101
|
Zhang XH, Liu SS, Yi F, Zhuo M, Li BM. Delay-dependent impairment of spatial working memory with inhibition of NR2B-containing NMDA receptors in hippocampal CA1 region of rats. Mol Brain 2013; 6:13. [PMID: 23497405 PMCID: PMC3616959 DOI: 10.1186/1756-6606-6-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/05/2013] [Indexed: 11/10/2022] Open
Abstract
Hippocampal N-methyl-D-aspartate receptor (NMDAR) is required for spatial working memory. Although evidence from genetic manipulation mice suggests an important role of hippocampal NMDAR NR2B subunits (NR2B-NMDARs) in spatial working memory, it remains unclear whether or not the requirement of hippocampal NR2B-NMDARs for spatial working memory depends on the time of spatial information maintained. Here, we investigate the contribution of hippocampal NR2B-NMDARs to spatial working memory on delayed alternation task in T-maze (DAT task) and delayed matched-to-place task in water maze (DMP task). Our data show that infusions of the NR2B-NMDAR selective antagonists, Ro25-6981 or ifenprodil, directly into the CA1 region, impair spatial working memory in DAT task with 30-s delay (not 5-s delay), but severely impair error-correction capability in both 5-s and 30-s delay task. Furthermore, intra-CA1 inhibition of NR2B-NMDARs impairs spatial working memory in DMP task with 10-min delay (not 30-s delay). Our results suggest that hippocampal NR2B-NMDARs are required for spatial working memory in long-delay task, whereas spare for spatial working memory in short-delay task. We conclude that the requirement of NR2B-NMDARs for spatial working memory is delay-dependent in the CA1 region.
Collapse
Affiliation(s)
- Xue-Han Zhang
- Institute of Neurobiology, and State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China.
| | | | | | | | | |
Collapse
|
102
|
Sanders EM, Nguyen MA, Zhou KC, Hanks ME, Yusuf KA, Cox DN, Dumas TC. Developmental modification of synaptic NMDAR composition and maturation of glutamatergic synapses: matching postsynaptic slots with receptor pegs. THE BIOLOGICAL BULLETIN 2013; 224:1-13. [PMID: 23493503 DOI: 10.1086/bblv224n1p1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The numbers and types of ionotropic glutamate receptors at most vertebrate central excitatory synapses are altered as a function of changes in input activity patterns that occur during postnatal development. Activity-dependent developmental alterations in glutamate receptors underlie lasting changes in synaptic efficacy (plasticity) and metaplasticity (the plasticity of synaptic plasticity), which are critical elements of normal brain maturation. Understanding the specific involvement of glutamate receptors in synaptic development and function is made multiplicatively complex by the existence of a large number of glutamate receptor subunits, numerous subunit-specific amino acid sequences that regulate receptor function, and subunit-specific synaptic insertion restrictions imposed by associated anchoring proteins. Many receptor properties are altered when subunits are switched, so it is unclear which individual receptor property or properties underlie changes in synaptic function and plasticity during postnatal development. As a result, a more detailed understanding of the factors that regulate synaptic and cognitive development will involve mutations in glutamate receptor subunits that separate individual receptor properties and permit synaptic insertion at both immature and mature synapses in genetically modified organisms. This position paper focuses on structural modifications in N-methyl-d-aspartate receptors (NMDARs) that occur during postnatal forebrain development and attempts to provide a method for pursuing a more complete understanding of the functional ramifications of developmental alterations in NMDAR subunit composition.
Collapse
Affiliation(s)
- Erin M Sanders
- Molecular Neuroscience Department, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| | | | | | | | | | | | | |
Collapse
|
103
|
Baez MV, Oberholzer MV, Cercato MC, Snitcofsky M, Aguirre AI, Jerusalinsky DA. NMDA receptor subunits in the adult rat hippocampus undergo similar changes after 5 minutes in an open field and after LTP induction. PLoS One 2013; 8:e55244. [PMID: 23383317 PMCID: PMC3562335 DOI: 10.1371/journal.pone.0055244] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 12/21/2012] [Indexed: 01/09/2023] Open
Abstract
NMDA receptor subunits change during development and their synaptic expression is modified rapidly after synaptic plasticity induction in hippocampal slices. However, there is scarce information on subunits expression after synaptic plasticity induction or memory acquisition, particularly in adults. GluN1, GluN2A and GluN2B NMDA receptor subunits were assessed by western blot in 1) adult rats that had explored an open field (OF) for 5 minutes, a time sufficient to induce habituation, 2) mature rat hippocampal neuron cultures depolarized by KCl and 3) hippocampal slices from adult rats where long term potentiation (LTP) was induced by theta-burst stimulation (TBS). GluN1 and GluN2A, though not GluN2B, were significantly higher 70 minutes –but not 30 minutes- after a 5 minutes session in an OF. GluN1 and GluN2A total immunofluorescence and puncta in neurites increased in cultures, as evaluated 70 minutes after KCl stimulation. Similar changes were found in hippocampal slices 70 minutes after LTP induction. To start to explore underlying mechanisms, hippocampal slices were treated either with cycloheximide (a translation inhibitor) or actinomycin D (a transcription inhibitor) during electrophysiological assays. It was corroborated that translation was necessary for LTP induction and expression. The rise in GluN1 depends on transcription and translation, while the increase in GluN2A appears to mainly depend on translation, though a contribution of some remaining transcriptional activity during actinomycin D treatment could not be rouled out. LTP effective induction was required for the subunits to increase. Although in the three models same subunits suffered modifications in the same direction, within an apparently similar temporal course, further investigation is required to reveal if they are related processes and to find out whether they are causally related with synaptic plasticity, learning and memory.
Collapse
Affiliation(s)
- Maria Veronica Baez
- Instituto de Biología Celular y Neurociencia (IBCN) “Prof. Eduardo De Robertis” CONICET – UBA, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria Victoria Oberholzer
- Instituto de Biología Celular y Neurociencia (IBCN) “Prof. Eduardo De Robertis” CONICET – UBA, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Magali Cecilia Cercato
- Instituto de Biología Celular y Neurociencia (IBCN) “Prof. Eduardo De Robertis” CONICET – UBA, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marina Snitcofsky
- Instituto de Biología Celular y Neurociencia (IBCN) “Prof. Eduardo De Robertis” CONICET – UBA, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandra Ines Aguirre
- Instituto de Biología Celular y Neurociencia (IBCN) “Prof. Eduardo De Robertis” CONICET – UBA, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diana Alicia Jerusalinsky
- Instituto de Biología Celular y Neurociencia (IBCN) “Prof. Eduardo De Robertis” CONICET – UBA, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- CBC, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
104
|
Morris RGM, Steele RJ, Bell JE, Martin SJ. N-methyl-d-aspartate receptors, learning and memory: chronic intraventricular infusion of the NMDA receptor antagonist d-AP5 interacts directly with the neural mechanisms of spatial learning. Eur J Neurosci 2013; 37:700-17. [PMID: 23311352 DOI: 10.1111/ejn.12086] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 11/11/2012] [Indexed: 01/03/2023]
Abstract
Three experiments were conducted to contrast the hypothesis that hippocampal N-methyl-d-aspartate (NMDA) receptors participate directly in the mechanisms of hippocampus-dependent learning with an alternative view that apparent impairments of learning induced by NMDA receptor antagonists arise because of drug-induced neuropathological and/or sensorimotor disturbances. In experiment 1, rats given a chronic i.c.v. infusion of d-AP5 (30 mm) at 0.5 μL/h were selectively impaired, relative to aCSF-infused animals, in place but not cued navigation learning when they were trained during the 14-day drug infusion period, but were unimpaired on both tasks if trained 11 days after the minipumps were exhausted. d-AP5 caused sensorimotor disturbances in the spatial task, but these gradually worsened as the animals failed to learn. Histological assessment of potential neuropathological changes revealed no abnormalities in d-AP5-treated rats whether killed during or after chronic drug infusion. In experiment 2, a deficit in spatial learning was also apparent in d-AP5-treated rats trained on a spatial reference memory task involving two identical but visible platforms, a task chosen and shown to minimise sensorimotor disturbances. HPLC was used to identify the presence of d-AP5 in selected brain areas. In Experiment 3, rats treated with d-AP5 showed a delay-dependent deficit in spatial memory in the delayed matching-to-place protocol for the water maze. These data are discussed with respect to the learning mechanism and sensorimotor accounts of the impact of NMDA receptor antagonists on brain function. We argue that NMDA receptor mechanisms participate directly in spatial learning.
Collapse
Affiliation(s)
- R G M Morris
- Laboratory for Cognitive Neuroscience, Centre for Cognitive and Neural Systems, The University of Edinburgh, Edinburgh, UK.
| | | | | | | |
Collapse
|
105
|
Cui Z, Feng R, Jacobs S, Duan Y, Wang H, Cao X, Tsien JZ. Increased NR2A:NR2B ratio compresses long-term depression range and constrains long-term memory. Sci Rep 2013; 3:1036. [PMID: 23301157 PMCID: PMC3539144 DOI: 10.1038/srep01036] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/02/2012] [Indexed: 12/28/2022] Open
Abstract
The NR2A:NR2B subunit ratio of the NMDA receptors is widely known to increase in the brain from postnatal development to sexual maturity and to aging, yet its impact on memory function remains speculative. We have generated forebrain-specific NR2A overexpression transgenic mice and show that these mice had normal basic behaviors and short-term memory, but exhibited broad long-term memory deficits as revealed by several behavioral paradigms. Surprisingly, increased NR2A expression did not affect 1-Hz-induced long-term depression (LTD) or 100 Hz-induced long-term potentiation (LTP) in the CA1 region of the hippocampus, but selectively abolished LTD responses in the 3–5 Hz frequency range. Our results demonstrate that the increased NR2A:NR2B ratio is a critical genetic factor in constraining long-term memory in the adult brain. We postulate that LTD-like process underlies post-learning information sculpting, a novel and essential consolidation step in transforming new information into long-term memory.
