101
|
Marchionni I, Maccaferri G. Quantitative dynamics and spatial profile of perisomatic GABAergic input during epileptiform synchronization in the CA1 hippocampus. J Physiol 2009; 587:5691-708. [PMID: 19840998 DOI: 10.1113/jphysiol.2009.179945] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Perisomatic GABAergic input appears spared or even increased in intractable temporal lobe epilepsy, and has been suggested to contribute to the generation of pathological discharges. Nevertheless, its degree of functional activity during epileptiform synchronization has not been thoroughly investigated. Thus, it remains unclear how structural preservation or loss of domain-specific GABAergic input may affect the network. Here, we have taken advantage of a model of epileptiform activity in vitro to quantify the charge transfer provided by perisomatic GABA(A) receptor-mediated input to CA1 pyramidal neurons during interictal-like bursts. By recording both firing in GABAergic interneurons and the charge transfer generated by unitary postsynaptic currents to target pyramidal cells, we have estimated the charge transfer that would be dynamically generated by the recruitment of the entire pool of perisomatic-targeting interneurons and the number of perisomatic-targeting interneurons that would be required to generate the experimentally observed GABAergic input. In addition, we have recorded and compared the dynamics and charge density of GABAergic input recorded at different membrane compartments such as the soma vs. the proximal dendrite. Our results suggest that GABA(A) receptor-mediated perisomatic input is massively activated during burst synchronization and that its kinetic properties and charge density are similar at the soma and proximal dendrite. These functional results match structural data published by other laboratories very well and strengthen the hypothesis that the potential preservation of perisomatic GABAergic input in intractable epilepsies may be a key factor in the generation of pathological network activity.
Collapse
Affiliation(s)
- Ivan Marchionni
- Department of Physiology, Feinberg School of Medicine, 303 E Chicago Ave, Tarry Blg Rm 5-707 M211, Chicago, IL 60611, USA
| | | |
Collapse
|
102
|
Lasztóczi B, Nyitrai G, Héja L, Kardos J. Synchronization of GABAergic Inputs to CA3 Pyramidal Cells Precedes Seizure-Like Event Onset in Juvenile Rat Hippocampal Slices. J Neurophysiol 2009; 102:2538-53. [DOI: 10.1152/jn.91318.2008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Here we address how dynamics of glutamatergic and GABAergic synaptic input to CA3 pyramidal cells contribute to spontaneous emergence and evolution of recurrent seizure-like events (SLEs) in juvenile (P10-13) rat hippocampal slices bathed in low-[Mg2+] artificial cerebrospinal fluid. In field potential recordings from the CA3 pyramidal layer, a short epoch of high-frequency oscillation (HFO; 400–800 Hz) was observed during the first 10 ms of SLE onset. GABAergic synaptic input currents to CA3 pyramidal cells were synchronized and coincided with HFO, whereas the glutamatergic input lagged by ∼10 ms. If the intracellular [Cl−] remained unperturbed (cell-attached recordings) or was set high with whole cell electrode solution, CA3 pyramidal cell firing peaked with HFO and GABAergic input. By contrast, with low intracellular [Cl−], spikes of CA3 pyramidal cells lagged behind HFO and GABAergic input. This temporal arrangement of HFO, synaptic input sequence, synchrony of GABAergic currents, and pyramidal cell firing emerged gradually with preictal discharges until the SLE onset. Blockade of GABAA receptor-mediated currents by picrotoxin reduced the inter-SLE interval and the number of preictal discharges and did not block recurrent SLEs. Our data suggest that dynamic changes of the functional properties of GABAergic input contribute to ictogenesis and GABAergic and glutamatergic inputs are both excitatory at the instant of SLE onset. At the SLE onset GABAergic input contributes to synchronization and recruitment of pyramidal cells. We conjecture that this network state is reached by an activity-dependent shift in GABA reversal potential during the preictal phase.
Collapse
Affiliation(s)
- Bálint Lasztóczi
- Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gabriella Nyitrai
- Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Héja
- Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | - Julianna Kardos
- Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
103
|
Akay YM, Dragomir A, Wu J, Akay M. The effects of 2-APB on the time-frequency distributions of gamma oscillations in rat hippocampal slices. J Neural Eng 2009; 6:056006. [PMID: 19717894 DOI: 10.1088/1741-2560/6/5/056006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We investigated the influence of 2-APB (2-aminoethoxy-diphenylborate) acute exposure on hippocampal oscillations using time-frequency analysis methods including continuous wavelet transform and short-time Fourier transform. We hypothesized that acute exposure to 2-APB drastically reduced the hippocampal gamma oscillations. We estimated the hippocampal oscillations' time-frequency representations from 24 hippocampal slices in five rats. Our results indicated that it took at least 100 ms to see any hippocampal activities in response to the 100 Hz stimulus. The hippocampal oscillations' spectral energies dominated in the 31-60 Hz and 61-90 Hz frequency bands in the early time (100-200 ms) segment post-stimulus and in the 31-60 Hz and 61-90 Hz frequency bands after 200 ms until 400 ms post-stimulus. They were noticeably reduced in the late time segment (above 400 ms). The hippocampal oscillations' spectral energies in the 31-60 and 61-90 Hz frequency bands still dominated the early time segment after the acute 2-APB exposure. The 2-APB exposure never changed the energy content in all three frequency bands in the early time segment (p > 0.01). The exposure significantly reduced the energy content in both the mid-time segment and in the 31-60 Hz frequency band (p < 0.001) and in both the second time segment and in the 61-90 Hz frequency band (p < 0.01). Additionally, in the late time segment, the energy content in all three frequency bands was notably reduced post-drug exposure (p < 0.001).
Collapse
|
104
|
Blaesse P, Airaksinen MS, Rivera C, Kaila K. Cation-chloride cotransporters and neuronal function. Neuron 2009; 61:820-38. [PMID: 19323993 DOI: 10.1016/j.neuron.2009.03.003] [Citation(s) in RCA: 567] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 03/04/2009] [Accepted: 03/06/2009] [Indexed: 11/29/2022]
Abstract
Recent years have witnessed a steep increase in studies on the diverse roles of neuronal cation-chloride cotransporters (CCCs). The versatility of CCC gene transcription, posttranslational modification, and trafficking are on par with what is known about ion channels. The cell-specific and subcellular expression patterns of different CCC isoforms have a key role in modifying a neuron's electrophysiological phenotype during development, synaptic plasticity, and disease. While having a major role in controlling responses mediated by GABA(A) and glycine receptors, CCCs also show close interactions with glutamatergic signaling. A cross-talk among CCCs and trophic factors is important in short-term and long-term modification of neuronal properties. CCCs appear to be multifunctional proteins that are also involved in shaping neuronal structure at various stages of development, from stem cells to synaptogenesis. The rapidly expanding work on CCCs promotes our understanding of fundamental mechanisms that control brain development and functions under normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Peter Blaesse
- Department of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, FIN-00014, Helsinki, Finland
| | | | | | | |
Collapse
|
105
|
Uva L, Avoli M, de Curtis M. Synchronous GABA-receptor-dependent potentials in limbic areas of the in-vitro isolated adult guinea pig brain. Eur J Neurosci 2009; 29:911-20. [PMID: 19291222 PMCID: PMC4873282 DOI: 10.1111/j.1460-9568.2009.06672.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epileptiform discharges are known to reflect the hypersynchronous glutamatergic activation of cortical neurons. However, experimental evidence has revealed that epileptiform synchronization is also contributed to by population events mediated by GABA(A) receptors. Here, we analysed the spatial distribution of GABA(A)-receptor-dependent interictal events in the hippocampal/parahippocampal region of the adult guinea pig brain isolated in vitro. We found that arterial perfusion of this preparation with 4-aminopyridine caused the appearance of glutamatergic-independent interictal potentials that were reversibly abolished by GABA(A) receptor antagonism. Laminar profiles and current source density analysis performed in different limbic areas demonstrated that these GABA(A)-receptor-mediated events were independently generated in different areas of the hippocampal/parahippocampal formation (most often in the medial entorhinal cortex) and propagated between interconnected limbic structures of both hemispheres. Finally, intracellular recordings from principal neurons of the medial entorhinal cortex demonstrated that the GABAergic field potential correlated to inhibitory postsynaptic potentials (membrane potential reversal, -68.12 +/- 8.01 mV, n = 5) that were interrupted by ectopic spiking. Our findings demonstrate that, in an acute seizure model developed in the adult guinea pig brain, hypersynchronous GABA(A)-receptor-mediated interictal events are generated from independent sources and propagate within limbic cortices in the absence of excitatory synaptic transmission. As spared or enhanced inhibition was reported in models of epilepsy, our data may support a role of GABA-mediated signaling in ictogenesis and epileptogenesis.
Collapse
Affiliation(s)
- Laura Uva
- Unit of Experimental Neurophysiology and Epileptology, Fondazione Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy
| | | | | |
Collapse
|
106
|
King-Stephens D. Epilepsy. Neuromodulation 2009. [DOI: 10.1016/b978-0-12-374248-3.00050-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
107
|
Le Roux N, Amar M, Moreau A, Baux G, Fossier P. Impaired GABAergic transmission disrupts normal homeostatic plasticity in rat cortical networks. Eur J Neurosci 2008; 27:3244-56. [PMID: 18598264 DOI: 10.1111/j.1460-9568.2008.06288.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the cortex, homeostatic plasticity appears to be a key process for maintaining neuronal network activity in a functional range. This phenomenon depends on close interactions between excitatory and inhibitory circuits. We previously showed that application of a high frequency of stimulation (HFS) protocol in layer 2/3 induces parallel potentiation of excitatory and inhibitory inputs on layer 5 pyramidal neurons, leading to an unchanged excitation/inhibition (E/I) balance. These coordinated long-term potentiations of excitation and inhibition correspond to homeostatic plasticity of the neuronal networks. We showed here, on the rat visual cortex, that blockade (with gabazine) or overactivation (with 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) of GABA(A) receptors enhanced the E/I balance and prevented the potentiation of excitatory and inhibitory inputs after an HFS protocol. These impairements of the GABAergic transmission led to a long-term depression-like effect after an HFS protocol. We also observed that the blockade of inhibition reduced excitation (by 60%), and conversely, the blockade of excitation decreased inhibition (by 90%). These results support the idea that inhibitory interneurons are critical for recurrent interactions underlying homeostatic plasticity in cortical networks.
