101
|
Malikmammadov E, Tanir TE, Kiziltay A, Hasirci V, Hasirci N. PCL-TCP wet spun scaffolds carrying antibiotic-loaded microspheres for bone tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:805-824. [DOI: 10.1080/09205063.2017.1354671] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Elbay Malikmammadov
- Graduate School of Natural and Applied Sciences, Department of Micro and Nanotechnology, Middle East Technical University, Ankara, Turkey
- BIOMATEN, Middle East Technical University Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
| | - Tugba Endogan Tanir
- BIOMATEN, Middle East Technical University Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- Central Laboratory, Middle East Technical University, Ankara, Turkey
| | - Aysel Kiziltay
- BIOMATEN, Middle East Technical University Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- Central Laboratory, Middle East Technical University, Ankara, Turkey
| | - Vasif Hasirci
- Graduate School of Natural and Applied Sciences, Department of Micro and Nanotechnology, Middle East Technical University, Ankara, Turkey
- BIOMATEN, Middle East Technical University Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- Faculty of Arts and Sciences, Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Nesrin Hasirci
- Graduate School of Natural and Applied Sciences, Department of Micro and Nanotechnology, Middle East Technical University, Ankara, Turkey
- BIOMATEN, Middle East Technical University Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- Faculty of Arts and Sciences, Department of Chemistry, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
102
|
Pepe A, Podesva P, Simone G. Tunable uptake/release mechanism of protein microgel particles in biomimicking environment. Sci Rep 2017; 7:6014. [PMID: 28729713 PMCID: PMC5519546 DOI: 10.1038/s41598-017-06512-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/13/2017] [Indexed: 11/15/2022] Open
Abstract
Microgels are intra-molecular crosslinked macromolecules that can be used as vehicles to deliver and release drugs at the point-of-need in the patient’s body. Here, gelatin microgels were formed from microfluidics droplets, stabilised by aldehydes and frozen into a spheroidal shape. Microgel morphology and response to external stimuli were characterised. It was found that the behaviour of the spheroidal microgels was sensitive to both pH and ionic strength and that the distribution of charges into the microgels affected the behaviour of swelling and uptake. The uptake of molecules such as Rhodamine B and Methylene Blue were investigated as a model for drug uptake/release mechanisms. Under physiological conditions, the uptake of Rhodamine was rapid and a uniform distribution of the fluorescent molecules was recorded inside the microgels. However, the mechanism of release became slower at lower pH, which mimics the stomach environment. Under physiological conditions, Methylene Blue release occurred faster than for Rhodamine. Anionic and neutral molecules were also tested. In conclusion, the dependence of uptake and release of model drugs on basic/acid conditions shows that microgels could be used for targeted drug delivery. Different shaped microgels, such as spheres, spheroids, and rods, could be useful in tissue engineering or during vascularisation.
Collapse
Affiliation(s)
- A Pepe
- University of Naples, Federico II, 80 Piazzale Tecchio, 80125, Naples, Italy
| | - P Podesva
- Northwestern Polytechnical University, 127 West Youyi Road, Xi'an Shaanxi, 710072, P.R. China
| | - G Simone
- Northwestern Polytechnical University, 127 West Youyi Road, Xi'an Shaanxi, 710072, P.R. China. .,University of Naples, Federico II, 80 Piazzale Tecchio, 80125, Naples, Italy.
| |
Collapse
|
103
|
Leena RS, Vairamani M, Selvamurugan N. Alginate/Gelatin scaffolds incorporated with Silibinin-loaded Chitosan nanoparticles for bone formation in vitro. Colloids Surf B Biointerfaces 2017; 158:308-318. [PMID: 28711017 DOI: 10.1016/j.colsurfb.2017.06.048] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/19/2017] [Accepted: 06/28/2017] [Indexed: 01/15/2023]
Abstract
Silibinin is a plant derived flavonolignan known for its multiple biological properties, but its role in the promotion of bone formation has not yet been well studied. Moreover, the delivery of Silibinin is hindered by its complex hydrophobic nature, which limits its bioavailability. Hence, in this study, we fabricated a drug delivery system using chitosan nanoparticles loaded with Silibinin at different concentrations (20μM, 50μM, and 100μM). They were then incorporated into scaffolds containing Alginate and Gelatin (Alg/Gel) for the sustained and prolonged release of Silibinin. The Silibinin-loaded chitosan nanoparticles (SCN) were prepared using the ionic gelation technique, and the scaffolds (Alg/Gel-SCN) were synthesized by the conventional method of freeze drying. The scaffolds were subjected to physicochemical and material characterization studies. The addition of SCN did not affect the porosity of the scaffolds, yet increased the protein adsorption, degradation rates, and bio-mineralization. These scaffolds were biocompatible with mouse mesenchymal stem cells. The scaffolds loaded with 50μM Silibinin promoted osteoblast differentiation, which was determined at cellular and molecular levels. Recent studies indicated the role of microRNAs (miRNAs) in osteogenesis and we found that the Silibinin released from scaffolds regulated miRNAs that control the bone morphogenetic protein pathway. Hence, our results suggest the potential for sustained and prolonged release of Silibinin to promote bone formation and, thus, these Alg/Gel-SCN scaffolds may be candidates for bone tissue engineering applications.
Collapse
Affiliation(s)
- R S Leena
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - M Vairamani
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
104
|
Guan X, Avci-Adali M, Alarçin E, Cheng H, Kashaf SS, Li Y, Chawla A, Jang HL, Khademhosseini A. Development of hydrogels for regenerative engineering. Biotechnol J 2017; 12:10.1002/biot.201600394. [PMID: 28220995 PMCID: PMC5503693 DOI: 10.1002/biot.201600394] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 11/07/2022]
Abstract
The aim of regenerative engineering is to restore complex tissues and biological systems through convergence in the fields of advanced biomaterials, stem cell science, and developmental biology. Hydrogels are one of the most attractive biomaterials for regenerative engineering, since they can be engineered into tissue mimetic 3D scaffolds to support cell growth due to their similarity to native extracellular matrix. Advanced nano- and micro-technologies have dramatically increased the ability to control properties and functionalities of hydrogel materials by facilitating biomimetic fabrication of more sophisticated compositions and architectures, thus extending our understanding of cell-matrix interactions at the nanoscale. With this perspective, this review discusses the most commonly used hydrogel materials and their fabrication strategies for regenerative engineering. We highlight the physical, chemical, and functional modulation of hydrogels to design and engineer biomimetic tissues based on recent achievements in nano- and micro-technologies. In addition, current hydrogel-based regenerative engineering strategies for treating multiple tissues, such as musculoskeletal, nervous and cardiac tissue, are also covered in this review. The interaction of multiple disciplines including materials science, cell biology, and chemistry, will further play an important role in the design of functional hydrogels for the regeneration of complex tissues.
Collapse
Affiliation(s)
- Xiaofei Guan
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Orthopedic Department, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstr. 7/1, Tuebingen 72076, Germany
| | - Emine Alarçin
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, Istanbul 34668, Turkey
| | - Hao Cheng
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sara Saheb Kashaf
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yuxiao Li
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aditya Chawla
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hae Lin Jang
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ali Khademhosseini
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience & Technology, Konkuk University, Seoul 143-701, Republic of Korea
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|
105
|
Balavigneswaran CK, Mahto SK, Subia B, Prabhakar A, Mitra K, Rao V, Ganguli M, Ray B, Maiti P, Misra N. Tailored Chemical Properties of 4-Arm Star Shaped Poly(d,l-lactide) as Cell Adhesive Three-Dimensional Scaffolds. Bioconjug Chem 2017; 28:1236-1250. [DOI: 10.1021/acs.bioconjchem.7b00071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Bano Subia
- CSIR-Institute of Genomics and Integrative Biology, Mathura road, New Delhi-110025, India
| | - Arumugam Prabhakar
- CSIR-Institute of Genomics and Integrative Biology, Mathura road, New Delhi-110025, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhavan, 2 Rafi Marg, New Delhi-110001, India
| | - Kheyanath Mitra
- Department
of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Vivek Rao
- CSIR-Institute of Genomics and Integrative Biology, Mathura road, New Delhi-110025, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhavan, 2 Rafi Marg, New Delhi-110001, India
| | - Munia Ganguli
- CSIR-Institute of Genomics and Integrative Biology, Mathura road, New Delhi-110025, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhavan, 2 Rafi Marg, New Delhi-110001, India
| | - Biswajit Ray
- Department
of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | | | | |
Collapse
|
106
|
Grier W, Moy A, Harley B. Cyclic tensile strain enhances human mesenchymal stem cell Smad 2/3 activation and tenogenic differentiation in anisotropic collagen-glycosaminoglycan scaffolds. Eur Cell Mater 2017; 33:227-239. [PMID: 28319248 PMCID: PMC5453510 DOI: 10.22203/ecm.v033a14] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Stem cell research arose from the need to explore new therapeutic possibilities for intractable and lethal diseases. Although musculoskeletal disorders are basically nonlethal, their high prevalence and relative ease of performing clinical trials have facilitated the clinical application of stem cells in this field. However, few reliable clinical studies have been published, despite the plethora of in vitro and preclinical studies in stem cell research for regenerative medicine in the musculoskeletal system. Stem cell therapy can be applied locally for bone, cartilage and tendon regeneration. Candidate disease modalities in bone regeneration include large bone defects, nonunion of fractures, and osteonecrosis. Focal osteochondral defect and osteoarthritis are current targets for cartilage regeneration. For tendon regeneration, bone-tendon junction problems such as rotator cuff tears are hot topics in clinical research. To date, the literature supporting stem cell-based therapies comprises mostly case reports or case series. Therefore, high-quality evidence, including from randomised clinical trials, is necessary to define the role of cell-based therapies in the treatment of musculoskeletal disorders. It is imperative that clinicians who adopt stem cell treatment into their practices possess a good understanding of the natural course of the disease. It is also highly recommended that treating physicians do not thrust aside the concomitant use of established measures until stem cell therapy is evidently proved worthy in terms of efficacy and cost. The purpose of this review is to summarise on the current status of stem cell application in the orthopaedic field along with the author's view of future prospects.