Collapse
Affiliation(s)
- Zhenzhong Cui
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30907, USA
| | | | | | | | | | | | | |
Collapse
|
106
|
Marsman A, van den Heuvel MP, Klomp DWJ, Kahn RS, Luijten PR, Hulshoff Pol HE. Glutamate in schizophrenia: a focused review and meta-analysis of ¹H-MRS studies. Schizophr Bull 2013; 39:120-9. [PMID: 21746807 PMCID: PMC3523901 DOI: 10.1093/schbul/sbr069] [Citation(s) in RCA: 337] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a severe chronic psychiatric illness, characterized by hallucinations and delusions. Decreased brain volumes have been observed in the disease, although the origin of these changes is unknown. Changes in the n-methyl-d-aspartate (NMDA)-receptor mediated glutamatergic neurotransmission are implicated, since it is hypothesized that NMDA-receptor dysfunction in schizophrenia leads to increased glutamate release, which can have excitotoxic effects. However, the magnitude and extent of changes in glutamatergic metabolites in schizophrenia are not clear. With (1)H magnetic resonance spectroscopy ((1)H-MRS), in vivo information about glutamate and glutamine concentrations can be obtained in the brain. A systematic search through the MEDLINE database was conducted to identify relevant (1)H-MRS studies that examined differences in glutamate and glutamine concentrations between patients with schizophrenia and healthy control subjects. Twenty-eight studies were identified and included a total of 647 patients with schizophrenia and 608 healthy-control subjects. For each study, Cohen's d was calculated and main effects for group analyses were performed using the random-effects model. Medial frontal region glutamate was decreased and glutamine was increased in patients with schizophrenia as compared with healthy individuals. Group-by-age associations revealed that in patients with schizophrenia, glutamate and glutamine concentrations decreased at a faster rate with age as compared with healthy controls. This could reflect aberrant processes in schizophrenia, such as altered synaptic activity, changed glutamate receptor functioning, abnormal glutamine-glutamate cycling, or dysfunctional glutamate transport.
Collapse
Affiliation(s)
- Anouk Marsman
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Internal address A.01.126, PO Box 85500, 3508 GA Utrecht, The Netherlands.
| | - Martijn P. van den Heuvel
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis W. J. Klomp
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - René S. Kahn
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter R. Luijten
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hilleke E. Hulshoff Pol
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
107
|
Ryan TJ, Kopanitsa MV, Indersmitten T, Nithianantharajah J, Afinowi NO, Pettit C, Stanford LE, Sprengel R, Saksida LM, Bussey TJ, O'Dell TJ, Grant SGN, Komiyama NH. Evolution of GluN2A/B cytoplasmic domains diversified vertebrate synaptic plasticity and behavior. Nat Neurosci 2013; 16:25-32. [PMID: 23201971 PMCID: PMC3979286 DOI: 10.1038/nn.3277] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 11/10/2012] [Indexed: 02/07/2023]
Abstract
Two genome duplications early in the vertebrate lineage expanded gene families, including GluN2 subunits of the NMDA receptor. Diversification between the four mammalian GluN2 proteins occurred primarily at their intracellular C-terminal domains (CTDs). To identify shared ancestral functions and diversified subunit-specific functions, we exchanged the exons encoding the GluN2A (also known as Grin2a) and GluN2B (also known as Grin2b) CTDs in two knock-in mice and analyzed the mice's biochemistry, synaptic physiology, and multiple learned and innate behaviors. The eight behaviors were genetically separated into four groups, including one group comprising three types of learning linked to conserved GluN2A/B regions. In contrast, the remaining five behaviors exhibited subunit-specific regulation. GluN2A/B CTD diversification conferred differential binding to cytoplasmic MAGUK proteins and differential forms of long-term potentiation. These data indicate that vertebrate behavior and synaptic signaling acquired increased complexity from the duplication and diversification of ancestral GluN2 genes.
Collapse
Affiliation(s)
- Tomás J Ryan
- Genes to Cognition Programme, Wellcome Trust Sanger Institute, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Barha CK, Galea LAM. The hormone therapy, Premarin, impairs hippocampus-dependent spatial learning and memory and reduces activation of new granule neurons in response to memory in female rats. Neurobiol Aging 2012; 34:986-1004. [PMID: 22938820 DOI: 10.1016/j.neurobiolaging.2012.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/29/2012] [Accepted: 07/11/2012] [Indexed: 12/25/2022]
Abstract
Estrogens have been implicated as possible therapeutic agents for improving cognition in postmenopausal women and have been linked to neurodegenerative disorders such as Alzheimer's disease. However, the utility of Premarin (Wyeth Pharmaceuticals, Markham, ON, Canada), a conjugated equine estrogen and the most commonly prescribed hormone therapy, has recently been questioned. The purpose of this study was to investigate the effects of Premarin at 2 different doses (10 or 20 μg) on hippocampus-dependent spatial learning and memory, hippocampal neurogenesis, and new neuronal activation using a rodent model of surgical menopause. Rats were treated daily with subcutaneous injections of Premarin and trained on the spatial working/reference memory version of the radial arm maze. Premarin impaired spatial reference and working learning and memory, increased hippocampal neurogenesis, but either decreased or increased activation of new neurons in response to memory retrieval as indexed by the expression of the immediate early gene product zif268, depending on the maturity of cells examined. This activation of new neurons was related to impaired performance in Premarin-treated but not control-treated female rats. These results indicate that Premarin may be impairing hippocampus-dependent learning and memory by negatively altering the neurogenic environment in the dentate gyrus thus disrupting normal activity of new neurons.
Collapse
Affiliation(s)
- Cindy K Barha
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
109
|
Pratt J, Winchester C, Dawson N, Morris B. Advancing schizophrenia drug discovery: optimizing rodent models to bridge the translational gap. Nat Rev Drug Discov 2012; 11:560-79. [DOI: 10.1038/nrd3649] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
110
|
Molecular and behavioral changes associated with adult hippocampus-specific SynGAP1 knockout. Learn Mem 2012; 19:268-81. [PMID: 22700469 DOI: 10.1101/lm.026351.112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The synaptic Ras/Rap-GTPase-activating protein (SynGAP1) plays a unique role in regulating specific downstream intracellular events in response to N-methyl-D-aspartate receptor (NMDAR) activation. Constitutive heterozygous loss of SynGAP1 disrupts NMDAR-mediated physiological and behavioral processes, but the disruptions might be of developmental origin. Therefore, the precise role of SynGAP1 in the adult brain, including its relative functional significance within specific brain regions, remains unexplored. The present study constitutes the first attempt in achieving adult hippocampal-specific SynGAP1 knockout using the Cre/loxP approach. Here, we report that this manipulation led to a significant numerical increase in both small and large GluA1 and NR1 immunoreactive clusters, many of which were non-opposed to presynaptic terminals. In parallel, the observed marked decline in the amplitude of spontaneous excitatory currents (sEPSCs) and inter-event intervals supported the impression that SynGAP1 loss might facilitate the accumulation of extrasynaptic glutamatergic receptors. In addition, SynGAP1-mediated signaling appears to be critical for the proper integration and survival of newborn neurons. The manipulation impaired reversal learning in the probe test of the water maze and induced a delay-dependent impairment in spatial recognition memory. It did not significantly affect anxiety or reference memory acquisition but induced a substantial elevation in spontaneous locomotor activity in the open field test. Thus, the present study demonstrates the functional significance of SynGAP1 signaling in the adult brain by capturing several changes that are dependent on NMDAR and hippocampal integrity.
Collapse
|
111
|
Kiselycznyk C, Hoffman DA, Holmes A. Effects of genetic deletion of the Kv4.2 voltage-gated potassium channel on murine anxiety-, fear- and stress-related behaviors. BIOLOGY OF MOOD & ANXIETY DISORDERS 2012; 2:5. [PMID: 22738428 PMCID: PMC3384232 DOI: 10.1186/2045-5380-2-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 03/02/2012] [Indexed: 01/06/2023]
Abstract
Background Potassium channels have been proposed to play a role in mechanisms of neural plasticity, and the Kv4.2 subunit has been implicated in the regulation of action-potential back-propagation to the dendrites. Alterations in mechanisms of plasticity have been further proposed to underlie various psychiatric disorders, but the role of Kv4.2 in anxiety or depression is not well understood. Methods In this paper, we analyzed the phenotype Kv4.2 knockout mice based on their neurological function, on a battery of behaviors including those related to anxiety and depression, and on plasticity-related learning tasks. Results We found a novelty-induced hyperactive phenotype in knockout mice, and these mice also displayed increased reactivity to novel stimulus such as an auditory tone. No clear anxiety- or depression-related phenotype was observed, nor any alterations in learning/plasticity-based paradigms. Conclusions We did not find clear evidence for an involvement of Kv4.2 in neuropsychiatric or plasticity-related phenotypes, but there was support for a role in Kv4.2 in dampening excitatory responses to novel stimuli.
Collapse
Affiliation(s)
- Carly Kiselycznyk
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA.
| | | | | |
Collapse
|
112
|
Keleta YB, Martinez JL. Brain Circuits of Methamphetamine Place Reinforcement Learning: The Role of the Hippocampus-VTA Loop. Brain Behav 2012; 2:128-41. [PMID: 22574281 PMCID: PMC3345357 DOI: 10.1002/brb3.35] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 12/11/2011] [Accepted: 12/14/2011] [Indexed: 11/11/2022] Open
Abstract
The reinforcing effects of addictive drugs including methamphetamine (METH) involve the midbrain ventral tegmental area (VTA). VTA is primary source of dopamine (DA) to the nucleus accumbens (NAc) and the ventral hippocampus (VHC). These three brain regions are functionally connected through the hippocampal-VTA loop that includes two main neural pathways: the bottom-up pathway and the top-down pathway. In this paper, we take the view that addiction is a learning process. Therefore, we tested the involvement of the hippocampus in reinforcement learning by studying conditioned place preference (CPP) learning by sequentially conditioning each of the three nuclei in either the bottom-up order of conditioning; VTA, then VHC, finally NAc, or the top-down order; VHC, then VTA, finally NAc. Following habituation, the rats underwent experimental modules consisting of two conditioning trials each followed by immediate testing (test 1 and test 2) and two additional tests 24 h (test 3) and/or 1 week following conditioning (test 4). The module was repeated three times for each nucleus. The results showed that METH, but not Ringer's, produced positive CPP following conditioning each brain area in the bottom-up order. In the top-down order, METH, but not Ringer's, produced either an aversive CPP or no learning effect following conditioning each nucleus of interest. In addition, METH place aversion was antagonized by coadministration of the N-methyl-d-aspartate (NMDA) receptor antagonist MK801, suggesting that the aversion learning was an NMDA receptor activation-dependent process. We conclude that the hippocampus is a critical structure in the reward circuit and hence suggest that the development of target-specific therapeutics for the control of addiction emphasizes on the hippocampus-VTA top-down connection.
