101
|
Blue ME, Boskey AL, Doty SB, Fedarko NS, Hossain MA, Shapiro JR. Osteoblast function and bone histomorphometry in a murine model of Rett syndrome. Bone 2015; 76:23-30. [PMID: 25769649 PMCID: PMC7455889 DOI: 10.1016/j.bone.2015.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 01/21/2015] [Accepted: 01/25/2015] [Indexed: 02/07/2023]
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder due to mutations affecting the neural transcription factor MeCP2. Approximately 50% of affected females have decreased bone mass. We studied osteoblast function using a murine model of RTT. Female heterozygote (HET) and male Mecp2-null mice were compared to wild type (WT) mice. Micro-CT of tibia from 5 week-old Mecp2-null mice showed significant alterations in trabecular bone including reductions in bone volume fraction (-29%), number (-19%), thickness (-9%) and connectivity density (-32%), and increases in trabecular separation (+28%) compared to WT. We also found significant reductions in cortical bone thickness (-18%) and in polar moment of inertia (-45%). In contrast, cortical and trabecular bone from 8 week-old WT and HET female mice were not significantly different. However, mineral apposition rate, mineralizing surface and bone formation rate/bone surface were each decreased in HET and Mecp2-null mice compared to WT mice. Histomorphometric analysis of femurs showed decreased numbers of osteoblasts but similar numbers of osteoclasts compared to WT, altered osteoblast morphology and decreased tissue synthesis of alkaline phosphatase in Mecp2-null and HET mice. Osteoblasts cultured from Mecp2-null mice, which unlike WT osteoblasts did not express MeCP2, had increased growth rates, but reductions in mRNA expression of type I collagen, Runx2 and Osterix compared to WT osteoblasts. These results indicate that MeCP2 deficiency leads to altered bone growth. Osteoblast dysfunction was more marked in Mecp2-null male than in HET female mice, suggesting that expression of MeCP2 plays a critical role in bone development.
Collapse
Affiliation(s)
- Mary E Blue
- Hugo W. Moser Research Institute at Kennedy Krieger, Inc., 707 North Broadway, Baltimore, MD 21205, USA.
| | - Adele L Boskey
- Hospital for Special Surgery, Mineralized Tissue Laboratory 535 E 70th Street, New York, NY 10021, USA.
| | - Stephen B Doty
- Hospital for Special Surgery, Mineralized Tissue Laboratory 535 E 70th Street, New York, NY 10021, USA.
| | - Neal S Fedarko
- Geriatric Medicine and Gerontology, Johns Hopkins Medical Institutions, Room 1A-12 JHAAC, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA.
| | - Mir Ahamed Hossain
- Hugo W. Moser Research Institute at Kennedy Krieger, Inc., 707 North Broadway, Baltimore, MD 21205, USA.
| | - Jay R Shapiro
- Hugo W. Moser Research Institute at Kennedy Krieger, Inc., 707 North Broadway, Baltimore, MD 21205, USA.
| |
Collapse
|
102
|
Yamamuro K, Kimoto S, Rosen KM, Kishimoto T, Makinodan M. Potential primary roles of glial cells in the mechanisms of psychiatric disorders. Front Cell Neurosci 2015; 9:154. [PMID: 26029044 PMCID: PMC4432872 DOI: 10.3389/fncel.2015.00154] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 04/06/2015] [Indexed: 01/05/2023] Open
Abstract
While neurons have long been considered the major player in multiple brain functions such as perception, emotion, and memory, glial cells have been relegated to a far lesser position, acting as merely a “glue” to support neurons. Multiple lines of recent evidence, however, have revealed that glial cells such as oligodendrocytes, astrocytes, and microglia, substantially impact on neuronal function and activities and are significantly involved in the underlying pathobiology of psychiatric disorders. Indeed, a growing body of evidence indicates that glial cells interact extensively with neurons both chemically (e.g., through neurotransmitters, neurotrophic factors, and cytokines) and physically (e.g., through gap junctions), supporting a role for these cells as likely significant modifiers not only of neural function in brain development but also disease pathobiology. Since questions have lingered as to whether glial dysfunction plays a primary role in the biology of neuropsychiatric disorders or a role related solely to their support of neuronal physiology in these diseases, informative and predictive animal models have been developed over the last decade. In this article, we review recent findings uncovered using glia-specific genetically modified mice with which we can evaluate both the causation of glia dysfunction and its potential role in neuropsychiatric disorders such as autism and schizophrenia.
Collapse
Affiliation(s)
- Kazuhiko Yamamuro
- Department of Psychiatry, Faculty of Medicine, Nara Medical University, Kashihara Japan
| | - Sohei Kimoto
- Department of Psychiatry, Faculty of Medicine, Nara Medical University, Kashihara Japan
| | | | - Toshifumi Kishimoto
- Department of Psychiatry, Faculty of Medicine, Nara Medical University, Kashihara Japan
| | - Manabu Makinodan
- Department of Psychiatry, Faculty of Medicine, Nara Medical University, Kashihara Japan
| |
Collapse
|
103
|
Bedogni F, Cobolli Gigli C, Pozzi D, Rossi RL, Scaramuzza L, Rossetti G, Pagani M, Kilstrup-Nielsen C, Matteoli M, Landsberger N. Defects During Mecp2 Null Embryonic Cortex Development Precede the Onset of Overt Neurological Symptoms. Cereb Cortex 2015; 26:2517-2529. [PMID: 25979088 DOI: 10.1093/cercor/bhv078] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
MeCP2 is associated with several neurological disorders; of which, Rett syndrome undoubtedly represents the most frequent. Its molecular roles, however, are still unclear, and data from animal models often describe adult, symptomatic stages, while MeCP2 functions during embryonic development remain elusive. We describe the pattern and timing of Mecp2 expression in the embryonic neocortex highlighting its low but consistent expression in virtually all cells and show the unexpected occurrence of transcriptional defects in the Mecp2 null samples at a stage largely preceding the onset of overt symptoms. Through the deregulated expression of ionic channels and glutamatergic receptors, the lack of Mecp2 during early neuronal maturation leads to the reduction in the neuronal responsiveness to stimuli. We suggest that such features concur to morphological alterations that begin affecting Mecp2 null neurons around the perinatal age and become evident later in adulthood. We indicate MeCP2 as a key modulator of the transcriptional mechanisms regulating cerebral cortex development. Neurological phenotypes of MECP2 patients could thus be the cumulative result of different adverse events that are already present at stages when no obvious signs of the pathology are evident and are worsened by later impairments affecting the central nervous system during maturation and maintenance of its functionality.
Collapse
Affiliation(s)
- Francesco Bedogni
- San Raffaele Rett Research Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Clementina Cobolli Gigli
- San Raffaele Rett Research Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.,Laboratory of Genetic and Epigenetic Control of Gene Expression, Division of Biomedical Research, Department of Theoretical and Applied Sciences, University of Insubria, Busto Arsizio, 21052 Varese, Italy
| | - Davide Pozzi
- Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy
| | - Riccardo Lorenzo Rossi
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122 Milan, Italy
| | - Linda Scaramuzza
- San Raffaele Rett Research Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Grazisa Rossetti
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122 Milan, Italy
| | - Massimiliano Pagani
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122 Milan, Italy
| | - Charlotte Kilstrup-Nielsen
- Laboratory of Genetic and Epigenetic Control of Gene Expression, Division of Biomedical Research, Department of Theoretical and Applied Sciences, University of Insubria, Busto Arsizio, 21052 Varese, Italy
| | - Michela Matteoli
- Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy.,Dip di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, Milan, Italy
| | - Nicoletta Landsberger
- San Raffaele Rett Research Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.,Laboratory of Genetic and Epigenetic Control of Gene Expression, Division of Biomedical Research, Department of Theoretical and Applied Sciences, University of Insubria, Busto Arsizio, 21052 Varese, Italy
| |
Collapse
|
104
|
Shin J, Ming GL, Song H. DNA modifications in the mammalian brain. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0512. [PMID: 25135973 DOI: 10.1098/rstb.2013.0512] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
DNA methylation is a crucial epigenetic mark in mammalian development, genomic imprinting, X-inactivation, chromosomal stability and suppressing parasitic DNA elements. DNA methylation in neurons has also been suggested to play important roles for mammalian neuronal functions, and learning and memory. In this review, we first summarize recent discoveries and fundamental principles of DNA modifications in the general epigenetics field. We then describe the profiles of different DNA modifications in the mammalian brain genome. Finally, we discuss roles of DNA modifications in mammalian brain development and function.
Collapse
Affiliation(s)
- Jaehoon Shin
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guo-Li Ming
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hongjun Song
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
105
|
Zhao N, Ma D, Leong WY, Han J, VanDongen A, Chen T, Goh ELK. The methyl-CpG-binding domain (MBD) is crucial for MeCP2's dysfunction-induced defects in adult newborn neurons. Front Cell Neurosci 2015; 9:158. [PMID: 25964742 PMCID: PMC4408855 DOI: 10.3389/fncel.2015.00158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/08/2015] [Indexed: 12/31/2022] Open
Abstract
Mutations in the human X-linked gene MECP2 are responsible for most Rett syndrome (RTT) cases, predominantly within its methyl-CpG-binding domain (MBD). To examine the role of MBD in the pathogenesis of RTT, we generated two MeCP2 mutant constructs, one with a deletion of MBD (MeCP2-ΔMBD), another mimicking a mutation of threonine 158 within the MBD (MeCP2-T158M) found in RTT patients. MeCP2 knockdown resulted in a decrease in total dendrite length, branching, synapse number, as well as altered spontaneous Ca(2+) oscillations in vitro, which could be reversed by expression of full length human MeCP2 (hMeCP2-FL). However, the expression of hMeCP2-ΔMBD in MeCP2-silenced neurons did not rescue the changes in neuronal morphology and spontaneous Ca(2+) oscillations, while expression of hMeCP2-T158M in these neurons could only rescue the decrease in dendrite length and branch number. In vivo over expression of hMeCP2-FL but not hMeCP2-ΔMBD in adult newborn neurons of the dentate gyrus also rescued the cell autonomous effect caused by MeCP2 deficiency in dendrites length and branching. Our results demonstrate that an intact and functional MBD is crucial for MeCP2 functions in cultured hippocampal neurons and adult newborn neurons.
