101
|
Andreska T, Aufmkolk S, Sauer M, Blum R. High abundance of BDNF within glutamatergic presynapses of cultured hippocampal neurons. Front Cell Neurosci 2014; 8:107. [PMID: 24782711 PMCID: PMC3990111 DOI: 10.3389/fncel.2014.00107] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/25/2014] [Indexed: 11/23/2022] Open
Abstract
In the mammalian brain, the neurotrophin brain-derived neurotrophic factor (BDNF) has emerged as a key factor for synaptic refinement, plasticity and learning. Although BDNF-induced signaling cascades are well known, the spatial aspects of the synaptic BDNF localization remained unclear. Recent data provide strong evidence for an exclusive presynaptic location and anterograde secretion of endogenous BDNF at synapses of the hippocampal circuit. In contrast, various studies using BDNF overexpression in cultured hippocampal neurons support the idea that postsynaptic elements and other dendritic structures are the preferential sites of BDNF localization and release. In this study we used rigorously tested anti-BDNF antibodies and achieved a dense labeling of endogenous BDNF close to synapses. Confocal microscopy showed natural BDNF close to many, but not all glutamatergic synapses, while neither GABAergic synapses nor postsynaptic structures carried a typical synaptic BDNF label. To visualize the BDNF distribution within the fine structure of synapses, we implemented super resolution fluorescence imaging by direct stochastic optical reconstruction microscopy (dSTORM). Two-color dSTORM images of neurites were acquired with a spatial resolution of ~20 nm. At this resolution, the synaptic scaffold proteins Bassoon and Homer exhibit hallmarks of mature synapses and form juxtaposed bars, separated by a synaptic cleft. BDNF imaging signals form granule-like clusters with a mean size of ~60 nm and are preferentially found within the fine structure of the glutamatergic presynapse. Individual glutamatergic presynapses carried up to 90% of the synaptic BDNF immunoreactivity, and only a minor fraction of BDNF molecules was found close to the postsynaptic bars. Our data proof that hippocampal neurons are able to enrich and store high amounts of BDNF in small granules within the mature glutamatergic presynapse, at a principle site of synaptic plasticity.
Collapse
Affiliation(s)
- Thomas Andreska
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University Würzburg Würzburg, Germany
| | - Sarah Aufmkolk
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Würzburg Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Würzburg Würzburg, Germany
| | - Robert Blum
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University Würzburg Würzburg, Germany
| |
Collapse
|
102
|
BDNF local translation in viable synaptosomes: implication in spine maturation. Neurochem Int 2014; 69:28-34. [PMID: 24632004 DOI: 10.1016/j.neuint.2014.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/17/2014] [Accepted: 02/24/2014] [Indexed: 12/11/2022]
Abstract
The neurotrophic factor, BDNF, is encoded by two transcripts, one short and another long 3' untranslated region containing mRNA. Long BDNF mRNA was found to transport to the dendrites; however report about its translation or regulation of translation in the dendrite remains unknown. Using synaptosomes, to isolate from the nucleus and other subcellular fractions involved in translation, we demonstrate that depolarization by KCl or excitation by glutamate can induce translation of BDNF. Such translation at the synaptosomes was also observed for mRNAs of CaMKllα, Homer and Arc, which are known to travel to dendrite. This synaptosomal translation system is critically dependent on glucose concentration. Other than glucose, BDNF translation in synaptosome is dependent on its own receptor TrkB function as well as on the rise in intra-synaptosomal Ca(2+), both of which are elevated during to depolarization or excitation. As BDNF-TrkB signaling causes maturation of spines by inducing LTP, this study also investigated the possibility of induction of spine maturation signaling in the isolated synaptosomes. Increased phospho-cofilin and phospho-PAK is detected in KCl or glutamate treated synaptosomes compared to control by Western blotting, suggesting a possibility of induction of spine maturation signaling.