Collapse
Affiliation(s)
- Yonas B Keleta
- University of Texas at San Antonio, One UTSA Circle San Antonio, TX 78249 USA
| | | |
Collapse
|
113
|
Graybeal C, Kiselycznyk C, Holmes A. Stress-induced impairments in prefrontal-mediated behaviors and the role of the N-methyl-D-aspartate receptor. Neuroscience 2012; 211:28-38. [PMID: 22414923 DOI: 10.1016/j.neuroscience.2012.02.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/20/2012] [Accepted: 02/22/2012] [Indexed: 12/31/2022]
Abstract
The prefrontal cortex (PFC) mediates higher-order cognitive and executive functions that subserve various complex, adaptable behaviors, such as cognitive flexibility, attention, and working memory. Deficits in these functions typify multiple neuropsychiatric disorders that are caused or exacerbated by exposure to psychological stress. Here we review recent evidence examining the effects of stress on executive and cognitive functions in rodents and discuss an emerging body of evidence that implicates the N-methyl-D-aspartate receptor (NMDAR) as a potentially critical molecular mechanism mediating these effects. Future work in this area could open up new avenues for developing pharmacotherapies for ameliorating cognitive dysfunction in neuropsychiatric disease.
Collapse
Affiliation(s)
- C Graybeal
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892-9304, USA.
| | | | | |
Collapse
|
114
|
Dalton GL, Wu DC, Wang YT, Floresco SB, Phillips AG. NMDA GluN2A and GluN2B receptors play separate roles in the induction of LTP and LTD in the amygdala and in the acquisition and extinction of conditioned fear. Neuropharmacology 2012; 62:797-806. [DOI: 10.1016/j.neuropharm.2011.09.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/29/2011] [Accepted: 09/02/2011] [Indexed: 01/14/2023]
|
115
|
Foster TC. Dissecting the age-related decline on spatial learning and memory tasks in rodent models: N-methyl-D-aspartate receptors and voltage-dependent Ca2+ channels in senescent synaptic plasticity. Prog Neurobiol 2012; 96:283-303. [PMID: 22307057 DOI: 10.1016/j.pneurobio.2012.01.007] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 01/09/2012] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
Abstract
In humans, heterogeneity in the decline of hippocampal-dependent episodic memory is observed during aging. Rodents have been employed as models of age-related cognitive decline and the spatial water maze has been used to show variability in the emergence and extent of impaired hippocampal-dependent memory. Impairment in the consolidation of intermediate-term memory for rapidly acquired and flexible spatial information emerges early, in middle-age. As aging proceeds, deficits may broaden to include impaired incremental learning of a spatial reference memory. The extent and time course of impairment has been be linked to senescence of calcium (Ca²⁺) regulation and Ca²⁺-dependent synaptic plasticity mechanisms in region CA1. Specifically, aging is associated with altered function of N-methyl-D-aspartate receptors (NMDARs), voltage-dependent Ca²⁺ channels (VDCCs), and ryanodine receptors (RyRs) linked to intracellular Ca²⁺ stores (ICS). In young animals, NMDAR activation induces long-term potentiation of synaptic transmission (NMDAR-LTP), which is thought to mediate the rapid consolidation of intermediate-term memory. Oxidative stress, starting in middle-age, reduces NMDAR function. In addition, VDCCs and ICS can actively inhibit NMDAR-dependent LTP and oxidative stress enhances the role of VDCC and RyR-ICS in regulating synaptic plasticity. Blockade of L-type VDCCs promotes NMDAR-LTP and memory in older animals. Interestingly, pharmacological or genetic manipulations to reduce hippocampal NMDAR function readily impair memory consolidation or rapid learning, generally leaving incremental learning intact. Finally, evidence is mounting to indicate a role for VDCC-dependent synaptic plasticity in associative learning and the consolidation of remote memories. Thus, VDCC-dependent synaptic plasticity and extrahippocampal systems may contribute to incremental learning deficits observed with advanced aging.
Collapse
Affiliation(s)
- Thomas C Foster
- Department of Neuroscience, Evelyn F. and William L. McKnight Brain Institute, University of Florida, PO Box 100244, Gainesville, FL 32610-0244, USA. ,
| |
Collapse
|
116
|
Punnakkal P, Jendritza P, Köhr G. Influence of the intracellular GluN2 C-terminal domain on NMDA receptor function. Neuropharmacology 2012; 62:1985-92. [PMID: 22245680 DOI: 10.1016/j.neuropharm.2011.12.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 12/02/2011] [Accepted: 12/20/2011] [Indexed: 10/14/2022]
Abstract
Excitatory neurotransmission mediated by N-methyl-d-aspartate receptors (NMDARs) is fundamental to learning and memory and, when impaired, causes certain neurological disorders. NMDARs are heterotetrameric complexes composed of two GluN1 [NR1] and two GluN2(A-D) [NR2(A-D)] subunits. The GluN2 subunit is responsible for subunit-specific channel activity and gating kinetics including activation (rise time), peak open probability (peak Po) and deactivation (decay time). The peak Po of recombinant NMDARs was recently described to be controlled by the extracellular GluN2 N-terminal domain (NTD). The cytoplasmic GluN2 C-terminal domain (CTD) could also be involved, because the Po of synaptic NMDARs is reduced in mice expressing C-terminally truncated GluN2 subunits. Here, we examined the role of the GluN2 cytoplasmic tail for NMDAR channel activity and gating in HEK-293 cells. C-terminal truncation of GluN2A, GluN2B or GluN2C did not change the subunit-specific rise time but accelerated the decay time of glutamate-activated currents. Furthermore, the peak Po was reduced by about 50% for GluN2A and GluN2B but not for GluN2C. These results indicated that the CTD of GluN2 has a modulating role in NMDAR gating even in the absence of interacting synaptic proteins. Reduction of peak Po and deactivation kinetics following GluN2 C-terminal truncation were reversed by re-introducing a CTD from a different GluN2 subunit. Thus, the CTDs of GluN2 subunits behave as constitutive structural elements required for normal functioning of NMDARs but are not involved in determining the subunit-specific gating properties of NMDARs.
Collapse
Affiliation(s)
- Pradeep Punnakkal
- Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
117
|
Fractionation of spatial memory in GRM2/3 (mGlu2/mGlu3) double knockout mice reveals a role for group II metabotropic glutamate receptors at the interface between arousal and cognition. Neuropsychopharmacology 2011; 36:2616-28. [PMID: 21832989 PMCID: PMC3230485 DOI: 10.1038/npp.2011.145] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Group II metabotropic glutamate receptors (mGluR2 and mGluR3, encoded by GRM2 and GRM3) are implicated in hippocampal function and cognition, and in the pathophysiology and treatment of schizophrenia and other psychiatric disorders. However, pharmacological and behavioral studies with group II mGluR agonists and antagonists have produced complex results. Here, we studied hippocampus-dependent memory in GRM2/3 double knockout (GRM2/3(-/-)) mice in an iterative sequence of experiments. We found that they were impaired on appetitively motivated spatial reference and working memory tasks, and on a spatial novelty preference task that relies on animals' exploratory drive, but were unimpaired on aversively motivated spatial memory paradigms. GRM2/3(-/-) mice also performed normally on an appetitively motivated, non-spatial, visual discrimination task. These results likely reflect an interaction between GRM2/3 genotype and the arousal-inducing properties of the experimental paradigm. The deficit seen on appetitive and exploratory spatial memory tasks may be absent in aversive tasks because the latter induce higher levels of arousal, which rescue spatial learning. Consistent with an altered arousal-cognition relationship in GRM2/3(-/-) mice, injection stress worsened appetitively motivated, spatial working memory in wild-types, but enhanced performance in GRM2/3(-/-) mice. GRM2/3(-/-) mice were also hypoactive in response to amphetamine. This fractionation of hippocampus-dependent memory depending on the appetitive-aversive context is to our knowledge unique, and suggests a role for group II mGluRs at the interface of arousal and cognition. These arousal-dependent effects may explain apparently conflicting data from previous studies, and have translational relevance for the involvement of these receptors in schizophrenia and other disorders.
Collapse
|
118
|
Effects of pre-training morphine on spatial memory acquisition and retrieval in mice. Physiol Behav 2011; 104:754-60. [DOI: 10.1016/j.physbeh.2011.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 06/13/2011] [Accepted: 07/08/2011] [Indexed: 11/23/2022]
|
119
|
Dalton GL, Ma LM, Phillips AG, Floresco SB. Blockade of NMDA GluN2B receptors selectively impairs behavioral flexibility but not initial discrimination learning. Psychopharmacology (Berl) 2011; 216:525-35. [PMID: 21384103 DOI: 10.1007/s00213-011-2246-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 02/21/2011] [Indexed: 10/18/2022]
Abstract
RATIONALE Behavioral flexibility is the ability to adjust behavior when environmental contingencies change and is compromised in disease states such as schizophrenia, attention deficit hyperactivity disorder, and following damage to the prefrontal cortex. METHODS The present study investigated the contribution of N-methyl-D-aspartate GluN2B receptor subunits in the initial learning and in shifting between or within discrimination strategies (i.e., strategy set-shifting and reversal learning), using tasks conducted in operant chambers. Strategy set-shifting required rats initially to learn a visual-cue discrimination (day 1) and on day 2, shift to using an egocentric spatial response strategy to obtain reward. For reversal learning, rats were trained on a response discrimination on day 1 and then required to select the opposite lever on day 2. RESULTS Blockade of GluN2B receptors with systemic administration of Ro25-6981 on day 1 did not impair initial acquisition of either a response or visual-cue discrimination nor did these treatments affect performance of strategy or reversal shifts on day 2. However, administration of Ro25-6981 prior to a set-shift or reversal on day 2 significantly impaired performance on both tasks, inducing a selective increase in perseverative errors, indicative of a disruption the ability to suppress a previously acquired prepotent response. CONCLUSIONS These data suggest that systemic blockade of GluN2B receptors Ro25-6981 does not appear to interfere with the initial acquisition of simple visual or response discriminations. However, these receptors do appear to play a central and selective role in the modification of previously acquired strategies or stimulus-reward associations, facilitating behavioral inhibition so that novel patterns of behavior may emerge.