Collapse
Affiliation(s)
- Na Zhao
- Programme in Neuroscience and Behavioral Disorder, Duke-NUS Graduate Medical School Singapore, Singapore ; Key Laboratory of Health Ministry for Forensic Science, Department of Forensic Medicine, Xi'an Jiaotong University School of Medicine Xi'an, Shaanxi, China
| | - Dongliang Ma
- Programme in Neuroscience and Behavioral Disorder, Duke-NUS Graduate Medical School Singapore, Singapore
| | - Wan Ying Leong
- Programme in Neuroscience and Behavioral Disorder, Duke-NUS Graduate Medical School Singapore, Singapore
| | - Ju Han
- Programme in Neuroscience and Behavioral Disorder, Duke-NUS Graduate Medical School Singapore, Singapore
| | - Antonius VanDongen
- Programme in Neuroscience and Behavioral Disorder, Duke-NUS Graduate Medical School Singapore, Singapore ; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| | - Teng Chen
- Key Laboratory of Health Ministry for Forensic Science, Department of Forensic Medicine, Xi'an Jiaotong University School of Medicine Xi'an, Shaanxi, China
| | - Eyleen L K Goh
- Programme in Neuroscience and Behavioral Disorder, Duke-NUS Graduate Medical School Singapore, Singapore ; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore ; KK Research Center, KK Women's and Children's Hospital Singapore, Singapore
| |
Collapse
|
106
|
Abstract
Rett syndrome (RTT) is a severe neurological disorder caused by mutations in the X-linked gene MECP2 (methyl-CpG-binding protein 2). Two decades of research have fostered the view that MeCP2 is a multifunctional chromatin protein that integrates diverse aspects of neuronal biology. More recently, studies have focused on specific RTT-associated mutations within the protein. This work has yielded molecular insights into the critical functions of MeCP2 that promise to simplify our understanding of RTT pathology.
Collapse
Affiliation(s)
- Matthew J Lyst
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Adrian Bird
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
| |
Collapse
|
107
|
Sceniak MP, Lang M, Enomoto AC, James Howell C, Hermes DJ, Katz DM. Mechanisms of Functional Hypoconnectivity in the Medial Prefrontal Cortex of Mecp2 Null Mice. Cereb Cortex 2015; 26:1938-1956. [PMID: 25662825 DOI: 10.1093/cercor/bhv002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Frontal cortical dysfunction is thought to contribute to cognitive and behavioral features of autism spectrum disorders; however, underlying mechanisms are poorly understood. The present study sought to define how loss of Mecp2, the gene mutated in Rett syndrome (RTT), disrupts function in the murine medial prefrontal cortex (mPFC) using acute brain slices and behavioral testing. Compared with wildtype, pyramidal neurons in the Mecp2 null mPFC exhibit significant reductions in excitatory postsynaptic currents, the duration of excitatory UP-states, evoked population activity, and the ratio of NMDA:AMPA currents, as well as an increase in the relative fraction of NR2B currents. These functional changes are associated with reductions in the density of excitatory dendritic spines, the ratio of vesicular glutamate to GABA transporters and GluN1 expression. In contrast to recent reports on circuit defects in other brain regions, we observed no effect of Mecp2 loss on inhibitory synaptic currents or expression of the inhibitory marker parvalbumin. Consistent with mPFC hypofunction, Mecp2 nulls exhibit respiratory dysregulation in response to behavioral arousal. Our data highlight functional hypoconnectivity in the mPFC as a potential substrate for behavioral disruption in RTT and other disorders associated with reduced expression of Mecp2 in frontal cortical regions.
Collapse
Affiliation(s)
- Michael P Sceniak
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Min Lang
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Addison C Enomoto
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - C James Howell
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Douglas J Hermes
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - David M Katz
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
108
|
Djuric U, Cheung AYL, Zhang W, Mok RS, Lai W, Piekna A, Hendry JA, Ross PJ, Pasceri P, Kim DS, Salter MW, Ellis J. MECP2e1 isoform mutation affects the form and function of neurons derived from Rett syndrome patient iPS cells. Neurobiol Dis 2015; 76:37-45. [PMID: 25644311 PMCID: PMC4380613 DOI: 10.1016/j.nbd.2015.01.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/19/2014] [Accepted: 01/11/2015] [Indexed: 01/01/2023] Open
Abstract
MECP2 mutations cause the X-linked neurodevelopmental disorder Rett Syndrome (RTT) by consistently altering the protein encoded by the MECP2e1 alternative transcript. While mutations that simultaneously affect both MECP2e1 and MECP2e2 isoforms have been widely studied, the consequence of MECP2e1 deficiency on human neurons remains unknown. Here we report the first isoform-specific patient induced pluripotent stem cell (iPSC) model of RTT. RTTe1 patient iPS cell-derived neurons retain an inactive X-chromosome and express only the mutant allele. Single-cell mRNA analysis demonstrated they have a molecular signature of cortical neurons. Mutant neurons exhibited a decrease in soma size, reduced dendritic complexity and decreased cell capacitance, consistent with impaired neuronal maturation. The soma size phenotype was rescued cell-autonomously by MECP2e1 transduction in a level-dependent manner but not by MECP2e2 gene transfer. Importantly, MECP2e1 mutant neurons showed a dysfunction in action potential generation, voltage-gated Na(+) currents, and miniature excitatory synaptic current frequency and amplitude. We conclude that MECP2e1 mutation affects soma size, information encoding properties and synaptic connectivity in human neurons that are defective in RTT.
Collapse
Affiliation(s)
- Ugljesa Djuric
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Aaron Y L Cheung
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Wenbo Zhang
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, ON M5T 1P8, Canada
| | - Rebecca S Mok
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Wesley Lai
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alina Piekna
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jason A Hendry
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - P Joel Ross
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Peter Pasceri
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Dae-Sung Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Michael W Salter
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, ON M5T 1P8, Canada
| | - James Ellis
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
109
|
Liyanage VRB, Zachariah RM, Davie JR, Rastegar M. Ethanol deregulates Mecp2/MeCP2 in differentiating neural stem cells via interplay between 5-methylcytosine and 5-hydroxymethylcytosine at the Mecp2 regulatory elements. Exp Neurol 2015; 265:102-17. [PMID: 25620416 DOI: 10.1016/j.expneurol.2015.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/23/2014] [Accepted: 01/18/2015] [Indexed: 11/29/2022]
Abstract
Methyl CpG Binding Protein 2 (MeCP2) is an important epigenetic factor in the brain. MeCP2 expression is affected by different environmental insults including alcohol exposure. Accumulating evidence supports the role of aberrant MeCP2 expression in ethanol exposure-induced neurological symptoms. However, the underlying molecular mechanisms of ethanol-induced MeCP2 deregulation remain elusive. To study the effect of ethanol on Mecp2/MeCP2 expression during neurodifferentiation, we established an in vitro model of ethanol exposure, using differentiating embryonic brain-derived neural stem cells (NSC). Previously, we demonstrated the impact of DNA methylation at the Mecp2 regulatory elements (REs) on Mecp2/MeCP2 expression in vitro and in vivo. Here, we studied whether altered DNA methylation at these REs is associated with the Mecp2/MeCP2 misexpression induced by ethanol. Binge-like and continuous ethanol exposure upregulated Mecp2/MeCP2, while ethanol withdrawal downregulated its expression. DNA methylation analysis by methylated DNA immunoprecipitation indicated that increased 5-hydroxymethylcytosine (5hmC) and decreased 5-methylcytosine (5mC) enrichment at specific REs were associated with upregulated Mecp2/MeCP2 following continuous ethanol exposure. The reduced Mecp2/MeCP2 expression upon ethanol withdrawal was associated with reduced 5hmC and increased 5mC enrichment at these REs. Moreover, ethanol altered global DNA methylation (5mC and 5hmC). Under the tested conditions, ethanol had minimal effects on NSC cell fate commitment, but caused changes in neuronal morphology and glial cell size. Taken together, our data represent an epigenetic mechanism for ethanol-mediated misexpression of Mecp2/MeCP2 in differentiating embryonic brain cells. We also show the potential role of DNA methylation and MeCP2 in alcohol-related neurological disorders, specifically Fetal Alcohol Spectrum Disorders.
Collapse
Affiliation(s)
- Vichithra Rasangi Batuwita Liyanage
- Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada; Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada.
| | - Robby Mathew Zachariah
- Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada; Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada.
| | - James Ronald Davie
- Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada.
| | - Mojgan Rastegar
- Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada; Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada.
| |
Collapse
|
110
|
Phillips M, Pozzo-Miller L. Dendritic spine dysgenesis in autism related disorders. Neurosci Lett 2015; 601:30-40. [PMID: 25578949 DOI: 10.1016/j.neulet.2015.01.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/31/2014] [Accepted: 01/04/2015] [Indexed: 01/22/2023]
Abstract
The activity-dependent structural and functional plasticity of dendritic spines has led to the long-standing belief that these neuronal compartments are the subcellular sites of learning and memory. Of relevance to human health, central neurons in several neuropsychiatric illnesses, including autism related disorders, have atypical numbers and morphologies of dendritic spines. These so-called dendritic spine dysgeneses found in individuals with autism related disorders are consistently replicated in experimental mouse models. Dendritic spine dysgenesis reflects the underlying synaptopathology that drives clinically relevant behavioral deficits in experimental mouse models, providing a platform for testing new therapeutic approaches. By examining molecular signaling pathways, synaptic deficits, and spine dysgenesis in experimental mouse models of autism related disorders we find strong evidence for mTOR to be a critical point of convergence and promising therapeutic target.
