cells migrate in groups, cell-cell interactions are crucial in order to promote the coordinated behavior, essential for collective migration. Interestingly, recent evidence has shown that cell-cell interactions are also important for establishing and maintaining the directionality of these migratory events. We focus on neural crest cells, as they possess extraordinary migratory capabilities that allow them to migrate and colonize tissues all over the embryo. Neural crest cells undergo an epithelial-to-mesenchymal transition at the same time than perform directional collective migration. Cell-cell adhesion has been shown to be an important source of planar cell polarity and cell coordination during collective movement. We also review molecular mechanisms underlying cadherin turnover, showing how the modulation and dynamics of cell-cell adhesions are crucial in order to maintain tissue integrity and collective migration in vivo. We conclude that cell-cell adhesion during embryo development cannot be considered as simple passive resistance to force, but rather participates in signaling events that determine important cell behaviors required for cell migration.
Collapse
Affiliation(s)
- Elias H Barriga
- Cell and Developmental Biology Department, University College London, London, United Kingdom
| | - Roberto Mayor
- Cell and Developmental Biology Department, University College London, London, United Kingdom.
| |
Collapse
|
124
|
Leader cells regulate collective cell migration via Rac activation in the downstream signaling of integrin β1 and PI3K. Sci Rep 2015; 5:7656. [PMID: 25563751 PMCID: PMC5379035 DOI: 10.1038/srep07656] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/03/2014] [Indexed: 01/19/2023] Open
Abstract
Collective cell migration plays a crucial role in several biological processes, such as embryonic development, wound healing, and cancer metastasis. Here, we focused on collectively migrating Madin-Darby Canine Kidney (MDCK) epithelial cells that follow a leader cell on a collagen gel to clarify the mechanism of collective cell migration. First, we removed a leader cell from the migrating collective with a micromanipulator. This then caused disruption of the cohesive migration of cells that followed in movement, called “follower” cells, which showed the importance of leader cells. Next, we observed localization of active Rac, integrin β1, and PI3K. These molecules were clearly localized in the leading edge of leader cells, but not in follower cells. Live cell imaging using active Rac and active PI3K indicators was performed to elucidate the relationship between Rac, integrin β1, and PI3K. Finally, we demonstrated that the inhibition of these molecules resulted in the disruption of collective migration. Our findings not only demonstrated the significance of a leader cell in collective cell migration, but also showed that Rac, integrin β1, and PI3K are upregulated in leader cells and drive collective cell migration.
Collapse
|
125
|
Ng MR, Besser A, Brugge JS, Danuser G. Mapping the dynamics of force transduction at cell-cell junctions of epithelial clusters. eLife 2014; 3:e03282. [PMID: 25479385 PMCID: PMC4300730 DOI: 10.7554/elife.03282] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 12/04/2014] [Indexed: 12/15/2022] Open
Abstract
Force transduction at cell-cell adhesions regulates tissue development, maintenance and adaptation. We developed computational and experimental approaches to quantify, with both sub-cellular and multi-cellular resolution, the dynamics of force transmission in cell clusters. Applying this technology to spontaneously-forming adherent epithelial cell clusters, we found that basal force fluctuations were coupled to E-cadherin localization at the level of individual cell-cell junctions. At the multi-cellular scale, cell-cell force exchange depended on the cell position within a cluster, and was adaptive to reconfigurations due to cell divisions or positional rearrangements. Importantly, force transmission through a cell required coordinated modulation of cell-matrix adhesion and actomyosin contractility in the cell and its neighbors. These data provide insights into mechanisms that could control mechanical stress homeostasis in dynamic epithelial tissues, and highlight our methods as a resource for the study of mechanotransduction in cell-cell adhesions. DOI:http://dx.doi.org/10.7554/eLife.03282.001 The intestines, liver, and skin are all examples of organs that perform specific functions. Organs are comprised of tissues, which are themselves made up of cells. Epithelial tissue is one of the four basic types of tissue found in animals, and it occurs in almost every organ in the body. For example, epithelial tissue makes up the outermost layer of the skin, and the lining of the lungs and the intestines; the cells in epithelial tissues are attached to one another via ‘adhesion molecules’. Organs and tissues need to be maintained throughout life in order for them to work properly. Epithelial cells in particular are very short-lived and must be constantly replaced. If epithelial tissue is cut or damaged in any way, the surrounding healthy epithelial cells must work together to repair the wound and restore the tissue's integrity. These processes require individual epithelial cells to communicate with one another. While chemical signals provide one means of cell-to-cell communication, cells also sense and respond to the physical presence of surrounding cells. In adults, organs and tissues generally do not change shape or size; as such there is a tightly balanced exchange of mechanical forces between the individual cells. Damage to the tissue causes a detectable change in these mechanical forces, which is sensed by nearby healthy epithelial cells and causes them to work towards healing the wound. While the importance of mechanical forces in maintaining tissue integrity is widely recognized, there were few tools to study these forces; this meant that mechanical communication through cell–cell adhesion sites was not well understood. Now Ng, Besser et al. describe the development and use of a new method for measuring and mapping the exchange of mechanical forces at cell–cell adhesion sites. Changes in the strength of the forces exchanged between cells could be measured across clusters of multiple cells or for specific parts of individual cells. Ng, Besser et al. found that when an epithelial cell in a cluster started to divide to form two new cells, the cell exerted less mechanical force on its neighboring cells. Ng, Besser et al. found that the forces exerted between cells were strongest when there was more of an adhesion molecule called E-cadherin in the cell surface membrane at the cell–cell adhesion sites. The opposite was also true, as these forces were weakest at cell–cell adhesion sites with fewer E-cadherin molecules. The new method and findings will now help to guide future studies into how mechanical forces are transmitted between living cells. DOI:http://dx.doi.org/10.7554/eLife.03282.002