Collapse
Affiliation(s)
- W.K. Grier
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - A.S. Moy
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - B.A.C. Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA,Address for correspondence: B.A.C. Harley, Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL 61801, USA, Telephone number: +1 2172447112, Fax number: +1 2173335052,
| |
Collapse
|
107
|
Tamaddon M, Burrows M, Ferreira SA, Dazzi F, Apperley JF, Bradshaw A, Brand DD, Czernuszka J, Gentleman E. Monomeric, porous type II collagen scaffolds promote chondrogenic differentiation of human bone marrow mesenchymal stem cells in vitro. Sci Rep 2017; 7:43519. [PMID: 28256634 PMCID: PMC5335259 DOI: 10.1038/srep43519] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/25/2017] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) is a common cause of pain and disability and is often associated with the degeneration of articular cartilage. Lesions to the articular surface, which are thought to progress to OA, have the potential to be repaired using tissue engineering strategies; however, it remains challenging to instruct cell differentiation within a scaffold to produce tissue with appropriate structural, chemical and mechanical properties. We aimed to address this by driving progenitor cells to adopt a chondrogenic phenotype through the tailoring of scaffold composition and physical properties. Monomeric type-I and type-II collagen scaffolds, which avoid potential immunogenicity associated with fibrillar collagens, were fabricated with and without chondroitin sulfate (CS) and their ability to stimulate the chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells was assessed. Immunohistochemical analyses showed that cells produced abundant collagen type-II on type-II scaffolds and collagen type-I on type-I scaffolds. Gene expression analyses indicated that the addition of CS - which was released from scaffolds quickly - significantly upregulated expression of type II collagen, compared to type-I and pure type-II scaffolds. We conclude that collagen type-II and CS can be used to promote a more chondrogenic phenotype in the absence of growth factors, potentially providing an eventual therapy to prevent OA.
Collapse
Affiliation(s)
- M. Tamaddon
- Department of Materials, University of Oxford, Oxford OX1 3PH, UK
- Craniofacial Development and Stem Cell Biology, King’s College London, London SE1 9RT, UK
| | - M. Burrows
- Craniofacial Development and Stem Cell Biology, King’s College London, London SE1 9RT, UK
| | - S. A. Ferreira
- Craniofacial Development and Stem Cell Biology, King’s College London, London SE1 9RT, UK
| | - F. Dazzi
- Division of Cancer Studies, Rayne Institute, King’s College London, London SE5 9NU, UK
| | - J. F. Apperley
- Centre for Haematology, Department of Medicine, Imperial College London, London W12 0NN, UK
- John Goldman Centre for Cellular Therapy, Imperial College Healthcare NHS Trust, London W12 0HS, UK
| | - A. Bradshaw
- John Goldman Centre for Cellular Therapy, Imperial College Healthcare NHS Trust, London W12 0HS, UK
| | - D. D. Brand
- Research Service, Memphis VA Medical Center, Departments of Medicine and Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38104, USA
| | - J. Czernuszka
- Department of Materials, University of Oxford, Oxford OX1 3PH, UK
| | - E. Gentleman
- Craniofacial Development and Stem Cell Biology, King’s College London, London SE1 9RT, UK
| |
Collapse
|
108
|
Carfì Pavia F, Ciappa M, Lepedda A, Fiorentino SM, Rigogliuso S, Brucato V, Formato M, Ghersi G, La Carrubba V. A poly-L-lactic acid/ collagen/glycosaminoglycan matrix for tissue engineering applications. J CELL PLAST 2017. [DOI: 10.1177/0021955x17695093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adhesion of tissue cells to biomaterials is a prerequisite of paramount importance for the effectiveness of a tissue engineering construct (cell and scaffolds). Functionalization of polymeric scaffolds with organic polymers, such as collagen or proteoglycans, is a promising approach in order to improve the cytocompatibility. As a matter of fact, organic polymers, isolated directly from the extracellular matrix, contain a multitude of surface ligand (fibronectin, laminin, vitronectin) and arginine–glycine–aspartic acid-containing peptides that promote cell adhesion. In tissue engineering, the combination of organic and synthetic polymers gives rise to scaffolds characterized simultaneously by the mechanical strength of synthetic materials and the biocompatibility of natural materials. In this work, porous poly-L-lactide acid scaffolds were functionalized with a synthetic collagen–glycosaminoglycans matrix in order to improve cell adhesion. For this purpose, a protocol for collagen–glycosaminoglycans conjugation into the pores of the scaffolds was set up. Moreover, an innovative protocol for the quantification of the conjugated glycosaminoglycans inside the scaffolds was created and adopted. The results have confirmed the effectiveness of the developed protocol: a collagen–glycosaminoglycans conjugation, with an efficiency of about 21% was obtained inside the scaffold. Moreover, SEM analysis highlighted the presence of the homogeneous synthetic matrix into the bulk of porous scaffolds. Finally, cell culture assays carried out by utilizing mouse embryonic fibroblasts showed that cell proliferation on poly-L-lactide acid-collagen–glycosaminoglycans scaffold is higher than on poly-L-lactide acid collagen scaffold (utilized as control). Therefore, it can be stated that the presence of glycosaminoglycans not only increases the mechanical strength of the matrix, thanks to their cross-linking effect, but also it seems to lead to a more significant cell growth. Overall, it is reasonable to state that the concerned protocol may be proposed as a reliable route to increase the rate of proliferation and in some cases to stimulate the cell differentiation in tissue engineering devices.
Collapse
Affiliation(s)
- F Carfì Pavia
- Civil Environmental Aerospace and Materials Engineering Department, University of Palermo, Palermo, Italy
| | - M Ciappa
- Biological Chemical and Pharmaceutical Science and Technologies Department, University of Palermo, Palermo, Italy
| | - A Lepedda
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - SM Fiorentino
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - S Rigogliuso
- Biological Chemical and Pharmaceutical Science and Technologies Department, University of Palermo, Palermo, Italy
| | - V Brucato
- Civil Environmental Aerospace and Materials Engineering Department, University of Palermo, Palermo, Italy
| | - M Formato
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - G Ghersi
- Biological Chemical and Pharmaceutical Science and Technologies Department, University of Palermo, Palermo, Italy
| | - V La Carrubba
- Civil Environmental Aerospace and Materials Engineering Department, University of Palermo, Palermo, Italy
| |
Collapse
|
109
|
Dong J, Firestone GE, Bochinski JR, Clarke LI, Gorga RE. In situ curing of liquid epoxy via gold-nanoparticle mediated photothermal heating. NANOTECHNOLOGY 2017; 28:065601. [PMID: 28044996 DOI: 10.1088/1361-6528/aa521b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Metal nanoparticles incorporated at low concentration into epoxy systems enable in situ curing via photothermal heating. In the process of nanoparticle-mediated photothermal heating, light interacts specifically with particles embedded within a liquid or solid material and this energy is transformed into heat, resulting in significant temperature increase local to each particle with minimal warming of surroundings. The ability to use such internal heating to transform the mechanical properties of a material (e.g., from liquid to rigid solid) without application of damaging heat to the surrounding environment represents a powerful tool for a variety of scientific applications, particularly within the biomedical sector. Uniform particle dispersion is achieved by placing the nanoparticles within solvent miscible with the desired epoxy resin, demonstrating a strategy utilizable for a wide range of materials without requiring chemical modification of the particles or epoxy. Mechanical and thermal properties (storage modulus, T g, and degradation behavior) of the cured epoxy are equivalent to those obtained under traditional heating methods. Selective curing of a shape is demonstrated within a liquid bath of epoxy, where the solid form is generated by rastering a spatially confined, photothermal-driving light beam. The non-irradiated regions are largely unaffected and the solid part is easily removed from the remaining liquid. Temperature profiles showing minimal heating outside the irradiated zone are presented and discussed.