Collapse
Affiliation(s)
- Mary Phillips
- Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
111
|
Washbourne P. Synapse assembly and neurodevelopmental disorders. Neuropsychopharmacology 2015; 40:4-15. [PMID: 24990427 PMCID: PMC4262893 DOI: 10.1038/npp.2014.163] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/23/2014] [Accepted: 06/26/2014] [Indexed: 12/31/2022]
Abstract
In this review we examine the current understanding of how genetic deficits associated with neurodevelopmental disorders may impact synapse assembly. We then go on to discuss how the critical periods for these genetic deficits will shape the nature of future clinical interventions.
Collapse
Affiliation(s)
- Philip Washbourne
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA,Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA, Tel: +1 541 346 4138, Fax: +1 541 346 4548, E-mail:
| |
Collapse
|
112
|
Bergo A, Strollo M, Gai M, Barbiero I, Stefanelli G, Sertic S, Cobolli Gigli C, Di Cunto F, Kilstrup-Nielsen C, Landsberger N. Methyl-CpG binding protein 2 (MeCP2) localizes at the centrosome and is required for proper mitotic spindle organization. J Biol Chem 2014; 290:3223-37. [PMID: 25527496 DOI: 10.1074/jbc.m114.608125] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in MECP2 cause a broad spectrum of neuropsychiatric disorders of which Rett syndrome represents the best defined condition. Both neuronal and non-neuronal functions of the methyl-binding protein underlie the related pathologies. Nowadays MeCP2 is recognized as a multifunctional protein that modulates its activity depending on its protein partners and posttranslational modifications. However, we are still missing a comprehensive understanding of all MeCP2 functions and their involvement in the related pathologies. The study of human mutations often offers the possibility of clarifying the functions of a protein. Therefore, we decided to characterize a novel MeCP2 phospho-isoform (Tyr-120) whose relevance was suggested by a Rett syndrome patient carrying a Y120D substitution possibly mimicking a constitutively phosphorylated state. Unexpectedly, we found MeCP2 and its Tyr-120 phospho-isoform enriched at the centrosome both in dividing and postmitotic cells. The molecular and functional connection of MeCP2 to the centrosome was further reinforced through cellular and biochemical approaches. We show that, similar to many centrosomal proteins, MeCP2 deficiency causes aberrant spindle geometry, prolonged mitosis, and defects in microtubule nucleation. Collectively, our data indicate a novel function of MeCP2 that might reconcile previous data regarding the role of MeCP2 in cell growth and cytoskeleton stability and that might be relevant to understand some aspects of MeCP2-related conditions. Furthermore, they link the Tyr-120 residue and its phosphorylation to cell division, prompting future studies on the relevance of Tyr-120 for cortical development.
Collapse
Affiliation(s)
- Anna Bergo
- From the Department of Theoretical and Applied Sciences, Section of Biomedical Research, University of Insubria, 21052 Busto Arsizio, Italy
| | - Marta Strollo
- From the Department of Theoretical and Applied Sciences, Section of Biomedical Research, University of Insubria, 21052 Busto Arsizio, Italy
| | - Marta Gai
- the Molecular Biotechnology Center, Department of Molecular Biotechnologies and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Isabella Barbiero
- From the Department of Theoretical and Applied Sciences, Section of Biomedical Research, University of Insubria, 21052 Busto Arsizio, Italy
| | - Gilda Stefanelli
- From the Department of Theoretical and Applied Sciences, Section of Biomedical Research, University of Insubria, 21052 Busto Arsizio, Italy
| | - Sarah Sertic
- the Department of Life Sciences, University of Milan, 20133 Milan, Italy, and
| | - Clementina Cobolli Gigli
- the San Raffaele Rett Research Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ferdinando Di Cunto
- the Molecular Biotechnology Center, Department of Molecular Biotechnologies and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Charlotte Kilstrup-Nielsen
- From the Department of Theoretical and Applied Sciences, Section of Biomedical Research, University of Insubria, 21052 Busto Arsizio, Italy
| | - Nicoletta Landsberger
- From the Department of Theoretical and Applied Sciences, Section of Biomedical Research, University of Insubria, 21052 Busto Arsizio, Italy, the San Raffaele Rett Research Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
113
|
Theoharides TC, Athanassiou M, Panagiotidou S, Doyle R. Dysregulated brain immunity and neurotrophin signaling in Rett syndrome and autism spectrum disorders. J Neuroimmunol 2014; 279:33-8. [PMID: 25669997 DOI: 10.1016/j.jneuroim.2014.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 11/18/2014] [Accepted: 12/02/2014] [Indexed: 12/21/2022]
Abstract
Rett syndrome is a neurodevelopmental disorder, which occurs in about 1:15,000 females and presents with neurologic and communication defects. It is transmitted as an X-linked dominant linked to mutations of the methyl-CpG-binding protein (MeCP2), a gene transcription suppressor, but its definitive pathogenesis is unknown thus hindering development of effective treatments. Almost half of children with Rett syndrome also have behavioral symptoms consistent with those of autism spectrum disorders (ASDs). PubMed was searched (2005-2014) using the terms: allergy, atopy, brain, brain-derived neurotrophic factor (BDNF), corticotropin-releasing hormone (CRH), cytokines, gene mutations, inflammation, mast cells (MCs), microglia, mitochondria, neurotensin (NT), neurotrophins, seizures, stress, and treatment. There are a number of intriguing differences and similarities between Rett syndrome and ASDs. Rett syndrome occurs in females, while ASDs more often in males, and the former has neurologic disabilities unlike ASDs. There is evidence of dysregulated immune system early in life in both conditions. Lack of microglial phagocytosis and decreased levels of BDNF appear to distinguish Rett syndrome from ASDs, in which there is instead microglia activation and/or proliferation and possibly defective BDNF signaling. Moreover, brain mast cell (MC) activation and focal inflammation may be more prominent in ASDs than Rett syndrome. The flavonoid luteolin blocks microglia and MC activation, provides BDNF-like activity, reverses Rett phenotype in mouse models, and has a significant benefit in children with ASDs. Appropriate formulations of luteolin or other natural molecules may be useful in the treatment of Rett syndrome.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, USA; Department of Internal Medicine, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, USA; Tufts Medical Center, Boston, MA, USA; Department of Psychiatry, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, USA.
| | - Marianna Athanassiou
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, USA
| | - Smaro Panagiotidou
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, USA
| | - Robert Doyle
- Pediatric Psychopharmacology Unit, Massachusetts General Hospital, Boston MA, USA; Harvard Medical School, Boston MA, USA
| |
Collapse
|
114
|
MeCP2 Modulates Sex Differences in the Postsynaptic Development of the Valproate Animal Model of Autism. Mol Neurobiol 2014; 53:40-56. [PMID: 25404090 DOI: 10.1007/s12035-014-8987-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/04/2014] [Indexed: 01/10/2023]
Abstract
Males are predominantly affected by autism spectrum disorders (ASD) with a prevalence ratio of 5:1. However, the underlying pathological mechanisms governing the male preponderance of ASD remain unclear. Recent studies suggested that epigenetic aberrations may cause synaptic dysfunctions, which might be related to the pathophysiology of ASD. In this study, we used rat offspring prenatally exposed to valproic acid (VPA) as an animal model of ASD. We found male-selective abnormalities in the kinetic profile of the excitatory glutamatergic synaptic protein expressions linked to N-methyl-D-aspartate receptor (NMDAR), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and metabotropic glutamate receptor 5 (mGluR5) pathways in the prefrontal cortex of the VPA-exposed offspring at postnatal weeks 1, 2, and 4. Furthermore, VPA exposure showed a male-specific attenuation of the methyl-CpG-binding protein 2 (MeCP2) expressions both in the prefrontal cortex of offspring and in the gender-isolated neural progenitor cells (NPCs). In the gender-isolated NPCs culture, higher concentration of VPA induced an increased glutamatergic synaptic development along with decreased MeCP2 expression in both genders suggesting the role of MeCP2 in the modulation of synaptic development. In the small interfering RNA (siRNA) knock-down study, 50 pmol of Mecp2 siRNA inhibited the MeCP2 expression in male- but not in female-derived NPCs with concomitant induction of postsynaptic proteins such as PSD95. Taken together, we suggest that the male-inclined reduction of MeCP2 expression is involved in the abnormal development of glutamatergic synapse and male preponderance in the VPA animal models of ASD.
Collapse
|
115
|
Szczesna K, de la Caridad O, Petazzi P, Soler M, Roa L, Saez MA, Fourcade S, Pujol A, Artuch-Iriberri R, Molero-Luis M, Vidal A, Huertas D, Esteller M. Improvement of the Rett syndrome phenotype in a MeCP2 mouse model upon treatment with levodopa and a dopa-decarboxylase inhibitor. Neuropsychopharmacology 2014; 39:2846-56. [PMID: 24917201 PMCID: PMC4200495 DOI: 10.1038/npp.2014.136] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/28/2014] [Accepted: 06/02/2014] [Indexed: 12/12/2022]
Abstract
Rett Syndrome is a neurodevelopmental autism spectrum disorder caused by mutations in the gene coding for methyl CpG-binding protein (MeCP2). The disease is characterized by abnormal motor, respiratory, cognitive impairment, and autistic-like behaviors. No effective treatment of the disorder is available. Mecp2 knockout mice have a range of physiological and neurological abnormalities that resemble the human syndrome and can be used as a model to interrogate new therapies. Herein, we show that the combined administration of Levodopa and a Dopa-decarboxylase inhibitor in RTT mouse models is well tolerated, diminishes RTT-associated symptoms, and increases life span. The amelioration of RTT symptomatology is particularly significant in those features controlled by the dopaminergic pathway in the nigrostratium, such as mobility, tremor, and breathing. Most important, the improvement of the RTT phenotype upon use of the combined treatment is reflected at the cellular level by the development of neuronal dendritic growth. However, much work is required to extend the duration of the benefit of the described preclinical treatment.