Collapse
Affiliation(s)
- Mei Rosa Ng
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Achim Besser
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Gaudenz Danuser
- Department of Cell Biology, Harvard Medical School, Boston, United States
| |
Collapse
|
126
|
|
127
|
Michaelis UR. Mechanisms of endothelial cell migration. Cell Mol Life Sci 2014; 71:4131-48. [PMID: 25038776 PMCID: PMC11113960 DOI: 10.1007/s00018-014-1678-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/23/2014] [Accepted: 07/07/2014] [Indexed: 01/13/2023]
Abstract
Cell migration plays a central role in a variety of physiological and pathological processes during our whole life. Cellular movement is a complex, tightly regulated multistep process. Although the principle mechanisms of migration follow a defined general motility cycle, the cell type and the context of moving influences the detailed mode of migration. Endothelial cells migrate during vasculogenesis and angiogenesis but also in a damaged vessel to restore vessel integrity. Depending on the situation they migrate individually, in chains or sheets and complex signaling, intercellular signals as well as environmental cues modulate the process. Here, the different modes of cell migration, the peculiarities of endothelial cell migration and specific guidance molecules controlling this process will be reviewed.
Collapse
Affiliation(s)
- U Ruth Michaelis
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany,
| |
Collapse
|
128
|
Xue TC, Ge NL, Zhang L, Cui JF, Chen RX, You Y, Ye SL, Ren ZG. Goosecoid promotes the metastasis of hepatocellular carcinoma by modulating the epithelial-mesenchymal transition. PLoS One 2014; 9:e109695. [PMID: 25343336 PMCID: PMC4208742 DOI: 10.1371/journal.pone.0109695] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 09/12/2014] [Indexed: 01/30/2023] Open
Abstract
The homeobox gene, goosecoid (GSC), is a transcription factor that participates in cell migration during embryonic development. Because cell migration during development has characteristics similar to cell invasion during metastasis, we evaluated the potential role of GSC in the metastasis of hepatocellular carcinoma (HCC). GSC expression in HCC cell lines and tissues was evaluated, and its effects on the migration potential of HCC cells were determined by GSC knock-down and overexpression methods. In addition, the prognostic role of GSC expression in the metastasis of cancer cells in HCC patients was determined. Our data showed that GSC was highly expressed in several HCC cell lines, particularly in a highly metastatic HCC cell line. Overexpression of GSC promoted cell migration and invasion of HCC cells in vitro. Gain-of-function induced the epithelial-mesenchymal transition but not collective cell migration, whereas loss-of-function induced the reverse change. High-level expression of GSC correlated closely with poor survival and lung metastasis in HCC patients; lung metastases showed more upregulated GSC expression than the primary tumor. We conclude that GSC promotes metastasis of HCC potentially through initiating the epithelial-mesenchymal transition. GSC is also a prognostic factor for poor survival and metastasis of HCC, which suggests its potential as a therapeutic target for metastatic HCC.
Collapse
Affiliation(s)
- Tong-Chun Xue
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, P.R. China
| | - Ning-Ling Ge
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, P.R. China
| | - Lan Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, P.R. China
| | - Jie-Feng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, P.R. China
| | - Rong-Xin Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, P.R. China
| | - Yang You
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, P.R. China
| | - Sheng-Long Ye
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, P.R. China
| | - Zheng-Gang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, P.R. China
- * E-mail:
| |
Collapse
|
129
|
Directional collective cell migration emerges as a property of cell interactions. PLoS One 2014; 9:e104969. [PMID: 25181349 PMCID: PMC4152153 DOI: 10.1371/journal.pone.0104969] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/14/2014] [Indexed: 11/19/2022] Open
Abstract
Collective cell migration is a fundamental process, occurring during embryogenesis and cancer metastasis. Neural crest cells exhibit such coordinated migration, where aberrant motion can lead to fatality or dysfunction of the embryo. Migration involves at least two complementary mechanisms: contact inhibition of locomotion (a repulsive interaction corresponding to a directional change of migration upon contact with a reciprocating cell), and co-attraction (a mutual chemoattraction mechanism). Here, we develop and employ a parameterized discrete element model of neural crest cells, to investigate how these mechanisms contribute to long-range directional migration during development. Motion is characterized using a coherence parameter and the time taken to reach, collectively, a target location. The simulated cell group is shown to switch from a diffusive to a persistent state as the response-rate to co-attraction is increased. Furthermore, the model predicts that when co-attraction is inhibited, neural crest cells can migrate into restrictive regions. Indeed, inhibition of co-attraction in vivo and in vitro leads to cell invasion into restrictive areas, confirming the prediction of the model. This suggests that the interplay between the complementary mechanisms may contribute to guidance of the neural crest. We conclude that directional migration is a system property and does not require action of external chemoattractants.