Collapse
Affiliation(s)
- N Le Roux
- CNRS, Institut de Neurobiologie Alfred Fessard-FRC2118, Laboratoire de Neurobiologie Cellulaire et Moléculaire-UPR9040, Gif sur Yvette F-91198, France.
| | | | | | | | | |
Collapse
|
108
|
Olsen RW, Sieghart W. International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev 2008; 60:243-60. [PMID: 18790874 DOI: 10.1124/pr.108.00505] [Citation(s) in RCA: 794] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this review we attempt to summarize experimental evidence on the existence of defined native GABA(A) receptor subtypes and to produce a list of receptors that actually seem to exist according to current knowledge. This will serve to update the most recent classification of GABA(A) receptors (Pharmacol Rev 50:291-313, 1998) approved by the Nomenclature Committee of the International Union of Pharmacology. GABA(A) receptors are chloride channels that mediate the major form of fast inhibitory neurotransmission in the central nervous system. They are members of the Cys-loop pentameric ligand-gated ion channel (LGIC) superfamily and share structural and functional homology with other members of that family. GABA(A) receptors are assembled from a family of 19 homologous subunit gene products and form numerous, mostly hetero-oligomeric, pentamers. Such receptor subtypes with properties that depend on subunit composition vary in topography and ontogeny, in cellular and subcellular localization, in their role in brain circuits and behaviors, in their mechanisms of regulation, and in their pharmacology. We propose several criteria, which can be applied to all the members of the LGIC superfamily, for including a receptor subtype on a list of native hetero-oligomeric subtypes. With these criteria, we develop a working GABA(A) receptor list, which currently includes 26 members, but will undoubtedly be modified and grow as information expands. The list is divided into three categories of native receptor subtypes: "identified," "existence with high probability," and "tentative."
Collapse
Affiliation(s)
- Richard W Olsen
- Department of Molecular and Medical Pharmacology, Geffen School of Medicine at UCLA, Room CHS 23-120, 650 Young Drive South, Los Angeles, CA 90095-1735, USA.
| | | |
Collapse
|
109
|
Le Duigou C, Bouilleret V, Miles R. Epileptiform activities in slices of hippocampus from mice after intra-hippocampal injection of kainic acid. J Physiol 2008; 586:4891-904. [PMID: 18755752 DOI: 10.1113/jphysiol.2008.156281] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Intra-hippocampal kainate injection induces the emergence of recurrent seizures after a delay of 3-4 weeks. We examined the cellular and synaptic basis of this activity in vitro using extracellular and intracellular records from longitudinal hippocampal slices. These slices permitted recordings from the dentate gyrus, the CA3 and CA1 regions and the subiculum of both the injected and the contralateral non-injected hippocampus. A sclerotic zone was evident in dorsal regions of slices from the injected hippocampus, while ventral regions and tissue from the contralateral hippocampus were not sclerotic. Interictal field potentials of duration 50-200 ms were generated spontaneously in both ipsilateral and contralateral hippocampal slices, but not in the sclerotic region, at 3-12 months after injection. They were initiated in the CA1 and CA3 regions and the subiculum. They were blocked by antagonists at glutamatergic receptors and were transformed into prolonged epileptiform events by GABAergic receptor antagonists. The membrane potential and the reversal potential of GABAergic synaptic events were more depolarized in CA1 pyramidal cells from kainate-treated animals than in control animals. Ictal-like events of duration 8-80 s were induced by tetanic stimulation (50 Hz, 0.2-1 s) preferentially in dorsal contralateral and ventral ipsilateral slices. Similar events were initiated by focal application of a combination of high K(+) and GABA. These data show that both interictal and ictal-like activities can be induced in slices of both ipsilateral and contralateral hippocampus from kainate-treated animals and suggest that changes in cellular excitability and inhibitory synaptic signalling may contribute to their generation.
Collapse
Affiliation(s)
- Caroline Le Duigou
- INSERM U739, CHU Pitié-Salpêtrière, 105 boulevard de l'Hôpital, 75013 Paris, France
| | | | | |
Collapse
|
110
|
Abstract
Type A GABA receptors (GABA(A)Rs) are well established as the main inhibitory receptors in the mature mammalian forebrain. In recent years, evidence has accumulated showing that GABA(A)Rs are prevalent not only in the somatodendritic compartment of CNS neurons, but also in their axonal compartment. Evidence for axonal GABA(A)Rs includes new immunohistochemical and immunogold data: direct recording from single axonal terminals; and effects of local applications of GABA(A)R modulators on action potential generation, on axonal calcium signalling, and on neurotransmitter release. Strikingly, whereas presynaptic GABA(A)Rs have long been considered inhibitory, the new studies in the mammalian brain mostly indicate an excitatory action. Depending on the neuron that is under study, axonal GABA(A)Rs can be activated by ambient GABA, by GABA spillover, or by an autocrine action, to increase either action potential firing and/or transmitter release. In certain neurons, the excitatory effects of axonal GABA(A)Rs persist into adulthood. Altogether, axonal GABA(A)Rs appear as potent neuronal modulators of the mammalian CNS.
Collapse
Affiliation(s)
- Federico F Trigo
- Laboratoire de Physiologie Cérébrale, UFR Biomédicale, Université Paris Descartes, Paris, France
| | | | | |
Collapse
|
111
|
Miletic G, Miletic V. Loose ligation of the sciatic nerve is associated with TrkB receptor-dependent decreases in KCC2 protein levels in the ipsilateral spinal dorsal horn. Pain 2008; 137:532-539. [PMID: 18063479 PMCID: PMC2569893 DOI: 10.1016/j.pain.2007.10.016] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 09/12/2007] [Accepted: 10/12/2007] [Indexed: 11/25/2022]
Abstract
Significant decreases in the protein levels of potassium-chloride co-transporter 2 (KCC2) were detected in the ipsilateral spinal dorsal horn 4h following loose ligation of the sciatic nerve. These decreases were associated with a change in hindlimb weight distribution suggestive of pain behavior. In contrast, no changes in GABA-A receptor subunit alpha-1 levels were detected. The decreases in KCC2 coincided with a significant ipsilateral increase in BDNF protein levels. Both the decreases in KCC2 levels and the early pain behavior were prevented by intrathecal pre-treatment with the BDNF-sequestering TrkB/Fc chimera protein or the tyrosine kinase blocker K252a. The ligation-associated decreases in KCC2 levels were transient. In the ipsilateral spinal dorsal horn of ligated animals exhibiting weight-bearing pain behavior 7 days after the ligation the KCC2 levels were identical to those in control or sham-operated animals. These data suggested that TrkB-dependent reduction in KCC2 protein levels in the spinal dorsal horn was an early consequence of peripheral nerve injury. This decrease in KCC2 may have elicited an early increase in overall dorsal horn neuronal excitability perhaps through a loss of GABA inhibition which is critically dependent on KCC2 activity. The increased neuronal excitability may in turn have caused enhanced and exaggerated communication between primary afferents and dorsal horn neurons to contribute to the early behavioral signs of pain.
Collapse
Affiliation(s)
- Gordana Miletic
- Department of Anesthesiology, University of Wisconsin, Madison, WI 53706-1510
| | - Vjekoslav Miletic
- Department of Anesthesiology, University of Wisconsin, Madison, WI 53706-1510
| |
Collapse
|
112
|
Isomura Y, Fujiwara-Tsukamoto Y, Takada M. A network mechanism underlying hippocampal seizure-like synchronous oscillations. Neurosci Res 2008; 61:227-33. [DOI: 10.1016/j.neures.2008.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2008] [Revised: 04/04/2008] [Accepted: 04/07/2008] [Indexed: 10/22/2022]
|
113
|
Riekki R, Pavlov I, Tornberg J, Lauri SE, Airaksinen MS, Taira T. Altered synaptic dynamics and hippocampal excitability but normal long-term plasticity in mice lacking hyperpolarizing GABA A receptor-mediated inhibition in CA1 pyramidal neurons. J Neurophysiol 2008; 99:3075-89. [PMID: 18436638 DOI: 10.1152/jn.00606.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GABA(A) receptor (GABA-AR)-mediated inhibition is critical for proper operation of neuronal networks. Synaptic inhibition either shifts the membrane potential farther away from the action potential firing threshold (hyperpolarizing inhibition) or via increase in the membrane conductance shunts the excitatory currents. However, the relative importance of these different forms of inhibition on the hippocampal function is unclear. To study the functional consequences of the absence of hyperpolarizing inhibition, we have used KCC2-deficient mice (KCC2hy/null) maintaining only 15-20% of the neuron-specific K-Cl-cotransporter. Gramicidin-perforated patch-clamp recordings in hippocampal CA1 pyramidal cells revealed that the reversal potential of the GABA-AR-mediated postsynaptic currents (E(GABA-A)) was approximately 20 mV more positive in KCC2hy/null mice than in wild-type (WT) animals. The basic glutamatergic transmission appeared unaltered in the KCC2hy/null mice, yet they displayed lowered threshold for stimulation-induced synchronous afterdischarges in the CA1 area. Also fatigue of field excitatory postsynaptic potentials/excitatory postsynaptic currents in response to repetitious stimulation was smaller in KCC2hy/null mice, indicating altered synaptic dynamics. Interestingly, this effect was present also under blockade of GABA-ARs and was dependent on the extracellular K+ concentration. Moreover, there were no differences in the levels of either long-term potentiation or long-term depression between the genotypes. The local hippocampal CA1 network can in several aspects maintain its functional viability even in the absence of hyperpolarizing inhibition in pyramidal cells. Our results underscore the central role of shunting type of inhibition in controlling the neuronal excitation/inhibition balance. Moreover, our data demonstrate a novel, unexpected role for the KCC2, namely the modulation of properties of glutamatergic transmission during repetitious afferent activity.
Collapse
Affiliation(s)
- Ruusu Riekki
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
114
|
Saraga F, Balena T, Wolansky T, Dickson CT, Woodin MA. Inhibitory synaptic plasticity regulates pyramidal neuron spiking in the rodent hippocampus. Neuroscience 2008; 155:64-75. [PMID: 18562122 DOI: 10.1016/j.neuroscience.2008.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 05/07/2008] [Accepted: 05/09/2008] [Indexed: 11/17/2022]
Abstract
Spike-timing modifies the efficacy of both excitatory and inhibitory synapses onto CA1 pyramidal neurons in the rodent hippocampus. Repetitively spiking the presynaptic neuron before the postsynaptic neuron induces inhibitory synaptic plasticity, which results in a depolarization of the reversal potential for GABA (E(GABA)). Our goal was to determine how inhibitory synaptic plasticity regulates CA1 pyramidal neuron spiking in the rat hippocampus. We demonstrate electrophysiologically that depolarizing E(GABA) by 24.7 mV increased the spontaneous action potential firing frequency of cultured hippocampal neurons 254% from 0.12+/-0.07 Hz to 0.44+/-0.13 Hz (n=11; P<0.05). Next we used a single compartment model of a CA1 pyramidal neuron to explore in detail how inhibitory synaptic plasticity of feedforward and feedback inhibition regulates the generation of action potentials, spike latency, and the minimum excitatory conductance required to generate an action potential; plasticity was modeled as a depolarization of E(GABA), which effectively weakens inhibition. Depolarization of E(GABA) at feedforward and feedback inhibitory synapses decreased the latency to the 1st spike by 2.27 ms, which was greater that the sum of the decreases produced by depolarizing E(GABA) at feedforward (0.85 ms) or feedback inhibitory synapses (0.02 ms) alone. In response to a train of synaptic inputs, depolarizing E(GABA) decreased the inter-spike interval and increased the number of output spikes in a frequency dependent manner, improving the reliability of input-output transmission. Moreover, a depolarizing shift in E(GABA) at feedforward and feedback synapses triggered by spike trains recorded from CA1 pyramidal layer neurons during field theta from anesthetized rats, significantly increased spiking on the up- and down-strokes of the first half of the theta rhythm (P<0.05), without changing the preferred phase of firing (P=0.783). This study provides the first explanation of how depolarizing E(GABA) affects pyramidal cell output within the hippocampus.