Collapse
Affiliation(s)
- Gemma L Dalton
- Department of Psychology and Brain Research Centre, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
120
|
Wei CJ, Singer P, Coelho J, Boison D, Feldon J, Yee BK, Chen JF. Selective inactivation of adenosine A(2A) receptors in striatal neurons enhances working memory and reversal learning. Learn Mem 2011; 18:459-74. [PMID: 21693634 DOI: 10.1101/lm.2136011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The adenosine A(2A) receptor (A(2A)R) is highly enriched in the striatum where it is uniquely positioned to integrate dopaminergic, glutamatergic, and other signals to modulate cognition. Although previous studies support the hypothesis that A(2A)R inactivation can be pro-cognitive, analyses of A(2A)R's effects on cognitive functions have been restricted to a small subset of cognitive domains. Furthermore, the relative contribution of A(2A)Rs in distinct brain regions remains largely unknown. Here, we studied the regulation of multiple memory processes by brain region-specific populations of A(2A)Rs. Specifically, we evaluated the cognitive impacts of conditional A(2A)R deletion restricted to either the entire forebrain (i.e., cerebral cortex, hippocampus, and striatum, fb-A(2A)R KO) or to striatum alone (st-A(2A)R KO) in recognition memory, working memory, reference memory, and reversal learning. This comprehensive, comparative analysis showed for the first time that depletion of A(2A)R-dependent signaling in either the entire forebrain or striatum alone is associated with two specific phenotypes indicative of cognitive flexibility-enhanced working memory and enhanced reversal learning. These selective pro-cognitive phenotypes seemed largely attributed to inactivation of striatal A(2A)Rs as they were captured by A(2A)R deletion restricted to striatal neurons. Neither spatial reference memory acquisition nor spatial recognition memory were grossly affected, and no evidence for compensatory changes in striatal or cortical D(1), D(2), or A(1) receptor expression was found. This study provides the first direct demonstration that targeting striatal A(2A)Rs may be an effective, novel strategy to facilitate cognitive flexibility under normal and pathologic conditions.
Collapse
Affiliation(s)
- Catherine J Wei
- Molecular Neuropharmacology Laboratory, Department of Neurology, Boston University School of Medicine, Massachusetts 02118, USA
| | | | | | | | | | | | | |
Collapse
|
121
|
Egocentric working memory impairment and dendritic spine plastic changes in prefrontal neurons after NMDA receptor blockade in rats. Brain Res 2011; 1402:101-8. [PMID: 21696707 DOI: 10.1016/j.brainres.2011.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/06/2011] [Accepted: 06/04/2011] [Indexed: 12/29/2022]
Abstract
Working memory may involve context-dependent allocentric or own movement-dependent egocentric strategies. While allocentric working memory can be disrupted by N-methyl-D-aspartate (NMDA) blockage, the possible effects of NMDA receptor manipulation on the egocentric strategy have not been studied. Because dendritic spine plasticity in part underlies working memory-related behavioral efficiency, egocentric working memory performance was evaluated in adult rats following NMDA receptor blockade with 10mg/kg of the NMDA-receptor antagonist CPP, i.p. Dendritic spine density and the proportion of different spine types (thin, stubby, mushroom, wide, branched and double) were assessed in third-layer pyramidal neurons of the dorsomedial prefrontal cortex, after behavioral testing. Working memory was evaluated by challenging the rats to resolve twelve trials per day in a single-day session over five consecutive days, in a "cross-arm" maze and according to a delayed match-to-sample procedure. In control animals, the dendritic spine density remained unchanged after behavioral testing, although the proportion of mushroom spines decreased while that of the branched spines increased. NMDA receptor blockade impaired the behavioral performance of rats and resulted in a decrease in dendritic spine density when compared to the control animals, and dendritic spine types were unchanged. These results suggest that behavioral efficiency of egocentric working memory is dependent on NMDA receptor activation, and that plastic changes in spine cytoarchitecture may play a key role in behavioral performance.
Collapse
|
122
|
Papaleo F, Lipska BK, Weinberger DR. Mouse models of genetic effects on cognition: relevance to schizophrenia. Neuropharmacology 2011; 62:1204-20. [PMID: 21557953 DOI: 10.1016/j.neuropharm.2011.04.025] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 04/08/2011] [Accepted: 04/20/2011] [Indexed: 01/27/2023]
Abstract
Cognitive dysfunction is a core feature of schizophrenia. Growing evidence indicates that a wide variety of genetic mutations and polymorphisms impact cognition and may thus be implicated in various aspects of this mental disorder. Despite differences between human and rodent brain structure and function, genetic mouse models have contributed critical information about brain mechanisms involved in cognitive processes. Here, we summarize discoveries of genetic modifications in mice that impact cognition. Based on functional hypotheses, gene modifications within five model systems are described: 1) dopamine (D1, D2, D3, D4, D5, DAT, COMT, MAO); 2) glutamate (GluR-A, NR1, NR2A, NR2B, GRM2, GRM3, GLAST); 3) GABA (α(5), γ(2), α(4), δGABA(A), GABA(B(1)), GAT1); 4) acetylcholine (nAChRβ2, α7, CHRM1); and 5) calcium (CaMKII-α, neurogranin, CaMKKβ, CaMKIV). We also consider other risk-associated genes for schizophrenia such as dysbindin (DTNBP1), neuregulin (NRG1), disrupted-in-schizophrenia1 (DISC1), reelin and proline dehydrogenase (PRODH). Because of the presumed importance of environmental factors, we further consider genetic modifications within the stress-sensitive systems of corticotropin-releasing factor (CRF), brain-derived neurotrophic factor (BDNF) and the endocannabinoid systems. We highlight the missing information and limitations of cognitive assays in genetically modified mice models relevant to schizophrenia pathology.
Collapse
Affiliation(s)
- Francesco Papaleo
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy.
| | | | | |
Collapse
|
123
|
Belarbi K, Burnouf S, Fernandez-Gomez FJ, Laurent C, Lestavel S, Figeac M, Sultan A, Troquier L, Leboucher A, Caillierez R, Grosjean ME, Demeyer D, Obriot H, Brion I, Barbot B, Galas MC, Staels B, Humez S, Sergeant N, Schraen-Maschke S, Muhr-Tailleux A, Hamdane M, Buée L, Blum D. Beneficial effects of exercise in a transgenic mouse model of Alzheimer's disease-like Tau pathology. Neurobiol Dis 2011; 43:486-94. [PMID: 21569847 DOI: 10.1016/j.nbd.2011.04.022] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 04/21/2011] [Accepted: 04/25/2011] [Indexed: 01/31/2023] Open
Abstract
Tau pathology is encountered in many neurodegenerative disorders known as tauopathies, including Alzheimer's disease. Physical activity is a lifestyle factor affecting processes crucial for memory and synaptic plasticity. Whether long-term voluntary exercise has an impact on Tau pathology and its pathophysiological consequences is currently unknown. To address this question, we investigated the effects of long-term voluntary exercise in the THY-Tau22 transgenic model of Alzheimer's disease-like Tau pathology, characterized by the progressive development of Tau pathology, cholinergic alterations and subsequent memory impairments. Three-month-old THY-Tau22 mice and wild-type littermates were assigned to standard housing or housing supplemented with a running wheel. After 9 months of exercise, mice were evaluated for memory performance and examined for hippocampal Tau pathology, cholinergic defects, inflammation and genes related to cholesterol metabolism. Exercise prevented memory alterations in THY-Tau22 mice. This was accompanied by a decrease in hippocampal Tau pathology and a prevention of the loss of expression of choline acetyltransferase within the medial septum. Whereas the expression of most cholesterol-related genes remained unchanged in the hippocampus of running THY-Tau22 mice, we observed a significant upregulation in mRNA levels of NPC1 and NPC2, genes involved in cholesterol trafficking from the lysosomes. Our data support the view that long-term voluntary physical exercise is an effective strategy capable of mitigating Tau pathology and its pathophysiological consequences.
Collapse
Affiliation(s)
- Karim Belarbi
- Université Lille-Nord de France, UDSL, F-59000 Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Allen K, Fuchs EC, Jaschonek H, Bannerman DM, Monyer H. Gap junctions between interneurons are required for normal spatial coding in the hippocampus and short-term spatial memory. J Neurosci 2011; 31:6542-52. [PMID: 21525295 PMCID: PMC3160467 DOI: 10.1523/jneurosci.6512-10.2011] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 03/04/2011] [Accepted: 03/06/2011] [Indexed: 11/21/2022] Open
Abstract
Gap junctions containing connexin 36 electrically couple interneurons in many brain regions and synchronize their activity. We used connexin-36 knock-out mice (Cx36(-/-)) to study the importance of electrical coupling between interneurons for spatial coding in the hippocampus and for different forms of hippocampus-dependent spatial memory. Recordings in behaving mice revealed that the spatial selectivity of hippocampal pyramidal neurons was reduced and less stable in Cx36(-/-) mice. Altered network activity was reflected in slower theta oscillations in the mutants. Temporal coding, assessed by determining the presence and characteristics of theta phase precession, had different dynamics in Cx36(-/-) mice compared with controls. At the behavioral level, Cx36(-/-) mice displayed impaired short-term spatial memory but normal spatial reference memory. These results highlight the functional role of electrically coupled interneurons for spatial coding and cognition. Moreover, they suggest that the precise spatial selectivity of place cells is not essential for normal performance on spatial tasks assessing associative long-term memory.