Collapse
|
103
|
Villarroel-Campos D, Gastaldi L, Conde C, Caceres A, Gonzalez-Billault C. Rab-mediated trafficking role in neurite formation. J Neurochem 2014; 129:240-8. [PMID: 24517494 DOI: 10.1111/jnc.12676] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/13/2014] [Accepted: 02/02/2014] [Indexed: 01/04/2023]
Abstract
Neuronal cells are characterized by the presence of two confined domains, which are different in their cellular properties, biochemical functions and molecular identity. The generation of asymmetric domains in neurons should logically require specialized membrane trafficking to both promote neurite outgrowth and differential distribution of components. Members of the Rab family of small GTPases are key regulators of membrane trafficking involved in transport, tethering and docking of vesicles through their effectors. RabGTPases activity is coupled to the activity of guanine nucleotide exchange factors or GEFs, and GTPase-activating proteins known as GAPs. Since the overall spatiotemporal distribution of GEFs, GAPs and Rabs governs trafficking through the secretory and endocytic pathways, affecting exocytosis, endocytosis and endosome recycling, it is likely that RabGTPases could have a major role in neurite outgrowth, elongation and polarization. In this review we summarize the evidence linking the functions of several RabGTPases to axonal and dendritic development in primary neurons, as well as neurite formation in neuronal cell lines. We focused on the role of RabGTPases from the trans-Golgi network, early/late and recycling endosomes, as well as the function of some Rab effectors in neuritogenesis. Finally, we also discuss the participation of the ADP-ribosylation factor 6, a member of the ArfGTPase family, in neurite formation since it seems to have an important cross-talk with RabGTPases.
Collapse
Affiliation(s)
- David Villarroel-Campos
- Laboratory of Cell and Neuronal Dynamics (Cenedyn), Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
104
|
Schmieg N, Menendez G, Schiavo G, Terenzio M. Signalling endosomes in axonal transport: Travel updates on the molecular highway. Semin Cell Dev Biol 2014; 27:32-43. [DOI: 10.1016/j.semcdb.2013.10.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 10/17/2013] [Accepted: 10/19/2013] [Indexed: 01/11/2023]
|
105
|
Yazaki Y, Hara Y, Tamaki H, Fukaya M, Sakagami H. Endosomal localization of FIP3/Arfophilin-1 and its involvement in dendritic formation of mouse hippocampal neurons. Brain Res 2014; 1557:55-65. [PMID: 24576489 DOI: 10.1016/j.brainres.2014.02.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 02/06/2014] [Accepted: 02/08/2014] [Indexed: 11/26/2022]
Abstract
Endosomal trafficking mediated by Rab11 and Arf6 small GTPases is essential for various neuronal functions. Family of Rab11-interacting protein 3 (FIP3)/Arfophilin-1, also termed Eferin, is a dual effector for Rab11 and Arf6 and implicated in endosomal trafficking during cytokinesis. To understand the neuronal functions of FIP3, we first showed the widespread neuronal expression of FIP3 mRNA in adult mouse brain by in situ hybridization. Immunohistochemical analysis showed the association of FIP3 with a subpopulation of endosomes labeled with EEA1 and syntaxin 12 in hippocampal neurons. Immunoblot analysis showed the progressive increase of FIP3 with a peak around postnatal day 15 during hippocampal development. Furthermore, knockdown of endogenous FIP3 decreased the total dendritic length of cultured hippocampal neurons with a concomitant increase in the number of short (<40μm) primary dendrites. Together, FIP3 is suggested to regulate dendritic formation possibly through Rab11- and Arf6-mediated endosomal trafficking.
Collapse
Affiliation(s)
- Yuuki Yazaki
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0329, Japan
| | - Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0329, Japan
| | - Hideaki Tamaki
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0329, Japan
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0329, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0329, Japan.
| |
Collapse
|
106
|
Abstract
The distinctive morphology of neurons, with complex dendritic arbors and extensive axons, presents spatial challenges for intracellular signal transduction. The endosomal system provides mechanisms that enable signaling molecules initiated by extracellular cues to be trafficked throughout the expanse of the neuron, allowing intracellular signals to be sustained over long distances. Therefore endosomes are critical for many aspects of neuronal signaling that regulate cell survival, axonal growth and guidance, dendritic branching, and cell migration. An intriguing characteristic of neuronal signal transduction is that endosomal trafficking enables physiological responses that vary based on the subcellular location of signal initiation. In this review, we will discuss the specialized mechanisms and the functional significance of endosomal signaling in neurons, both during normal development and in disease.