Collapse
Affiliation(s)
- Ju Dong
- Fiber and Polymer Science Program, NC State University, Raleigh NC 27695, USA
| | | | | | | | | |
Collapse
|
110
|
Alshemary AZ, Engin Pazarceviren A, Tezcaner A, Evis Z. Fe3+
/SeO42−
dual doped nano hydroxyapatite: A novel material for biomedical applications. J Biomed Mater Res B Appl Biomater 2017; 106:340-352. [DOI: 10.1002/jbm.b.33838] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Ammar Z. Alshemary
- Department of Biomedical Engineering; Faculty of Engineering, Karabuk University; 78050 Karabuk Turkey
| | | | - Aysen Tezcaner
- Department of Engineering Sciences; Middle East Technical University; Ankara 06800 Turkey
| | - Zafer Evis
- Department of Engineering Sciences; Middle East Technical University; Ankara 06800 Turkey
| |
Collapse
|
111
|
Houshmand M, Soleimani M, Atashi A, Saglio G, Abdollahi M, Nikougoftar Zarif M. Mimicking the Acute Myeloid Leukemia Niche for Molecular Study and Drug Screening. Tissue Eng Part C Methods 2017; 23:72-85. [PMID: 28007011 DOI: 10.1089/ten.tec.2016.0404] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bone marrow niche is a major contributing factor in leukemia development and drug resistance in acute myeloid leukemia (AML) patients. Although mimicking leukemic bone marrow niche relies on two-dimensional (2D) culture conditions, it cannot recapitulate complex bone marrow structure that causes introduction of different three-dimensional (3D) scaffolds. Simultaneously, microfluidic platform by perfusing medium culture mimic interstitial fluid flow, along with 3D scaffold would help for mimicking bone marrow microenvironment. In this study TF-1 cells were cocultured with bone marrow mesenchymal stem cells (BM-MSCs) in 2D and 3D microfluidic devices. Phenotype maintenance during cell culture and proliferation rate was assayed and confirmed by cell cycle analysis. Morphology of cells in 2D and 3D culture conditions was demonstrated by scanning electron microscopy. After these experiments, drug screening was performed by applying azacitidine and cytarabine and cytotoxicity assay and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for B cell lymphoma 2 (BCL2) were done to compare drug resistance in 2D and 3D culture conditions. Our result shows leukemic cells in 3D microfluidic device retaining their phenotype and proliferation rate was significantly higher in 3D culture condition in comparison to 2D culture condition (p < 0.05), which was confirmed by cell cycle analysis. Cytotoxicity assay also illustrated drug resistance in 3D culture condition and qRT-PCR demonstrated higher BCL2 expression in 3D microfluidic device in contrast to 2D microfluidic device (p < 0.05). On balance, mimicking bone marrow niche would help the target therapy and specify the role of niche in development of leukemia in AML patients.
Collapse
Affiliation(s)
- Mohammad Houshmand
- 1 Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tehran, Iran
| | - Masoud Soleimani
- 2 Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran, Iran
| | - Amir Atashi
- 3 Stem cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences , Shahroud, Iran
| | - Giuseppe Saglio
- 4 Department of Clinical and Biological Sciences, "S. Luigi Gonzaga" Hospital, University of Turin , Orbassano, Italy
| | - Mohammad Abdollahi
- 2 Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran, Iran
| | - Mahin Nikougoftar Zarif
- 1 Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tehran, Iran
| |
Collapse
|
112
|
Lai K, Zhang J, Wang G, Luo X, Liu M, Zhang X, Yuan Y, Liu B, Xu T. A biomimetic mesh for treating female stress urinary incontinence. Biofabrication 2017; 9:015008. [PMID: 28052048 DOI: 10.1088/1758-5090/aa515e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
For patients with medium to severe incontinence, sub-urethral support surgery has a high cure rate, but using synthetic meshes leads to some complications such as mesh erosion/exposure and thigh pain. Autologous or acellular extracellular matrix grafts present few complications but have a high recurrence rate. Regensling™ is a new sling product made of a synthetic material with a biomimetic structure, aiming to provide long-term mechanical support with a lower complication rate. To assess the safety and effectiveness of Regensling™, both in vitro and in vivo experiments were performed. The mesh was implanted in the subcutaneous, intramuscular and sub-urethral regions of rabbits. At 4, 12, and 26 weeks post-implantation, the animals were executed and the implants were studied for their mechanical and biocompatible properties. Compared to the control material, the Regensling™ was covered by a thin layer of fibrous tissue with good compliance, and had a milder inflammatory response. During the period of the experiment, Regensling™ showed stable strength with an increasing trend over time.
Collapse
Affiliation(s)
- Kuilin Lai
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Campbell JJ, Husmann A, Hume RD, Watson CJ, Cameron RE. Development of three-dimensional collagen scaffolds with controlled architecture for cell migration studies using breast cancer cell lines. Biomaterials 2017; 114:34-43. [DOI: 10.1016/j.biomaterials.2016.10.048] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 12/14/2022]
|
114
|
|
115
|
Electroconductive natural polymer-based hydrogels. Biomaterials 2016; 111:40-54. [PMID: 27721086 DOI: 10.1016/j.biomaterials.2016.09.020] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/27/2022]
|
116
|
Hosseini Y, Agah M, Verbridge SS. Endothelial cell sensing, restructuring, and invasion in collagen hydrogel structures. Integr Biol (Camb) 2016; 7:1432-41. [PMID: 26379187 DOI: 10.1039/c5ib00207a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Experimental tools to model cell-tissue interactions will likely lead to new ways to both understand and treat cancer. While the mechanical properties and regulation of invasion have been recently studied for tumor cells, they have received less attention in the context of tumor vascular dynamics. In this article, we have investigated the interaction between the surfaces of structures encountered by endothelial cells invading their surrounding extracellular matrix (ECM) during angiogenesis. For this purpose, we have fabricated round and sharp geometries with various curvature and sharpness indices in collagen hydrogel over a wide range of stiffness to mimic different microenvironments varying from normal to tumor tissues. We have then cultured endothelial cells on these structures to investigate the bi-directional interaction between the cells and ECM. We have observed that cell invasion frequency is higher from the structures with the highest sharpness and curvature index, while interestingly the dependence of invasion on the local micro-geometry is strongest for the highest density matrices. Notably, structures with the highest invasion length are linked with higher deformation of side structures, which may be related to traction force-activated signaling suggesting further investigation. We have noted that round structures are more favorable for cell adhesion and in some cases round structures drive cell invasion faster than sharp ones. These results highlight the ability of endothelial cells to sense small variations in ECM geometry, and respond with a balance of matrix invasion as well as deformation, with potential implications for feedback mechanisms that may enhance vascular abnormality in response to tumor-induced ECM alterations.
Collapse
Affiliation(s)
- Y Hosseini
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia, 24061, USA.
| | - M Agah
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia, 24061, USA. and Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - S S Verbridge
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, 24061, USA
| |
Collapse
|
117
|
Grier WK, Iyoha EM, Harley BAC. The influence of pore size and stiffness on tenocyte bioactivity and transcriptomic stability in collagen-GAG scaffolds. J Mech Behav Biomed Mater 2016; 65:295-305. [PMID: 27614271 DOI: 10.1016/j.jmbbm.2016.08.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 01/31/2023]
Abstract
Orthopedic injuries, particularly those involving tendons and ligaments, are some of the most commonly treated musculoskeletal ailments, but are associated with high costs and poor outcomes. A significant barrier in the design of biomaterials for tendon tissue engineering is the rapid de-differentiation observed for primary tenocytes once removed from the tendon body. Herein, we evaluate the use of an anisotropic collagen-glycosaminoglycan (CG) scaffold as a tendon regeneration platform. We report the effects of structural properties of the scaffold (pore size, collagen fiber crosslinking density) on resultant tenocyte bioactivity, viability, and gene expression. In doing so we address a standing hypothesis that scaffold anisotropy and strut flexural rigidity (stiffness) co-regulate long-term maintenance of a tenocyte phenotype. We report changes in equine tenocyte specific gene expression profiles and bioactivity across a homologous series of anisotropic collagen scaffolds with defined changes in pore size and crosslinking density. Anisotropic scaffolds with higher crosslinking densities and smaller pore sizes were more able to resist cell-mediated contraction forces, promote increased tenocyte metabolic activity, and maintain and increase expression of tenogenic gene expression profiles. These results suggest that control over scaffold strut flexural rigidity via crosslinking and porosity provides an ideal framework to resolve structure-function maps relating the influence of scaffold anisotropy, stiffness, and nutrient biotransport on tenocyte-mediated scaffold remodeling and long-term phenotype maintenance.