Collapse
Affiliation(s)
- Kevin Allen
- Department of Clinical Neurobiology, Heidelberg University and German Cancer Research Center, 69120 Heidelberg, Germany, and
| | - Elke C. Fuchs
- Department of Clinical Neurobiology, Heidelberg University and German Cancer Research Center, 69120 Heidelberg, Germany, and
| | - Hannah Jaschonek
- Department of Clinical Neurobiology, Heidelberg University and German Cancer Research Center, 69120 Heidelberg, Germany, and
| | - David M. Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, United Kingdom
| | - Hannah Monyer
- Department of Clinical Neurobiology, Heidelberg University and German Cancer Research Center, 69120 Heidelberg, Germany, and
| |
Collapse
|
125
|
Ghafari M, Patil SS, Höger H, Pollak A, Lubec G. NMDA-complexes linked to spatial memory performance in the Barnes maze in CD1 mice. Behav Brain Res 2011; 221:142-8. [PMID: 21377497 DOI: 10.1016/j.bbr.2011.02.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/22/2011] [Accepted: 02/26/2011] [Indexed: 10/18/2022]
Abstract
The N-methyl-d-aspartic acid receptor (NMDAR) is a well-documented key element in the formation of several memories including spatial, olfactory and contextual memory. Although receptor subunits have been linked to memory formation, data on the involvement of the NMDAR complexes is limited. In previous work CD1 mice were trained in the Barnes maze, a low-stress landmaze, and yoked controls were serving as controls. Hippocampal samples from this behavioural study were taken for comparing NMDAR complexes. Hippocampi were taken and stored until analysis at -80 °C. Membrane proteins were extracted from hippocampi using an ultracentrifugation step and applied on Blue Native gels that in turn were used for immunoblotting with antibodies against subunits NR1, NR2A and NR2B. The subunit content of the complexes was determined by denaturing two-dimensional gel electrophoresis and subsequent immunoblotting. An NMDAR complex with an apparent molecular weight between between 146 and 242 kDa, probably representing an NR1 dimer was the only complex that was significantly different between trained and yoked animals. A series of NMDAR complexes containing modulatory subunits NR2A or NR2B or both were detected. All complexes contained the NR1 subunit. The NR1 dimer complex level, increased in memory formation, may be directly or indirectly involved in the process of spatial memory formation in the CD1 mouse. The results are enabling and challenging further NMDAR studies, both, at the pharmacological and molecular level. Moreover, several NMDAR complexes in the CD1 mouse were shown to be mainly heteropolymers of subunits NR1, NR2A and NR2B, although other recently described subunits were not tested due to unavailability of specific antibodies. Determination of native receptor complexes rather than individual subunits is mandatory and provides the molecular basis for understanding mechanisms of spatial memory.
Collapse
Affiliation(s)
- Maryam Ghafari
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18, A-1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
126
|
Moody TD, Watabe AM, Indersmitten T, Komiyama NH, Grant SG, O'Dell TJ. Beta-adrenergic receptor activation rescues theta frequency stimulation-induced LTP deficits in mice expressing C-terminally truncated NMDA receptor GluN2A subunits. Learn Mem 2011; 18:118-27. [PMID: 21257779 PMCID: PMC3032578 DOI: 10.1101/lm.2045311] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 11/19/2010] [Indexed: 01/15/2023]
Abstract
Through protein interactions mediated by their cytoplasmic C termini the GluN2A and GluN2B subunits of NMDA receptors (NMDARs) have a key role in the formation of NMDAR signaling complexes at excitatory synapses. Although these signaling complexes are thought to have a crucial role in NMDAR-dependent forms of synaptic plasticity such as long-term potentiation (LTP), the role of the C terminus of GluN2A in coupling NMDARs to LTP enhancing and/or suppressing signaling pathways is unclear. To address this issue we examined the induction of LTP in the hippocampal CA1 region in mice lacking the C terminus of endogenous GluN2A subunits (GluN2AΔC/ΔC). Our results show that truncation of GluN2A subunits produces robust, but highly frequency-dependent, deficits in LTP and a reduction in basal levels of extracellular signal regulated kinase 2 (ERK2) activation and phosphorylation of AMPA receptor GluA1 subunits at a protein kinase A site (serine 845). Consistent with the notion that these signaling deficits contribute to the deficits in LTP in GluN2AΔC/ΔC mice, activating ERK2 and increasing GluA1 S845 phosphorylation through activation of β-adrenergic receptors rescued the induction of LTP in these mutants. Together, our results indicate that the capacity of excitatory synapses to undergo plasticity in response to different patterns of activity is dependent on the coupling of specific signaling pathways to the intracellular domains of the NMDARs and that abnormal plasticity resulting from mutations in NMDARs can be reduced by activation of key neuromodulatory transmitter receptors that engage converging signaling pathways.
Collapse
Affiliation(s)
- Teena D. Moody
- Interdepartmental PhD Program for Neuroscience, University of California Los Angeles, Los Angeles, California 90024, USA
| | - Ayako M. Watabe
- Laboratory of Neurophysiology, Department of Neuroscience, Jikei University School of Medicine, Tokyo 105-8461, Japan
- PRESTO, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Tim Indersmitten
- Interdepartmental PhD Program for Neuroscience, University of California Los Angeles, Los Angeles, California 90024, USA
| | | | - Seth G.N. Grant
- Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Thomas J. O'Dell
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90024, USA
| |
Collapse
|
127
|
Shilyansky C, Lee YS, Silva AJ. Molecular and cellular mechanisms of learning disabilities: a focus on NF1. Annu Rev Neurosci 2011; 33:221-43. [PMID: 20345245 DOI: 10.1146/annurev-neuro-060909-153215] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neurofibromatosis Type I (NF1) is a single-gene disorder characterized by a high incidence of complex cognitive symptoms, including learning disabilities, attention deficit disorder, executive function deficits, and motor coordination problems. Because the underlying genetic cause of this disorder is known, study of NF1 from a molecular, cellular, and systems perspective has provided mechanistic insights into the etiology of higher-order cognitive symptoms associated with the disease. In particular, studies of animal models of NF1 indicated that disruption of Ras regulation of inhibitory networks is critical to the etiology of cognitive deficits associated with NF1. Animal models of Nf1 identified mechanisms and pathways that are required for cognition, and represent an important complement to the complex neuropsychological literature on learning disabilities associated with this condition. Here, we review findings from NF1 animal models and human populations affected by NF1, highlighting areas of potential translation and discussing the implications and limitations of generalizing findings from this single-gene disease to idiopathic learning disabilities.
Collapse
Affiliation(s)
- C Shilyansky
- Department of Neurobiology, Psychology, Psychiatry and Biobehavioral Sciences, Semel Institute, University of California, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
128
|
Van der Jeugd A, Ahmed T, Burnouf S, Belarbi K, Hamdame M, Grosjean ME, Humez S, Balschun D, Blum D, Buée L, D'Hooge R. Hippocampal tauopathy in tau transgenic mice coincides with impaired hippocampus-dependent learning and memory, and attenuated late-phase long-term depression of synaptic transmission. Neurobiol Learn Mem 2010; 95:296-304. [PMID: 21167950 DOI: 10.1016/j.nlm.2010.12.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 12/08/2010] [Accepted: 12/09/2010] [Indexed: 12/30/2022]
Abstract
We evaluated various forms of hippocampus-dependent learning and memory, and hippocampal synaptic plasticity in THY-Tau22 transgenic mice, a murine tauopathy model that expresses double-mutated 4-repeat human tau, and shows neuropathological tau hyperphosphorylation and aggregation throughout the brain. Focussing on hippocampus, immunohistochemical studies in aged THY-Tau22 mice revealed prominent hyper- and abnormal phosphorylation of tau in CA1 region, and an increase in glial fibrillary acidic protein (GFAP) in hippocampus, but without signs of neuronal loss. These mice displayed spatial, social, and contextual learning and memory defects that could not be reduced to subtle neuromotor disability. The behavioral defects coincided with changes in hippocampal synaptic functioning and plasticity as measured in paired-pulse and novel long-term depression protocols. These results indicate that hippocampal tauopathy without neuronal cell loss can impair neural and behavioral plasticity, and further show that transgenic mice, such as the THY-Tau22 strain, might be useful for preclinical research on tauopathy pathogenesis and possible treatment.
Collapse
Affiliation(s)
- Ann Van der Jeugd
- Laboratory of Biological Psychology, Department of Psychology, Catholic University of Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Lu CB, Jefferys JGR, Toescu EC, Vreugdenhil M. In vitro hippocampal gamma oscillation power as an index of in vivo CA3 gamma oscillation strength and spatial reference memory. Neurobiol Learn Mem 2010; 95:221-30. [PMID: 21093596 DOI: 10.1016/j.nlm.2010.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 11/01/2010] [Accepted: 11/10/2010] [Indexed: 10/18/2022]
Abstract
Neuronal synchronisation at gamma frequencies (30-100 Hz) has been implicated in cognition and memory. Gamma oscillations can be studied in various in vitro models, but their in vivo validity and their relationship with reference memory remains to be proven. By using the natural variation of wild type C57bl/6J mice, we assessed the relationships between reference memory and gamma oscillations recorded in hippocampal area CA3 in vivo and in vitro. Local field potentials (LFPs) were recorded from area CA3 in behaviourally-characterised freely moving mice, after which hippocampal slices were prepared for recordings in vitro of spontaneous gamma oscillations and kainate-induced gamma oscillations in CA3. The gamma-band power of spontaneous oscillations in vitro correlated with that of CA3 LFP oscillations during inactive behavioural states. The gamma-band power of kainate-induced oscillations correlated with the activity-dependent increase in CA3 LFP gamma-band power in vivo. Kainate-induced gamma-band power correlated with Barnes circular platform performance and object location recognition, but not with object novelty recognition. Kainate-induced gamma-band power was larger in mice that recognised the aversive context, but did not correlate with passive avoidance delay. The correlations between behavioural and electrophysiological measures obtained from the same animals show that the gamma-generating capacity of the CA3 network in vitro is a useful index of in vivo gamma strength and supports an important role of CA3 gamma oscillations in spatial reference memory.
Collapse
Affiliation(s)
- Cheng B Lu
- Neuronal Networks Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | |
Collapse
|
130
|
Modulation of neurotransmitter receptors and synaptic differentiation by proteins containing complement-related domains. Neurosci Res 2010; 69:87-92. [PMID: 21093502 DOI: 10.1016/j.neures.2010.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 10/25/2010] [Accepted: 11/09/2010] [Indexed: 11/20/2022]
Abstract
Neurotransmitter receptors play central roles in basic neurotransmission and synaptic plasticity. Recent studies have revealed that some transmembrane and extracellular proteins bind to neurotransmitter receptors, forming protein complexes that are required for proper synaptic localization or gating of core receptor molecules. Consequently, the components of these complexes contribute to long-term potentiation, a process that is critical for learning and memory. Here, we review factors that regulate neurotransmitter receptors, with a focus on proteins containing CUB (complement C1r/C1s, Uegf, Bmp1) or CCP (complement control protein) domains, which are frequently found in complement system proteins. Proteins that contain these domains are structurally distinct from TARPs (transmembrane AMPA receptor regulatory proteins), and may constitute new protein families that modulate either the localization or function of neurotransmitter receptors. In addition, other CCP domain-containing proteins participate in dendritic patterning and/or synaptic differentiation, although current evidence has not identified any direct activities on neurotransmitter receptors. Some of these proteins are involved in pathologic conditions such as epileptic seizure and mental retardation. Together, these lines of information have shown that CUB and CCP domain-containing proteins contribute to a wide variety of neuronal events that ultimately establish neural circuits.