Collapse
Affiliation(s)
- F Saraga
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
115
|
Pamenter ME, Buck LT. Neuronal membrane potential is mildly depolarized in the anoxic turtle cortex. Comp Biochem Physiol A Mol Integr Physiol 2008; 150:410-4. [PMID: 18519169 DOI: 10.1016/j.cbpa.2008.04.605] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 04/21/2008] [Accepted: 04/22/2008] [Indexed: 11/17/2022]
Abstract
Neuronal membrane potential (E(m)) regulates the activity of excitatory voltage-sensitive channels. Anoxic insults lead to a severe loss of E(m) and excitotoxic cell death (ECD) in mammalian neurons. Conversely, anoxia-tolerant freshwater turtle neurons depress energy usage during anoxia by altering ionic conductance to reduce neuronal excitability and ECD is avoided. This wholesale alteration of ion channel and pump activity likely has a significant effect on E(m). Using the whole-cell patch clamp technique we recorded changes in E(m) from turtle cortical neurons during a normoxic to anoxic transition in the presence of various ion channel/pump modulators. E(m) did not change with normoxic perfusion but underwent a reversible, mild depolarization of 8.1+/-0.2 mV following anoxic perfusion. This mild anoxic depolarization (MAD) was not prevented by the manipulation of any single ionic conductance, but was partially reduced by pre-treatment with antagonists of GABA(A) receptors (5.7+/-0.5 mV), cellular bicarbonate production (5.3+/-0.2 mV) or K(+) channels (6.0+/-0.2 mV), or by perfusion of reactive oxygen species scavengers (5.2+/-0.3 mV). Furthermore, all of these treatments induced depolarization in normoxic neurons. Together these data suggest that the MAD may be due to the summation of numerous altered ion conductance states during anoxia.
Collapse
|
116
|
Romo-Parra H, Treviño M, Heinemann U, Gutiérrez R. GABA Actions in Hippocampal Area CA3 During Postnatal Development: Differential Shift From Depolarizing to Hyperpolarizing in Somatic and Dendritic Compartments. J Neurophysiol 2008; 99:1523-34. [DOI: 10.1152/jn.01074.2007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
γ-Aminobutyric acid type A receptor (GABAA-R) activation leads to depolarization of pyramidal cells during the first postnatal week and produces hyperpolarization from the second week. However, immunohistochemical evidence has suggested that during the second and third postnatal weeks the NKCC1 cotransporter relocates from the soma to the dendrites of CA3 pyramidal cells. We hypothesized that this leads to depolarizing responses in apical dendrites. Here we show that the activation of GABAA-R in the distal dendrites of CA3 pyramidal cells at P15 by restricted application of muscimol or synaptic activation by stimulation of interneurons in stratum radiatum (SR) causes depolarizing postsynaptic potentials (PSPs), which are blocked by NKCC1 cotransporter antagonists. By contrast, activation of proximal GABAA-R by muscimol application or by stimulation of interneurons in s. oriens (SO) leads to hyperpolarizing PSPs. Activation of the dentate gyrus (DG) in the presence of glutamatergic blockers evokes hyperpolarizing responses during the second postnatal week; however, the reversal potential of the DG-evoked inhibitory (I)PSPs is more depolarized than that of IPSPs evoked by activation of SO interneurons. Despite the shift of GABA action from depolarizing to hyperpolarizing, DG-evoked field potentials (f-PSPs) recorded in s. lucidum/radiatum (SL/R) do not change in polarity until the third week. Current source density analysis yielded results consistent with depolarizing actions of GABA in the dendritic compartment. Our data suggest that GABAergic input to apical dendrites of pyramidal cells of CA3 evokes depolarizing PSPs long after synaptic inhibition has become hyperpolarizing in the somata, in the axon initial segments and in basal dendrites.
Collapse
|
117
|
Belenky MA, Yarom Y, Pickard GE. Heterogeneous expression of gamma-aminobutyric acid and gamma-aminobutyric acid-associated receptors and transporters in the rat suprachiasmatic nucleus. J Comp Neurol 2008; 506:708-32. [PMID: 18067149 DOI: 10.1002/cne.21553] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hypothalamic suprachiasmatic nucleus (SCN) is the primary mammalian circadian clock that regulates rhythmic physiology and behavior. The SCN is composed of a diverse set of neurons arranged in a tight intrinsic network. In the rat, vasoactive intestinal peptide (VIP)- and gastrin-releasing peptide (GRP)-containing neurons are the dominant cell phenotypes of the ventral SCN, and these cells receive photic information from the retina and the intergeniculate leaflet. Neurons expressing vasopressin (VP) are concentrated in the dorsal and medial aspects of the SCN. Although the VIP/GRP and VP cell groups are concentrated in different regions of the SCN, the separation of these cell groups is not absolute. The inhibitory neurotransmitter gamma-aminobutyric acid (GABA) is expressed in most SCN neurons irrespective of their location or peptidergic phenotype. In the present study, immunoperoxidase labeling, immunofluorescence confocal microscopy, and ultrastructural immunocytochemistry were used to examine the spatial distribution of several markers associated with SCN GABAergic neurons. Glutamate decarboxylase, a marker of GABA synthesis, and vesicular GABA transporter were more prominently observed in the ventral SCN. KCC2, a K(+)/Cl(-) cotransporter, was highly expressed in the ventral SCN in association with VIP- and GRP-producing neurons, whereas VP neurons in the dorsal SCN were devoid of KCC2. On the other hand, GABA(B) receptors were observed predominantly in VPergic neurons dorsally, whereas, in the ventral SCN, GABA(B) receptors were associated almost exclusively with retinal afferent fibers and terminals. The differential expression of GABAergic markers within the SCN suggests that GABA may play dissimilar roles in different SCN neuronal phenotypes.
Collapse
Affiliation(s)
- Michael A Belenky
- Department of Cell/Animal Biology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904 Israel.
| | | | | |
Collapse
|
118
|
Bazhenov M, Timofeev I, Fröhlich F, Sejnowski TJ. Cellular and network mechanisms of electrographic seizures. DRUG DISCOVERY TODAY. DISEASE MODELS 2008; 5:45-57. [PMID: 19190736 PMCID: PMC2633479 DOI: 10.1016/j.ddmod.2008.07.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epileptic seizures constitute a complex multiscale phenomenon that is characterized by synchronized hyperexcitation of neurons in neuronal networks. Recent progress in understanding pathological seizure dynamics provides crucial insights into underlying mechanisms and possible new avenues for the development of novel treatment modalities. Here we review some recent work that combines in vivo experiments and computational modeling to unravel the pathophysiology of seizures of cortical origin. We particularly focus on how activity-dependent changes in extracellular potassium concentration affects the intrinsic dynamics of neurons involved in cortical seizures characterized by spike/wave complexes and fast runs.
Collapse
Affiliation(s)
- Maxim Bazhenov
- The Salk Institute for Biological Studies, La Jolla, CA 92037
| | | | | | | |
Collapse
|
119
|
Ben-Ari Y, Gaiarsa JL, Tyzio R, Khazipov R. GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 2007; 87:1215-84. [PMID: 17928584 DOI: 10.1152/physrev.00017.2006] [Citation(s) in RCA: 892] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Developing networks follow common rules to shift from silent cells to coactive networks that operate via thousands of synapses. This review deals with some of these rules and in particular those concerning the crucial role of the neurotransmitter gamma-aminobuytric acid (GABA), which operates primarily via chloride-permeable GABA(A) receptor channels. In all developing animal species and brain structures investigated, neurons have a higher intracellular chloride concentration at an early stage leading to an efflux of chloride and excitatory actions of GABA in immature neurons. This triggers sodium spikes, activates voltage-gated calcium channels, and acts in synergy with NMDA channels by removing the voltage-dependent magnesium block. GABA signaling is also established before glutamatergic transmission, suggesting that GABA is the principal excitatory transmitter during early development. In fact, even before synapse formation, GABA signaling can modulate the cell cycle and migration. The consequence of these rules is that developing networks generate primitive patterns of network activity, notably the giant depolarizing potentials (GDPs), largely through the excitatory actions of GABA and its synergistic interactions with glutamate signaling. These early types of network activity are likely required for neurons to fire together and thus to "wire together" so that functional units within cortical networks are formed. In addition, depolarizing GABA has a strong impact on synaptic plasticity and pathological insults, notably seizures of the immature brain. In conclusion, it is suggested that an evolutionary preserved role for excitatory GABA in immature cells provides an important mechanism in the formation of synapses and activity in neuronal networks.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- Insititut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale U. 29, Marseille, France.
| | | | | | | |
Collapse
|
120
|
Derchansky M, Jahromi SS, Mamani M, Shin DS, Sik A, Carlen PL. Transition to seizures in the isolated immature mouse hippocampus: a switch from dominant phasic inhibition to dominant phasic excitation. J Physiol 2007; 586:477-94. [PMID: 17991696 DOI: 10.1113/jphysiol.2007.143065] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The neural dynamics and mechanisms responsible for the transition from the interictal to the ictal state (seizures) are unresolved questions in epilepsy. It has been suggested that a shift from inhibitory to excitatory GABAergic drive can promote seizure generation. In this study, we utilized an experimental model of temporal lobe epilepsy which produces recurrent seizure-like events in the isolated immature mouse hippocampus (P8-16), perfused with low magnesium ACSF, to investigate the cellular dynamics of seizure transition. Whole-cell and perforated patch recordings from CA1 pyramidal cells and from fast- and non-fast-spiking interneurons in the CA1 stratum oriens hippocampal region showed a change in intracellular signal integration during the transition period, starting with dominant phasic inhibitory synaptic input, followed by dominant phasic excitation prior to a seizure. Efflux of bicarbonate ions through the GABA A receptor did not fully account for this excitation and GABAergic excitation via reversed IPSPs was also excluded as the prime mechanism generating the dominant excitation, since somatic and dendritic GABA A responses to externally applied muscimol remained hyperpolarizing throughout the transition period. In addition, abolishing EPSPs in a single neuron by intracellularly injected QX222, revealed that inhibitory synaptic drive was maintained throughout the entire transition period. We suggest that rather than a major shift from inhibitory to excitatory GABAergic drive prior to seizure onset, there is a change in the interaction between afferent synaptic inhibition, and afferent and intrinsic excitatory processes in pyramidal neurons and interneurons, with maintained inhibition and increasing, entrained 'overpowering' excitation during the transition to seizure.