Collapse
Affiliation(s)
- Karolina Szczesna
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Olga de la Caridad
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Paolo Petazzi
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Marta Soler
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Laura Roa
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Mauricio A Saez
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Stéphane Fourcade
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain,Institute of Neuropathology, University of Barcelona, Barcelona, Spain,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain,Institute of Neuropathology, University of Barcelona, Barcelona, Spain,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Rafael Artuch-Iriberri
- Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain,Neurometabolic Unit, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Marta Molero-Luis
- Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain,Neurometabolic Unit, Hospital Sant Joan de Déu, Barcelona, Spain
| | - August Vidal
- Department of Pathology, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Dori Huertas
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain,Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 3rd Floor, Hospital Duran i Reynals, Avenue Gran Via 199-203, L'Hospitalet, Barcelona 08908, Catalonia, Spain, Tel: +34 932607253, Fax: +34 932607140, E-mail: or
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Spain,Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 3rd Floor, Hospital Duran i Reynals, Avenue Gran Via 199-203, L'Hospitalet, Barcelona 08908, Catalonia, Spain, Tel: +34 932607253, Fax: +34 932607140, E-mail: or
| |
Collapse
|
116
|
Han XD, Li M, Zhang XG, Xue ZG, Cang J. Single sevoflurane exposure increases methyl-CpG island binding protein 2 phosphorylation in the hippocampus of developing mice. Mol Med Rep 2014; 11:226-30. [PMID: 25338822 DOI: 10.3892/mmr.2014.2751] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 06/09/2014] [Indexed: 11/06/2022] Open
Abstract
Sevoflurane is an inhaled anesthetic that is widely used in clinical practice, particularly for pediatric anesthesia. Previous studies have suggested that sevoflurane may induce neurotoxicity in the brains of neonatal mice. In the present study, the possible mechanism of neurodegeneration induced by sevoflurane in the developing brain, and the possibility that memantine treatment is able to reverse this phenomenon, were investigated. On postnatal day 7 (P7) C57BL/6 mice were continuously exposed to 1.5% sevoflurane for 2 h following pre-injection of saline or memantine. Methyl-CpG island binding protein 2 (MeCP2), cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) expression in the hippocampus was measured by western blotting. Exposure to 1.5% sevoflurane resulted in increased MeCP2 phosphorylation in the hippocampus, which was reversed by memantine injection. However, neither CREB phosphorylation nor BDNF expression were significantly altered by sevoflurane treatment. The current study indicated that sevoflurane causes neurotoxicity in the developing brain, and that this may be attributed to increased MeCP2 phosphorylation in the hippocampus. It was also demonstrated that this neurotoxicity can be prevented by the N-methyl-D-aspartate glutamate receptor inhibitor memantine.
Collapse
Affiliation(s)
- Xiao-Dan Han
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Min Li
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Xiao-Guang Zhang
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Zhang-Gang Xue
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jing Cang
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
117
|
Hess-Homeier DL, Fan CY, Gupta T, Chiang AS, Certel SJ. Astrocyte-specific regulation of hMeCP2 expression in Drosophila. Biol Open 2014; 3:1011-9. [PMID: 25305037 PMCID: PMC4232758 DOI: 10.1242/bio.20149092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Alterations in the expression of Methyl-CpG-binding protein 2 (MeCP2) either by mutations or gene duplication leads to a wide spectrum of neurodevelopmental disorders including Rett Syndrome and MeCP2 duplication disorder. Common features of Rett Syndrome (RTT), MeCP2 duplication disorder, and neuropsychiatric disorders indicate that even moderate changes in MeCP2 protein levels result in functional and structural cell abnormalities. In this study, we investigated two areas of MeCP2 pathophysiology using Drosophila as a model system: the effects of MeCP2 glial gain-of-function activity on circuits controlling sleep behavior, and the cell-type specific regulation of MeCP2 expression. In this study, we first examined the effects of elevated MeCP2 levels on microcircuits by expressing human MeCP2 (hMeCP2) in astrocytes and distinct subsets of amine neurons including dopamine and octopamine (OA) neurons. Depending on the cell-type, hMeCP2 expression reduced sleep levels, altered daytime/nighttime sleep patterns, and generated sleep maintenance deficits. Second, we identified a 498 base pair region of the MeCP2e2 isoform that is targeted for regulation in distinct subsets of astrocytes. Levels of the full-length hMeCP2e2 and mutant RTT R106W protein decreased in astrocytes in a temporally and spatially regulated manner. In contrast, expression of the deletion Δ166 hMeCP2 protein was not altered in the entire astrocyte population. qPCR experiments revealed a reduction in full-length hMeCP2e2 transcript levels suggesting transgenic hMeCP2 expression is regulated at the transcriptional level. Given the phenotypic complexities that are caused by alterations in MeCP2 levels, our results provide insight into distinct cellular mechanisms that control MeCP2 expression and link microcircuit abnormalities with defined behavioral deficits.
Collapse
Affiliation(s)
- David L Hess-Homeier
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | - Chia-Yu Fan
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tarun Gupta
- Neuroscience Graduate Program, The University of Montana, Missoula, MT 59812, USA
| | - Ann-Shyn Chiang
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sarah J Certel
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA Neuroscience Graduate Program, The University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
118
|
Xu X, Miller EC, Pozzo-Miller L. Dendritic spine dysgenesis in Rett syndrome. Front Neuroanat 2014; 8:97. [PMID: 25309341 PMCID: PMC4159975 DOI: 10.3389/fnana.2014.00097] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 08/25/2014] [Indexed: 11/13/2022] Open
Abstract
Spines are small cytoplasmic extensions of dendrites that form the postsynaptic compartment of the majority of excitatory synapses in the mammalian brain. Alterations in the numerical density, size, and shape of dendritic spines have been correlated with neuronal dysfunction in several neurological and neurodevelopmental disorders associated with intellectual disability, including Rett syndrome (RTT). RTT is a progressive neurodevelopmental disorder associated with intellectual disability that is caused by loss of function mutations in the transcriptional regulator methyl CpG-binding protein 2 (MECP2). Here, we review the evidence demonstrating that principal neurons in RTT individuals and Mecp2-based experimental models exhibit alterations in the number and morphology of dendritic spines. We also discuss the exciting possibility that signaling pathways downstream of brain-derived neurotrophic factor (BDNF), which is transcriptionally regulated by MeCP2, offer promising therapeutic options for modulating dendritic spine development and plasticity in RTT and other MECP2-associated neurodevelopmental disorders.
Collapse
Affiliation(s)
- Xin Xu
- Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Eric C Miller
- Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
119
|
Bellini E, Pavesi G, Barbiero I, Bergo A, Chandola C, Nawaz MS, Rusconi L, Stefanelli G, Strollo M, Valente MM, Kilstrup-Nielsen C, Landsberger N. MeCP2 post-translational modifications: a mechanism to control its involvement in synaptic plasticity and homeostasis? Front Cell Neurosci 2014; 8:236. [PMID: 25165434 PMCID: PMC4131190 DOI: 10.3389/fncel.2014.00236] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/27/2014] [Indexed: 12/02/2022] Open
Abstract
Although Rett syndrome (RTT) represents one of the most frequent forms of severe intellectual disability in females worldwide, we still have an inadequate knowledge of the many roles played by MeCP2 (whose mutations are responsible for most cases of RTT) and their relevance for RTT pathobiology. Several studies support a role of MeCP2 in the regulation of synaptic plasticity and homeostasis. At the molecular level, MeCP2 is described as a repressor capable of inhibiting gene transcription through chromatin compaction. Indeed, it interacts with several chromatin remodeling factors, such as HDAC-containing complexes and ATRX. Other studies have inferred that MeCP2 functions also as an activator; a role in regulating mRNA splicing and in modulating protein synthesis has also been proposed. Further, MeCP2 avidly binds both 5-methyl- and 5-hydroxymethyl-cytosine. Recent evidence suggests that it is the highly disorganized structure of MeCP2, together with its post-translational modifications (PTMs) that generate and regulate this functional versatility. Indeed, several reports have demonstrated that differential phosphorylation of MeCP2 is a key mechanism by which the methyl binding protein modulates its affinity for its partners, gene expression and cellular adaptations to stimuli and neuronal plasticity. As logic consequence, generation of phospho-defective Mecp2 knock-in mice has permitted associating alterations in neuronal morphology, circuit formation, and mouse behavioral phenotypes with specific phosphorylation events. MeCP2 undergoes various other PTMs, including acetylation, ubiquitination and sumoylation, whose functional roles remain largely unexplored. These results, together with the genome-wide distribution of MeCP2 and its capability to substitute histone H1, recall the complex regulation of histones and suggest the relevance of quickly gaining a deeper comprehension of MeCP2 PTMs, the respective writers and readers and the consequent functional outcomes.
Collapse
Affiliation(s)
- Elisa Bellini
- Division of Neuroscience, San Raffaele Rett Research Center, San Raffaele Scientific Institute Milan, Italy
| | - Giulio Pavesi
- Department of Biosciences, University of Milan Milan, Italy
| | - Isabella Barbiero
- Section of Biomedical Research, Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretic and Applied Sciences, University of Insubria Busto Arsizio, Italy
| | - Anna Bergo
- Section of Biomedical Research, Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretic and Applied Sciences, University of Insubria Busto Arsizio, Italy
| | - Chetan Chandola
- Section of Biomedical Research, Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretic and Applied Sciences, University of Insubria Busto Arsizio, Italy
| | - Mohammad S Nawaz
- Section of Biomedical Research, Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretic and Applied Sciences, University of Insubria Busto Arsizio, Italy
| | - Laura Rusconi
- Section of Biomedical Research, Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretic and Applied Sciences, University of Insubria Busto Arsizio, Italy
| | - Gilda Stefanelli
- Section of Biomedical Research, Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretic and Applied Sciences, University of Insubria Busto Arsizio, Italy
| | - Marta Strollo
- Section of Biomedical Research, Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretic and Applied Sciences, University of Insubria Busto Arsizio, Italy
| | - Maria M Valente
- Division of Neuroscience, San Raffaele Rett Research Center, San Raffaele Scientific Institute Milan, Italy
| | - Charlotte Kilstrup-Nielsen
- Section of Biomedical Research, Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretic and Applied Sciences, University of Insubria Busto Arsizio, Italy
| | - Nicoletta Landsberger
- Division of Neuroscience, San Raffaele Rett Research Center, San Raffaele Scientific Institute Milan, Italy ; Section of Biomedical Research, Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretic and Applied Sciences, University of Insubria Busto Arsizio, Italy
| |
Collapse
|
120
|
Robison AJ. Emerging role of CaMKII in neuropsychiatric disease. Trends Neurosci 2014; 37:653-62. [PMID: 25087161 DOI: 10.1016/j.tins.2014.07.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/28/2014] [Accepted: 07/02/2014] [Indexed: 02/04/2023]
Abstract
Although it has been known for decades that hippocampal calcium/calmodulin (CaM)-dependent protein kinase II (CaMKII) plays an essential role in learning and memory consolidation, the roles of CaMKII in other brain regions are only recently being explored in depth. A series of recent studies suggest that CaMKII dysfunction throughout the brain may underlie myriad neuropsychiatric disorders, including drug addiction, schizophrenia, depression, epilepsy, and multiple neurodevelopmental disorders, perhaps through maladaptations in glutamate signaling and neuroplasticity. I review here the structure, function, subcellular localization, and expression patterns of CaMKII isoforms, as well as recent advances demonstrating that disturbances in these properties may contribute to psychiatric disorders.
