101
|
Tan AM, Petruska JC, Mendell LM, Levine JM. Sensory afferents regenerated into dorsal columns after spinal cord injury remain in a chronic pathophysiological state. Exp Neurol 2007; 206:257-68. [PMID: 17585905 PMCID: PMC3103885 DOI: 10.1016/j.expneurol.2007.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 05/02/2007] [Accepted: 05/04/2007] [Indexed: 10/23/2022]
Abstract
Axon regeneration after experimental spinal cord injury (SCI) can be promoted by combinatorial treatments that increase the intrinsic growth capacity of the damaged neurons and reduce environmental factors that inhibit axon growth. A prior peripheral nerve conditioning lesion is a well-established means of increasing the intrinsic growth state of sensory neurons whose axons project within the dorsal columns of the spinal cord. Combining such a prior peripheral nerve conditioning lesion with the infusion of antibodies that neutralize the growth inhibitory effects of the NG2 chondroitin sulfate proteoglycan promotes sensory axon growth through the glial scar and into the white matter of the dorsal columns. The physiological properties of these regenerated axons, particularly in the chronic SCI phase, have not been established. Here we examined the functional status of regenerated sensory afferents in the dorsal columns after SCI. Six months post-injury, we located and electrically mapped functional sensory axons that had regenerated beyond the injury site. The regenerated axons had reduced conduction velocity, decreased frequency-following ability, and increasing latency to repetitive stimuli. Many of the axons that had regenerated into the dorsal columns rostral to the injury site were chronically demyelinated. These results demonstrate that regenerated sensory axons remain in a chronic pathophysiological state and emphasize the need to restore normal conduction properties to regenerated axons after spinal cord injury.
Collapse
Affiliation(s)
- Andrew M Tan
- Department of Neurobiology and Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
102
|
Zhang Y, Ghadiri-Sani M, Zhang X, Richardson PM, Yeh J, Bo X. Induced expression of polysialic acid in the spinal cord promotes regeneration of sensory axons. Mol Cell Neurosci 2007; 35:109-19. [PMID: 17363265 DOI: 10.1016/j.mcn.2007.02.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 02/01/2007] [Accepted: 02/08/2007] [Indexed: 10/23/2022] Open
Abstract
After spinal cord injury axonal regeneration is prevented by glial scar formation. In this study we examined whether induced expression of polysialic acid (PSA) in the lesion site would render the glial scar permissive to axonal regeneration after dorsal column transection. PSA was induced by lentiviral vector-mediated expression of polysialyltransferase (LV/PST). PSA expression increased astrocyte infiltration and permitted the penetration of regenerating axons across the caudal border of the lesion and into the lesion cavity. In LV/PST-injected animals with a peripheral nerve-conditioning lesion, 20 times more axons grew into the lesion cavity than those LV/GFP-injected plus conditioning lesion, and some axons grew across the cavity and extended to the rostral cord, while in LV/GFP group most ascending axons terminated at the caudal border of the lesion. Our result suggests that induced expression of PSA can provide a favorable environment for axonal regeneration.
Collapse
Affiliation(s)
- Yi Zhang
- Neuroscience Centre, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary, University of London, Whitechapel, London E1 2AT, UK.
| | | | | | | | | | | |
Collapse
|
103
|
Massey JM, Amps J, Viapiano MS, Matthews RT, Wagoner MR, Whitaker CM, Alilain W, Yonkof AL, Khalyfa A, Cooper NGF, Silver J, Onifer SM. Increased chondroitin sulfate proteoglycan expression in denervated brainstem targets following spinal cord injury creates a barrier to axonal regeneration overcome by chondroitinase ABC and neurotrophin-3. Exp Neurol 2007; 209:426-45. [PMID: 17540369 PMCID: PMC2270474 DOI: 10.1016/j.expneurol.2007.03.029] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2007] [Revised: 03/24/2007] [Accepted: 03/27/2007] [Indexed: 01/11/2023]
Abstract
Increased chondroitin sulfate proteoglycan (CSPG) expression in the vicinity of a spinal cord injury (SCI) is a primary participant in axonal regeneration failure. However, the presence of similar increases of CSPG expression in denervated synaptic targets well away from the primary lesion and the subsequent impact on regenerating axons attempting to approach deafferented neurons have not been studied. Constitutively expressed CSPGs within the extracellular matrix and perineuronal nets of the adult rat dorsal column nuclei (DCN) were characterized using real-time PCR, Western blot analysis and immunohistochemistry. We show for the first time that by 2 days and through 3 weeks following SCI, the levels of NG2, neurocan and brevican associated with reactive glia throughout the DCN were dramatically increased throughout the DCN despite being well beyond areas of trauma-induced blood brain barrier breakdown. Importantly, regenerating axons from adult sensory neurons microtransplanted 2 weeks following SCI between the injury site and the DCN were able to regenerate rapidly within white matter (as shown previously by Davies et al. [Davies, S.J., Goucher, D.R., Doller, C., Silver, J., 1999. Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. J. Neurosci. 19, 5810-5822]) but were unable to enter the denervated DCN. Application of chondroitinase ABC or neurotrophin-3-expressing lentivirus in the DCN partially overcame this inhibition. When the treatments were combined, entrance by regenerating axons into the DCN was significantly augmented. These results demonstrate both an additional challenge and potential treatment strategy for successful functional pathway reconstruction after SCI.