Collapse
Affiliation(s)
- M Derchansky
- Division of Cellular and Molecular Biology, Toronto Western Hospital, 399 Bathurst St, 12-413, Toronto, Ontario, Canada M5T2S8
| | | | | | | | | | | |
Collapse
|
121
|
Goetz T, Arslan A, Wisden W, Wulff P. GABA(A) receptors: structure and function in the basal ganglia. PROGRESS IN BRAIN RESEARCH 2007; 160:21-41. [PMID: 17499107 PMCID: PMC2648504 DOI: 10.1016/s0079-6123(06)60003-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
gamma-Aminobutyric acid type A (GABA(A)) receptors, the major inhibitory neurotransmitter receptors responsible for fast inhibition in the basal ganglia, belong to the superfamily of "cys-cys loop" ligand-gated ion channels. GABA(A) receptors form as pentameric assemblies of subunits, with a central Cl(-) permeable pore. On binding of two GABA molecules to the extracellular receptor domain, a conformational change is induced in the oligomer and Cl(-), in most adult neurons, moves into the cell leading to an inhibitory hyperpolarization. Nineteen mammalian subunit genes have been identified, each showing distinct regional and cell-type-specific expression. The combinatorial assembly of the subunits generates considerable functional diversity. Here we place the focus on GABA(A) receptor expression in the basal ganglia: striatum, globus pallidus, substantia nigra and subthalamic nucleus, where, in addition to the standard alpha1beta2/3gamma2 receptor subtype, significant levels of other subunits (alpha2, alpha3, alpha4, gamma1, gamma3 and delta) are expressed in some nuclei.
Collapse
Affiliation(s)
- T. Goetz
- Department of Clinical Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - A. Arslan
- Department of Clinical Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - W. Wisden
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - P. Wulff
- Department of Clinical Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
- Corresponding author. Tel.: +0044-1224-551941; Fax: +0044-1224-555719; E-mail:
| |
Collapse
|
122
|
Milenković I, Witte M, Turecek R, Heinrich M, Reinert T, Rübsamen R. Development of chloride-mediated inhibition in neurons of the anteroventral cochlear nucleus of gerbil (Meriones unguiculatus). J Neurophysiol 2007; 98:1634-44. [PMID: 17596413 DOI: 10.1152/jn.01150.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
At the initial stages in neuronal development, GABAergic and glycinergic neurotransmission exert depolarizing responses, assumed to be of importance for maturation, which in turn shift to hyperpolarizing in early postnatal life due to development of the chloride homeostasis system. Spherical bushy cells (SBC) of the mammalian cochlear nucleus integrate excitatory glutamatergic inputs with inhibitory (GABAergic and glycinergic) inputs to compute signals that contribute to sound localization based on interaural time differences. To provide a fundamental understanding of the properties of GABAergic neurotransmission in mammalian cochlear nucleus, we investigated the reversal potential of the GABA-evoked currents (E GABA) by means of gramicidin-perforated-patch recordings in developing SBC. The action of GABA switches from depolarizing to hyperpolarizing by the postnatal day 7 due to the negative shift in E GABA. Furthermore, we studied the expression pattern of the K+-Cl(-)-extruding cotransporter KCC2, previously shown to induce a switch from neonatal Cl(-) efflux to the mature Cl(-) influx in various neuron types, thereby causing a shift from depolarizing to hyperpolarizing GABA action. The KCC2 protein is expressed in SBC already at birth, yet its activity is attained toward the end of the first postnatal week as indicated by pharmacological inhibition. Interruption of the Cl(-) extrusion by [(dihydroindenyl)oxy] alkanoic acid or furosemide gradually shifted E(GABA) in positive direction with increasing maturity, suggesting that KCC2 could be involved in maintaining low [Cl(-)]i after the postnatal day 7 thereby providing the hyperpolarizing Cl(-)-mediated inhibition in SBC.
Collapse
Affiliation(s)
- Ivan Milenković
- Institute of Biology II, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Talstr. 33, D-04103 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
123
|
Nakamura NH, Akama KT, Yuen GS, Mcewen BS. Thinking outside the pyramidal cell: unexplored contributions of interneurons and neuropeptide Y to estrogen-induced synapse formation in the hippocampus. Rev Neurosci 2007; 18:1-13. [PMID: 17405448 DOI: 10.1515/revneuro.2007.18.1.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Since the first finding that 17beta-estradiol (E) can regulate CA1 pyramidal cell synapse formation, subsequent studies have explored many potential E-dependent mechanisms occurring within CA1 pyramidal cells. Fewer studies have focused on E-dependent processes outside of the pyramidal cell that may influence events activity of the pyramidal cells. This review considers hippocampal interneurons, which can potently regulate the excitability of simultaneously firing pyramidal cells. In particular, we discuss neuropeptide Y (NPY) expression by these interneurons because our published findings show that NPY expression is increased by E in a subset of interneurons which coincidentally exhibit E-regulated increase in GABA synthesis and are uniquely situated anatomically such that they may regulate synaptic activity. Here we review the role of different phenotypes of CA1 interneurons, and we propose a model in which E-stimulated NPY gene expression and the release of NPY by interneurons inhibits glutamate release presynaptically and alters glutamate-dependent synaptic events in the rat hippocampus during adulthood.
Collapse
Affiliation(s)
- Nozomu H Nakamura
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA.
| | | | | | | |
Collapse
|
124
|
Fujiwara-Tsukamoto Y, Isomura Y, Imanishi M, Fukai T, Takada M. Distinct types of ionic modulation of GABA actions in pyramidal cells and interneurons during electrical induction of hippocampal seizure-like network activity. Eur J Neurosci 2007; 25:2713-25. [PMID: 17459104 DOI: 10.1111/j.1460-9568.2007.05543.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It has recently been shown that electrical stimulation in normal extracellular fluid induces seizure-like afterdischarge activity that is always preceded by GABA-dependent slow depolarization. These afterdischarge responses are synchronous among mature hippocampal neurons and driven by excitatory GABAergic input. However, the differences in the mechanisms whereby the GABAergic signals in pyramidal cells and interneurons are transiently converted from hyperpolarizing to depolarizing (and even excitatory) have remained unclear. To clarify the network mechanisms underlying this rapid GABA conversion that induces afterdischarges, we examined the temporal changes in GABAergic responses in pyramidal cells and/or interneurons of the rat hippocampal CA1 area in vitro. The extents of slow depolarization and GABA conversion were much larger in the pyramidal cell group than in any group of interneurons. Besides GABA(A) receptor activation, neuronal excitation by ionotropic glutamate receptors enhanced GABA conversion in the pyramidal cells and consequent induction of afterdischarge. The slow depolarization was confirmed to consist of two distinct phases; an early phase that depended primarily on GABA(A)-mediated postsynaptic Cl- accumulation, and a late phase that depended on extracellular K+ accumulation, both of which were enhanced by glutamatergic neuron excitation. Moreover, extracellular K+ accumulation augmented each oscillatory response of the afterdischarge, probably by further Cl- accumulation through K+-coupled Cl- transporters. Our findings suggest that the GABA reversal potential may be elevated above their spike threshold predominantly in the pyramidal cells by biphasic Cl- intrusion during the slow depolarization in GABA- and glutamate-dependent fashion, leading to the initiation of seizure-like epileptiform activity.
Collapse
Affiliation(s)
- Yoko Fujiwara-Tsukamoto
- Department of System Neuroscience, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo 183-8526, Japan
| | | | | | | | | |
Collapse
|
125
|
Isaev D, Isaeva E, Khazipov R, Holmes GL. Shunting and hyperpolarizing GABAergic inhibition in the high-potassium model of ictogenesis in the developing rat hippocampus. Hippocampus 2007; 17:210-9. [PMID: 17294460 DOI: 10.1002/hipo.20259] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ontogenesis of GABAergic signaling may play an important role in developmental changes in seizure susceptibility in the high-potassium model of ictogenesis in vitro. The age-dependent effects of [K(+)](o) on the reversal potential of the GABA(A)-mediated responses and membrane potential in hippocampal slices in vitro were compared with the effect of GABA(A)-receptors antagonists and GABA(A) modulators on high-potassium induced seizures in the CA3 pyramidal layer of rat hippocampus in vivo. GABA(A) responses were depolarizing at P8-12 and hyperpolarizing at P17-21. In P8-12 rats, GABA(A) responses switch their polarity from depolarizing to hyperpolarizing upon elevation of extracellular potassium. At approximately 10 mM [K(+)](o), activation of GABA(A) receptors produced an isoelectric, purely shunting response characterized by no changes in the membrane potential but an increase in the membrane conductance. In P17-21 rats, the hyperpolarizing GABA(A) driving force progressively increased with elevation of [K(+)](o). In P8-12 rats in vivo, GABA(A)-receptor antagonists did not affect the occurrence of ictal discharges induced by intrahippocampal injection of 10 mM [K(+)](o), but significantly increased seizure duration. Diazepam and isoguvacine completely prevented seizures induced by 10 mM [K(+)](o). In P17-21 rats, GABA(A)-receptor antagonists strongly increased the occurrence of ictal activity induced both by 10 mM [K(+)](o). Taken together, these results suggest that anticonvulsive effects of GABA are because of the combination of shunting and hyperpolarizing actions of GABA. Although shunting GABA is already efficient in the young age group, a developmental increase in the hyperpolarizing GABA(A) driving force likely contributes to the increase in the GABAergic control of seizures upon maturation.