Collapse
Affiliation(s)
- Katharina E Cosker
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
107
|
Matsunami N, Hensel CH, Baird L, Stevens J, Otterud B, Leppert T, Varvil T, Hadley D, Glessner JT, Pellegrino R, Kim C, Thomas K, Wang F, Otieno FG, Ho K, Christensen GB, Li D, Prekeris R, Lambert CG, Hakonarson H, Leppert MF. Identification of rare DNA sequence variants in high-risk autism families and their prevalence in a large case/control population. Mol Autism 2014; 5:5. [PMID: 24467814 PMCID: PMC4098669 DOI: 10.1186/2040-2392-5-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/24/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Genetics clearly plays a major role in the etiology of autism spectrum disorders (ASDs), but studies to date are only beginning to characterize the causal genetic variants responsible. Until recently, studies using multiple extended multi-generation families to identify ASD risk genes had not been undertaken. METHODS We identified haplotypes shared among individuals with ASDs in large multiplex families, followed by targeted DNA capture and sequencing to identify potential causal variants. We also assayed the prevalence of the identified variants in a large ASD case/control population. RESULTS We identified 584 non-conservative missense, nonsense, frameshift and splice site variants that might predispose to autism in our high-risk families. Eleven of these variants were observed to have odds ratios greater than 1.5 in a set of 1,541 unrelated children with autism and 5,785 controls. Three variants, in the RAB11FIP5, ABP1, and JMJD7-PLA2G4B genes, each were observed in a single case and not in any controls. These variants also were not seen in public sequence databases, suggesting that they may be rare causal ASD variants. Twenty-eight additional rare variants were observed only in high-risk ASD families. Collectively, these 39 variants identify 36 genes as ASD risk genes. Segregation of sequence variants and of copy number variants previously detected in these families reveals a complex pattern, with only a RAB11FIP5 variant segregating to all affected individuals in one two-generation pedigree. Some affected individuals were found to have multiple potential risk alleles, including sequence variants and copy number variants (CNVs), suggesting that the high incidence of autism in these families could be best explained by variants at multiple loci. CONCLUSIONS Our study is the first to use haplotype sharing to identify familial ASD risk loci. In total, we identified 39 variants in 36 genes that may confer a genetic risk of developing autism. The observation of 11 of these variants in unrelated ASD cases further supports their role as ASD risk variants.
Collapse
Affiliation(s)
- Nori Matsunami
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | | | - Lisa Baird
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Jeff Stevens
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Brith Otterud
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Tami Leppert
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Tena Varvil
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Dexter Hadley
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph T Glessner
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Renata Pellegrino
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cecilia Kim
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kelly Thomas
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Fengxiang Wang
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Frederick G Otieno
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Karen Ho
- Lineagen, Inc, Salt Lake City, UT, USA
| | | | - Dongying Li
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Mark F Leppert
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
108
|
Diering GH, Numata M. Endosomal pH in neuronal signaling and synaptic transmission: role of Na(+)/H(+) exchanger NHE5. Front Physiol 2014; 4:412. [PMID: 24454292 PMCID: PMC3888932 DOI: 10.3389/fphys.2013.00412] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/27/2013] [Indexed: 12/27/2022] Open
Abstract
Neuronal precursor cells extend multiple neurites during development, one of which extends to form an axon whereas others develop into dendrites. Chemical stimulation of N-methyl D-aspartate (NMDA) receptor in fully-differentiated neurons induces projection of dendritic spines, small spikes protruding from dendrites, thereby establishing another layer of polarity within the dendrite. Neuron-enriched Na+/H+ exchanger NHE5 contributes to both neurite growth and dendritic spine formation. In resting neurons and neuro-endocrine cells, neuron-enriched NHE5 is predominantly associated with recycling endosomes where it colocalizes with nerve growth factor (NGF) receptor TrkA. NHE5 potently acidifies the lumen of TrkA-positive recycling endosomes and regulates cell-surface targeting of TrkA, whereas chemical stimulation of NMDA receptors rapidly recruits NHE5 to dendritic spines, alkalinizes dendrites and down-regulates the dendritic spine formation. Possible roles of NHE5 in neuronal signaling via proton movement in subcellular compartments are discussed.