Collapse
Affiliation(s)
- A J Robison
- Department of Physiology, Michigan State University, Lansing, MI 48824, USA.
| |
Collapse
|
121
|
Oginsky MF, Cui N, Zhong W, Johnson CM, Jiang C. Alterations in the cholinergic system of brain stem neurons in a mouse model of Rett syndrome. Am J Physiol Cell Physiol 2014; 307:C508-20. [PMID: 25009110 DOI: 10.1152/ajpcell.00035.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rett syndrome is an autism-spectrum disorder resulting from mutations to the X-linked gene, methyl-CpG binding protein 2 (MeCP2), which causes abnormalities in many systems. It is possible that the body may develop certain compensatory mechanisms to alleviate the abnormalities. The norepinephrine system originating mainly in the locus coeruleus (LC) is defective in Rett syndrome and Mecp2-null mice. LC neurons are subject to modulation by GABA, glutamate, and acetylcholine (ACh), providing an ideal system to test the compensatory hypothesis. Here we show evidence for potential compensatory modulation of LC neurons by post- and presynaptic ACh inputs. We found that the postsynaptic currents of nicotinic ACh receptors (nAChR) were smaller in amplitude and longer in decay time in the Mecp2-null mice than in the wild type. Single-cell PCR analysis showed a decrease in the expression of α3-, α4-, α7-, and β3-subunits and an increase in the α5- and α6-subunits in the mutant mice. The α5-subunit was present in many of the LC neurons with slow-decay nAChR currents. The nicotinic modulation of spontaneous GABAA-ergic inhibitory postsynaptic currents in LC neurons was enhanced in Mecp2-null mice. In contrast, the nAChR manipulation of glutamatergic input to LC neurons was unaffected in both groups of mice. Our current-clamp studies showed that the modulation of LC neurons by ACh input was reduced moderately in Mecp2-null mice, despite the major decrease in nAChR currents, suggesting possible compensatory processes may take place, thus reducing the defects to a lesser extent in LC neurons.
Collapse
Affiliation(s)
- Max F Oginsky
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Ningren Cui
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Weiwei Zhong
- Department of Biology, Georgia State University, Atlanta, Georgia
| | | | - Chun Jiang
- Department of Biology, Georgia State University, Atlanta, Georgia
| |
Collapse
|
122
|
Functional recovery with recombinant human IGF1 treatment in a mouse model of Rett Syndrome. Proc Natl Acad Sci U S A 2014; 111:9941-6. [PMID: 24958891 DOI: 10.1073/pnas.1311685111] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rett Syndrome is a neurodevelopmental disorder that arises from mutations in the X-linked gene methyl-CpG binding protein 2 (MeCP2). MeCP2 has a large number of targets and a wide range of functions, suggesting the hypothesis that functional signaling mechanisms upstream of synaptic and circuit maturation may contribute to our understanding of the disorder and provide insight into potential treatment. Here, we show that insulin-like growth factor-1 (IGF1) levels are reduced in young male Mecp2-null (Mecp2(-/y)) mice, and systemic treatment with recombinant human IGF1 (rhIGF1) improves lifespan, locomotor activity, heart rate, respiration patterns, and social and anxiety behavior. Furthermore, Mecp2-null mice treated with rhIGF1 show increased synaptic and activated signaling pathway proteins, enhanced cortical excitatory synaptic transmission, and restored dendritic spine densities. IGF1 levels are also reduced in older, fully symptomatic heterozygous (Mecp2(-/+)) female mice, and short-term treatment with rhIGF1 in these animals improves respiratory patterns, reduces anxiety levels, and increases exploratory behavior. In addition, rhIGF1 treatment normalizes abnormally prolonged plasticity in visual cortex circuits of adult Mecp2(-/+) female mice. Our results provide characterization of the phenotypic development of Rett Syndrome in a mouse model at the molecular, circuit, and organismal levels and demonstrate a mechanism-based therapeutic role for rhIGF1 in treating Rett Syndrome.
Collapse
|
123
|
Damen D, Heumann R. MeCP2 phosphorylation in the brain: from transcription to behavior. Biol Chem 2014; 394:1595-605. [PMID: 23912219 DOI: 10.1515/hsz-2013-0193] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 07/30/2013] [Indexed: 11/15/2022]
Abstract
Methyl-CpG binding protein 2 (MeCP2), a nuclear protein highly expressed in neurons, was identified because of its ability to bind methylated DNA. In association with the transcriptional corepressor proteins Sin3a and histone deacetylases, it represses gene transcription. However, it has since become clear that MeCP2 is a multifunctional protein involved not only in transcriptional silencing but also in transcriptional activation, chromatin remodeling, and RNA splicing. Especially, its involvement in the X-linked neurologic disorder Rett syndrome emphasizes the importance of MeCP2 for normal development and maturation of the central nervous system. A number of animal models with complete or partial lack of MeCP2 functions have been generated to correlate the clinical phenotype of Rett syndrome, and studies involving different mutations of MeCP2 have shown similar effects. Animal model studies have further demonstrated that even the loss of a specific phosphorylation site of MeCP2 (S80, S421, and S424) disturbs normal maturation of the mammalian brain. This review covers recent findings regarding MeCP2 functions and its regulation by posttranslational modification, particularly MeCP2 phosphorylation and its effects on mammalian brain maturation, learning, and plasticity.
Collapse
|
124
|
El-Khoury R, Panayotis N, Matagne V, Ghata A, Villard L, Roux JC. GABA and glutamate pathways are spatially and developmentally affected in the brain of Mecp2-deficient mice. PLoS One 2014; 9:e92169. [PMID: 24667344 PMCID: PMC3965407 DOI: 10.1371/journal.pone.0092169] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 02/19/2014] [Indexed: 02/03/2023] Open
Abstract
Proper brain functioning requires a fine-tuning between excitatory and inhibitory neurotransmission, a balance maintained through the regulation and release of glutamate and GABA. Rett syndrome (RTT) is a rare genetic disorder caused by mutations in the methyl-CpG binding protein 2 (MECP2) gene affecting the postnatal brain development. Dysfunctions in the GABAergic and glutamatergic systems have been implicated in the neuropathology of RTT and a disruption of the balance between excitation and inhibition, together with a perturbation of the electrophysiological properties of GABA and glutamate neurons, were reported in the brain of the Mecp2-deficient mouse. However, to date, the extent and the nature of the GABA/glutamate deficit affecting the Mecp2-deficient mouse brain are unclear. In order to better characterize these deficits, we simultaneously analyzed the GABA and glutamate levels in Mecp2-deficient mice at 2 different ages (P35 and P55) and in several brain areas. We used a multilevel approach including the quantification of GABA and glutamate levels, as well as the quantification of the mRNA and protein expression levels of key genes involved in the GABAergic and glutamatergic pathways. Our results show that Mecp2-deficient mice displayed regional- and age-dependent variations in the GABA pathway and, to a lesser extent, in the glutamate pathway. The implication of the GABA pathway in the RTT neuropathology was further confirmed using an in vivo treatment with a GABA reuptake inhibitor that significantly improved the lifespan of Mecp2-deficient mice. Our results confirm that RTT mouse present a deficit in the GABAergic pathway and suggest that GABAergic modulators could be interesting therapeutic agents for this severe neurological disorder.
Collapse
Affiliation(s)
- Rita El-Khoury
- Aix Marseille Université, GMGF, Marseille, France
- Inserm, UMR_S 910, Marseille, France
| | - Nicolas Panayotis
- Aix Marseille Université, GMGF, Marseille, France
- Inserm, UMR_S 910, Marseille, France
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Valérie Matagne
- Aix Marseille Université, GMGF, Marseille, France
- Inserm, UMR_S 910, Marseille, France
| | - Adeline Ghata
- Aix Marseille Université, GMGF, Marseille, France
- Inserm, UMR_S 910, Marseille, France
| | - Laurent Villard
- Aix Marseille Université, GMGF, Marseille, France
- Inserm, UMR_S 910, Marseille, France
| | - Jean-Christophe Roux
- Aix Marseille Université, GMGF, Marseille, France
- Inserm, UMR_S 910, Marseille, France
- * E-mail:
| |
Collapse
|
125
|
Abstract
Rett syndrome (RTT) is a severe and progressive neurological disorder, which mainly affects young females. Mutations of the methyl-CpG binding protein 2 (MECP2) gene are the most prevalent cause of classical RTT cases. MECP2 mutations or altered expression are also associated with a spectrum of neurodevelopmental disorders such as autism spectrum disorders with recent links to fetal alcohol spectrum disorders. Collectively, MeCP2 relation to these neurodevelopmental disorders highlights the importance of understanding the molecular mechanisms by which MeCP2 impacts brain development, mental conditions, and compromised brain function. Since MECP2 mutations were discovered to be the primary cause of RTT, a significant progress has been made in the MeCP2 research, with respect to the expression, function and regulation of MeCP2 in the brain and its contribution in RTT pathogenesis. To date, there have been intensive efforts in designing effective therapeutic strategies for RTT benefiting from mouse models and cells collected from RTT patients. Despite significant progress in MeCP2 research over the last few decades, there is still a knowledge gap between the in vitro and in vivo research findings and translating these findings into effective therapeutic interventions in human RTT patients. In this review, we will provide a synopsis of Rett syndrome as a severe neurological disorder and will discuss the role of MeCP2 in RTT pathophysiology.