Collapse
Affiliation(s)
- Dmytro Isaev
- Section of Neurology, Neuroscience Center at Dartmouth, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA.
| | | | | | | |
Collapse
|
126
|
Archer DP, Nguyen KQ, Samanani N, Roth SH. Pentobarbital Enhances γ-Aminobutyric Acid-Mediated Excitation Without Altering Synaptic Plasticity in Rat Hippocampus. Anesth Analg 2007; 104:840-6. [PMID: 17377091 DOI: 10.1213/01.ane.0000256874.33810.3a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Synaptic plasticity is thought to provide a molecular mechanism for learning and memory. N-methyl-d-aspartate receptor-mediated plasticity requires that N-methyl-d-aspartate receptor activation coincides with postsynaptic depolarizing potentials (DPSP(A)'s). Pentobarbital, in high concentrations, enhances DPSP(A)'s, but high concentrations suppress synaptic plasticity, probably by impairing glutamatergic transmission. Here we tested the hypothesis that low concentrations of pentobarbital can enhance DPSP(A)'s and modify the induction of synaptic plasticity. METHODS Studies were performed in vitro on rat hippocampal slices. With glutamate transmission blocked, intracellular recording from CA1 neurons was used to investigate the influence of 5 microM pentobarbital on DPSP(A)'s and neuron excitability evoked by high frequency (100 Hz) stimulation. With glutamate transmission intact, extracellular recording was used to examine the effect of 5 microM pentobarbital on the induction of long-term depression and long-term potentiation of synaptic transmission by conditioning stimuli applied to the Schaffer collateral pathway. RESULTS High frequency stimulation generated typical DPSP(A)'s that were mediated by gamma-aminobutyric acid(A) receptors and dependent upon HCO3-. Pentobarbital (5 microM) increased the amplitude, but not the width, at half-maximal amplitude of DPSPA's (P < 0.01). Pentobarbital increased the probability of action potential generation during the DPSP(A)'s. Pentobarbital did not alter the induction of long-term depression or long-term potentiation. CONCLUSIONS Despite increasing the amplitude of DPSP(A)'s, 5 microM pentobarbital did not alter the induction of synaptic plasticity by a range of conventional conditioning stimuli. These results do not support the hypothesis that excitatory effects of pentobarbital may alter synaptic plasticity.
Collapse
Affiliation(s)
- David P Archer
- Department of Anesthesiology, Faculty of Medicine, University of Calgary, Calgary, Canada.
| | | | | | | |
Collapse
|
127
|
Fiumelli H, Woodin MA. Role of activity-dependent regulation of neuronal chloride homeostasis in development. Curr Opin Neurobiol 2007; 17:81-6. [PMID: 17234400 DOI: 10.1016/j.conb.2007.01.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 01/05/2007] [Indexed: 11/15/2022]
Abstract
The polarity of neurotransmission mediated by the gamma-amino butyric acid (GABA) type A receptor depends crucially on intracellular chloride concentration, which is largely determined by the expression and function of cation/chloride co-transporters. Recent evidence shows how both activity and neurotrophic factors can affect GABAergic transmission in the mammalian central nervous system through their effects on the neuron-specific chloride-extruding transporter KCC2. In particular, GABAergic neurotransmission early in development, sustained neuronal activity in mature networks and brain-derived neurotrophic factor each modulate the expression or function of KCC2. The resulting changes in intracellular chloride concentration alter the nature or strength of fast GABAergic neurotransmission, profoundly affecting the development and function of neuronal networks.
Collapse
Affiliation(s)
- Hubert Fiumelli
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, CH-1005 Lausanne, Switzerland
| | | |
Collapse
|
128
|
Jensen AL, Durand DM. Suppression of axonal conduction by sinusoidal stimulation in rat hippocampusin vitro. J Neural Eng 2007; 4:1-16. [PMID: 17409475 DOI: 10.1088/1741-2560/4/2/001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Deep brain stimulation (DBS), also known as high frequency stimulation (HFS), is a well-established therapy for Parkinson's disease and essential tremor, and shows promise for the therapeutic control of epilepsy. However, the direct effect of DBS on neural elements close to the stimulating electrode remains an important unanswered question. Computational studies have suggested that HFS has a dual effect on neural elements inhibiting cell bodies, while exciting axons. Prior experiments have shown that sinusoidal HFS (50 Hz) can suppress synaptic and non-synaptic cellular activity in several in vitro epilepsy models, in all layers of the hippocampus. However, the effects of HFS on axons near the electrode are still unclear. In the present study, we tested the hypothesis that HFS suppresses axonal conduction in vitro. Sinusoidal HFS was applied to the alvear axon field of transverse rat hippocampal slices. The results show that HFS suppresses the alvear compound action potential (CAP) as well as the CA1 antidromic evoked potential (AEP). Complete suppression was observed as a 100% reduction in the amplitude of the evoked field potential for the duration of the stimulus. Evoked potential width and latency were not significantly affected by sinusoidal HFS. Suppression was dependent on HFS amplitude and frequency, but independent of stimulus duration and synaptic transmission. The frequency dependence of sinusoidal HFS is similar to that observed in clinical DBS, with maximal suppression between 50 and 200 Hz. HFS produced not only suppression of axonal conduction but also a correlated rise in extracellular potassium. These data provide new insights into the effects of HFS on neuronal elements, and show that HFS can block axonal activity through non-synaptic mechanisms.
Collapse
Affiliation(s)
- A L Jensen
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
129
|
Abstract
Neuropeptide Y-containing interneurons in the dentate hilar area play an important role in inhibiting the activity of hippocampal circuitry. Hilar cells are often among the first lost in hippocampal epilepsy. As many types of neurons are found in the hilus, we used a new transgenic mouse expressing green fluorescent protein (GFP) in a subset of neurons that colocalized neuropeptide Y (NPY), somatostatin (SST), and GABA for whole-cell, perforated, and cell-attached recording in 240 neurons. As these neurons have not previously been identifiable in live slices, they have not been the focus of physiological analysis. Hilar NPY neurons showed modest spike frequency adaptation, a large 15.6 +/- 1.0 mV afterhyperpolarization, a mean input resistance of 335 +/- 26 M Omega, and were capable of fast-firing. Muscimol-mediated excitatory actions were found in a nominally Ca(2+)-free/high-Mg(2+) bath solution using cell-attached recording. GABA(A) receptor antagonists inhibited half the recorded neurons and blocked burst firing. Gramicidin perforated-patch recording revealed a GABA reversal potential positive to both the resting membrane potential and spike threshold. Together, these data suggest GABA is excitatory to many NPY cells. NPY and SST consistently hyperpolarized and reduced spike frequency in these neurons. No hyperpolarization of NPY on membrane potential was detected in the presence of tetrodotoxin, AP5, CNQX and bicuculline, supporting an indirect effect. Under similar conditions, SST hyperpolarized the cells, suggesting a direct postsynaptic action. Depolarizing actions of GABA and GABA-dependent burst-firing may synchronize a rapid release of GABA, NPY, and SST, leading to pre- and postsynaptic inhibition of excitatory hippocampal circuits.
Collapse
Affiliation(s)
- Li-Ying Fu
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
130
|
Hsu D. The dentate gyrus as a filter or gate: a look back and a look ahead. PROGRESS IN BRAIN RESEARCH 2007; 163:601-13. [PMID: 17765740 DOI: 10.1016/s0079-6123(07)63032-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The idea of the dentate gyrus as a gate or filter at the entrance to the hippocampus, blocking or filtering incoming excitation from the entorhinal cortex, has been an intriguing one. Here we review the historical development of the idea, and discuss whether it may be possible to be more specific in defining this gate. We propose that dentate function can be understood within a context of Hebbian association and competition: hilar mossy cells help the dentate granule cells to recognize incoming entorhinal patterns of activity (Hebbian association), after which patterns that are consistently and repetitively presented to the dentate gyrus are passed through, while random, more transient patterns are blocked (non-associative Hebbian competition). Translamellar inhibition as well as translamellar potentiation can be understood in this context. The dentate-hilar complex thus plays the role of a "pattern excluder", not a pattern completer. The unique role of pattern exclusion may explain the peculiar qualities of dentate granule cells and hilar mossy cells.
Collapse
Affiliation(s)
- David Hsu
- Department of Neurology, University of Wisconsin, 600 Highland Avenue, H6/526, Madison, WI 53792, USA.
| |
Collapse
|
131
|
Farrant M, Kaila K. The cellular, molecular and ionic basis of GABA(A) receptor signalling. PROGRESS IN BRAIN RESEARCH 2007; 160:59-87. [PMID: 17499109 DOI: 10.1016/s0079-6123(06)60005-8] [Citation(s) in RCA: 266] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
GABA(A) receptors mediate fast synaptic inhibition in the CNS. Whilst this is undoubtedly true, it is a gross oversimplification of their actions. The receptors themselves are diverse, being formed from a variety of subunits, each with a different temporal and spatial pattern of expression. This diversity is reflected in differences in subcellular targetting and in the subtleties of their response to GABA. While activation of the receptors leads to an inevitable increase in membrane conductance, the voltage response is dictated by the distribution of the permeant Cl(-) and HCO(3)(-) ions, which is established by anion transporters. Similar to GABA(A) receptors, the expression of these transporters is not only developmentally regulated but shows cell-specific and subcellular variation. Untangling all these complexities allows us to appreciate the variety of GABA-mediated signalling, a diverse set of phenomena encompassing both synaptic and non-synaptic functions that can be overtly excitatory as well as inhibitory.
Collapse
Affiliation(s)
- Mark Farrant
- Department of Pharmacology, UCL (University College London), Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
132
|
Prescott SA, Sejnowski TJ, De Koninck Y. Reduction of anion reversal potential subverts the inhibitory control of firing rate in spinal lamina I neurons: towards a biophysical basis for neuropathic pain. Mol Pain 2006; 2:32. [PMID: 17040565 PMCID: PMC1624821 DOI: 10.1186/1744-8069-2-32] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 10/13/2006] [Indexed: 01/24/2023] Open
Abstract
Background Reduction of the transmembrane chloride gradient in spinal lamina I neurons contributes to the cellular hyperexcitability producing allodynia and hyperalgesia after peripheral nerve injury. The resultant decrease in anion reversal potential (i.e. shift in Eanion to less negative potentials) reduces glycine/GABAA receptor-mediated hyperpolarization, but the large increase in membrane conductance caused by inhibitory input can nonetheless shunt concurrent excitatory input. Without knowing the relative contribution of hyperpolarization and shunting to inhibition's modulation of firing rate, it is difficult to predict how much net disinhibition results from reduction of Eanion. We therefore used a biophysically accurate lamina I neuron model to investigate quantitatively how changes in Eanion affect firing rate modulation. Results Simulations reveal that even a small reduction of Eanion compromises inhibitory control of firing rate because reduction of Eanion not only decreases glycine/GABAA receptor-mediated hyperpolarization, but can also indirectly compromise the capacity of shunting to reduce spiking. The latter effect occurs because shunting-mediated modulation of firing rate depends on a competition between two biophysical phenomena: shunting reduces depolarization, which translates into reduced spiking, but shunting also shortens the membrane time constant, which translates into faster membrane charging and increased spiking; the latter effect predominates when average depolarization is suprathreshold. Disinhibition therefore occurs as both hyperpolarization- and shunting-mediated modulation of firing rate are subverted by reduction of Eanion. Small reductions may be compensated for by increased glycine/GABAA receptor-mediated input, but the system decompensates (i.e. compensation fails) as reduction of Eanion exceeds a critical value. Hyperexcitability necessarily develops once disinhibition becomes incompensable. Furthermore, compensation by increased glycine/GABAA receptor-mediated input introduces instability into the system, rendering it increasingly prone to abrupt decompensation and even paradoxical excitation. Conclusion Reduction of Eanion dramatically compromises the inhibitory control of firing rate and, if compensation fails, is likely to contribute to the allodynia and hyperalgesia associated with neuropathic pain. These data help explain the relative intractability of neuropathic pain and illustrate how it is important to choose therapies not only based on disease mechanism, but based on quantitative understanding of that mechanism.