Collapse
Affiliation(s)
- Graham H Diering
- Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Masayuki Numata
- Department of Biochemistry and Molecular Biology, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
109
|
Suo D, Park J, Harrington AW, Zweifel LS, Mihalas S, Deppmann CD. Coronin-1 is a neurotrophin endosomal effector that is required for developmental competition for survival. Nat Neurosci 2014; 17:36-45. [PMID: 24270184 PMCID: PMC3962792 DOI: 10.1038/nn.3593] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/01/2013] [Indexed: 12/13/2022]
Abstract
Retrograde communication from axonal targets to neuronal cell bodies is critical for both the development and function of the nervous system. Much progress has been made in recent years linking long-distance, retrograde signaling to a signaling endosome, yet the mechanisms governing the trafficking and signaling of these endosomes remain mostly uncharacterized. Here we report that in mouse sympathetic neurons, the target-derived nerve growth factor (NGF)-tropomyosin-related kinase type 1 (TrkA, also called Ntrk1) signaling endosome, on arrival at the cell body, induces the expression and recruitment of a new effector protein known as Coronin-1 (also called Coro1a). In the absence of Coronin-1, the NGF-TrkA signaling endosome fuses to lysosomes sixfold to tenfold faster than when Coronin-1 is intact. We also define a new Coronin-1-dependent trafficking event in which signaling endosomes recycle and re-internalize on arrival at the cell body. Beyond influencing endosomal trafficking, Coronin-1 is also required for several NGF-TrkA-dependent signaling events, including calcium release, calcineurin activation and phosphorylation of cAMP responsive element binding protein (CREB). These results establish Coronin-1 as an essential component of a feedback loop that mediates NGF-TrkA endosome stability, recycling and signaling as a critical mechanism governing developmental competition for survival.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- CREB-Binding Protein/genetics
- CREB-Binding Protein/metabolism
- Cell Survival/genetics
- Cell Survival/physiology
- Cells, Cultured
- Electroporation
- Endosomes/physiology
- Female
- Gene Expression Regulation, Developmental/genetics
- Gene Expression Regulation, Developmental/physiology
- Immunoprecipitation
- In Vitro Techniques
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microfilament Proteins/deficiency
- Microfilament Proteins/metabolism
- Nerve Growth Factor/deficiency
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurons/drug effects
- Neurons/physiology
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, trkA/deficiency
- Signal Transduction/genetics
- Signal Transduction/physiology
- Spinal Cord/cytology
- Spinal Cord/growth & development
- Spinal Cord/metabolism
- Superior Cervical Ganglion/cytology
- Transfection
- bcl-2-Associated X Protein/deficiency
Collapse
Affiliation(s)
- Dong Suo
- Department. of Biology, Univ. of Virginia, Charlottesville, VA, 22903, USA
| | - Juyeon Park
- Department. of Biology, Univ. of Virginia, Charlottesville, VA, 22903, USA
| | - Anthony W. Harrington
- The Solomon Snyder Department of Neuroscience and Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Larry S. Zweifel
- The Solomon Snyder Department of Neuroscience and Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | | | | |
Collapse
|
110
|
Spatiotemporal intracellular dynamics of neurotrophin and its receptors. Implications for neurotrophin signaling and neuronal function. Handb Exp Pharmacol 2014; 220:33-65. [PMID: 24668469 DOI: 10.1007/978-3-642-45106-5_3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neurons possess a polarized morphology specialized to contribute to neuronal networks, and this morphology imposes an important challenge for neuronal signaling and communication. The physiology of the network is regulated by neurotrophic factors that are secreted in an activity-dependent manner modulating neuronal connectivity. Neurotrophins are a well-known family of neurotrophic factors that, together with their cognate receptors, the Trks and the p75 neurotrophin receptor, regulate neuronal plasticity and survival and determine the neuronal phenotype in healthy and regenerating neurons. Is it now becoming clear that neurotrophin signaling and vesicular transport are coordinated to modify neuronal function because disturbances of vesicular transport mechanisms lead to disturbed neurotrophin signaling and to diseases of the nervous system. This chapter summarizes our current understanding of how the regulated secretion of neurotrophin, the distribution of neurotrophin receptors in different locations of neurons, and the intracellular transport of neurotrophin-induced signaling in distal processes are achieved to allow coordinated neurotrophin signaling in the cell body and axons.