Collapse
|
126
|
Bedogni F, Rossi RL, Galli F, Cobolli Gigli C, Gandaglia A, Kilstrup-Nielsen C, Landsberger N. Rett syndrome and the urge of novel approaches to study MeCP2 functions and mechanisms of action. Neurosci Biobehav Rev 2014; 46 Pt 2:187-201. [PMID: 24594195 DOI: 10.1016/j.neubiorev.2014.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/25/2013] [Accepted: 01/21/2014] [Indexed: 10/25/2022]
Abstract
Rett syndrome (RTT) is a devastating genetic disorder that worldwide represents the most common genetic cause of severe intellectual disability in females. Most cases are caused by mutations in the X-linked MECP2 gene. Several recent studies have demonstrated that RTT mimicking animal models do not develop an irreversible condition and phenotypic rescue is possible. However, no cure for RTT has been identified so far, and patients are only given symptomatic and supportive treatments. The development of clinical applications imposes a more comprehensive knowledge of MeCP2 functional role(s) and their relevance for RTT pathobiology. Herein, we thoroughly survey the knowledge about MeCP2 structure and functions, highlighting the necessity of identifying more functional domains and the value of molecular genetics. Given that, in our opinion, RTT ultimately is generated by perturbations in gene transcription and so far no genes/pathways have been consistently linked to a dysfunctional MeCP2, we have used higher-level bioinformatic analyses to identify commonly deregulated mechanisms in MeCP2-defective samples. In this review we present our results and discuss the possible value of the utilized approach.
Collapse
Affiliation(s)
- Francesco Bedogni
- San Raffaele Rett Research Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy; Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, Busto Arsizio 21052, Italy
| | - Riccardo L Rossi
- Fondazione Istituto Nazionale Genetica Molecolare, Milan 20122, Italy
| | - Francesco Galli
- San Raffaele Rett Research Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Clementina Cobolli Gigli
- San Raffaele Rett Research Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy; Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, Busto Arsizio 21052, Italy
| | - Anna Gandaglia
- San Raffaele Rett Research Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy; Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, Busto Arsizio 21052, Italy
| | - Charlotte Kilstrup-Nielsen
- Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, Busto Arsizio 21052, Italy
| | - Nicoletta Landsberger
- San Raffaele Rett Research Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy; Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, Busto Arsizio 21052, Italy.
| |
Collapse
|
127
|
Uzunova G, Hollander E, Shepherd J. The role of ionotropic glutamate receptors in childhood neurodevelopmental disorders: autism spectrum disorders and fragile x syndrome. Curr Neuropharmacol 2014; 12:71-98. [PMID: 24533017 PMCID: PMC3915351 DOI: 10.2174/1570159x113116660046] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/20/2013] [Accepted: 09/25/2013] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorder (ASD) and Fragile X syndrome (FXS) are relatively common childhood neurodevelopmental disorders with increasing incidence in recent years. They are currently accepted as disorders of the synapse with alterations in different forms of synaptic communication and neuronal network connectivity. The major excitatory neurotransmitter system in brain, the glutamatergic system, is implicated in learning and memory, synaptic plasticity, neuronal development. While much attention is attributed to the role of metabotropic glutamate receptors in ASD and FXS, studies indicate that the ionotropic glutamate receptors (iGluRs) and their regulatory proteins are also altered in several brain regions. Role of iGluRs in the neurobiology of ASD and FXS is supported by a weight of evidence that ranges from human genetics to in vitro cultured neurons. In this review we will discuss clinical, molecular, cellular and functional changes in NMDA, AMPA and kainate receptors and the synaptic proteins that regulate them in the context of ASD and FXS. We will also discuss the significance for the development of translational biomarkers and treatments for the core symptoms of ASD and FXS.
Collapse
Affiliation(s)
- Genoveva Uzunova
- Autism and Obsessive Compulsive Spectrum Program, Department of Psychiatry, Montefiore Medical Center, Albert Einstein College of Medicine, 111 East 210th St, Bronx, New York 10467-2490
| | - Eric Hollander
- Autism and Obsessive Compulsive Spectrum Program, Department of Psychiatry, Montefiore Medical Center, Albert Einstein College of Medicine, 111 East 210th St, Bronx, New York 10467-2490
| | - Jason Shepherd
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, 531A Wintrobe, 20N 1900 E, Salt Lake City, Utah 84132
| |
Collapse
|
128
|
Oligodendrocyte lineage cells contribute unique features to Rett syndrome neuropathology. J Neurosci 2014; 33:18764-74. [PMID: 24285883 DOI: 10.1523/jneurosci.2657-13.2013] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mutations in the methyl-CpG binding protein 2 gene, Mecp2, affect primarily the brain and lead to a wide range of neuropsychiatric disorders, most commonly Rett syndrome (RTT). Although the neuropathology of RTT is well understood, the cellular and molecular mechanism(s), which lead to the disease initiation and progression, has yet to be elucidated. RTT was initially attributed only to neuronal dysfunction, but our recent studies and those of others show that RTT is not exclusively neuronal but rather also involves interactions between neurons and glia. Importantly, studies have shown that MeCP2-restored astrocytes and microglia are able to attenuate the disease progression in otherwise MeCP2-null mice. Here we show that another type of glia, oligodendrocytes, and their progenitors are also involved in manifestation of specific RTT symptoms. Mice that lost MeCP2 specifically in the oligodendrocyte lineage cells, although overall normal, were more active and developed severe hindlimb clasping phenotypes. Inversely, restoration of MeCP2 in oligodendrocyte lineage cells, in otherwise MeCP2-null mice, although only mildly prolonging their lifespan, significantly improved the locomotor deficits and hindlimb clasping phenotype, both in male and female mice, and fully restored the body weight in male mice. Finally, we found that the level of some myelin-related proteins was impaired in the MeCP2-null mice. Expression of MeCP2 in oligodendrocytes of these mice only partially restored their expression, suggesting that there is a non-cell-autonomous effect by other cell types in the brains on the expression of myelin-related proteins in oligodendrocytes.
Collapse
|
129
|
Zhubi A, Cook EH, Guidotti A, Grayson DR. Epigenetic Mechanisms in Autism Spectrum Disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 115:203-44. [DOI: 10.1016/b978-0-12-801311-3.00006-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
130
|
Abstract
This chapter focuses on neurodevelopmental diseases that are tightly linked to abnormal function of the striatum and connected structures. We begin with an overview of three representative diseases in which striatal dysfunction plays a key role--Tourette syndrome and obsessive-compulsive disorder, Rett's syndrome, and primary dystonia. These diseases highlight distinct etiologies that disrupt striatal integrity and function during development, and showcase the varied clinical manifestations of striatal dysfunction. We then review striatal organization and function, including evidence for striatal roles in online motor control/action selection, reinforcement learning, habit formation, and action sequencing. A key barrier to progress has been the relative lack of animal models of these diseases, though recently there has been considerable progress. We review these efforts, including their relative merits providing insight into disease pathogenesis, disease symptomatology, and basal ganglia function.
Collapse
|
131
|
Systemic delivery of MeCP2 rescues behavioral and cellular deficits in female mouse models of Rett syndrome. J Neurosci 2013; 33:13612-20. [PMID: 23966684 DOI: 10.1523/jneurosci.1854-13.2013] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
De novo mutations in the X-linked gene encoding the transcription factor methyl-CpG binding protein 2 (MECP2) are the most frequent cause of the neurological disorder Rett syndrome (RTT). Hemizygous males usually die of neonatal encephalopathy. Heterozygous females survive into adulthood but exhibit severe symptoms including microcephaly, loss of purposeful hand motions and speech, and motor abnormalities, which appear after a period of apparently normal development. Most studies have focused on male mouse models because of the shorter latency to and severity in symptoms, yet how well these mice mimic the disease in affected females is not clear. Very few therapeutic treatments have been proposed for females, the more gender-appropriate model. Here, we show that self-complementary AAV9, bearing MeCP2 cDNA under control of a fragment of its own promoter (scAAV9/MeCP2), is capable of significantly stabilizing or reversing symptoms when administered systemically into female RTT mice. To our knowledge, this is the first potential gene therapy for females afflicted with RTT.
Collapse
|
132
|
Casanova JR, Nishimura M, Swann JW. The effects of early-life seizures on hippocampal dendrite development and later-life learning and memory. Brain Res Bull 2013; 103:39-48. [PMID: 24140049 DOI: 10.1016/j.brainresbull.2013.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 01/08/2023]
Abstract
Severe childhood epilepsy is commonly associated with intellectual developmental disabilities. The reasons for these cognitive deficits are likely multifactorial and will vary between epilepsy syndromes and even among children with the same syndrome. However, one factor these children have in common is the recurring seizures they experience - sometimes on a daily basis. Supporting the idea that the seizures themselves can contribute to intellectual disabilities are laboratory results demonstrating spatial learning and memory deficits in normal mice and rats that have experienced recurrent seizures in infancy. Studies reviewed here have shown that seizures in vivo and electrographic seizure activity in vitro both suppress the growth of hippocampal pyramidal cell dendrites. A simplification of dendritic arborization and a resulting decrease in the number and/or properties of the excitatory synapses on them could help explain the observed cognitive disabilities. There are a wide variety of candidate mechanisms that could be involved in seizure-induced growth suppression. The challenge is designing experiments that will help focus research on a limited number of potential molecular events. Thus far, results suggest that growth suppression is NMDA receptor-dependent and associated with a decrease in activation of the transcription factor CREB. The latter result is intriguing since CREB is known to play an important role in dendrite growth. Seizure-induced dendrite growth suppression may not occur as a single process in which pyramidal cells dendrites simply stop growing or grow slower compared to normal neurons. Instead, recent results suggest that after only a few hours of synchronized epileptiform activity in vitro dendrites appear to partially retract. This acute response is also NMDA receptor dependent and appears to be mediated by the Ca(+2)/calmodulin-dependent phosphatase, calcineurin. An understanding of the staging of seizure-induced growth suppression and the underlying molecular mechanisms will likely prove crucial for developing therapeutic strategies aimed at ameliorating the intellectual developmental disabilities associated with intractable childhood epilepsy.