Collapse
Affiliation(s)
- Steven A Prescott
- Computational Neurobiology Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Terrence J Sejnowski
- Computational Neurobiology Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yves De Koninck
- Division de Neurobiologie Cellulaire, Centre de Recherche Université Laval Robert-Giffard, Québec, Québec, Canada G1J 2G3
| |
Collapse
|
133
|
Kida E, Palminiello S, Golabek AA, Walus M, Wierzba-Bobrowicz T, Rabe A, Albertini G, Wisniewski KE. Carbonic anhydrase II in the developing and adult human brain. J Neuropathol Exp Neurol 2006; 65:664-74. [PMID: 16825953 DOI: 10.1097/01.jnen.0000225905.52002.3e] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Carbonic anhydrase II (CA II) is one of 14 isozymes of carbonic anhydrases, zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide to bicarbonate. Mutations in CA II in humans lead to osteopetrosis with renal tubular acidosis and cerebral calcifications, a disorder often associated with mental retardation. Recently, new avenues in CA II research have opened as a result of discoveries that the enzyme increases bicarbonate and proton fluxes and may play an important role in brain tissue. In the human brain, CA II was localized to oligodendrocytes, myelin, and choroid plexus epithelium. Because this conclusion was based on a few fragmentary reports, we analyzed in more detail the expression of the enzyme in human telencephalon. By immunoblotting, we found a gradual increase in CA II levels from 17 weeks' gestation to childhood and adolescence. By immunohistochemistry, CA II was found to be present not only in oligodendrocytes and choroid plexus epithelium (declining with aging in both these locations), but also in a subset of neurons mostly with GABAergic phenotype, in a few astrocytes, and transiently during brain development in the endothelial cells of microvessels. The enzyme also occurred in oligodendrocyte processes in contact with myelinating axons, myelin sheaths, and axolemma, but was either absent or appeared in minute amounts in compact myelin. These findings suggest the possible involvement of CA II in a wide spectrum of biologic processes in the developing and adult human brain and may contribute to better understanding of the pathogenesis of cerebral calcifications and mental retardation caused by CA II deficiency.
Collapse
Affiliation(s)
- Elizabeth Kida
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314, USA.
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Price TJ, Hargreaves KM, Cervero F. Protein expression and mRNA cellular distribution of the NKCC1 cotransporter in the dorsal root and trigeminal ganglia of the rat. Brain Res 2006; 1112:146-58. [PMID: 16904086 PMCID: PMC1899153 DOI: 10.1016/j.brainres.2006.07.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 06/17/2006] [Accepted: 07/05/2006] [Indexed: 11/16/2022]
Abstract
Primary afferent neurons maintain depolarizing responses to GABA into adulthood. The molecular basis for this GABAergic response appears to be the Na+K+2Cl- cotransporter NKCC1 that contributes to the maintenance of a high intracellular chloride concentration. Recently, a role for NKCC1 has been proposed in nociceptive processing which makes it timely to gain a better understanding of the distribution of NKCC1 in sensory ganglia. Here, we describe that, in the rat, NKCC1 mRNA is predominately expressed by small and medium diameter dorsal root (DRG) and trigeminal (TG) ganglion neurons. The colocalization of NKCC1 mRNA with sensory neuron population markers was assessed. In the DRG, many NKCC1 mRNA-expressing neurons colocalized peripherin (57.0+/-2.5%), calcitonin-gene-related peptide (CGRP, 39.2+/-4.4%) or TRPV1 immunoreactivity (50.0+/-1.9%) whereas only 8.7+/-1.2% were co-labeled with a marker for large diameter afferents (N52). Similarly, in the TG, NKCC1 mRNA-expressing neurons frequently colocalized peripherin (50.0+/-3.0%), CGRP (35.4+/-2.6%) or TRPV1 immunoreactivity (44.7+/-1.2%) while 14.8+/-1.3% were co-labeled with the N52 antibody. NKCC1 mRNA was also detected in satellite glial (SGCs) in both the DRG and TG. Colocalization of NKCC1 protein with the SGC marker NG2 confirmed the phenotype of these NKCC1-expressing glial cells. In contrast to in situ hybridization experiments, we did not observe NKCC1 immunoreactivity in primary afferent somata. These findings suggest that NKCC1 is expressed in anatomically appropriate cells in order to modulate GABAergic responses in nociceptive neurons. Moreover, these results suggest the possibility of a functional role of NKCC1 in the glial cells closely apposed to primary sensory afferents.
Collapse
Affiliation(s)
- Theodore J Price
- McGill University, Departments of Anesthesia and Dentistry and McGill Centre for Research on Pain, 3655 Prom Sir William Osler, Montreal, QC, Canada H3G 1Y6.
| | | | | |
Collapse
|
135
|
Galanopoulou AS. Sex- and cell-type-specific patterns of GABAAreceptor and estradiol-mediated signaling in the immature rat substantia nigra. Eur J Neurosci 2006; 23:2423-30. [PMID: 16706849 DOI: 10.1111/j.1460-9568.2006.04778.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The substantia nigra pars reticulata (SNR) is involved in movement and seizure control. In male but not female postnatal day 15 (PN15) rats, GABAA receptor agonists depolarize the SNR neurons and increase the expression of the calcium-regulated gene KCC2 (potassium/chloride cotransporter). Moreover, in PN15 rat SNR, 7beta-estradiol down-regulates KCC2 expression only in the presence of depolarizing GABAA receptor responses. The hypothesis tested here was that GABAA receptors and estradiol also regulate the expression of the phosphorylated form of the transcription factor cAMP responsive element binding protein (phosphoCREB), in PN15 rat SNR and substantia nigra pars compacta (SNC). Rats were injected with muscimol or 17beta-estradiol or their vehicles, and killed 1 h later. Sections were stained with an antibody specific for phosphoCREB alone or counterstained with either tyrosine hydroxylase (TH)- or parvalbumin (PRV)-specific antibodies. Muscimol increased phosphoCREB-ir in male but not in female SN neurons. Using gramicidin perforated patch clamp of PN14-15 SNC neuron, it was shown that muscimol bath application depolarized male SNC neurons but did not significantly alter membrane potential in females. In males, 17beta-estradiol decreased phosphoCREB expression in all studied cell types. In females, 17beta-estradiol did not influence phosphoCREB expression in PRV-ir SNR cells, but increased it in the dopaminergic SN neurons. These data suggest that GABAA receptor activation and estradiol promote the sexual differentiation of the SN in a cell-type-specific manner, by influencing calcium-regulated gene transcription, and therefore promoting the acquisition of sex-specific roles of the SN in movement and seizure control.
Collapse
Affiliation(s)
- Aristea S Galanopoulou
- Department of Neurology and Einstein/Montefiore Comprehensive Epilepsy Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Kennedy Center Rm 311, Bronx, NY 10461, USA.
| |
Collapse
|
136
|
Avoli M, Louvel J, Pumain R, Köhling R. Cellular and molecular mechanisms of epilepsy in the human brain. Prog Neurobiol 2006; 77:166-200. [PMID: 16307840 DOI: 10.1016/j.pneurobio.2005.09.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 07/27/2005] [Accepted: 09/20/2005] [Indexed: 12/20/2022]
Abstract
Animal models have provided invaluable data for identifying the pathogenesis of epileptic disorders. Clearly, the relevance of these experimental findings would be strengthened by the demonstration that similar fundamental mechanisms are at work in the human epileptic brain. Epilepsy surgery has indeed opened the possibility to directly study the functional properties of human brain tissue in vitro, and to analyze the mechanisms underlying seizures and epileptogenesis. Here, we summarize the findings obtained over the last 40 years from electrophysiological, histochemical and molecular experiments made with the human brain tissue. In particular, this review will focus on (i) the synaptic and non-synaptic properties of neocortical neurons along with their ability to produce synchronous activity; (ii) the anatomical and functional alterations that characterize limbic structures in patients presenting with mesial temporal lobe epilepsy; (iii) the issue of antiepileptic drug action and resistance; and (iv) the pathophysiology of seizure genesis in Taylor's type focal cortical dysplasia. Finally, we will address some of the problems that are inherent to this type of experimental approach, in particular the lack of proper controls and possible strategies to obviate this limitation.
Collapse
Affiliation(s)
- Massimo Avoli
- Montreal Neurological Institute and Departments of Neurology and Neurosurgery, and of Physiology, McGill University, Montreal, Canada.
| | | | | | | |
Collapse
|
137
|
Fujiwara-Tsukamoto Y, Isomura Y, Takada M. Comparable GABAergic Mechanisms of Hippocampal Seizurelike Activity in Posttetanic and Low-Mg2+ Conditions. J Neurophysiol 2006; 95:2013-9. [PMID: 16339009 DOI: 10.1152/jn.00238.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is known that GABA is a major inhibitory neurotransmitter in mature mammalian brains, but the effect of this substance is sometimes converted into depolarizing or even excitatory when the postsynaptic Cl– concentration becomes high. Recently we have shown that seizurelike afterdischarge induced by tetanic stimulation in normal extracellular fluid (posttetanic afterdischarge) is mediated through GABAergic excitation in mature hippocampal CA1 pyramidal cells. In this study, we examined the possible contribution of similar depolarizing/excitatory GABAergic input to the CA1 pyramidal cells to the seizurelike afterdischarge induced in a low extracellular Mg2+ condition, another experimental model of epileptic seizure activity (low-Mg2+ afterdischarge). Perfusion of the GABAA antagonist bicuculline abolished the low-Mg2+ afterdischarge, but not the interictal-like activity, in most cases. Each oscillatory response during the low-Mg2+ afterdischarge was dependent on Cl– conductance and contained an F–-insensitive depolarizing component in the pyramidal cells, thus indicating that the afterdischarge response may be mediated through both GABAergic and nonGABAergic transmissions. In addition, local GABA application to the recorded cells revealed that GABA responses were indeed depolarizing during the low-Mg2+ afterdischarge. Furthermore, the GABAergic interneurons located in the strata pyramidale and oriens fired in oscillatory cycles more actively than those in other layers of the CA1 region. These results suggest that the depolarizing GABAergic input may facilitate oscillatory synchronization among the hippocampal CA1 pyramidal cells during the low-Mg2+ afterdischarge in a manner similar to the expression of the posttetanic afterdischarge.