Collapse
|
130
|
Ishida S, Tanaka R, Yamaguchi N, Ogata G, Mizutani T, Kawabata K, Haga H. Epithelial sheet folding induces lumen formation by Madin-Darby canine kidney cells in a collagen gel. PLoS One 2014; 9:e99655. [PMID: 25170757 PMCID: PMC4149355 DOI: 10.1371/journal.pone.0099655] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/18/2014] [Indexed: 11/19/2022] Open
Abstract
Lumen formation is important for morphogenesis; however, an unanswered question is whether it involves the collective migration of epithelial cells. Here, using a collagen gel overlay culture method, we show that Madin-Darby canine kidney cells migrated collectively and formed a luminal structure in a collagen gel. Immediately after the collagen gel overlay, an epithelial sheet folded from the periphery, migrated inwardly, and formed a luminal structure. The inhibition of integrin-β1 or Rac1 activity decreased the migration rate of the peripheral cells after the sheets folded. Moreover, lumen formation was perturbed by disruption of apical-basolateral polarity induced by transforming growth factor-β1. These results indicate that cell migration and cell polarity play an important role in folding. To further explore epithelial sheet folding, we developed a computer-simulated mechanical model based on the rigidity of the extracellular matrix. It indicated a soft substrate is required for the folding movement.
Collapse
Affiliation(s)
- Sumire Ishida
- Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Ryosuke Tanaka
- Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Naoya Yamaguchi
- Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Genki Ogata
- Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Takeomi Mizutani
- Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Kazushige Kawabata
- Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Hisashi Haga
- Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
- Research Center for Cooperative Projects, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
131
|
Sharma GVM, Ramesh A, Singh A, Srikanth G, Jayaram V, Duscharla D, Jun JH, Ummanni R, Malhotra SV. Imidazole derivatives show anticancer potential by inducing apoptosis and cellular senescence. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00277f] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
132
|
Podoplanin: a novel regulator of tumor invasion and metastasis. Med Oncol 2014; 31:24. [PMID: 25142945 DOI: 10.1007/s12032-014-0024-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/05/2014] [Indexed: 12/17/2022]
Abstract
Podoplanin, a small mucin-type sialoglycoprotein, was recently shown to be involved in tumor progression. Podoplanin is overexpressed in cancer cells of various human malignancies, and recently, it is also detected in intratumoral stromal cells. We now appreciate that podoplanin plays a dual role in cancer: it can not only suppress tumor growth but also promote tumor progression. Researchers have identified several potential pathways invoked by podoplanin, which participate in the epithelial-to-mesenchymal transition, collective-cell migration, platelet activation and aggregation, and lymphangiogenesis, and thus regulate the tumor invasion and metastasis. Here, we discuss the current experimental and human clinical data on podoplanin to validate the multiple context-dependent functions in different microenvironments and to delineate the diverse regulatory mechanisms.
Collapse
|
133
|
Palmyre A, Lee J, Ryklin G, Camarata T, Selig MK, Duchemin AL, Nowak P, Arnaout MA, Drummond IA, Vasilyev A. Collective epithelial migration drives kidney repair after acute injury. PLoS One 2014; 9:e101304. [PMID: 25010471 PMCID: PMC4092191 DOI: 10.1371/journal.pone.0101304] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/04/2014] [Indexed: 02/07/2023] Open
Abstract
Acute kidney injury (AKI) is a common and significant medical problem. Despite the kidney’s remarkable regenerative capacity, the mortality rate for the AKI patients is high. Thus, there remains a need to better understand the cellular mechanisms of nephron repair in order to develop new strategies that would enhance the intrinsic ability of kidney tissue to regenerate. Here, using a novel, laser ablation-based, zebrafish model of AKI, we show that collective migration of kidney epithelial cells is a primary early response to acute injury. We also show that cell proliferation is a late response of regenerating kidney epithelia that follows cell migration during kidney repair. We propose a computational model that predicts this temporal relationship and suggests that cell stretch is a mechanical link between migration and proliferation, and present experimental evidence in support of this hypothesis. Overall, this study advances our understanding of kidney repair mechanisms by highlighting a primary role for collective cell migration, laying a foundation for new approaches to treatment of AKI.