Collapse
|
131
|
Hippocampal long-term depression is required for the consolidation of spatial memory. Proc Natl Acad Sci U S A 2010; 107:16697-702. [PMID: 20823230 DOI: 10.1073/pnas.1008200107] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) and long-term depression (LTD) of glutamatergic transmission are candidate mechanisms for long-term spatial memory, the precise contributions of LTP and LTD remain poorly understood. Here, we report that LTP and LTD in the hippocampal CA1 region of freely moving adult rats were prevented by NMDAR 2A (GluN2A) and 2B subunit (GluN2B) preferential antagonists, respectively. These results strongly suggest that NMDAR subtype preferential antagonists are appropriate tools to probe the roles of LTP and LTD in spatial memory. Using a Morris water maze task, the LTP-blocking GluN2A antagonist had no significant effect on any aspect of performance, whereas the LTD-blocking GluN2B antagonist impaired spatial memory consolidation. Moreover, similar spatial memory deficits were induced by inhibiting the expression of LTD with intrahippocampal infusion of a short peptide that specifically interferes with AMPA receptor endocytosis. Taken together, our findings support a functional requirement of hippocampal CA1 LTD in the consolidation of long-term spatial memory.
Collapse
|
132
|
|
133
|
Loss of GluN2B-containing NMDA receptors in CA1 hippocampus and cortex impairs long-term depression, reduces dendritic spine density, and disrupts learning. J Neurosci 2010; 30:4590-600. [PMID: 20357110 DOI: 10.1523/jneurosci.0640-10.2010] [Citation(s) in RCA: 261] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
NMDA receptors (NMDARs) are key mediators of certain forms of synaptic plasticity and learning. NMDAR complexes are heteromers composed of an obligatory GluN1 subunit and one or more GluN2 (GluN2A-GluN2D) subunits. Different subunits confer distinct physiological and molecular properties to NMDARs, but their contribution to synaptic plasticity and learning in the adult brain remains uncertain. Here, we generated mice lacking GluN2B in pyramidal neurons of cortex and CA1 subregion of hippocampus. We found that hippocampal principal neurons of adult GluN2B mutants had faster decaying NMDAR-mediated EPSCs than nonmutant controls and were insensitive to GluN2B but not NMDAR antagonism. A subsaturating form of hippocampal long-term potentiation (LTP) was impaired in the mutants, whereas a saturating form of LTP was intact. An NMDAR-dependent form of long-term depression (LTD) produced by low-frequency stimulation combined with glutamate transporter inhibition was abolished in the mutants. Additionally, mutants exhibited decreased dendritic spine density in CA1 hippocampal neurons compared with controls. On multiple assays for corticohippocampal-mediated learning and memory (hidden platform Morris water maze, T-maze spontaneous alternation, and pavlovian trace fear conditioning), mutants were impaired. These data further demonstrate the importance of GluN2B for synaptic plasticity in the adult hippocampus and suggest a particularly critical role in LTD, at least the form studied here. The finding that loss of GluN2B was sufficient to cause learning deficits illustrates the contribution of GluN2B-mediated forms of plasticity to memory formation, with implications for elucidating NMDAR-related dysfunction in disease-related cognitive impairment.
Collapse
|
134
|
Magnusson KR, Brim BL, Das SR. Selective Vulnerabilities of N-methyl-D-aspartate (NMDA) Receptors During Brain Aging. Front Aging Neurosci 2010; 2:11. [PMID: 20552049 PMCID: PMC2874396 DOI: 10.3389/fnagi.2010.00011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 03/02/2010] [Indexed: 01/07/2023] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors are present in high density within the cerebral cortex and hippocampus and play an important role in learning and memory. NMDA receptors are negatively affected by aging, but these effects are not uniform in many different ways. This review discusses the selective age-related vulnerabilities of different binding sites of the NMDA receptor complex, different subunits that comprise the complex, and the expression and functions of the receptor within different brain regions. Spatial reference, passive avoidance, and working memory, as well as place field stability and expansion all involve NMDA receptors. Aged animals show deficiencies in these functions, as compared to young, and some studies have identified an association between age-associated changes in the expression of NMDA receptors and poor memory performance. A number of diet and drug interventions have shown potential for reversing or slowing the effects of aging on the NMDA receptor. On the other hand, there is mounting evidence that the NMDA receptors that remain within aged individuals are not always associated with good cognitive functioning. This may be due to a compensatory response of neurons to the decline in NMDA receptor expression or a change in the subunit composition of the remaining receptors. These studies suggest that developing treatments that are aimed at preventing or reversing the effects of aging on the NMDA receptor may aid in ameliorating the memory declines that are associated with aging. However, we need to be mindful of the possibility that there may also be negative consequences in aged individuals.
Collapse
Affiliation(s)
- Kathy R Magnusson
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR, USA
| | | | | |
Collapse
|
135
|
Muhia M, Yee BK, Feldon J, Markopoulos F, Knuesel I. Disruption of hippocampus-regulated behavioural and cognitive processes by heterozygous constitutive deletion of SynGAP. Eur J Neurosci 2010; 31:529-43. [PMID: 20105235 DOI: 10.1111/j.1460-9568.2010.07079.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The brain-specific Ras/Rap-GTPase activating protein (SynGAP) is a prime candidate linking N-methyl-d-aspartate receptors to the regulation of the ERK/MAP kinase signalling cascade, suggested to be essential for experience-dependent synaptic plasticity. Here, we evaluated the behavioural phenotype of SynGAP heterozygous knockout mice (SG(+/-)), expressing roughly half the normal levels of SynGAP. In the cognitive domain, SG(+/-) mice demonstrated severe working and reference memory deficits in the radial arm maze task, a mild impairment early in the transfer test of the water maze task, and a deficiency in spontaneous alternation in an elevated T-maze. In the non-cognitive domain, SG(+/-) mice were hyperactive in the open field and appeared less anxious in the elevated plus maze test. In contrast, object recognition memory performance was not impaired in SG(+/-) mice. The reduction in SynGAP thus resulted in multiple behavioural traits suggestive of aberrant cognitive and non-cognitive processes normally mediated by the hippocampus. Immunohistochemical evaluation further revealed a significant reduction in calbindin-positive interneurons in the hippocampus and doublecortin-positive neurons in the dentate gyrus of adult SG(+/-) mice. Heterozygous constitutive deletion of SynGAP is therefore associated with notable behavioural as well as morphological phenotypes indicative of hippocampal dysfunction. Any suggestion of a possible causal link between them however remains a matter for further investigation.
Collapse
Affiliation(s)
- Mary Muhia
- Laboratory of Behavioural Neurobiology, Swiss Federal Institute of Technology, Schwerzenbach, Switzerland
| | | | | | | | | |
Collapse
|
136
|
Abstract
Glutamate and GABA (gamma-aminobutyric acid) are the predominant excitatory and inhibitory neurotransmitters in the mammalian CNS (central nervous system) respectively, and as such have undergone intense investigation. Given their predominance, it is no wonder that the reciprocal receptors for these neurotransmitters have attracted so much attention as potential targets for the promotion of health and the treatment of disease. Indeed, dysfunction of these receptors underlies a number of well-characterized neuropathological conditions such as anxiety, epilepsy and neurodegenerative diseases. Although intrinsically linked, the glutamatergic and GABAergic systems have, by and large, been investigated independently, with researchers falling into the 'excitatory' or 'inhibitory' camps. Around 70 delegates gathered at the University of St Andrews for this Biochemical Society Focused Meeting aimed at bringing excitation and inhibition together. With sessions on behaviour, receptor structure and function, receptor trafficking, activity-dependent changes in gene expression and excitation/inhibition in disease, the meeting was the ideal occasion for delegates from both backgrounds to interact. This issue of Biochemical Society Transactions contains papers written by those who gave oral presentations at the meeting. In this brief introductory review, I put into context and give a brief overview of these contributions.
Collapse
|
137
|
Abstract
In recent years, the contribution that different glutamate receptor subtypes and subunits make to spatial learning and memory has been studied extensively using genetically modified mice in which key proteins are knocked out. This has revealed dissociations between different aspects of spatial memory that were not previously apparent from lesion studies. For example, studies with GluA1 AMPAR [AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor] subunit-knockout mice have revealed the presence of a GluA1-dependent, non-associative short-term memory mechanism that is important for performance on spatial working memory tasks, and a GluA1-independent, long-term associative memory mechanism which underlies performance on spatial reference memory tasks. Within this framework we have also studied the contributions of different GluN2-containing NMDARs [NMDA (N-methyl-D-aspartate) receptors] to spatial memory. Studies with GluN2 NMDAR mutants have revealed different contributions from GluN2A- and GluN2B-containing NMDARs to spatial learning. Furthermore, comparison of forebrain- and hippocampus-specific GluN2B-knockout mice has demonstrated that both hippocampal and extra-hippocampal NMDARs make important contributions to spatial memory performance.
Collapse
|
138
|
Alzheimer's disease-like pathological features in transgenic mice expressing the APP intracellular domain. Proc Natl Acad Sci U S A 2009; 106:18367-72. [PMID: 19837693 DOI: 10.1073/pnas.0907652106] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hypothesis that amyloid-beta (Abeta) peptides are the primary cause of Alzheimer's disease (AD) remains the best supported theory of AD pathogenesis. Yet, many observations are inconsistent with the hypothesis. Abeta peptides are generated when amyloid precursor protein (APP) is cleaved by presenilins, a process that also produces APP intracellular domain (AICD). We previously generated AICD-overexpressing transgenic mice that showed abnormal activation of GSK-3beta, a pathological feature of AD. We now report that these mice exhibit additional AD-like characteristics, including hyperphosphorylation and aggregation of tau, neurodegeneration and working memory deficits that are prevented by treatment with lithium, a GSK-3beta inhibitor. Consistent with its potential role in AD pathogenesis, we find AICD levels to be elevated in brains from AD patients. The in vivo findings that AICD can contribute to AD pathology independently of Abeta have important therapeutic implications and may explain some observations that are discordant with the amyloid hypothesis.