Collapse
Affiliation(s)
- Yoko Fujiwara-Tsukamoto
- Dept. of System Neuroscience, Tokyo Metropolitan Inst. for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo 183-8526, Japan.
| | | | | |
Collapse
|
138
|
Lasztóczi B, Emri Z, Szárics E, Héja L, Simon A, Nyikos L, Kardos J. Suppression of neuronal network excitability and seizure-like events by 2-methyl-4-oxo-3H-quinazoline-3-acetyl piperidine in juvenile rat hippocampus: involvement of a metabotropic glutamate receptor. Neurochem Int 2006; 49:41-54. [PMID: 16490284 DOI: 10.1016/j.neuint.2005.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 12/19/2005] [Accepted: 12/20/2005] [Indexed: 11/20/2022]
Abstract
We present data on the antiepileptic potency of 2-methyl-4-oxo-3H-quinazoline-3-acetyl piperidine (Q5) in juvenile (P9-13) rat hippocampal slices and in particular Q5's action mechanism and target. Q5 (200-500 microM), but not alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/Kainate receptor antagonists blocked low-[Mg2+]-induced seizure-like events (SLE) in the CA3 region. Q5 (100 microM) decreased Glu-induced [35S]guanosine 5'-O-(3-thiotriphosphate) binding enhancement in brain homogenates, without interaction with ionotropic Glu receptor sites and Glu transport. In voltage-clamped CA3 pyramidal cells, Q5 (500 microM) depressed activities of spontaneous excitatory and inhibitory postsynaptic currents without affecting miniature inhibitory currents. Metabotropic Glu receptor (mGluR) subtype antagonists affected network excitability dissimilarly. Intracellular Ca2+ ion transients induced by the mGluR agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) were suppressed by Q5. Agreeing predictions obtained by modelling Q5 binding to different experimental conformations of mGlu1, Q5 was bound partially to an mGluR binding site in the presence of 1mM ACPD. Findings suggest the apparent involvement of a novel phenotype of action or a new mGluR subtype in the specific suppression of epileptiform activity by Q5 through the depression of network excitability.
Collapse
Affiliation(s)
- Bálint Lasztóczi
- Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences, 1025 Pusztaszeri út 59-67, Budapest, Hungary.
| | | | | | | | | | | | | |
Collapse
|
139
|
Kang TC, Kim DS, Kim JE, Kwak SE, Yoo KY, Hwang IK, Jung JY, Won MH, Kwon OS, Choi SY. Altered expression of K+ -Cl- cotransporters affects fast paired-pulse inhibition during GABA receptor activation in the gerbil hippocampus. Brain Res 2006; 1072:8-14. [PMID: 16412398 DOI: 10.1016/j.brainres.2005.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 10/18/2005] [Accepted: 12/04/2005] [Indexed: 11/16/2022]
Abstract
K+ -Cl- cotransporter (KCC) plays an important role in maintaining neuronal activity. However, the effect of seizure activity or pharmacological manipulation of GABAergic transmission on KCC expression remains to be clarified. Therefore, the present study was performed to investigate whether seizure activity or GABA receptor agonist treatment changes KCC expression in the gerbil hippocampus. Furthermore, the effect of blockade of KCC on inhibitory transmission in the dentate gyrus was identified following applications of GABA receptor agonists. The distribution of KCC immunoreactivity in the hippocampus was similarly detected between seizure-resistant (SR) and seizure-sensitive (SS) gerbils. Baclofen (a GABAB receptor agonist) treatment markedly increased KCC expression in the gerbil hippocampus. Baclofen treatment significantly reduced paired-pulse inhibition in the dentate gyrus. Furosemide (a KCC inhibitor) treatment amplified the effect of baclofen on paired-pulse responses. In contrast, muscimol (a GABAA receptor agonist) treatment reduced KCC expression. Enhanced paired-pulse inhibition by muscimol treatment was not affected by furosemide treatment. These findings suggest that seizure activity in the gerbil may not affect KCC expression in the hippocampus. In addition, altered KCC immunoreactivity induced by baclofen or muscimol may play an important role in maintaining or regulating inhibitory transmission during GABA receptor activation.
Collapse
Affiliation(s)
- Tae-Cheon Kang
- Department of Anatomy, College of Medicine, Hallym University, Chunchon, Kangwon-Do, 200-702, South Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Alakuijala A, Alakuijala J, Pasternack M. Evidence for a functional role of GABAC receptors in the rat mature hippocampus. Eur J Neurosci 2006; 23:514-20. [PMID: 16420458 DOI: 10.1111/j.1460-9568.2005.04572.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Both gamma-aminobutyric acid (GABA)(C) receptor subunit mRNA and protein are expressed in the stratum pyramidale in the CA1 area of the adult rat hippocampus, but so far no conclusive evidence about functional hippocampal GABA(C) receptors has been presented. Here, the contribution of GABA(C) receptors to stimulus-evoked postsynaptic potentials was studied in the hippocampal CA1 area with extracellular and intracellular recordings at the age range of 21-47 postnatal days. Activation of GABA(C) receptors with the specific agonist cis-4-aminocrotonic acid (CACA) suppressed postsynaptic excitability and increased the membrane conductance. The GABA(C) receptor antagonist 1,2,5,6-tetrahydropyridine-4-ylmethylphosphinic acid (TPMPA), but not the GABA(A) receptor antagonist bicuculline, inhibited the effects of CACA. GABA-mediated long-lasting depolarizing responses evoked by high-frequency stimulation of local inhibitory interneurons in the CA1 area in the presence of ionotropic glutamate receptor and GABA(B) receptor blockers were prolonged by TPMPA, indicating that GABA(C) receptors are activated under these conditions. For weaker stimulation, the effect of TPMPA was enhanced after GABA uptake was inhibited. Our data demonstrate that GABA(C) receptors can be activated by endogenous synaptic transmitter release following strong stimulation or under conditions of reduced GABA uptake. The lack of GABA(C) receptor activation by less intensive stimulation under control conditions suggests that these receptors are extrasynaptic and activated via spillover of synaptically released GABA.
Collapse
Affiliation(s)
- Anniina Alakuijala
- Institute of Biotechnology, PO Box 56, FI-00014 University of Helsinki, Finland
| | | | | |
Collapse
|
141
|
Berger T, Lüscher HR, Giugliano M. Transient rhythmic network activity in the somatosensory cortex evoked by distributed input in vitro. Neuroscience 2006; 140:1401-13. [PMID: 16632207 DOI: 10.1016/j.neuroscience.2006.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 02/03/2006] [Accepted: 03/02/2006] [Indexed: 10/24/2022]
Abstract
The initiation and maintenance of physiological and pathophysiological oscillatory activity depends on the synaptic interactions within neuronal networks. We studied the mechanisms underlying evoked transient network oscillation in acute slices of the adolescent rat somatosensory cortex and modeled its underpinning mechanisms. Oscillations were evoked by brief spatially distributed noisy extracellular stimulation, delivered via bipolar electrodes. Evoked transient network oscillation was detected with multi-neuron patch-clamp recordings under different pharmacological conditions. The observed oscillations are in the frequency range of 2-5 Hz and consist of 4-12 mV large, 40-150 ms wide compound synaptic events with rare overlying action potentials. This evoked transient network oscillation is only weakly expressed in the somatosensory cortex and requires increased [K+]o of 6.25 mM and decreased [Ca2+]o of 1.5 mM and [Mg2+]o of 0.5 mM. A peak in the cross-correlation among membrane potential in layers II/III, IV and V neurons reflects the underlying network-driven basis of the evoked transient network oscillation. The initiation of the evoked transient network oscillation is accompanied by an increased [K+]o and can be prevented by the K+ channel blocker quinidine. In addition, a shift of the chloride reversal potential takes place during stimulation, resulting in a depolarizing type A GABA (GABAA) receptor response. Blockade of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-proprionate (AMPA), N-methyl-D-aspartate (NMDA), or GABA(A) receptors as well as gap junctions prevents evoked transient network oscillation while a reduction of AMPA or GABA(A) receptor desensitization increases its duration and amplitude. The apparent reversal potential of -27 mV of the evoked transient network oscillation, its pharmacological profile, as well as the modeling results suggest a mixed contribution of glutamatergic, excitatory GABAergic, and gap junctional conductances in initiation and maintenance of this oscillatory activity. With these properties, evoked transient network oscillation resembles epileptic afterdischarges more than any other form of physiological or pathophysiological neocortical oscillatory activity.
Collapse
Affiliation(s)
- T Berger
- Institute of Physiology, University of Bern, Bühlplatz 5, CH-3012 Bern, Switzerland.
| | | | | |
Collapse
|
142
|
Draguhn A, Hartmann K. GABAergic Synaptic Transmission. ADVANCES IN MOLECULAR AND CELL BIOLOGY 2006. [DOI: 10.1016/s1569-2558(06)38009-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
143
|
Slanina KA, Roberto M, Schweitzer P. Endocannabinoids restrict hippocampal long-term potentiation via CB1. Neuropharmacology 2005; 49:660-8. [PMID: 15950248 DOI: 10.1016/j.neuropharm.2005.04.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2005] [Revised: 04/19/2005] [Accepted: 04/21/2005] [Indexed: 11/15/2022]
Abstract
Cannabinoid ligands alter cognition and prevent long-term potentiation (LTP) of synaptic transmission, but the influence of endogenously formed cannabinoids (eCBs) on hippocampal LTP remains ambiguous. In the accompanying study, we showed that eCB levels regulated by cyclooxygenase-2 (COX-2) tonically decrease basal excitatory transmission. Here, we investigated the influence of eCBs on LTP in CA1 hippocampus. LTP elicited by moderate stimulations (20 or 50 pulses) was facilitated in slices treated with a CB1 antagonist, whereas LTP elicited with robust stimulations (100 or 200 pulses) was unchanged by CB1 blockade. LTP elicited with theta-burst stimulations also was facilitated with CB1 blockade, revealing a tonic inhibitory influence of eCBs on LTP induction. Conversely, inhibition of COX-2 prevented LTP elicited with theta burst stimulations. Inhibition of COX-1 or other routes of eCB degradation did not affect LTP. We conclude that COX-2 regulates the formation of CB1 ligands that negatively regulate LTP.