Collapse
Affiliation(s)
- William K Grier
- Dept. of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ehiremen M Iyoha
- Dept. of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brendan A C Harley
- Dept. of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
118
|
Haugh MG, Heilshorn SC. Integrating Concepts of Material Mechanics, Ligand Chemistry, Dimensionality and Degradation to Control Differentiation of Mesenchymal Stem Cells. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2016; 20:171-179. [PMID: 28458610 PMCID: PMC5404745 DOI: 10.1016/j.cossms.2016.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The role of substrate mechanics in guiding mesenchymal stem cell (MSC) fate has been the focus of much research over the last decade. More recently, the complex interplay between substrate mechanics and other material properties such as ligand chemistry and substrate degradability to regulate MSC differentiation has begun to be elucidated. Additionally, there are several changes in the presentation of these material properties as the dimensionality is altered from two- to three-dimensional substrates, which may fundamentally alter our understanding of substrate-induced mechanotransduction processes. In this review, an overview of recent findings that highlight the material properties that are important in guiding MSC fate decisions is presented, with a focus on underlining gaps in our existing knowledge and proposing potential directions for future research.
Collapse
Affiliation(s)
- Matthew G. Haugh
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Dublin, Ireland
| | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
119
|
Sagar N, Khanna K, Sardesai VS, Singh AK, Temgire M, Kalita MP, Kadam SS, Soni VP, Bhartiya D, Bellare JR. Bioconductive 3D nano-composite constructs with tunable elasticity to initiate stem cell growth and induce bone mineralization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:700-14. [PMID: 27612764 DOI: 10.1016/j.msec.2016.07.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/23/2016] [Accepted: 07/20/2016] [Indexed: 12/28/2022]
Abstract
Bioactive 3D composites play an important role in advanced biomaterial design to provide molecular coupling and improve integrity with the cellular environment of the native bone. In the present study, a hybrid lyophilized polymer composite blend of anionic charged sodium salt of carboxymethyl chitin and gelatin (CMChNa-GEL) reinforced with nano-rod agglomerated hydroxyapatite (nHA) has been developed with enhanced biocompatibility and tunable elasticity. The scaffolds have an open, uniform and interconnected porous structure with an average pore diameter of 157±30μm and 89.47+0.03% with four dimensional X-ray. The aspect ratio of ellipsoidal pores decrease from 4.4 to 1.2 with increase in gelatin concentration; and from 2.14 to 1.93 with decrease in gelling temperature. The samples were resilient with elastic stain at 1.2MPa of stress also decreased from 0.33 to 0.23 with increase in gelatin concentration. The crosslinker HMDI (hexamethylene diisocyanate) yielded more resilient samples at 1.2MPa in comparison to glutaraldehyde. Increased crosslinking time from 2 to 4h in continuous compression cycle show no improvement in maximum elastic stain of 1.2MPa stress. This surface elasticity of the scaffold enables the capacity of these materials for adherent self renewal and cultivation of the NTERA-2 cL.D1 (NT2/D1), pluripotent embryonal carcinoma cell with biomechanical surface, as is shown here. Proliferation with MG-63, ALP activity and Alizarin red mineralization assay on optimized scaffold demonstrated ***p<0.001 between different time points thus showing its potential for bone healing. In pre-clinical study histological bone response of the scaffold construct displayed improved activity of bone regeneration in comparison to self healing of control groups (sham) up to week 07 after implantation in rabbit tibia critical-size defect. Therefore, this nHA-CMChNa-GEL scaffold composite exhibits inherent and efficient physicochemical, mechanical and biological characteristics based on gel concentrations, gelatin mixing and gelling temperature thus points to creating bioactive 3D scaffolds with tunable elasticity for orthopedic applications.
Collapse
Affiliation(s)
- Nitin Sagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076, India
| | - Kunal Khanna
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology-Bombay, Mumbai 400076, India
| | - Varda S Sardesai
- National Institute of Research in Reproductive Health, Mumbai 400012, India
| | - Atul K Singh
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology-Bombay, Mumbai 400076, India
| | - Mayur Temgire
- Department of Chemical Engineering, Indian Institute of Technology-Bombay, Mumbai 400076, India
| | - Mridula Phukan Kalita
- Department of Chemical Engineering, Indian Institute of Technology-Bombay, Mumbai 400076, India
| | - Sachin S Kadam
- Department of Chemical Engineering, Indian Institute of Technology-Bombay, Mumbai 400076, India; Krishna Institute of Medical Sciences, Malkapur, Karad 415539, Dist. Satara, Maharashtra, India
| | - Vivek P Soni
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076, India
| | - Deepa Bhartiya
- National Institute of Research in Reproductive Health, Mumbai 400012, India
| | - Jayesh R Bellare
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076, India; Centre for Research in Nanotechnology and Science, Indian Institute of Technology-Bombay, Mumbai 400076, India; Department of Chemical Engineering, Indian Institute of Technology-Bombay, Mumbai 400076, India; Wadhwani Research Center for Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076, India.
| |
Collapse
|
120
|
Hortensius RA, Harley BA. Naturally derived biomaterials for addressing inflammation in tissue regeneration. Exp Biol Med (Maywood) 2016; 241:1015-24. [PMID: 27190254 DOI: 10.1177/1535370216648022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tissue regeneration strategies have traditionally relied on designing biomaterials that closely mimic features of the native extracellular matrix (ECM) as a means to potentially promote site-specific cellular behaviors. However, inflammation, while a necessary component of wound healing, can alter processes associated with successful tissue regeneration following an initial injury. These processes can be further magnified by the implantation of a biomaterial within the wound site. In addition to designing biomaterials to satisfy biocompatibility concerns as well as to replicate elements of the composition, structure, and mechanics of native tissue, we propose that ECM analogs should also include features that modulate the inflammatory response. Indeed, strategies that enhance, reduce, or even change the temporal phenotype of inflammatory processes have unique potential as future pro-regenerative analogs. Here, we review derivatives of three natural materials with intrinsic anti-inflammatory properties and discuss their potential to address the challenges of inflammation in tissue engineering and chronic wounds.
Collapse
Affiliation(s)
| | - Brendan Ac Harley
- Department of Chemical and Biological Engineering, University of Illinois, Urbana, IL 61801, USA Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
121
|
Bružauskaitė I, Bironaitė D, Bagdonas E, Bernotienė E. Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects. Cytotechnology 2016. [PMID: 26091616 DOI: 10.1007/sl0616-0159895-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Abstract
During the last decade biomaterial sciences and tissue engineering have become new scientific fields supplying rising demand of regenerative therapy. Tissue engineering requires consolidation of a broad knowledge of cell biology and modern biotechnology investigating biocompatibility of materials and their application for the reconstruction of damaged organs and tissues. Stem cell-based tissue regeneration started from the direct cell transplantation into damaged tissues or blood vessels. However, it is difficult to track transplanted cells and keep them in one particular place of diseased organ. Recently, new technologies such as cultivation of stem cell on the scaffolds and subsequently their implantation into injured tissue have been extensively developed. Successful tissue regeneration requires scaffolds with particular mechanical stability or biodegradability, appropriate size, surface roughness and porosity to provide a suitable microenvironment for the sufficient cell-cell interaction, cell migration, proliferation and differentiation. Further functioning of implanted cells highly depends on the scaffold pore sizes that play an essential role in nutrient and oxygen diffusion and waste removal. In addition, pore sizes strongly influence cell adhesion, cell-cell interaction and cell transmigration across the membrane depending on the various purposes of tissue regeneration. Therefore, this review will highlight contemporary tendencies in application of non-degradable scaffolds and stem cells in regenerative medicine with a particular focus on the pore sizes significantly affecting final recover of diseased organs.