Collapse
Affiliation(s)
- Aurélien Palmyre
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jeongeun Lee
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Biomedical Sciences, NYIT COM, Old Westbury, New York, United States of America
| | - Gennadiy Ryklin
- Department of Biomedical Sciences, NYIT COM, Old Westbury, New York, United States of America
| | - Troy Camarata
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Martin K. Selig
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Anne-Laure Duchemin
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Paul Nowak
- Department of Biomedical Sciences, NYIT COM, Old Westbury, New York, United States of America
| | - M. Amin Arnaout
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Developmental and Regenerative Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Iain A. Drummond
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aleksandr Vasilyev
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Biomedical Sciences, NYIT COM, Old Westbury, New York, United States of America
- * E-mail:
| |
Collapse
|
134
|
Zouani OF, Gocheva V, Durrieu MC. Membrane nanowaves in single and collective cell migration. PLoS One 2014; 9:e97855. [PMID: 24846182 PMCID: PMC4028249 DOI: 10.1371/journal.pone.0097855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 04/25/2014] [Indexed: 11/25/2022] Open
Abstract
We report the characterization of three-dimensional membrane waves for migrating single and collective cells and describe their propagation using wide-field optical profiling technique with nanometer resolution. We reveal the existence of small and large membrane waves the amplitudes of which are in the range of ∼3–7 nm to ∼16–25 nm respectively, through the cell. For migrating single-cells, the amplitude of these waves is about 30 nm near the cell edge. Two or more different directions of propagation of the membrane nanowaves inside the same cell can be observed. After increasing the migration velocity by BMP-2 treatment, only one wave direction of propagation exists with an increase in the average amplitude (more than 80 nm near the cell edge). Furthermore for collective-cell migration, these membrane nanowaves are attenuated on the leader cells and poor transmission of these nanowaves to follower cells was observed. After BMP-2 treatment, the membrane nanowaves are transmitted from the leader cell to several rows of follower cells. Surprisingly, the vast majority of the observed membrane nanowaves is shared between the adjacent cells. These results give a new view on how single and collective-cells modulate their motility. This work has significant implications for the therapeutic use of BMPs for the regeneration of skin tissue.
Collapse
Affiliation(s)
- Omar F. Zouani
- Bioingénierie Tissulaire (BioTis), INSERM U1026, Université de Bordeaux, Bordeaux, France
- Institut Européen de Chimie et Biologie (IECB), CNRS, UMR 5248, Université de Bordeaux I, Pessac, France
- * E-mail:
| | | | - Marie-Christine Durrieu
- Bioingénierie Tissulaire (BioTis), INSERM U1026, Université de Bordeaux, Bordeaux, France
- Institut Européen de Chimie et Biologie (IECB), CNRS, UMR 5248, Université de Bordeaux I, Pessac, France
| |
Collapse
|
135
|
Abstract
The family of Rho GTPases are intracellular signal transducers that link cell surface signals to multiple intracellular responses. They are best known for their role in regulating actin dynamics required for cell migration, but in addition control cell-cell adhesion, polarization, vesicle trafficking, and the cell cycle. The roles of Rho GTPases in single mesenchymal cell migration are well established and rely on Cdc42- and Rac-dependent cell protrusion of a leading edge, coupled to Rho-dependent contractility required to move the cell body forward. In cells migrating collectively, cell-cell junctions are maintained, and migrating leader cells are mechanically coupled to, and coordinate, migration with follower cells. Recent evidence suggests that Rho GTPases provide multifunctional input to collective cell polarization, cell-cell interaction, and migration. Here, we discuss the role of Rho GTPases in initiating and maintaining front-rear, apical-basal cell polarization, mechanotransduction, and cell-cell junction stability between leader and follower cells, and how these roles are integrated in collective migration. Thereby, spatiotemporal fine-tuning of Rho GTPases within the same cell and among cells in the cell group are crucial in controlling potentially conflicting, divergent cell adhesion and cytoskeletal functions to achieve supracellular coordination and mechanocoupling.
Collapse
Affiliation(s)
- Mirjam M Zegers
- Department of Cell Biology; Radboud University Medical Center; Nijmegen, the Netherlands
| | - Peter Friedl
- Department of Cell Biology; Radboud University Medical Center; Nijmegen, the Netherlands; David H. Koch Center for Applied Research of Genitourinary Cancers; Department of Genitourinary Medical Oncology; The University of Texas MD Anderson Cancer Center; Houston, TX USA; Cancer Genomics Centre Netherlands; Utrecht, the Netherlands
| |
Collapse
|
136
|
Murali A, Rajalingam K. Small Rho GTPases in the control of cell shape and mobility. Cell Mol Life Sci 2014; 71:1703-21. [PMID: 24276852 PMCID: PMC11113993 DOI: 10.1007/s00018-013-1519-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 12/28/2022]
Abstract
Rho GTPases are a class of evolutionarily conserved proteins comprising 20 members, which are predominantly known for their role in regulating the actin cytoskeleton. They are primarily regulated by binding of GTP/GDP, which is again controlled by regulators like GEFs, GAPs, and RhoGDIs. Rho GTPases are thus far well known for their role in the regulation of actin cytoskeleton and migration. Here we present an overview on the role of Rho GTPases in regulating cell shape and plasticity of cell migration. Finally, we discuss the emerging roles of ubiquitination and sumoylation in regulating Rho GTPases and cell migration.