Collapse
|
139
|
Roberts AC, Díez-García J, Rodriguiz RM, López IP, Luján R, Martínez-Turrillas R, Picó E, Henson MA, Bernardo DR, Jarrett TM, Clendeninn DJ, López-Mascaraque L, Feng G, Lo DC, Wesseling JF, Wetsel WC, Philpot BD, Pérez-Otaño I. Downregulation of NR3A-containing NMDARs is required for synapse maturation and memory consolidation. Neuron 2009; 63:342-56. [PMID: 19679074 DOI: 10.1016/j.neuron.2009.06.016] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 04/27/2009] [Accepted: 06/16/2009] [Indexed: 12/22/2022]
Abstract
NR3A is the only NMDA receptor (NMDAR) subunit that downregulates sharply prior to the onset of sensitive periods for plasticity, yet the functional importance of this transient expression remains unknown. To investigate whether removal/replacement of juvenile NR3A-containing NMDARs is involved in experience-driven synapse maturation, we used a reversible transgenic system that prolonged NR3A expression in the forebrain. We found that removal of NR3A is required to develop strong NMDAR currents, full expression of long-term synaptic plasticity, a mature synaptic organization characterized by more synapses and larger postsynaptic densities, and the ability to form long-term memories. Deficits associated with prolonged NR3A were reversible, as late-onset suppression of transgene expression rescued both synaptic and memory impairments. Our results suggest that NR3A behaves as a molecular brake to prevent the premature strengthening and stabilization of excitatory synapses and that NR3A removal might thereby initiate critical stages of synapse maturation during early postnatal neural development.
Collapse
Affiliation(s)
- Adam C Roberts
- Department of Cell and Molecular Physiology, Neuroscience Center, and Neurodevelopmental Disorders Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
NR2A at CA1 synapses is obligatory for the susceptibility of hippocampal plasticity to sleep loss. J Neurosci 2009; 29:9026-41. [PMID: 19605640 DOI: 10.1523/jneurosci.1215-09.2009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A loss in the necessary amount of sleep alters expression of genes and proteins implicated in brain plasticity, but key proteins that render neuronal circuits sensitive to sleep disturbance are unknown. We show that mild (4-6 h) sleep deprivation (SD) selectively augmented the number of NR2A subunits of NMDA receptors on postsynaptic densities of adult mouse CA1 synapses. The greater synaptic NR2A content facilitated induction of CA3-CA1 long-term depression in the theta frequency stimulation range and augmented the synaptic modification threshold. NR2A-knock-out mice maintained behavioral response to SD, including compensatory increase in post-deprivation resting time, but hippocampal synaptic plasticity was insensitive to sleep loss. After SD, the balance between synaptically activated and slowly recruited NMDA receptor pools during temporal summation was disrupted. Together, these results indicate that NR2A is obligatory for the consequences of sleep loss on hippocampal synaptic plasticity. These findings could advance pharmacological strategies aiming to sustain hippocampal function during sleep restriction.
Collapse
|
141
|
Inta D, Monyer H, Sprengel R, Meyer-Lindenberg A, Gass P. Mice with genetically altered glutamate receptors as models of schizophrenia: a comprehensive review. Neurosci Biobehav Rev 2009; 34:285-94. [PMID: 19651155 DOI: 10.1016/j.neubiorev.2009.07.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Revised: 07/24/2009] [Accepted: 07/24/2009] [Indexed: 01/28/2023]
Abstract
Recent clinical evidence for the effectiveness of new antipsychotic drugs that specifically target glutamate receptors has rekindled interest in the glutamatergic system regarding pathophysiology and treatment of schizophrenia. The glutamatergic hypothesis of schizophrenia was triggered by the clinical/behavioural observation that NMDA receptor antagonists can induce psychosis in humans and abnormal behaviour with schizophrenia-like symptoms in animals. Initial models focused on NMDA receptor hypofunction as a potential pathogenetic mechanism. More recent genetic and pharmacological studies revealed that malfunction of other components of the glutamatergic system might also be relevant in explaining specific symptoms of this complex disease. Here, we review mutant mouse models with relevance for schizophrenia. These rodent models, in which specific glutamate receptor subtypes or various components of their intracellular transduction machinery are genetically altered, permit a detailed dissection of the contribution of different components of the glutamate system in inducing schizophrenia-like behaviours. They may provide insight into the pathophysiology of schizophrenia and prove useful in the development of new therapeutics.
Collapse
Affiliation(s)
- Dragos Inta
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, J5, 68159 Mannheim, Germany.
| | | | | | | | | |
Collapse
|
142
|
Abstract
Rho GTPases activated by GDP/GTP exchange factors (GEFs) play key roles in the developing and adult nervous system. Kalirin-7 (Kal7), the predominant adult splice form of the multifunctional Kalirin RhoGEF, includes a PDZ [postsynaptic density-95 (PSD-95)/Discs large (Dlg)/zona occludens-1 (ZO-1)] binding domain and localizes to the postsynaptic side of excitatory synapses. In vitro studies demonstrated that overexpression of Kal7 increased dendritic spine density, whereas reduced expression of endogenous Kal7 decreased spine density. To evaluate the role of Kal7 in vivo, mice lacking the terminal exon unique to Kal7 were created. Mice lacking both copies of the Kal7 exon (Kal7(KO)) grew and reproduced normally. Golgi impregnation and electron microscopy revealed decreased hippocampal spine density in Kal7(KO) mice. Behaviorally, Kal7(KO) mice showed decreased anxiety-like behavior in the elevated zero maze and impaired acquisition of a passive avoidance task, but normal behavior in open field, object recognition, and radial arm maze tasks. Kal7(KO) mice were deficient in hippocampal long-term potentiation. Western blot analysis confirmed the absence of Kal7 and revealed compensatory increases in larger Kalirin isoforms. PSDs purified from the cortices of Kal7(KO) mice showed a deficit in Cdk5, a kinase known to phosphorylate Kal7 and play an essential role in synaptic function. The early stages of excitatory synaptic development proceeded normally in cortical neurons prepared from Kal7(KO) mice, with decreased excitatory synapses apparent only after 21 d in vitro. Expression of exogenous Kal7 in Kal7(KO) neurons rescued this deficit. Kal7 plays an essential role in synaptic structure and function, affecting a subset of cognitive processes.
Collapse
|
143
|
From rapid place learning to behavioral performance: a key role for the intermediate hippocampus. PLoS Biol 2009; 7:e1000089. [PMID: 19385719 PMCID: PMC2671558 DOI: 10.1371/journal.pbio.1000089] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 03/06/2009] [Indexed: 11/19/2022] Open
Abstract
Rapid place encoding by hippocampal neurons, as reflected by place-related firing, has been intensely studied, whereas the substrates that translate hippocampal place codes into behavior have received little attention. A key point relevant to this translation is that hippocampal organization is characterized by functional–anatomical gradients along the septotemporal axis: Whereas the ability of hippocampal neurons to encode accurate place information declines from the septal to temporal end, hippocampal connectivity to prefrontal and subcortical sites that might relate such place information to behavioral-control processes shows an opposite gradient. We examined in rats the impact of selective lesions to relevant parts of the hippocampus on behavioral tests requiring place learning (watermaze procedures) and on in vivo electrophysiological models of hippocampal encoding (long-term potentiation [LTP], place cells). We found that the intermediate hippocampus is necessary and largely sufficient for behavioral performance based on rapid place learning. In contrast, a residual septal pole of the hippocampus, although displaying intact electrophysiological indices of rapid information encoding (LTP, precise place-related firing, and rapid remapping), failed to sustain watermaze performance based on rapid place learning. These data highlight the important distinction between hippocampal encoding and the behavioral performance based on such encoding, and suggest that the intermediate hippocampus, where substrates of rapid accurate place encoding converge with links to behavioral control, is critical to translate rapid (one-trial) place learning into navigational performance. The ability to remember locations in space is dependent on an area of the brain called the hippocampus. A much-studied property of neurons in the hippocampus is that they rapidly come to represent or code for specific places—i.e., the hippocampus “learns” places—as animals or humans move through an environment. Here, we identified in rats the hippocampal substrate enabling the translation of place learning into appropriate search and approach behavior (similar to the task of returning to a novel place where you parked your car). We examined the impact of selective lesions to distinct parts of the hippocampus on behavior requiring rapid place learning and on in vivo electrophysiological models of hippocampal learning such as place-related neuronal activity. We showed that translation of rapid place learning into efficient search behavior requires the “intermediate” region of the hippocampus, a region that likely combines anatomical links to visuospatial information processed by the neocortex with links to behavioral control through prefrontal cortex and subcortical sites. In contrast, the so-called “septal” region of the hippocampus, which features the relevant anatomical links to visuospatial information processing, can sustain rapid place learning (as reflected by formation of place-related neuronal firing), but not translate such learning into appropriate search and approach behavior. The translation of hippocampal rapid place learning into successful search behavior requires the intermediate region of the hippocampus, which integrates accurate visuo-spatial processing with behavioral control.
Collapse
|
144
|
Pain and learning in a spinal system: contradictory outcomes from common origins. ACTA ACUST UNITED AC 2009; 61:124-43. [PMID: 19481111 DOI: 10.1016/j.brainresrev.2009.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 03/18/2009] [Accepted: 05/19/2009] [Indexed: 11/21/2022]
Abstract
The long-standing belief that the spinal cord serves merely as a conduit for information traveling to and from the brain is changing. Over the past decade, research has shown that the spinal cord is sensitive to response-outcome contingencies, demonstrating that spinal circuits have the capacity to modify behavior in response to differential environmental cues. If spinally transected rats are administered shock contingent on leg extension (controllable shock), they will maintain a flexion response that minimizes shock exposure. If, however, this contingency is broken, and shock is administered irrespective of limb position (uncontrollable shock), subjects cannot acquire the same flexion response. Interestingly, each of these treatments has a lasting effect on behavior; controllable shock enables future learning, while uncontrollable shock produces a long-lasting learning deficit. Here we suggest that the mechanisms underlying learning and the deficit may have evolved from machinery responsible for the spinal processing of noxious information. Experiments have shown that learning and the deficit require receptors and signaling cascades shown to be involved in central sensitization, including activation of NMDA and neurokinin receptors, as well as CaMKII. Further supporting this link between pain and learning, research has also shown that uncontrollable stimulation results in allodynia. Moreover, systemic inflammation and neonatal hindpaw injury each facilitate pain responding and undermine the ability of the spinal cord to support learning. These results suggest that the plasticity associated with learning and pain must be placed in a balance in order for adaptive outcomes to be observed.