Collapse
Affiliation(s)
- J R Casanova
- The Department of Neuroscience, Baylor College of Medicine, USA; The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, USA
| | - Masataka Nishimura
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, USA; Department of Pediatrics, Baylor College of Medicine, USA
| | - John W Swann
- The Department of Neuroscience, Baylor College of Medicine, USA; The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, USA; Department of Pediatrics, Baylor College of Medicine, USA.
| |
Collapse
|
133
|
Lang M, Wither RG, Colic S, Wu C, Monnier PP, Bardakjian BL, Zhang L, Eubanks JH. Rescue of behavioral and EEG deficits in male and female Mecp2-deficient mice by delayed Mecp2 gene reactivation. Hum Mol Genet 2013; 23:303-18. [PMID: 24009314 PMCID: PMC3869352 DOI: 10.1093/hmg/ddt421] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mutations of the X-linked gene encoding methyl CpG binding protein type 2 (MECP2) are the predominant cause of Rett syndrome, a severe neurodevelopmental condition that affects primarily females. Previous studies have shown that major phenotypic deficits arising from MeCP2-deficiency may be reversible, as the delayed reactivation of the Mecp2 gene in Mecp2-deficient mice improved aspects of their Rett-like phenotype. While encouraging for prospective gene replacement treatments, it remains unclear whether additional Rett syndrome co-morbidities recapitulated in Mecp2-deficient mice will be similarly responsive to the delayed reintroduction of functional Mecp2. Here, we show that the delayed reactivation of Mecp2 in both male and female Mecp2-deficient mice rescues established deficits in motor and anxiety-like behavior, epileptiform activity, cortical and hippocampal electroencephalogram patterning and thermoregulation. These findings indicate that neural circuitry deficits arising from the deficiency in Mecp2 are not engrained, and provide further evidence that delayed restoration of Mecp2 function can improve a wide spectrum of the Rett-like deficits recapitulated by Mecp2-deficient mice.
Collapse
Affiliation(s)
- Min Lang
- Division of Genetics and Development and
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Mechanisms and therapeutic challenges in autism spectrum disorders: insights from Rett syndrome. Curr Opin Neurol 2013; 26:154-9. [PMID: 23449173 DOI: 10.1097/wco.0b013e32835f19a7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW A major challenge for understanding neurodevelopmental disorders, including autism spectrum disorders (ASDs), is to advance the findings from gene discovery to an exposition of neurobiological mechanisms that underlie these disorders and subsequently translate this knowledge into mechanism-based therapeutics. A promising way to proceed is revealed by the recent studies of rare subsets of ASDs. In this review, we summarize the latest advances in the mechanisms and emerging therapeutics for a rare single-gene ASD, Rett syndrome. RECENT FINDINGS Rett syndrome is caused by mutations in the gene coding for methyl CpG-binding protein 2 (MeCP2). Although MeCP2 has diverse functions, examination of MeCP2 mutant mice suggests the hypothesis that MeCP2 deficiency leads to aberrant maturation and maintenance of synapses and circuits in multiple brain systems. Some of the deficits arise from alterations in specific intracellular pathways such as the PI3K/Akt signaling pathway. These abnormalities can be at least partially rescued in MeCP2 mutant mice by treatment with therapeutic agents. SUMMARY Mechanism-based therapeutics are emerging for single-gene neurodevelopmental disorders such as Rett syndrome. Given the complexity of MeCP2 function, future directions include combination therapeutics that target multiple molecules and pathways. Such approaches will likely be applicable to other ASDs as well.
Collapse
|
135
|
Zhao YT, Goffin D, Johnson BS, Zhou Z. Loss of MeCP2 function is associated with distinct gene expression changes in the striatum. Neurobiol Dis 2013; 59:257-66. [PMID: 23948639 DOI: 10.1016/j.nbd.2013.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/05/2013] [Accepted: 08/02/2013] [Indexed: 01/22/2023] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder characterized by developmental regression beginning 6-18months after birth, followed by a lifetime of intellectual disability, stereotyped behaviors, and motor deficits. RTT is caused by mutations in the gene encoding MeCP2, a methyl-CpG binding protein believed to modulate gene transcription. Gene expression studies of individual brain regions have reported that Mecp2 loss-of-function leads to both activation and repression of its gene targets in mice. Conditional deletion of MeCP2 from different brain regions has revealed unique insights into the role of these structures in mediating particular RTT-like phenotypes. However, the function of MeCP2 in the striatum, a major brain region involved in motor control and executive cognitive functions, has yet to be studied. Here, we characterized the gene expression changes in the striatum of Mecp2 mutant mice. We found a number of differentially expressed genes in the striatum of both constitutive Mecp2-null mice and mice lacking MeCP2 only from forebrain GABAergic neurons. These changes only occurred when MeCP2 expression levels had reached mature levels and RTT-like symptoms were manifest, supporting a role for MeCP2 in maintaining proper brain function. Many of the gene expression changes identified in the striatum have not previously been shown to change in the hypothalamus or cerebellum. Bioinformatic analysis of differentially expressed genes in striatum as well as hypothalamus and cerebellum revealed that loss of MeCP2 does not affect the global landscape of gene expression. Additionally, we uncovered a number of differentially expressed genes in the liver of Mecp2-null mice suggesting an important role for MeCP2 in non-neuronal tissues. Collectively, our data suggest that the differential expression of genes following loss of MeCP2 occurs in a tissue- or cell-type specific manner and thus MeCP2 function should be understood in a cellular context.
Collapse
Affiliation(s)
- Ying-Tao Zhao
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
136
|
Bassani S, Zapata J, Gerosa L, Moretto E, Murru L, Passafaro M. The neurobiology of X-linked intellectual disability. Neuroscientist 2013; 19:541-52. [PMID: 23820068 DOI: 10.1177/1073858413493972] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
X-linked intellectual disability (XLID) affects 1% to 3% of the population. XLID subsumes several heterogeneous conditions, all of which are marked by cognitive impairment and reduced adaptive skills. XLID arises from mutations on the X chromosome; to date, 102 XLID genes have been identified. The proteins encoded by XLID genes are involved in higher brain functions, such as cognition, learning and memory, and their molecular role is the subject of intense investigation. Here, we review recent findings concerning a representative group of XLID proteins: the fragile X mental retardation protein; methyl-CpG-binding protein 2 and cyclin-dependent kinase-like 5 proteins, which are involved in Rett syndrome; the intracellular signaling molecules of the Rho guanosine triphosphatases family; and the class of cell adhesion molecules. We discuss how XLID gene mutations affect the structure and function of synapses.
Collapse
Affiliation(s)
- Silvia Bassani
- CNR Institute of Neuroscience, Department BIOMETRA, University of Milan, Milan, Italy
| | | | | | | | | | | |
Collapse
|
137
|
Katz DM, Berger-Sweeney JE, Eubanks JH, Justice MJ, Neul JL, Pozzo-Miller L, Blue ME, Christian D, Crawley JN, Giustetto M, Guy J, Howell CJ, Kron M, Nelson SB, Samaco RC, Schaevitz LR, St Hillaire-Clarke C, Young JL, Zoghbi HY, Mamounas LA. Preclinical research in Rett syndrome: setting the foundation for translational success. Dis Model Mech 2013; 5:733-45. [PMID: 23115203 PMCID: PMC3484856 DOI: 10.1242/dmm.011007] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In September of 2011, the National Institute of Neurological Disorders and Stroke (NINDS), the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), the International Rett Syndrome Foundation (IRSF) and the Rett Syndrome Research Trust (RSRT) convened a workshop involving a broad cross-section of basic scientists, clinicians and representatives from the National Institutes of Health (NIH), the US Food and Drug Administration (FDA), the pharmaceutical industry and private foundations to assess the state of the art in animal studies of Rett syndrome (RTT). The aim of the workshop was to identify crucial knowledge gaps and to suggest scientific priorities and best practices for the use of animal models in preclinical evaluation of potential new RTT therapeutics. This review summarizes outcomes from the workshop and extensive follow-up discussions among participants, and includes: (1) a comprehensive summary of the physiological and behavioral phenotypes of RTT mouse models to date, and areas in which further phenotypic analyses are required to enhance the utility of these models for translational studies; (2) discussion of the impact of genetic differences among mouse models, and methodological differences among laboratories, on the expression and analysis, respectively, of phenotypic traits; and (3) definitions of the standards that the community of RTT researchers can implement for rigorous preclinical study design and transparent reporting to ensure that decisions to initiate costly clinical trials are grounded in reliable preclinical data.