Collapse
Affiliation(s)
- Arun Murali
- Cell Death Signaling Group, Institute of Biochemistry II, Goethe University Medical School, Frankfurt, Germany
| | - Krishnaraj Rajalingam
- Cell Death Signaling Group, Institute of Biochemistry II, Goethe University Medical School, Frankfurt, Germany
| |
Collapse
|
137
|
Kato T, Enomoto A, Watanabe T, Haga H, Ishida S, Kondo Y, Furukawa K, Urano T, Mii S, Weng L, Ishida-Takagishi M, Asai M, Asai N, Kaibuchi K, Murakumo Y, Takahashi M. TRIM27/MRTF-B-dependent integrin β1 expression defines leading cells in cancer cell collectives. Cell Rep 2014; 7:1156-67. [PMID: 24794433 DOI: 10.1016/j.celrep.2014.03.068] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/23/2014] [Accepted: 03/27/2014] [Indexed: 01/03/2023] Open
Abstract
For collective invasion, cancer cells form cohesive groups comprised of leading cells (LCs) at the forefront and following cells (FCs) at the rear. However, the molecular mechanisms that define LCs and FCs remain elusive. Here, we demonstrated that LCs, but not FCs, upregulated the expression of integrin β1 after the loss of intercellular adhesion. The LC-specific expression of integrin β1 was posttranscriptionally regulated by the TRIM27/MRTF-B complex in response to the loss of intercellular adhesion, thereby regulating the stability and translation of integrin β1 mRNA via microRNA-124 in LCs. Accordingly, depletion of TRIM27 and MRTF-B abrogated the upregulation of integrin β1 in LCs and blocked the invasion of cancer cell groups in vitro and in vivo. Therefore, our findings revealed that the specific function of LCs was defined by intrinsic mechanisms related to the presence of the cell's free surface, providing insights into the regulation of intratumor heterogeneity.
Collapse
Affiliation(s)
- Takuya Kato
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takashi Watanabe
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hisashi Haga
- Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810, Japan; Research Center for Cooperative Projects, Graduate School of Medicine, Hokkaido University, N15-W7, Kita-ku, Sapporo 060-8638, Japan
| | - Sumire Ishida
- Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810, Japan
| | - Yuji Kondo
- Department of Biochemistry II, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Koichi Furukawa
- Department of Biochemistry II, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takeshi Urano
- Department of Biochemistry, Faculty of Medicine, Shimane University, 89-1 Izumo, Shimane 693-8501, Japan
| | - Shinji Mii
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Liang Weng
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Maki Ishida-Takagishi
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Masato Asai
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Naoya Asai
- Division of Molecular Pathology, Center for Neurological Disease and Cancer, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yoshiki Murakumo
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Department of Pathology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Japan
| | - Masahide Takahashi
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Division of Molecular Pathology, Center for Neurological Disease and Cancer, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
138
|
Cohen DJ, Nelson WJ, Maharbiz MM. Galvanotactic control of collective cell migration in epithelial monolayers. NATURE MATERIALS 2014; 13:409-417. [PMID: 24608142 DOI: 10.1038/nmat3891] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/23/2014] [Indexed: 06/03/2023]
Abstract
Many normal and pathological biological processes involve the migration of epithelial cell sheets. This arises from complex emergent behaviour resulting from the interplay between cellular signalling networks and the forces that physically couple the cells. Here, we demonstrate that collective migration of an epithelium can be interactively guided by applying electric fields that bias the underlying signalling networks. We show that complex, spatiotemporal cues are locally interpreted by the epithelium, resulting in rapid, coordinated responses such as a collective U-turn, divergent migration, and unchecked migration against an obstacle. We observed that the degree of external control depends on the size and shape of the cell population, and on the existence of physical coupling between cells. Together, our results offer design and engineering principles for the rational manipulation of the collective behaviour and material properties of a tissue.
Collapse
Affiliation(s)
- Daniel J Cohen
- Joint Graduate Program in Bioengineering, University of California at Berkeley, Berkeley, California 94720, USA
| | - W James Nelson
- Department of Biology and Molelcular and Cellular Physiology, Stanford University, Stanford, California 94305, USA
| | - Michel M Maharbiz
- Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
139
|
5-epi-Torrubiellutin C shows antiproliferative activity on DU145 prostate cancer cells through inactivation of the AKT/mTOR pathway. Anticancer Drugs 2014; 25:385-92. [DOI: 10.1097/cad.0000000000000064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
140
|
Mousavi SJ, Doblaré M, Doweidar MH. Computational modelling of multi-cell migration in a multi-signalling substrate. Phys Biol 2014; 11:026002. [PMID: 24632566 DOI: 10.1088/1478-3975/11/2/026002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell migration is a vital process in many biological phenomena ranging from wound healing to tissue regeneration. Over the past few years, it has been proven that in addition to cell-cell and cell-substrate mechanical interactions (mechanotaxis), cells can be driven by thermal, chemical and/or electrical stimuli. A numerical model was recently presented by the authors to analyse single cell migration in a multi-signalling substrate. That work is here extended to include multi-cell migration due to cell-cell interaction in a multi-signalling substrate under different conditions. This model is based on balancing the forces that act on the cell population in the presence of different guiding cues. Several numerical experiments are presented to illustrate the effect of different stimuli on the trajectory and final location of the cell population within a 3D heterogeneous multi-signalling substrate. Our findings indicate that although multi-cell migration is relatively similar to single cell migration in some aspects, the associated behaviour is very different. For instance, cell-cell interaction may delay single cell migration towards effective cues while increasing the magnitude of the average net cell traction force as well as the local velocity. Besides, the random movement of a cell within a cell population is slightly greater than that of single cell migration. Moreover, higher electrical field strength causes the cell slug to flatten near the cathode. On the other hand, as with single cell migration, the existence of electrotaxis dominates mechanotaxis, moving the cells to the cathode or anode pole located at the free surface. The numerical results here obtained are qualitatively consistent with related experimental works.