Collapse
Affiliation(s)
- Ieva Bružauskaitė
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Zygimantu 9, 01102, Vilnius, Lithuania
| | - Daiva Bironaitė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Zygimantu 9, 01102, Vilnius, Lithuania.
| | - Edvardas Bagdonas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Zygimantu 9, 01102, Vilnius, Lithuania
| | - Eiva Bernotienė
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Zygimantu 9, 01102, Vilnius, Lithuania
| |
Collapse
|
122
|
Mozdzen LC, Rodgers R, Banks JM, Bailey RC, Harley BA. Increasing the strength and bioactivity of collagen scaffolds using customizable arrays of 3D-printed polymer fibers. Acta Biomater 2016; 33:25-33. [PMID: 26850145 DOI: 10.1016/j.actbio.2016.02.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 01/24/2016] [Accepted: 02/01/2016] [Indexed: 12/22/2022]
Abstract
Tendon is a highly aligned connective tissue which transmits force from muscle to bone. Each year, people in the US sustain more than 32 million tendon injuries. To mitigate poor functional outcomes due to scar formation, current surgical techniques rely heavily on autografts. Biomaterial platforms and tissue engineering methods offer an alternative approach to address these injuries. Scaffolds incorporating aligned structural features can promote expansion of adult tenocytes and mesenchymal stem cells capable of tenogenic differentiation. However, appropriate balance between scaffold bioactivity and mechanical strength of these constructs remains challenging. The high porosity required to facilitate cell infiltration, nutrient and oxygen biotransport within three-dimensional constructs typically results in insufficient biomechanical strength. Here we describe the use of three-dimensional printing techniques to create customizable arrays of acrylonitrile butadiene styrene (ABS) fibers that can be incorporated into a collagen scaffold under development for tendon repair. Notably, mechanical performance of scaffold-fiber composites (elastic modulus, peak stress, strain at peak stress, and toughness) can be selectively manipulated by varying fiber-reinforcement geometry without affecting the native bioactivity of the collagen scaffold. Further, we report an approach to functionalize ABS fibers with activity-inducing growth factors via sequential oxygen plasma and carbodiimide crosslinking treatments. Together, we report an adaptable approach to control both mechanical strength and presence of biomolecular cues in a manner orthogonal to the architecture of the collagen scaffold itself. STATEMENT OF SIGNIFICANCE Tendon injuries account for more than 32 million injuries each year in the US alone. Current techniques use allografts to mitigate poor functional outcomes, but are not ideal platforms to induce functional regeneration following injury. Tissue engineering approaches using biomaterial substrates have significant potential for addressing these defects. However, the high porosity required to facilitate cell infiltration and nutrient transport often dictates that the resultant biomaterials has insufficient biomechanical strength. Here we describe the use of three-dimensional printing techniques to generate customizable fiber arrays from ABS polymer that can be incorporated into a collagen scaffold under development for tendon repair applications. Notably, the mechanical performance of the fiber-scaffold composite can be defined by the fiber array independent of the bioactivity of the collagen scaffold design. Further, the fiber array provides a substrate for growth factor delivery to aid healing.
Collapse
|
123
|
|
124
|
Hortensius RA, Ebens JH, Harley BAC. Immunomodulatory effects of amniotic membrane matrix incorporated into collagen scaffolds. J Biomed Mater Res A 2016; 104:1332-42. [PMID: 26799369 DOI: 10.1002/jbm.a.35663] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 01/08/2023]
Abstract
Adult tendon wound repair is characterized by the formation of disorganized collagen matrix which leads to decreases in mechanical properties and scar formation. Studies have linked this scar formation to the inflammatory phase of wound healing. Instructive biomaterials designed for tendon regeneration are often designed to provide both structural and cellular support. In order to facilitate regeneration, success may be found by tempering the body's inflammatory response. This work combines collagen-glycosaminoglycan scaffolds, previously developed for tissue regeneration, with matrix materials (hyaluronic acid and amniotic membrane) that have been shown to promote healing and decreased scar formation in skin studies. The results presented show that scaffolds containing amniotic membrane matrix have significantly increased mechanical properties and that tendon cells within these scaffolds have increased metabolic activity even when the media is supplemented with the pro-inflammatory cytokine interleukin-1 beta. Collagen scaffolds containing hyaluronic acid or amniotic membrane also temper the expression of genes associated with the inflammatory response in normal tendon healing (TNF-α, COLI, MMP-3). These results suggest that alterations to scaffold composition, to include matrix known to decrease scar formation in vivo, can modify the inflammatory response in tenocytes. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1332-1342, 2016.
Collapse
Affiliation(s)
- Rebecca A Hortensius
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Jill H Ebens
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Brendan A C Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| |
Collapse
|
125
|
Saravanan S, Leena RS, Selvamurugan N. Chitosan based biocomposite scaffolds for bone tissue engineering. Int J Biol Macromol 2016; 93:1354-1365. [PMID: 26845481 DOI: 10.1016/j.ijbiomac.2016.01.112] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 12/18/2022]
Abstract
The clinical demand for scaffolds and the diversity of available polymers provide freedom in the fabrication of scaffolds to achieve successful progress in bone tissue engineering (BTE). Chitosan (CS) has drawn much of the attention in recent years for its use as graft material either as alone or in a combination with other materials in BTE. The scaffolds should possess a number of properties like porosity, biocompatibility, water retention, protein adsorption, mechanical strength, biomineralization and biodegradability suited for BTE applications. In this review, CS and its properties, and the role of CS along with other polymeric and ceramic materials as scaffolds for bone tissue repair applications are highlighted.
Collapse
Affiliation(s)
- S Saravanan
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, India
| | - R S Leena
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
126
|
He X, Lee B, Jiang Y. Cell-ECM Interactions in Tumor Invasion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 936:73-91. [PMID: 27739043 DOI: 10.1007/978-3-319-42023-3_4] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cancer cells obtain their invasion potential not only by genetic mutations, but also by changing their cellular biophysical and biomechanical features and adapting to the surrounding microenvironments. The extracellular matrix, as a crucial component of the tumor microenvironment, provides the mechanical support for the tissue, mediates the cell-microenvironment interactions, and plays a key role in cancer cell invasion. The biomechanics of the extracellular matrix, particularly collagen, have been extensively studied in the biomechanics community. Cell migration has also enjoyed much attention from both the experimental and modeling efforts. However, the detailed mechanistic understanding of tumor cell-ECM interactions, especially during cancer invasion, has been unclear. This chapter reviews the recent advances in the studies of ECM biomechanics, cell migration, and cell-ECM interactions in the context of cancer invasion.
Collapse
Affiliation(s)
- Xiuxiu He
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, 30303, USA
| | - Byoungkoo Lee
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, 30303, USA
| | - Yi Jiang
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
127
|
Zhuang Y, Shen H, Yang F, Wang X, Wu D. Synthesis and characterization of PLGA nanoparticle/4-arm-PEG hybrid hydrogels with controlled porous structures. RSC Adv 2016. [DOI: 10.1039/c6ra08404d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Here, we constructed PLGA NP crosslinked 4-arm-PEG hybrid hydrogels with adjustable porous structures, surface properties and mechanical properties.
Collapse
Affiliation(s)
- Yaping Zhuang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Hong Shen
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Fei Yang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
128
|
Kumar JP, Bhardwaj N, Mandal BB. Cross-linked silk sericin–gelatin 2D and 3D matrices for prospective tissue engineering applications. RSC Adv 2016. [DOI: 10.1039/c6ra18654h] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Graphical abstract representing the isolation, fabrication and characterization of silk sericin/gelatin blended matrices for intended biological application.
Collapse
Affiliation(s)
- Jadi Praveen Kumar
- Biomaterial and Tissue Engineering Laboratory
- Department of Biosciences and Bioengineering
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| | - Nandana Bhardwaj
- Life Sciences Division
- Institute of Advanced Study in Science and Technology (IASST)
- Guwahati-781035
- India
| | - Biman B. Mandal
- Biomaterial and Tissue Engineering Laboratory
- Department of Biosciences and Bioengineering
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| |
Collapse
|
129
|
Yannas IV, Tzeranis D, So PT. Surface biology of collagen scaffold explains blocking of wound contraction and regeneration of skin and peripheral nerves. Biomed Mater 2015; 11:014106. [PMID: 26694657 PMCID: PMC5775477 DOI: 10.1088/1748-6041/11/1/014106] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We review the details of preparation and of the recently elucidated mechanism of biological (regenerative) activity of a collagen scaffold (dermis regeneration template, DRT) that has induced regeneration of skin and peripheral nerves (PN) in a variety of animal models and in the clinic. DRT is a 3D protein network with optimized pore size in the range 20-125 µm, degradation half-life 14 ± 7 d and ligand densities that exceed 200 µM α1β1 or α2β1 ligands. The pore has been optimized to allow migration of contractile cells (myofibroblasts, MFB) into the scaffold and to provide sufficient specific surface for cell-scaffold interaction; the degradation half-life provides the required time window for satisfactory binding interaction of MFB with the scaffold surface; and the ligand density supplies the appropriate ligands for specific binding of MFB on the scaffold surface. A dramatic change in MFB phenotype takes place following MFB-scaffold binding which has been shown to result in blocking of wound contraction. In both skin wounds and PN wounds the evidence has shown clearly that contraction blocking by DRT is followed by induction of regeneration of nearly perfect organs. The biologically active structure of DRT is required for contraction blocking; well-matched collagen scaffold controls of DRT, with structures that varied from that of DRT, have failed to induce regeneration. Careful processing of collagen scaffolds is required for adequate biological activity of the scaffold surface. The newly understood mechanism provides a relatively complete paradigm of regenerative medicine that can be used to prepare scaffolds that may induce regeneration of other organs in future studies.