Collapse
Affiliation(s)
- Kristen A Slanina
- Department of Neuropharmacology, CVN 12, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
144
|
Tosetti P, Ferrand N, Colin-Le Brun I, Gaïarsa JL. Epileptiform activity triggers long-term plasticity of GABA(B) receptor signalling in the developing rat hippocampus. J Physiol 2005; 568:951-66. [PMID: 16096337 PMCID: PMC1464168 DOI: 10.1113/jphysiol.2005.094631] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
GABA(B) receptor (GABA(B)R)-mediated presynaptic inhibition regulates neurotransmitter release from synaptic terminals. In the neonatal hippocampus, GABA(B)R activation reduces GABA release and terminates spontaneous network discharges called giant depolarizing potentials (GDPs). Blocking GABA(B)Rs transforms GDPs into longer epileptiform discharges. Thus, GABA(B)R-mediated presynaptic inhibition of GABA release (GABA auto-inhibition) controls both spontaneous network activity and excitability in the developing hippocampus. Here we show that extensive release of endogenous GABA during epileptiform activity impairs GABA auto-inhibition, but not GABA(B)R-mediated inhibition of glutamate release, leading to hyperexcitability of the neonatal hippocampal network. Paired-pulse depression of GABA release (PPD) and heterosynaptic depression of glutamate release were used to monitor the efficacy of presynaptic GABA(B)R-mediated inhibition in slices. PPD, but not heterosynaptic depression, was dramatically reduced after potassium (K+)-induced ictal-like discharges (ILDs), suggesting a selective impairment of GABA(B)R-dependent presynaptic inhibition of GABAergic terminals. Impairing GABA auto-inhibition induced a 44% increase in GDP width and the appearance of pathological network discharges. Preventing GABA-induced activation of GABA(B)Rs during ILDs avoided PPD loss and most modifications of the network activity. In contrast, a partial block of GABA(B)Rs induced network discharges strikingly similar to those observed after K+-driven ILDs. Finally, neither loss of GABA auto-inhibition nor network hyperexcitability could be observed following synchronous release of endogenous GABA in physiological conditions (during GDPs at 1 Hz). Thus, epileptiform activity was instrumental to impair GABA(B)R-dependent presynaptic inhibition of GABAergic terminals. In conclusion, our results indicate that endogenous GABA released during epileptiform activity can reduce GABA auto-inhibition and trigger pathological network discharges in the newborn rat hippocampus. Such functional impairment may play a role in acute post-seizure plasticity.
Collapse
Affiliation(s)
- P Tosetti
- Institut de Génomique Fonctionnelle, CNRS UMR5203/INSERM U661/UM1/UM2, Montpellier, France.
| | | | | | | |
Collapse
|
145
|
Vale C, Caminos E, Martinez-Galán JR, Juiz JM. Expression and developmental regulation of the K+-Cl- cotransporter KCC2 in the cochlear nucleus. Hear Res 2005; 206:107-15. [PMID: 16081002 DOI: 10.1016/j.heares.2005.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 03/11/2005] [Indexed: 10/25/2022]
Abstract
KCC2 is a neuron-specific Cl- transporter whose role in adult central neurons is to maintain low intracellular Cl- concentrations and, therefore, generate an inward-directed electrochemical gradient for Cl- needed for the hyperpolarizing responses to the inhibitory amino acids GABA and glycine. We report that the KCC2 protein is intensely expressed in CN neurons and preferentially associated with plasma membrane domains, consistent with GABA and glycinergic-mediated inhibition in this auditory nucleus. Postnatal KCC2 expression and distribution patterns are similar in developing and adult CN neurons and do not match the time course of GABergic or glycinergic synaptogenesis. Therefore, in the CN, neither KCC2 protein upregulation nor progressive integration in the plasma membrane seem to be involved in KCC2 developmental regulation. Considering that GABA and glycine are depolarizing during early postnatal development, it is conceivable that KCC2 is in place but inactive during early postnatal development in the CN and becomes active as inhibitory synaptogenesis proceeds. This notion is supported by the finding that the phosphorylation state of KCC2 differs from developing to adult CN, with the phosphorylated form predominating in the latter.
Collapse
Affiliation(s)
- Carmen Vale
- School of Medicine and Centro Regional de Investigación Biomédica, Universidad de Castilla-La Mancha, Campus de Albacete, 02005 Albacete, Spain
| | | | | | | |
Collapse
|
146
|
Bihi RI, Jefferys JGR, Vreugdenhil M. The role of extracellular potassium in the epileptogenic transformation of recurrent GABAergic inhibition. Epilepsia 2005; 46 Suppl 5:64-71. [PMID: 15987256 DOI: 10.1111/j.1528-1167.2005.01011.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Epileptiform burst-firing can occur in hippocampal area CA1 where recurrent excitation is relatively weak and recurrent inhibition strong. Recent observations suggest that recurrent inhibition can transform into recurrent excitation because of collapse of the chloride gradient. Here we assess the role of potassium in this epileptogenic transformation. METHODS Extracellular field potential recordings, combined with either intracellular recordings from pyramidal neurons or extracellular potassium concentration recordings, were made in vitro from isolated CA1 minislices cut from the rat hippocampus and in vivo from area CA1 in urethane-anesthetized rats. Burst responses were evoked by 5-Hz alveus stimulation. RESULTS The 5-Hz alveus stimulation in vitro caused a transient period of burst responses that was associated with a transient increase in synaptic input in stratum oriens and a transient shift of the reversal potential of the synaptic potential. These changes were related to the transient increase in extracellular potassium concentration in stratum oriens. Observations in vivo confirmed the relation between bursting and extracellular potassium concentration in stratum oriens. CONCLUSIONS Use-dependent increase of extracellular potassium concentration in stratum oriens facilitates the collapse of the chloride gradient in the basal dendrites and transforms gamma-aminobutyric acid (GABA)ergic inhibition into GABAergic excitation, giving rise to burst firing. Improvement of intracellular chloride homeostasis or extracellular potassium homeostasis could reduce epileptogenicity.
Collapse
Affiliation(s)
- Rachid Id Bihi
- Department of Neurophysiology, University of Birmingham, Birmingham, United Kingdom
| | | | | |
Collapse
|
147
|
Lee J, Tommerdahl M, Favorov OV, Whitsel BL. Optically Recorded Response of the Superficial Dorsal Horn: Dissociation From Neuronal Activity, Sensitivity to Formalin-Evoked Skin Nociceptor Activation. J Neurophysiol 2005; 94:852-64. [PMID: 15744009 DOI: 10.1152/jn.00976.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In rat spinal cord, slice repetitive electrical stimulation of the dorsal root at an intensity that activates C-fibers evokes a slow-to-develop and prolonged (30–50 s) change in light transmittance (OISDR) in the superficial part of the ipsilateral dorsal horn (DHs). Inhibition of astrocyte metabolism [by bath-applied 400 μM fluoroacetate and 200 μM glutamine (FAc + Gln)] or interference with glial and neuronal K+ transport [by 100 μM 4-aminopyridine (4-AP)] leads to dissociation of the OISDR and the postsynaptic DHs response to a single-pulse, constant-current dorsal root stimulus (P-PSPDR). The OISDR decreases under FAc+Gln, whereas the P-PSPDR remains unaltered; under 4-AP, the P-PSPDR increases, but the OISDR decreases. In contrast, both the OISDR and P-PSPDR increase when K+o is elevated to 8 mM. These observations from slices from normal subjects are interpreted to indicate that the OISDR mainly reflects cell volume and light scattering changes associated with DHs astrocyte uptake of K+ and glutamate (GLU). In slices from subjects that received an intracutaneous injection of formalin 3–5 days earlier, both the OISDR and the response of the DHs ipsilateral to the injection site to 100-ms local application (via puffer pipette) of 15 mM K+ or 100 μM GLU were profoundly reduced, and the normally exquisite sensitivity of the DHs to elevated K+o is decreased. Considered collectively, the observations raise the possibility that impaired regulation of DHs K+o and GLUo may contribute to initiation and maintenance of the CNS pain circuit and sensorimotor abnormalities that develop following intracutaneous formalin injection.
Collapse
Affiliation(s)
- Jaekwang Lee
- Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, North Carolina 27599-7545, USA
| | | | | | | |
Collapse
|
148
|
DeFazio RA, Hablitz JJ. Horizontal spread of activity in neocortical inhibitory networks. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 157:83-92. [PMID: 15939088 DOI: 10.1016/j.devbrainres.2005.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Revised: 03/11/2005] [Accepted: 03/16/2005] [Indexed: 11/24/2022]
Abstract
In the presence of 4-aminopyridine (4-AP) and excitatory amino acid receptor blockers, GABAergic networks in the neocortex give rise to large spontaneous GABA-mediated depolarizations. We used voltage-sensitive dye techniques to explore the network properties of depolarizing GABA responses. Voltage-sensitive dye signals demonstrated that the superficial layers support the propagation of depolarizing GABA responses, with only minimal signals detected in deeper cortical layers. GABA responses propagated at a speed of 2.7 +/- 0.2 mm/s, a rate intermediate to fast synaptic transmission and spreading depression. Changes in the extracellular potassium concentration altered the propagation speed of the depolarizing GABA response. Taken together, these data support a role for both direct synaptic action of GABA at GABA(A) receptors and nonsynaptic mechanisms in the generation and propagation of depolarizing GABA responses.
Collapse
Affiliation(s)
- Richard A DeFazio
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
149
|
|
150
|
Kaneda K, Fujiwara-Tsukamoto Y, Isomura Y, Takada M. Region-specific modulation of electrically induced synchronous oscillations in the rat hippocampus and cerebral cortex. Neurosci Res 2005; 52:83-94. [PMID: 15811556 DOI: 10.1016/j.neures.2005.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 01/25/2005] [Accepted: 01/31/2005] [Indexed: 10/25/2022]
Abstract
Strong tetanization induces synchronous membrane potential oscillations (seizure-like afterdischarge) in mature pyramidal cells of the hippocampal CA1 region. To investigate whether local networks in other brain regions can generate such an afterdischarge independently, we studied the inducibility of afterdischarge in individual 'isolated slices' of the rat hippocampal CA1 and CA3 regions, dentate gyrus (DG), entorhinal cortex (EC), and temporal cortex (TC) using intracellular and extracellular recordings. The strong tetanization constantly induced afterdischarges in the CA1 and CA3 pyramidal cells as well as in the EC and TC superficial principal cells. However, parameters of the afterdischarges, such as the frequency and duration of afterdischarges, varied among the regions. A mixture of N-methyl-D-aspartate (NMDA) and non-NMDA receptor antagonists or a GABA(A) receptor antagonist completely blocked the afterdischarges. Local GABA application during the afterdischarge elicited depolarization, rather than hyperpolarization. Moreover, reversal potentials of the afterdischarge were around -40 mV. In contrast, the tetanization resulted in occasional afterdischarge-like activities in DG slices, which were blocked by the non-NMDA or GABA(A) receptor antagonist. These findings suggest that the afterdischarges mediated through the excitatory GABAergic and glutamatergic transmissions might be common to, but be modulated differently by individual local networks in the hippocampus and cortex.
Collapse
Affiliation(s)
- Katsuyuki Kaneda
- Department of System Neuroscience, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo 183-8526, Japan.
| | | | | | | |
Collapse
|