Collapse
Affiliation(s)
- Seyed Jamaleddin Mousavi
- Group of Structural Mechanics and Materials Modelling (GEMM), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain. Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Spain. Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | | | | |
Collapse
|
141
|
Revenu C, Streichan S, Donà E, Lecaudey V, Hufnagel L, Gilmour D. Quantitative cell polarity imaging defines leader-to-follower transitions during collective migration and the key role of microtubule-dependent adherens junction formation. Development 2014; 141:1282-91. [DOI: 10.1242/dev.101675] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The directed migration of cell collectives drives the formation of complex organ systems. A characteristic feature of many migrating collectives is a ‘tissue-scale’ polarity, whereby ‘leader’ cells at the edge of the tissue guide trailing ‘followers’ that become assembled into polarised epithelial tissues en route. Here, we combine quantitative imaging and perturbation approaches to investigate epithelial cell state transitions during collective migration and organogenesis, using the zebrafish lateral line primordium as an in vivo model. A readout of three-dimensional cell polarity, based on centrosomal-nucleus axes, allows the transition from migrating leaders to assembled followers to be quantitatively resolved for the first time in vivo. Using live reporters and a novel fluorescent protein timer approach, we investigate changes in cell-cell adhesion underlying this transition by monitoring cadherin receptor localisation and stability. This reveals that while cadherin 2 is expressed across the entire tissue, functional apical junctions are first assembled in the transition zone and become progressively more stable across the leader-follower axis of the tissue. Perturbation experiments demonstrate that the formation of these apical adherens junctions requires dynamic microtubules. However, once stabilised, adherens junction maintenance is microtubule independent. Combined, these data identify a mechanism for regulating leader-to-follower transitions within migrating collectives, based on the relocation and stabilisation of cadherins, and reveal a key role for dynamic microtubules in this process.
Collapse
Affiliation(s)
- Céline Revenu
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Sebastian Streichan
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Erika Donà
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Virginie Lecaudey
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Lars Hufnagel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Darren Gilmour
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| |
Collapse
|
142
|
Sadati M, Nourhani A, Fredberg JJ, Qazvini NT. Glass-like dynamics in the cell and in cellular collectives. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2014; 6:137-49. [PMID: 24431332 PMCID: PMC4000035 DOI: 10.1002/wsbm.1258] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 10/21/2013] [Accepted: 12/02/2013] [Indexed: 01/19/2023]
Abstract
Prominent fluctuations, heterogeneity, and cooperativity dominate the dynamics of the cytoskeleton as well as the dynamics of the cellular collective. Such systems are out of equilibrium, disordered, and remain poorly understood. To explain these findings, we consider a unifying mechanistic rubric that imagines these systems as comprising phases of soft condensed matter in proximity to a glass or jamming transition, with associated transitions between solid-like versus liquid-like phases. At the scale of the cytoskeleton, data suggest that intermittent dynamics, kinetic arrest, and dynamic heterogeneity represent mesoscale features of glassy protein-protein interactions that link underlying biochemical events to integrative cellular behaviors such as crawling, contraction, and remodeling. At the scale of the multicellular collective, jamming has the potential to unify diverse biological factors that previously had been considered mostly as acting separately and independently. Although a quantitative relationship between intra- and intercellular dynamics is still lacking, glassy dynamics and jamming offer insights linking the mechanobiology of cell to human physiology and pathophysiology.
Collapse
Affiliation(s)
- Monirosadat Sadati
- School of Public Health, Harvard University, Boston, MA 02115, United States
| | - Amir Nourhani
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, United States
| | - Jeffrey J. Fredberg
- School of Public Health, Harvard University, Boston, MA 02115, United States
| | - Nader Taheri Qazvini
- School of Public Health, Harvard University, Boston, MA 02115, United States, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
143
|
Defamie N, Chepied A, Mesnil M. Connexins, gap junctions and tissue invasion. FEBS Lett 2014; 588:1331-8. [PMID: 24457198 DOI: 10.1016/j.febslet.2014.01.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 12/14/2022]
Abstract
Formation of metastases negatively impacts the survival prognosis of cancer patients. Globally, if the various steps involved in their formation are relatively well identified, the molecular mechanisms responsible for the emergence of invasive cancer cells are still incompletely resolved. Elucidating what are the mechanisms that allow cancer cells to evade from the tumor is a crucial point since it is the first step of the metastatic potential of a solid tumor. In order to be invasive, cancer cells have to undergo transformations such as down-regulation of cell-cell adhesions, modification of cell-matrix adhesions and acquisition of proteolytic properties. These transformations are accompanied by the capacity to "activate" stromal cells, which may favor the motility of the invasive cells through the extracellular matrix. Since modulation of gap junctional intercellular communication is known to be involved in cancer, we were interested to consider whether these different transformations necessary for the acquisition of invasive phenotype are related with gap junctions and their structural proteins, the connexins. In this review, emerging roles of connexins and gap junctions in the process of tissue invasion are proposed.