Collapse
Affiliation(s)
- I V Yannas
- Departments of Mechanical and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
130
|
Abstract
Much progress in understanding cell migration has been determined by using classic two-dimensional (2D) tissue culture platforms. However, increasingly, it is appreciated that certain properties of cell migration
in vivo are not represented by strictly 2D assays. There is much interest in creating relevant three-dimensional (3D) culture environments and engineered platforms to better represent features of the extracellular matrix and stromal microenvironment that are not captured in 2D platforms. Important to this goal is a solid understanding of the features of the extracellular matrix—composition, stiffness, topography, and alignment—in different tissues and disease states and the development of means to capture these features
Collapse
Affiliation(s)
- Patricia Keely
- Department of Cell and Regenerative Biology, UW Carbone Cancer Center, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Amrinder Nain
- 2Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
131
|
Jafari M, Paknejad Z, Rad MR, Motamedian SR, Eghbal MJ, Nadjmi N, Khojasteh A. Polymeric scaffolds in tissue engineering: a literature review. J Biomed Mater Res B Appl Biomater 2015; 105:431-459. [PMID: 26496456 DOI: 10.1002/jbm.b.33547] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 09/06/2015] [Accepted: 09/27/2015] [Indexed: 12/16/2022]
Abstract
The tissue engineering scaffold acts as an extracellular matrix that interacts to the cells prior to forming new tissues. The chemical and structural characteristics of scaffolds are major concerns in fabricating of ideal three-dimensional structure for tissue engineering applications. The polymer scaffolds used for tissue engineering should possess proper architecture and mechanical properties in addition to supporting cell adhesion, proliferation, and differentiation. Much research has been done on the topic of polymeric scaffold properties such as surface topographic features (roughness and hydrophilicity) and scaffold microstructures (pore size, porosity, pore interconnectivity, and pore and fiber architectures) that influence the cell-scaffold interactions. In this review, efforts were given to evaluate the effect of both chemical and structural characteristics of scaffolds on cell behaviors such as adhesion, proliferation, migration, and differentiation. This review would provide the fundamental information which would be beneficial for scaffold design in future. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 431-459, 2017.
Collapse
Affiliation(s)
- Maissa Jafari
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahrasadat Paknejad
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezai Rad
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Oral and Maxillofacial Surgery, University of Antwerp, Belgium, Antwerp, Belgium
| | - Saeed Reza Motamedian
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Jafar Eghbal
- Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasser Nadjmi
- Department of Oral and Maxillofacial Surgery, University of Antwerp, Belgium, Antwerp, Belgium
| | - Arash Khojasteh
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
132
|
Zhu W, Holmes B, Glazer RI, Zhang LG. 3D printed nanocomposite matrix for the study of breast cancer bone metastasis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:69-79. [PMID: 26472048 DOI: 10.1016/j.nano.2015.09.010] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/04/2015] [Accepted: 09/23/2015] [Indexed: 12/21/2022]
Abstract
Bone is one of the most common metastatic sites of breast cancer, but the underlying mechanisms remain unclear, in part due to an absence of advanced platforms for cancer culture and study that mimic the bone microenvironment. In the present study, we integrated a novel stereolithography-based 3D printer and a unique 3D printed nano-ink consisting of hydroxyapatite nanoparticles suspended in hydrogel to create a biomimetic bone-specific environment for evaluating breast cancer bone invasion. Breast cancer cells cultured in a geometrically optimized matrix exhibited spheroid morphology and migratory characteristics. Co-culture of tumor cells with bone marrow mesenchymal stem cells increased the formation of spheroid clusters. The 3D matrix also allowed for higher drug resistance of breast cancer cells than 2D culture. These results validate that our 3D bone matrix can mimic tumor bone microenvironments, suggesting that it can serve as a tool for studying metastasis and assessing drug sensitivity. From the Clinical Editor: Cancer remains a major cause of mortality for patients in the clinical setting. For breast cancer, bone is one of the most common metastatic sites. In this intriguing article, the authors developed a bone-like environment using 3D printing technology to investigate the underlying biology of bone metastasis. Their results would also allow a new model for other researchers who work on cancer to use.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, USA
| | - Benjamin Holmes
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, USA
| | - Robert I Glazer
- Department of Oncology, and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, USA; Department of Medicine, The George Washington University, Washington, DC, USA; Department of Biomedical Engineering, The George Washington University, Washington, DC, USA.
| |
Collapse
|
133
|
In Vitro Evaluation of Scaffolds for the Delivery of Mesenchymal Stem Cells to Wounds. BIOMED RESEARCH INTERNATIONAL 2015; 2015:108571. [PMID: 26504774 PMCID: PMC4609332 DOI: 10.1155/2015/108571] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/02/2015] [Accepted: 04/09/2015] [Indexed: 12/31/2022]
Abstract
Mesenchymal stem cells (MSCs) have been shown to improve tissue regeneration in several preclinical and clinical trials. These cells have been used in combination with three-dimensional scaffolds as a promising approach in the field of regenerative medicine. We compare the behavior of human adipose-derived MSCs (AdMSCs) on four different biomaterials that are awaiting or have already received FDA approval to determine a suitable regenerative scaffold for delivering these cells to dermal wounds and increasing healing potential. AdMSCs were isolated, characterized, and seeded onto scaffolds based on chitosan, fibrin, bovine collagen, and decellularized porcine dermis. In vitro results demonstrated that the scaffolds strongly influence key parameters, such as seeding efficiency, cellular distribution, attachment, survival, metabolic activity, and paracrine release. Chick chorioallantoic membrane assays revealed that the scaffold composition similarly influences the angiogenic potential of AdMSCs in vivo. The wound healing potential of scaffolds increases by means of a synergistic relationship between AdMSCs and biomaterial resulting in the release of proangiogenic and cytokine factors, which is currently lacking when a scaffold alone is utilized. Furthermore, the methods used herein can be utilized to test other scaffold materials to increase their wound healing potential with AdMSCs.
Collapse
|
134
|
Murphy CM, Duffy GP, Schindeler A, O'brien FJ. Effect of collagen-glycosaminoglycan scaffold pore size on matrix mineralization and cellular behavior in different cell types. J Biomed Mater Res A 2015; 104:291-304. [DOI: 10.1002/jbm.a.35567] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 01/24/2023]
Affiliation(s)
- Ciara M. Murphy
- School of Medicine & Medical Science; University College Dublin; Dublin Ireland
- Tissue Engineering Research Group; Department of Anatomy, Royal College of Surgeons in Ireland (RCSI); Dublin Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin (TCD); Dublin Ireland
| | - Garry P. Duffy
- Tissue Engineering Research Group; Department of Anatomy, Royal College of Surgeons in Ireland (RCSI); Dublin Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin (TCD); Dublin Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER) RCSI & TCD; Dublin Ireland
| | - Aaron Schindeler
- Orthopaedic Research & Biotechnology Unit the Children's Hospital at Westmead
- Discipline of Paediatrics and Child Health; University of Sydney; Sydney Australia
| | - Fergal J. O'brien
- Tissue Engineering Research Group; Department of Anatomy, Royal College of Surgeons in Ireland (RCSI); Dublin Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin (TCD); Dublin Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER) RCSI & TCD; Dublin Ireland
| |
Collapse
|
135
|
Choi JS, Mahadik BP, Harley BAC. Engineering the hematopoietic stem cell niche: Frontiers in biomaterial science. Biotechnol J 2015; 10:1529-45. [PMID: 26356030 PMCID: PMC4724421 DOI: 10.1002/biot.201400758] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/15/2015] [Accepted: 07/16/2015] [Indexed: 12/13/2022]
Abstract
Hematopoietic stem cells (HSCs) play a crucial role in the generation of the body's blood and immune cells. This process takes place primarily in the bone marrow in specialized 'niche' microenvironments, which provide signals responsible for maintaining a balance between HSC quiescence, self-renewal, and lineage specification required for life-long hematopoiesis. While our understanding of these signaling mechanisms continues to improve, our ability to engineer them in vitro for the expansion of clinically relevant HSC populations is still lacking. In this review, we focus on development of biomaterials-based culture platforms for in vitro study of interactions between HSCs and their local microenvironment. The tools and techniques used for both examining HSC-niche interactions as well as applying these findings towards controlled HSC expansion or directed differentiation in 2D and 3D platforms are discussed. These novel techniques hold the potential to push the existing boundaries of HSC cultures towards high-throughput, real-time, and single-cell level biomimetic approaches that enable a more nuanced understanding of HSC regulation and function. Their application in conjunction with innovative biomaterial platforms can pave the way for engineering artificial bone marrow niches for clinical applications as well as elucidating the pathology of blood-related cancers and disorders.