Collapse
|
111
|
Perucho J, Casarejos MJ, Gómez A, Ruíz C, Fernández-Estevez MÁ, Muñoz MP, de Yébenes JG, Mena MÁ. Striatal infusion of glial conditioned medium diminishes huntingtin pathology in r6/1 mice. PLoS One 2013; 8:e73120. [PMID: 24069174 PMCID: PMC3771920 DOI: 10.1371/journal.pone.0073120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/24/2013] [Indexed: 01/02/2023] Open
Abstract
Huntington's disease is a neurodegenerative disorder caused by an expansion of CAG repeats in the huntingtin gene which produces widespread neuronal and glial pathology. We here investigated the possible therapeutic role of glia or glial products in Huntington's disease using striatal glial conditioned medium (GCM) from fetus mice (E16) continuously infused for 15 and 30 days with osmotic minipumps into the left striatum of R6/1 mice. Animals infused with GCM had significantly less huntingtin inclusions in the ipsilateral cerebral cortex and in the ipsilateral and contralateral striata than mice infused with cerebrospinal fluid. The numbers of DARPP-32 and TH positive neurons were also greater in the ipsilateral but not contralateral striata and substantia nigra, respectively, suggesting a neuroprotective effect of GCM on efferent striatal and nigro-striatal dopamine neurons. GCM increases activity of the autophagic pathway, as shown by the reduction of autophagic substrate, p-62, and the augmentation of LC3 II, Beclin-1 and LAMP-2 protein levels, direct markers of autophagy, in GCM infused mice. GCM also increases BDNF levels. These results suggest that CGM should be further explored as a putative neuroprotective agent in Huntington's disease.
Collapse
Affiliation(s)
- Juan Perucho
- Department of Neurobiology, Hospital “Ramón y Cajal”, Madrid, Spain
- CIBERNED, Madrid, Spain
| | - Maria José Casarejos
- Department of Neurobiology, Hospital “Ramón y Cajal”, Madrid, Spain
- CIBERNED, Madrid, Spain
| | - Ana Gómez
- Department of Neurobiology, Hospital “Ramón y Cajal”, Madrid, Spain
- CIBERNED, Madrid, Spain
| | - Carolina Ruíz
- Department of Neurology, Hospital “Ramón y Cajal”, Madrid, Spain
- CIBERNED, Madrid, Spain
| | | | - Maria Paz Muñoz
- Department of Neurobiology, Hospital “Ramón y Cajal”, Madrid, Spain
- CIBERNED, Madrid, Spain
| | | | - Maria Ángeles Mena
- Department of Neurobiology, Hospital “Ramón y Cajal”, Madrid, Spain
- CIBERNED, Madrid, Spain
- * E-mail:
| |
Collapse
|
112
|
Mori Y, Fukuda M. Rabex-5 determines the neurite localization of its downstream Rab proteins in hippocampal neurons. Commun Integr Biol 2013; 6:e25433. [PMID: 24265856 PMCID: PMC3829932 DOI: 10.4161/cib.25433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 06/16/2013] [Accepted: 06/17/2013] [Indexed: 11/19/2022] Open
Abstract
Rab family small GTPases function as molecular switches in the regulation of membrane traffic, and their activity is thought to be controlled by guanine nucleotide exchange factors (GEFs). However, the role of GEFs in targeting Rab proteins to specific membrane compartments is poorly understood. We have recently reported finding that Rabex-5, originally described as a Rab5-GEF, also functions as a Rab17-GEF in mouse hippocampal neurons. The Rab17 in developing hippocampal neurons is specifically targeted to their dendrites and not to their axons, and the GEF activity of Rabex-5 is required for translocation of Rab17 from the cell body to the dendrites. Interestingly, Rabex-5 is also required for the axon and dendrite localization of Rab5 and Rab21 in hippocampal neurons. Our findings indicate that Rabex-5 determines the targeting of its downstream Rab proteins to the dendrites (Rab17) or to both the axon and dendrites (Rab5 and Rab21).
Collapse
Affiliation(s)
- Yasunori Mori
- 1Laboratory of Membrane Trafficking Mechanisms; Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Miyagi, Japan
| | | |
Collapse
|