Collapse
Affiliation(s)
- Norah Defamie
- Team IP2C, STIM laboratory, University of Poitiers, CNRS ERL 7368, 1 rue Georges Bonnet, B36, 86073 Poitiers Cedex9, France.
| | - Amandine Chepied
- Team IP2C, STIM laboratory, University of Poitiers, CNRS ERL 7368, 1 rue Georges Bonnet, B36, 86073 Poitiers Cedex9, France.
| | - Marc Mesnil
- Team IP2C, STIM laboratory, University of Poitiers, CNRS ERL 7368, 1 rue Georges Bonnet, B36, 86073 Poitiers Cedex9, France.
| |
Collapse
|
144
|
Kawahara M, Hitomi A, Nagamune T. Antigen-responsive regulation of Cell motility and migration via the signalobodies based on c-Fms and c-Mpl. Biotechnol Prog 2014; 30:411-7. [DOI: 10.1002/btpr.1861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/14/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Masahiro Kawahara
- Dept. of Chemistry and Biotechnology, School of Engineering; The University of Tokyo; Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Azusa Hitomi
- Dept. of Chemistry and Biotechnology, School of Engineering; The University of Tokyo; Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Teruyuki Nagamune
- Dept. of Chemistry and Biotechnology, School of Engineering; The University of Tokyo; Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
145
|
Nakashima Y, Yoshinaga K, Kitao H, Ando K, Kimura Y, Saeki H, Oki E, Morita M, Kakeji Y, Hirahashi M, Oda Y, Maehara Y. Podoplanin is expressed at the invasive front of esophageal squamous cell carcinomas and is involved in collective cell invasion. Cancer Sci 2013; 104:1718-25. [PMID: 24103048 PMCID: PMC7654258 DOI: 10.1111/cas.12286] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/03/2013] [Accepted: 09/09/2013] [Indexed: 12/19/2022] Open
Abstract
The expression of podoplanin is reportedly involved in collective cell invasion, which is independent from the epithelial-mesenchymal transition (EMT). We focused on the expression of podoplanin in esophageal squamous cell carcinomas (ESCC) and investigated the correlation of podoplanin and EMT-related markers, and evaluated its prognostic significance. Five ESCC cell lines were subjected to western blot analysis for podoplanin and EMT markers. The effects of podoplanin on EMT and carcinoma invasion were evaluated with wound healing assays, invasion assays and 3-D culture. Transfection of ectopic podoplanin into a podoplanin-negative ESCC cell line (TE-15) induced cell migration and invasive activity (P < 0.001 and P < 0.05, respectively) without downregulation of E-cadherin. In contrast, transfection of si-podoplanin RNA into a podoplanin-positive ESCC cell line (TE-13) reduced cell migration and invasive activity (P < 0.05). We reviewed 101 patients who had undergone esophagectomy for ESCC. Podoplanin expression was observed in 58 patients (57.4%), and positive expression was positively correlated with expression of E-cadherin (P < 0.01), deeper wall invasion (P < 0.01), venous invasion (P < 0.05) and poorer prognosis (P < 0.01). Multivariate Cox analysis revealed that expression of podoplanin was a significant and independent unfavorable predictor of survival (P < 0.05). These data suggest that podoplanin is significantly associated with and likely contributes to ESCC invasion in the absence of EMT.
Collapse
Affiliation(s)
- Yuichiro Nakashima
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Rausch S, Das T, Soiné JRD, Hofmann TW, Boehm CHJ, Schwarz US, Boehm H, Spatz JP. Polarizing cytoskeletal tension to induce leader cell formation during collective cell migration. Biointerphases 2013; 8:32. [PMID: 24706149 DOI: 10.1186/1559-4106-8-32] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/12/2013] [Indexed: 06/13/2024] Open
Abstract
The collective migration of cells is fundamental to epithelial biology. One of the hallmarks of collective behavior in migrating cohesive epithelial cell sheets is the emergence of so called leader cells. These cells exhibit a distinct morphology with a large and highly active lamellipodium. Although it is generally accepted that they play a crucial part in collective migration, the biophysical factors that regulate their formation remain unknown.Here we show that a geometry-based cue like local variation of curvature of the collective's perimeter is capable of triggering leader cell formation and promoting enhanced motility at defined positions. Remarkably, the extent of this effect scales with the magnitude of the curvature.Cytoskeletal tension was found to be important for geometry induced leader cell formation, as cells treated with tension reducing agents appeared less sensitive to local curvature variation. Accordingly, traction force microscopy revealed an increased level of shear stress at highly curved positions even before the cell migration had actually started, indicating the presence of a collective polarization induced by the geometry of the confinement.Together our findings suggest that high curvature leads to locally increased stress accumulation, mediated via cell-substrate interaction as well as via cytoskeleton tension. The stress accumulation in turn enhances the probability of leader cell formation as well as cell motility. This work defines the importance of geometric cue such as local curvature in the collective migration dynamics of epithelial cells and thus shows implications for the biophysical regulation of epithelium during wound healing, embryonic development, and oncogenesis.