Collapse
Affiliation(s)
- Ji Sun Choi
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bhushan P Mahadik
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Brendan A C Harley
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
136
|
Zhu Y, Zhu R, Ma J, Weng Z, Wang Y, Shi X, Li Y, Yan X, Dong Z, Xu J, Tang C, Jin L. In vitro
cell proliferation evaluation of porous nano-zirconia scaffolds with different porosity for bone tissue engineering. Biomed Mater 2015; 10:055009. [DOI: 10.1088/1748-6041/10/5/055009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
137
|
Pietrucha K. Physicochemical properties of 3D collagen-CS scaffolds for potential use in neural tissue engineering. Int J Biol Macromol 2015; 80:732-9. [DOI: 10.1016/j.ijbiomac.2015.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 07/03/2015] [Accepted: 07/04/2015] [Indexed: 01/22/2023]
|
138
|
Qian Y, Li L, Jiang C, Xu W, Lv Y, Zhong L, Cai K, Yang L. The effect of hyaluronan on the motility of skin dermal fibroblasts in nanofibrous scaffolds. Int J Biol Macromol 2015; 79:133-43. [DOI: 10.1016/j.ijbiomac.2015.04.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 10/23/2022]
|
139
|
Zhao F, Vaughan TJ, McNamara LM. Quantification of fluid shear stress in bone tissue engineering scaffolds with spherical and cubical pore architectures. Biomech Model Mechanobiol 2015. [DOI: 10.1007/s10237-015-0710-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
140
|
Zaganescu R, Barbu Tudoran L, Pall E, Florea A, Roman A, Soanca A, Mihaela Mihu C. Ultrastructural evaluation of mesenchymal stem cells from inflamed periodontium in different in vitro conditions. Microsc Res Tech 2015; 78:792-800. [PMID: 26179176 DOI: 10.1002/jemt.22542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/31/2015] [Accepted: 06/17/2015] [Indexed: 11/08/2022]
Abstract
This research aimed to observe the behavior of mesenchymal stem cells (MSCs) isolated from periodontal granulation tissue (gt) when manipulated ex vivo to induce three-dimensional (3D) spheroid (aggregates) formation as well as when seeded on two bone scaffolds of animal origin. Periodontal gt was chosen as a MSC source because of its availability, considering that it is eliminated as a waste material during conventional surgical therapies. 3D aggregates of cells were generated; they were grown for 3 and 7 days, respectively, and then prepared for transmission electron microscopic analysis. The two biomaterials were seeded for 72 h with gtMSCs and prepared for scanning electronic microscopic observation. The ultrastructural analysis of 3D spheroids remarked some differences between the inner and the outer cell layers, with a certain commitment observed at the inner cells. Both scaffolds showed a relatively smooth surface at low magnification. Macro- and micropores having a scarce distribution were observed on both bone substitutes. gtMSCs grew with relative difficulty on the biomaterials. After 72 h of proliferation, gtMSCs scarcely covered the surface of bovine bone scaffolds, demonstrating fibroblast-like or star-like shapes with elongated filiform extensions. Our results add other data on the possible usefulness of gtMSC and could question the current paradigm regarding the complete removal of chronically inflamed gts from the defects during periodontal surgeries. Until optimal protocols for ex vivo manipulation of MSCs are available for clinical settings, it is advisable to use biocompatible bone substitutes that allow the development of progenitor cells.
Collapse
Affiliation(s)
- Raluca Zaganescu
- Student, Faculty of Medicine, Department of Histology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, 400012, Romania
| | - Lucian Barbu Tudoran
- Department of Molecular Biology and Biotechnologies, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, 400006, Romania
| | - Emoke Pall
- Department of Veterinary Reproduction, Obstetrics, and Gynecology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, 400372, Romania
| | - Adrian Florea
- Department of Cell and Molecular Biology, Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, 400349, Romania
| | - Alexandra Roman
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, 400012, Romania
| | - Andrada Soanca
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, 400012, Romania
| | - Carmen Mihaela Mihu
- Department of Histology, Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, 400349, Romania
| |
Collapse
|
141
|
Ashworth JC, Mehr M, Buxton PG, Best SM, Cameron RE. Cell Invasion in Collagen Scaffold Architectures Characterized by Percolation Theory. Adv Healthc Mater 2015; 4:1317-21. [PMID: 25881025 PMCID: PMC4529738 DOI: 10.1002/adhm.201500197] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Indexed: 11/21/2022]
Affiliation(s)
- Jennifer C. Ashworth
- Department of Materials Science and Metallurgy University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| | - Marco Mehr
- Geistlich Pharma AG Core Technologies Bahnhofstrasse 40 CH‐6110 Wolhusen Switzerland
| | - Paul G. Buxton
- Geistlich Pharma AG Core Technologies Bahnhofstrasse 40 CH‐6110 Wolhusen Switzerland
| | - Serena M. Best
- Department of Materials Science and Metallurgy University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| | - Ruth E. Cameron
- Department of Materials Science and Metallurgy University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| |
Collapse
|
142
|
Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects. Cytotechnology 2015. [PMID: 26091616 DOI: 10.1007/s10616-015-9895-4.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022] Open
Abstract
During the last decade biomaterial sciences and tissue engineering have become new scientific fields supplying rising demand of regenerative therapy. Tissue engineering requires consolidation of a broad knowledge of cell biology and modern biotechnology investigating biocompatibility of materials and their application for the reconstruction of damaged organs and tissues. Stem cell-based tissue regeneration started from the direct cell transplantation into damaged tissues or blood vessels. However, it is difficult to track transplanted cells and keep them in one particular place of diseased organ. Recently, new technologies such as cultivation of stem cell on the scaffolds and subsequently their implantation into injured tissue have been extensively developed. Successful tissue regeneration requires scaffolds with particular mechanical stability or biodegradability, appropriate size, surface roughness and porosity to provide a suitable microenvironment for the sufficient cell-cell interaction, cell migration, proliferation and differentiation. Further functioning of implanted cells highly depends on the scaffold pore sizes that play an essential role in nutrient and oxygen diffusion and waste removal. In addition, pore sizes strongly influence cell adhesion, cell-cell interaction and cell transmigration across the membrane depending on the various purposes of tissue regeneration. Therefore, this review will highlight contemporary tendencies in application of non-degradable scaffolds and stem cells in regenerative medicine with a particular focus on the pore sizes significantly affecting final recover of diseased organs.
Collapse
|
143
|
Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects. Cytotechnology 2015; 68:355-69. [PMID: 26091616 DOI: 10.1007/s10616-015-9895-4] [Citation(s) in RCA: 438] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/12/2015] [Indexed: 12/12/2022] Open
Abstract
During the last decade biomaterial sciences and tissue engineering have become new scientific fields supplying rising demand of regenerative therapy. Tissue engineering requires consolidation of a broad knowledge of cell biology and modern biotechnology investigating biocompatibility of materials and their application for the reconstruction of damaged organs and tissues. Stem cell-based tissue regeneration started from the direct cell transplantation into damaged tissues or blood vessels. However, it is difficult to track transplanted cells and keep them in one particular place of diseased organ. Recently, new technologies such as cultivation of stem cell on the scaffolds and subsequently their implantation into injured tissue have been extensively developed. Successful tissue regeneration requires scaffolds with particular mechanical stability or biodegradability, appropriate size, surface roughness and porosity to provide a suitable microenvironment for the sufficient cell-cell interaction, cell migration, proliferation and differentiation. Further functioning of implanted cells highly depends on the scaffold pore sizes that play an essential role in nutrient and oxygen diffusion and waste removal. In addition, pore sizes strongly influence cell adhesion, cell-cell interaction and cell transmigration across the membrane depending on the various purposes of tissue regeneration. Therefore, this review will highlight contemporary tendencies in application of non-degradable scaffolds and stem cells in regenerative medicine with a particular focus on the pore sizes significantly affecting final recover of diseased organs.