Collapse
Affiliation(s)
- David M Katz
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44120, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Li W, Pozzo-Miller L. BDNF deregulation in Rett syndrome. Neuropharmacology 2013; 76 Pt C:737-46. [PMID: 23597512 DOI: 10.1016/j.neuropharm.2013.03.024] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/25/2013] [Accepted: 03/15/2013] [Indexed: 12/21/2022]
Abstract
BDNF is the best-characterized neurotrophin in terms of its gene structure and modulation, secretion processing, and signaling cascades following its release. In addition to diverse features at the genetic and molecular levels, the abundant expression in several regions of the central nervous system has implicated BDNF as a potent modulator in many aspects of neuronal development, as well as synaptic transmission and plasticity. Impairments in any of these critical functions likely contribute to a wide array of neurodevelopmental, neurodegenerative, and neuropsychiatric diseases. In this review, we focus on a prevalent neurodevelopmental disorder, Rett syndrome (RTT), which afflicts 1:15,000 women world-wide. We describe the consequences of loss-of-function mutations in the gene encoding the transcription factor methyl-CpG binding protein 2 (MeCP2) in RTT, and then elaborate on the current understanding of how MeCP2 controls BDNF expression. Finally, we discuss the literature regarding alterations in BDNF levels in RTT individuals and MeCP2-based mouse models, as well as recent progress in searching for rational therapeutic interventions. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
139
|
Durand S, Patrizi A, Quast KB, Hachigian L, Pavlyuk R, Saxena A, Carninci P, Hensch TK, Fagiolini M. NMDA receptor regulation prevents regression of visual cortical function in the absence of Mecp2. Neuron 2013; 76:1078-90. [PMID: 23259945 DOI: 10.1016/j.neuron.2012.12.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2012] [Indexed: 10/27/2022]
Abstract
Brain function is shaped by postnatal experience and vulnerable to disruption of Methyl-CpG-binding protein, Mecp2, in multiple neurodevelopmental disorders. How Mecp2 contributes to the experience-dependent refinement of specific cortical circuits and their impairment remains unknown. We analyzed vision in gene-targeted mice and observed an initial normal development in the absence of Mecp2. Visual acuity then rapidly regressed after postnatal day P35-40 and cortical circuits largely fell silent by P55-60. Enhanced inhibitory gating and an excess of parvalbumin-positive, perisomatic input preceded the loss of vision. Both cortical function and inhibitory hyperconnectivity were strikingly rescued independent of Mecp2 by early sensory deprivation or genetic deletion of the excitatory NMDA receptor subunit, NR2A. Thus, vision is a sensitive biomarker of progressive cortical dysfunction and may guide novel, circuit-based therapies for Mecp2 deficiency.
Collapse
Affiliation(s)
- Severine Durand
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Han K, Gennarino VA, Lee Y, Pang K, Hashimoto-Torii K, Choufani S, Raju CS, Oldham MC, Weksberg R, Rakic P, Liu Z, Zoghbi HY. Human-specific regulation of MeCP2 levels in fetal brains by microRNA miR-483-5p. Genes Dev 2013; 27:485-90. [PMID: 23431031 DOI: 10.1101/gad.207456.112] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proper neurological function in humans requires precise control of levels of the epigenetic regulator methyl CpG-binding protein 2 (MeCP2). MeCP2 protein levels are low in fetal brains, where the predominant MECP2 transcripts have an unusually long 3' untranslated region (UTR). Here, we show that miR-483-5p, an intragenic microRNA of the imprinted IGF2, regulates MeCP2 levels through a human-specific binding site in the MECP2 long 3' UTR. We demonstrate the inverse correlation of miR-483-5p and MeCP2 levels in developing human brains and fibroblasts from Beckwith-Wiedemann syndrome patients. Importantly, expression of miR-483-5p rescues abnormal dendritic spine phenotype of neurons overexpressing human MeCP2. In addition, miR-483-5p modulates the levels of proteins of the MeCP2-interacting corepressor complexes, including HDAC4 and TBL1X. These data provide insight into the role of miR-483-5p in regulating the levels of MeCP2 and interacting proteins during human fetal development.
Collapse
Affiliation(s)
- Kihoon Han
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Berdasco M, Esteller M. Genetic syndromes caused by mutations in epigenetic genes. Hum Genet 2013; 132:359-83. [PMID: 23370504 DOI: 10.1007/s00439-013-1271-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/18/2013] [Indexed: 12/21/2022]
Abstract
The orchestrated organization of epigenetic factors that control chromatin dynamism, including DNA methylation, histone marks, non-coding RNAs (ncRNAs) and chromatin-remodeling proteins, is essential for the proper function of tissue homeostasis, cell identity and development. Indeed, deregulation of epigenetic profiles has been described in several human pathologies, including complex diseases (such as cancer, cardiovascular and neurological diseases), metabolic pathologies (type 2 diabetes and obesity) and imprinting disorders. Over the last decade it has become increasingly clear that mutations of genes involved in epigenetic mechanism, such as DNA methyltransferases, methyl-binding domain proteins, histone deacetylases, histone methylases and members of the SWI/SNF family of chromatin remodelers are linked to human disorders, including Immunodeficiency Centromeric instability Facial syndrome 1, Rett syndrome, Rubinstein-Taybi syndrome, Sotos syndrome or alpha-thalassemia/mental retardation X-linked syndrome, among others. As new members of the epigenetic machinery are described, the number of human syndromes associated with epigenetic alterations increases. As recent examples, mutations of histone demethylases and members of the non-coding RNA machinery have recently been associated with Kabuki syndrome, Claes-Jensen X-linked mental retardation syndrome and Goiter syndrome. In this review, we describe the variety of germline mutations of epigenetic modifiers that are known to be associated with human disorders, and discuss the therapeutic potential of epigenetic drugs as palliative care strategies in the treatment of such disorders.
Collapse
Affiliation(s)
- María Berdasco
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 3rd Floor, Hospital Duran i Reynals, Av. Gran Via 199-203, 08908 L'Hospitalet de LLobregat, Barcelona, Catalonia, Spain
| | | |
Collapse
|
142
|
Toward MA, Abdala AP, Knopp SJ, Paton JFR, Bissonnette JM. Increasing brain serotonin corrects CO2 chemosensitivity in methyl-CpG-binding protein 2 (Mecp2)-deficient mice. Exp Physiol 2012. [PMID: 23180809 DOI: 10.1113/expphysiol.2012.069872] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mice deficient in the transcription factor methyl-CpG-binding protein 2 (Mecp2), a mouse model of Rett syndrome, display reduced CO2 chemosensitivity, which may contribute to their breathing abnormalities. In addition, patients with Rett syndrome and male mice that are null for Mecp2 show reduced levels of brain serotonin (5-HT). Serotonin is known to play a role in central chemosensitivity, and we hypothesized that increasing the availability of 5-HT in this mouse model would improve their respiratory response to CO2. Here we determined the apnoeic threshold in heterozygous Mecp2-deficient female mice and examined the effects of blocking 5-HT reuptake on the CO2 response in Mecp2-null male mice. Studies were performed in B6.129P2(C)-Mecp2(τm1.1Bird) null males and heterozygous females. In an in situ preparation, seven of eight Mecp2-deficient heterozygous females showed arrest of phrenic nerve activity when arterial CO2 was lowered to 3%, whereas the wild-types maintained phrenic nerve amplitude at 53 ± 3% of maximal. In vivo plethysmography studies were used to determine CO2 chemosensitivity in null males. These mice were exposed sequentially to 1, 3 and 5% CO2. The percentage increase in minute ventilation in response to increased inspired CO2 was less in Mecp2(-/y) than in Mecp2(+/y) mice. Pretreatment with citalopram, a selective 5-HT reuptake inhibitor (2.5 mg kg(-1) i.p.), 40 min prior to CO2 exposure, in Mecp2(-/y) mice resulted in an improvement in CO2 chemosensitivity to wild-type levels. These results suggest that decreased 5-HT in Mecp2-deficient mice reduces CO2 chemosensitivity, and restoring 5-HT levels can reverse this effect.
Collapse
Affiliation(s)
- Marie A Toward
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|
143
|
Zachariah RM, Olson CO, Ezeonwuka C, Rastegar M. Novel MeCP2 isoform-specific antibody reveals the endogenous MeCP2E1 expression in murine brain, primary neurons and astrocytes. PLoS One 2012. [PMID: 23185431 PMCID: PMC3501454 DOI: 10.1371/journal.pone.0049763] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rett Syndrome (RTT) is a severe neurological disorder in young females, and is caused by mutations in the X-linked MECP2 gene. MECP2/Mecp2 gene encodes for two protein isoforms; MeCP2E1 and MeCP2E2 that are identical except for the N-terminus region of the protein. In brain, MECP2E1 transcripts are 10X higher, and MeCP2E1 is suggested to be the relevant isoform for RTT. However, due to the unavailability of MeCP2 isoform-specific antibodies, the endogenous expression pattern of MeCP2E1 is unknown. To gain insight into the expression of MeCP2E1 in brain, we have developed an anti-MeCP2E1 antibody and validated its specificity in cells exogenously expressing individual MeCP2 isoforms. This antibody does not show any cross-reactivity with MeCP2E2 and detects endogenous MeCP2E1 in mice brain, with no signal in Mecp2tm1.1Bird y/− null mice. Additionally, we show the endogenous MeCP2E1 expression throughout different brain regions in adult mice, and demonstrate its highest expression in the brain cortex. Our results also indicate that MeCP2E1 is highly expressed in primary neurons, as compared to primary astrocytes. This is the first report of the endogenous MeCP2E1 expression at the protein levels, providing novel avenues for understanding different aspects of MeCP2 function.
Collapse
Affiliation(s)
- Robby M. Zachariah
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Carl O. Olson
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Chinelo Ezeonwuka
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mojgan Rastegar
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
144
|
Li W, Pozzo-Miller L. Beyond Widespread Mecp2 Deletions to Model Rett Syndrome: Conditional Spatio-Temporal Knockout, Single-Point Mutations and Transgenic Rescue Mice. ACTA ACUST UNITED AC 2012; 2012:5. [PMID: 23946910 DOI: 10.4172/2165-7890.s1-005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rett syndrome (RTT) is one of the leading causes of intellectual disabilities in women. In addition to a few autistic features, characteristic symptoms that distinguish from classical autism include stereotypic hand movements, motor coordination deficits, breathing abnormalities, seizures and loss of acquired speech as well as purposeful hand use. RTT is highly associated with MECP2, the gene encoding for the transcription factor that binds methylated Cytosine in C-p-G islands in DNA, controlling gene expression and chromatin remodeling. In this review, we will briefly discuss current perspectives on MeCP2 function, and then will describe in detail novel mouse models of RTT based on loss-of-function of Mecp2 and their use for establishing rescue models, wherein we pay close attention to behavioral and morphological phenotypes.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|