Collapse
Affiliation(s)
- Sebastian Rausch
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Xu H, Ye D, Behra M, Burgess S, Chen S, Lin F. Gβ1 controls collective cell migration by regulating the protrusive activity of leader cells in the posterior lateral line primordium. Dev Biol 2013; 385:316-27. [PMID: 24201188 DOI: 10.1016/j.ydbio.2013.10.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/16/2013] [Accepted: 10/27/2013] [Indexed: 12/25/2022]
Abstract
Collective cell migration is critical for normal development, tissue repair and cancer metastasis. Migration of the posterior lateral line primordium (pLLP) generates the zebrafish sensory organs (neuromasts, NMs). This migration is promoted by the leader cells at the leading edge of the pLLP, which express the G protein-coupled chemokine receptor Cxcr4b and respond to the chemokine Cxcl12a. However, the mechanism by which Cxc112a/Cxcr4b signaling regulates pLLP migration remains unclear. Here we report that signal transduction by the heterotrimeric G protein subunit Gβ1 is essential for proper pLLP migration. Although both Gβ1 and Gβ4 are expressed in the pLLP and NMs, depletion of Gβ1 but not Gβ4 resulted in an arrest of pLLP migration. In embryos deficient for Gβ1, the pLLP cells migrated in an uncoordinated fashion and were unable to extend protrusions at the leading front, phenocopying those in embryos deficient for Cxcl12a or Cxcr4b. A transplantation assay showed that, like Cxcr4b, Gβ1 is required only in the leader cells of the pLLP. Analysis of F-actin dynamics in the pLLP revealed that whereas wild-type leader cells display extensive actin polymerization in the direction of pLLP migration, counterparts defective for Gβ1, Cxcr4b or Cxcl12a do not. Finally, synergy experiments revealed that Gβ1 and Cxcr4b interact genetically in regulating pLLP migration. Collectively, our data indicate that Gβ1 controls migration of the pLLP, likely by acting downstream of the Cxcl12a/Cxcr4b signaling. This study also provides compelling evidence for functional specificity among Gβ isoforms in vivo.
Collapse
Affiliation(s)
- Hui Xu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, USA
| | - Ding Ye
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, USA
| | - Martine Behra
- Department of Anatomy and Neurobiology, University of Puerto Rico, USA
| | - Shawn Burgess
- Genome Technology Branch, NHGRI/NIH, Bethesda, MD, USA
| | - Songhai Chen
- Department of Pharmacology, Carver College of Medicine, University of Iowa, USA
| | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, USA.
| |
Collapse
|
148
|
A cellular automaton model examining the effects of oxygen, hydrogen ions and lactate on early tumour growth. J Math Biol 2013; 69:839-73. [DOI: 10.1007/s00285-013-0719-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 07/30/2013] [Indexed: 01/01/2023]
|
149
|
Carneiro P, Figueiredo J, Bordeira-Carriço R, Fernandes MS, Carvalho J, Oliveira C, Seruca R. Therapeutic targets associated to E-cadherin dysfunction in gastric cancer. Expert Opin Ther Targets 2013; 17:1187-201. [PMID: 23957294 DOI: 10.1517/14728222.2013.827174] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Epithelial cadherin (E-cadherin) plays a key role in epithelial cell-cell adhesion, contributing to tissue differentiation and homeostasis. Throughout the past decades, research has shed light on the molecular mechanisms underlying E-cadherin's role in tumor progression, namely in invasion and metastization. Emerging evidence established E-cadherin as a tumor suppressor and suggests that targeting E-cadherin or downstream signaling molecules may constitute effective cancer therapeutics. AREAS COVERED This review aims to cover E-cadherin-mediated signaling during cancer development and progression and highlight putative therapeutic targets. EXPERT OPINION Reconstitution of E-cadherin expression or targeting of E-cadherin downstream molecules holds promise in cancer therapies. Considering the high frequency of CDH1 promoter hypermethylation as a second hit in malignant lesions from hereditary diffuse gastric cancer patients, histone deacetylase inhibitors are potential therapeutic agents in combination with conventional chemotherapy, specifically in initial tumor stages. Concerning E-cadherin-mediated signaling, we propose that HER receptors (as epidermal growth factor receptor) and Notch downstream targets are clinically relevant and should be considered in gastric cancer therapeutics and control.
Collapse
Affiliation(s)
- Patrícia Carneiro
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto , Rua Dr. Roberto Frias s/n, 4200-465 Porto , Portugal +00351 225570700 ; +00351 225570799 ;
| | | | | | | | | | | | | |
Collapse
|
150
|
Antioxidant and anticancer activities of Chenopodium quinoa leaves extracts – In vitro study. Food Chem Toxicol 2013; 57:154-60. [DOI: 10.1016/j.fct.2013.03.023] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 03/13/2013] [Accepted: 03/15/2013] [Indexed: 01/04/2023]
|