Collapse
Affiliation(s)
- James M. Massey
- M.D./Ph.D. Program, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
- Department of Anatomical Sciences & Neurobiology, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
- Department of Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
| | - Jeremy Amps
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106
| | - Mariano S. Viapiano
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, 06520
| | - Russell. T. Matthews
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, 06520
| | - Michelle R. Wagoner
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
- Department of Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
| | - Christopher M. Whitaker
- Department of Anatomical Sciences & Neurobiology, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
- Department of Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
| | - Warren Alilain
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106
| | - Alicia L. Yonkof
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106
| | - Abdelnaby Khalyfa
- Department of Anatomical Sciences & Neurobiology, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
| | - Nigel G. F. Cooper
- Department of Anatomical Sciences & Neurobiology, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106
- Address for correspondence, proofs, and reprint requests: Stephen M. Onifer, Ph.D., Spinal Cord and Brain Injury Research Center, University of Kentucky, BBSRB B365, 741 South Limestone Street, Lexington, KY, 40536-0509, U.S.A., TELEPHONE: (859) 323-5226, FAX: (859) 257-5737, EMAIL:
| | - Stephen M. Onifer
- Department of Anatomical Sciences & Neurobiology, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
- Department of Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
| |
Collapse
|
104
|
Abstract
NG2 cells, or polydendrocytes, are defined as glial cells that express the NG2 proteoglycan and represent a fourth major glial cell population in the mammalian central nervous system. They are morphologically, antigenically, and functionally distinct from mature astrocytes, oligodendrocytes, and microglia. Although they are most often equated with oligodendrocyte progenitor cells, they exhibit some properties that are not commonly associated with those of progenitor cells that generate myelinating cells. This review discusses recent observations and unanswered issues related to their lineage and their role in remyelination, neural signaling, and axonal growth.
Collapse
Affiliation(s)
- Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269-3156, USA.
| |
Collapse
|
105
|
Woolfe F, Waxman SG, Hains BC. In SilicoModeling of Axonal Reconnection within A Discrete Fiber Tract after Spinal Cord Injury. J Neurotrauma 2007; 24:421-32. [PMID: 17376004 DOI: 10.1089/neu.2006.0131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Following spinal cord injury (SCI), descending axons that carry motor commands from the brain to the spinal cord are injured or transected, producing chronic motor dysfunction and paralysis. Reconnection of these axons is a major prerequisite for restoration of function after SCI. Thus far, only modest gains in motor function have been achieved experimentally or in the clinic after SCI, identifying the practical limitations of current treatment approaches. In this paper, we use an ordinary differential equation (ODE) to simulate the relative and synergistic contributions of several experimentally-established biological factors related to inhibition or promotion of axonal repair and restoration of function after SCI. The factors were mathematically modeled by the ODE. The results of our simulation show that in a model system, many factors influenced the achievability of axonal reconnection. Certain factors more strongly affected axonal reconnection in isolation, and some factors interacted in a synergistic fashion to produce further improvements in axonal reconnection. Our data suggest that mathematical modeling may be useful in evaluating the complex interactions of discrete therapeutic factors not possible in experimental preparations, and highlight the benefit of a combinatorial therapeutic approach focused on promoting axonal sprouting, attraction of cut ends, and removal of growth inhibition for achieving axonal reconnection. Predictions of this simulation may be of utility in guiding future experiments aimed at restoring function after SCI.
Collapse
Affiliation(s)
- Franco Woolfe
- Department of Applied Mathematics, Yale University, New Haven, Connecticut 06516, USA
| | | | | |
Collapse
|