Collapse
|
145
|
Ng D, Pitcher GM, Szilard RK, Sertié A, Kanisek M, Clapcote SJ, Lipina T, Kalia LV, Joo D, McKerlie C, Cortez M, Roder JC, Salter MW, McInnes RR. Neto1 is a novel CUB-domain NMDA receptor-interacting protein required for synaptic plasticity and learning. PLoS Biol 2009; 7:e41. [PMID: 19243221 PMCID: PMC2652390 DOI: 10.1371/journal.pbio.1000041] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 01/12/2009] [Indexed: 01/22/2023] Open
Abstract
The N-methyl-D-aspartate receptor (NMDAR), a major excitatory ligand-gated ion channel in the central nervous system (CNS), is a principal mediator of synaptic plasticity. Here we report that neuropilin tolloid-like 1 (Neto1), a complement C1r/C1s, Uegf, Bmp1 (CUB) domain-containing transmembrane protein, is a novel component of the NMDAR complex critical for maintaining the abundance of NR2A-containing NMDARs in the postsynaptic density. Neto1-null mice have depressed long-term potentiation (LTP) at Schaffer collateral-CA1 synapses, with the subunit dependency of LTP induction switching from the normal predominance of NR2A- to NR2B-NMDARs. NMDAR-dependent spatial learning and memory is depressed in Neto1-null mice, indicating that Neto1 regulates NMDA receptor-dependent synaptic plasticity and cognition. Remarkably, we also found that the deficits in LTP, learning, and memory in Neto1-null mice were rescued by the ampakine CX546 at doses without effect in wild-type. Together, our results establish the principle that auxiliary proteins are required for the normal abundance of NMDAR subunits at synapses, and demonstrate that an inherited learning defect can be rescued pharmacologically, a finding with therapeutic implications for humans. The fundamental unit for information processing in the brain is the synapse, a highly specialized site of communication between the brain's multitude of individual neurons. The strength of the communication at each synapse changes in response to neuronal activity—a process called synaptic plasticity—allowing networks of neurons to adapt and learn. How synaptic plasticity occurs is a major question in neurobiology. A central player in synaptic plasticity is an assembly of synaptic proteins called the NMDA receptor complex. Here, we discovered that the protein Neto1 is a component of the NMDA receptor complex. Neto1-deficient mice had a dramatic decrease in the number of NMDA receptors at synapses and consequently, synaptic plasticity and learning were impaired. By indirectly enhancing the function of the residual NMDA receptors in Neto1-deficient mice with a small molecule, we restored synaptic plasticity and learning to normal levels. Our findings establish the principle that inherited abnormalities of synaptic plasticity and learning due to NMDA receptor dysfunction can be pharmacologically corrected. Our discoveries also suggest that synaptic proteins that share a molecular signature, called the CUB domain, with Neto1 may be important components of synaptic receptors across species, because several CUB-domain proteins in worms have also been found to regulate synaptic receptors. Spatial learning and memory depend on the N-methyl-D-aspartic acid receptor, a synaptic ion channel regulated by Neto1. Impaired cognition due to the absence of Neto1 can be rescued pharmacologically, a finding with implications for the therapy of inherited learning defects in humans.
Collapse
Affiliation(s)
- David Ng
- Program in Developmental Biology, The Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Genetics & Genome Biology, The Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Neurosciences & Mental Health, The Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Graham M Pitcher
- Neurosciences & Mental Health, The Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Rachel K Szilard
- Program in Developmental Biology, The Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Genetics & Genome Biology, The Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andréa Sertié
- Program in Developmental Biology, The Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Genetics & Genome Biology, The Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Marijana Kanisek
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Mount Sinai Hospital Research Institute, Toronto, Ontario, Canada
| | | | - Tatiana Lipina
- Mount Sinai Hospital Research Institute, Toronto, Ontario, Canada
| | - Lorraine V Kalia
- Neurosciences & Mental Health, The Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Daisy Joo
- Neurosciences & Mental Health, The Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Colin McKerlie
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Miguel Cortez
- Neurosciences & Mental Health, The Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - John C Roder
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Mount Sinai Hospital Research Institute, Toronto, Ontario, Canada
| | - Michael W Salter
- Neurosciences & Mental Health, The Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- * To whom correspondence should be addressed. E-mail: (MWS); (RRM)
| | - Roderick R McInnes
- Program in Developmental Biology, The Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Genetics & Genome Biology, The Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- * To whom correspondence should be addressed. E-mail: (MWS); (RRM)
| |
Collapse
|
146
|
Singer P, Yee BK, Feldon J, Iwasato T, Itohara S, Grampp T, Prenosil G, Benke D, Möhler H, Boison D. Altered mnemonic functions and resistance to N-METHYL-d-Aspartate receptor antagonism by forebrain conditional knockout of glycine transporter 1. Neuroscience 2009; 161:635-54. [PMID: 19332109 DOI: 10.1016/j.neuroscience.2009.03.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 03/17/2009] [Accepted: 03/22/2009] [Indexed: 01/15/2023]
Abstract
Converging evidence from pharmacological and molecular studies has led to the suggestion that inhibition of glycine transporter 1 (GlyT1) constitutes an effective means to boost N-methyl-d-aspartate receptor (NMDAR) activity by increasing the extra-cellular concentration of glycine in the vicinity of glutamatergic synapses. However, the precise extent and limitation of this approach to alter cognitive function, and therefore its potential as a treatment strategy against psychiatric conditions marked by cognitive impairments, remain to be fully examined. Here, we generated mutant mice lacking GlyT1 in the entire forebrain including neurons and glia. This conditional knockout system allows a more precise examination of GlyT1 downregulation in the brain on behavior and cognition. The mutation was highly effective in attenuating the motor-stimulating effect of acute NMDAR blockade by phencyclidine, although no appreciable elevation in NMDAR-mediated excitatory postsynaptic currents (EPSC) was observed in the hippocampus. Enhanced cognitive performance was observed in spatial working memory and object recognition memory while spatial reference memory and associative learning remained unaltered. These findings provide further credence for the potential cognitive enhancing effects of brain GlyT1 inhibition. At the same time, they indicated potential phenotypic differences when compared with other constitutive and conditional GlyT1 knockout lines, and highlighted the possibility of a functional divergence between the neuronal and glia subpopulations of GlyT1 in the regulation of learning and memory processes. The relevance of this distinction to the design of future GlyT1 blockers as therapeutic tools in the treatment of cognitive disorders remains to be further investigated.
Collapse
Affiliation(s)
- P Singer
- Laboratory of Behavioral Neurobiology, Federal Institute of Technology (ETH) Zurich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Abstract
The ability to change behavior likely depends on the selective strengthening and weakening of brain synapses. The cellular models of synaptic plasticity, long-term potentiation (LTP) and depression (LTD) of synaptic strength, can be expressed by the synaptic insertion or removal of AMPA receptors (AMPARs), respectively. We here present an overview of studies that have used animal models to show that such AMPAR trafficking underlies several experience-driven phenomena-from neuronal circuit formation to the modification of behavior. We argue that monitoring and manipulating synaptic AMPAR trafficking represents an attractive means to study cognitive function and dysfunction in animal models.
Collapse
Affiliation(s)
- Helmut W Kessels
- Department of Neuroscience, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | |
Collapse
|
148
|
Lin C, Tao P, Jong Y, Chen W, Yang C, Huang L, Chao C, Yang S. Prenatal morphine alters the synaptic complex of postsynaptic density 95 with N-methyl-d-aspartate receptor subunit in hippocampal CA1 subregion of rat offspring leading to long-term cognitive deficits. Neuroscience 2009; 158:1326-37. [DOI: 10.1016/j.neuroscience.2008.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2008] [Revised: 11/02/2008] [Accepted: 11/04/2008] [Indexed: 11/28/2022]
|
149
|
Singer P, Feldon J, Yee BK. The glycine transporter 1 inhibitor SSR504734 enhances working memory performance in a continuous delayed alternation task in C57BL/6 mice. Psychopharmacology (Berl) 2009; 202:371-84. [PMID: 18758757 DOI: 10.1007/s00213-008-1286-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Accepted: 07/29/2008] [Indexed: 10/21/2022]
Abstract
RATIONALE Inhibition of the glycine transporter 1 (GlyT1) activity increases extra-cellular glycine availability in the CNS. At glutamatergic synapses, increased binding to the glycine-B site located in the N-methyl-D-aspartate receptor (NMDAR) can enhance neurotransmission via NMDARs. Systemic treatment of 2-chloro-N-[(S)-phenyl [(2S)-piperidin-2-yl] methyl]-3-trifluoromethyl benzamide, monohydrochloride (SSR504734), a selective GlyT1 inhibitor, is effective against social recognition impairment induced by neonatal phencyclidine treatment and enhances pre-pulse inhibition in a mouse strain (DBA/2) with intrinsic sensorimotor gating deficiency, suggesting that SSR504734 may be an effective cognitive enhancer. OBJECTIVE The objective of the study was to examine if SSR504734 exhibits a promnesic effect on working memory function in wild-type C57BL/6 mice using an automatic continuous alternation task. MATERIALS AND METHODS Hungry mice were trained to alternate their nose pokes between two food magazines across successive discrete trials in an operant chamber in order to obtain food reward. Correct choice on a given trial thus followed a non-matching or win-shift rule in relation to the preceding trial, with manipulation of the demand on memory retention, by varying the delay between successive trials. RESULTS Pre-treatment with SSR504734 (30 mg/kg, i.p.) improved choice accuracy when the delay from the previous trial was extended to 12-16 s. Furthermore, a dose-response analysis (3, 10, 30 mg/kg) revealed a clear dose-dependent efficacy of the drug: 3 mg/kg was without effect, whilst 10 mg/kg led to an intermediate enhancement in performance. CONCLUSION The present findings represent the first demonstration of the promnesic effects of SSR504734 under normal physiological conditions, lending further support to the suggestion of its potential as a cognitive enhancer.
Collapse
Affiliation(s)
- Philipp Singer
- Laboratory of Behavioural Neurobiology, Swiss Federal Institute of Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | | | | |
Collapse
|
150
|
Contribution of Hippocampal and Extra-Hippocampal NR2B-Containing NMDA Receptors to Performance on Spatial Learning Tasks. Neuron 2008; 60:846-60. [DOI: 10.1016/j.neuron.2008.09.039] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 07/05/2008] [Accepted: 09/18/2008] [Indexed: 12/24/2022]
|