Collapse
|
144
|
Moreno-Arotzena O, Borau C, Movilla N, Vicente-Manzanares M, García-Aznar JM. Fibroblast Migration in 3D is Controlled by Haptotaxis in a Non-muscle Myosin II-Dependent Manner. Ann Biomed Eng 2015; 43:3025-39. [PMID: 26014363 PMCID: PMC4623072 DOI: 10.1007/s10439-015-1343-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 05/16/2015] [Indexed: 01/24/2023]
Abstract
Cell migration in 3D is a key process in many physiological and pathological processes. Although valuable knowledge has been accumulated through analysis of various 2D models, some of these insights are not directly applicable to migration in 3D. In this study, we have confined biomimetic hydrogels within microfluidic platforms in the presence of a chemoattractant (platelet-derived growth factor-BB). We have characterized the migratory responses of human fibroblasts within them, particularly focusing on the role of non-muscle myosin II. Our results indicate a prominent role for myosin II in the integration of chemotactic and haptotactic migratory responses of fibroblasts in 3D confined environments.
Collapse
Affiliation(s)
- O Moreno-Arotzena
- Multiscale in Mechanical and Biological Engineering (M2BE), Department of Mechanical Engineering, Aragon Institute of Engineering Research (I3A), University of Zaragoza, 50018, Saragossa, Spain
| | - C Borau
- Multiscale in Mechanical and Biological Engineering (M2BE), Department of Mechanical Engineering, Aragon Institute of Engineering Research (I3A), University of Zaragoza, 50018, Saragossa, Spain
| | - N Movilla
- Multiscale in Mechanical and Biological Engineering (M2BE), Department of Mechanical Engineering, Aragon Institute of Engineering Research (I3A), University of Zaragoza, 50018, Saragossa, Spain
| | - M Vicente-Manzanares
- Department of Medicine, Hospital Universitario de la Princesa, Universidad Autonoma de Madrid School of Medicine, 28006, Madrid, Spain
| | - J M García-Aznar
- Multiscale in Mechanical and Biological Engineering (M2BE), Department of Mechanical Engineering, Aragon Institute of Engineering Research (I3A), University of Zaragoza, 50018, Saragossa, Spain.
| |
Collapse
|
145
|
Teimouri A, Ebrahimi R, Emadi R, Beni BH, Chermahini AN. Nano-composite of silk fibroin–chitosan/Nano ZrO2 for tissue engineering applications: Fabrication and morphology. Int J Biol Macromol 2015; 76:292-302. [DOI: 10.1016/j.ijbiomac.2015.02.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 11/27/2022]
|
146
|
Jaiswal M, Gupta A, Dinda AK, Koul V. An investigation study of gelatin release from semi-interpenetrating polymeric network hydrogel patch for excision wound healing on Wistar rat model. J Appl Polym Sci 2015. [DOI: 10.1002/app.42120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Maneesh Jaiswal
- Centre for Biomedical Engineering; Indian Institute of Technology; New Delhi 110016 India
| | - Asheesh Gupta
- Pharmacology Division; Defence Institute of Physiology and Allied Sciences, Ministry of Defense; New Delhi 110059 India
| | - Amit Kumar Dinda
- Department of Pathology; All India Institute of Medical Sciences; New Delhi 110024 India
| | - Veena Koul
- Centre for Biomedical Engineering; Indian Institute of Technology; New Delhi 110016 India
| |
Collapse
|
147
|
Caliari SR, Gonnerman EA, Grier WK, Weisgerber DW, Banks JM, Alsop AJ, Lee JS, Bailey RC, Harley BAC. Collagen scaffold arrays for combinatorial screening of biophysical and biochemical regulators of cell behavior. Adv Healthc Mater 2015; 4:58-64. [PMID: 24989480 DOI: 10.1002/adhm.201400252] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Indexed: 11/11/2022]
Abstract
Arrays of 3D macroporous collagen scaffolds with orthogonal gradations of structural and biomolecular cues are described. Gradient maker technology is applied to create linear biomolecular gradients within microstructurally distinct sections of a single CG scaffold array. The array set up is used to explore cell behaviors including proliferation and regulation of stem cell fate.
Collapse
Affiliation(s)
- Steven R. Caliari
- Department of Chemical and Biomolecular Engineering; University of Illinois at Urbana-Champaign; 104 RAL, 600 S. Mathews Ave. Urbana IL 61801 USA
| | - Emily A. Gonnerman
- Department of Chemical and Biomolecular Engineering; University of Illinois at Urbana-Champaign; 104 RAL, 600 S. Mathews Ave. Urbana IL 61801 USA
| | - William K. Grier
- Department of Chemical and Biomolecular Engineering; University of Illinois at Urbana-Champaign; 104 RAL, 600 S. Mathews Ave. Urbana IL 61801 USA
| | - Daniel W. Weisgerber
- Department of Chemical and Biomolecular Engineering; University of Illinois at Urbana-Champaign; 104 RAL, 600 S. Mathews Ave. Urbana IL 61801 USA
| | - Jessica M. Banks
- Department of Chemistry; University of Illinois at Urbana-Champaign; 53 RAL, 600 S. Mathews Ave. Urbana IL 61801 USA
| | - Aurora J. Alsop
- Department of Chemistry; University of Illinois at Urbana-Champaign; 53 RAL, 600 S. Mathews Ave. Urbana IL 61801 USA
| | - Jae-Sung Lee
- Department of Biomedical Engineering; University of Wisconsin; 1111 Highland Ave. Madison WI 53705 USA
| | - Ryan C. Bailey
- Department of Chemistry; University of Illinois at Urbana-Champaign; 53 RAL, 600 S. Mathews Ave. Urbana IL 61801 USA
| | - Brendan A. C. Harley
- Department of Chemical and Biomolecular Engineering; Institute for Genomic Biology; University of Illinois at Urbana-Champaign; 110 RAL, 600 S. Mathews Ave. Urbana IL 61801 USA
| |
Collapse
|
148
|
Teimouri A, Ebrahimi R, Chermahini AN, Emadi R. Fabrication and characterization of silk fibroin/chitosan/Nano γ-alumina composite scaffolds for tissue engineering applications. RSC Adv 2015. [DOI: 10.1039/c5ra01018g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of silk fibroin/chitosan/Nano γ-alumina composite scaffolds have been prepared using the lyophilization technique for tissue engineering. These were then characterized using SEM, XRD, EDX, FTIR and TGA.
Collapse
Affiliation(s)
- Abbas Teimouri
- Chemistry Department
- Payame Noor University (PNU)
- Isfahan
- Islamic Republic of Iran
| | - Raheleh Ebrahimi
- Chemistry Department
- Payame Noor University (PNU)
- Isfahan
- Islamic Republic of Iran
| | | | - Rahmatollah Emadi
- Department of Materials Engineering
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| |
Collapse
|
149
|
Hoehn RD, Schreder AM, Rez MFA, Kais S. An agent-based model approach to multi-phase life-cycle for contact inhibited, anchorage dependent cells. Interdiscip Sci 2014; 6:312-22. [PMID: 25519151 DOI: 10.1007/s12539-012-0236-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 09/16/2013] [Accepted: 12/17/2013] [Indexed: 12/01/2022]
Abstract
Cellular agent-based models are a technique that can be easily adapted to describe nuances of a particular cell type. Within we have concentrated on the cellular particularities of the human Endothelial Cell, explicitly the effects both of anchorage dependency and of heightened scaffold binding on the total confluence time of a system. By expansion of a discrete, homogeneous, asynchronous cellular model to account for several states per cell (phases within a cell's life); we accommodate and track dependencies of confluence time and population dynamics on these factors. Increasing the total motility time, analogous to weakening the binding between lattice and cell, affects the system in unique ways from increasing the average cellular velocity; each degree of freedom allows for control over the time length the system achieves logistic growth and confluence. These additional factors may allow for greater control over behaviors of the system. Examinations of system's dependence on both seed state velocity and binding are also enclosed.
Collapse
Affiliation(s)
- Ross D Hoehn
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA,
| | | | | | | |
Collapse
|
150
|
Riching KM, Cox BL, Salick MR, Pehlke C, Riching AS, Ponik SM, Bass BR, Crone WC, Jiang Y, Weaver AM, Eliceiri KW, Keely PJ. 3D collagen alignment limits protrusions to enhance breast cancer cell persistence. Biophys J 2014; 107:2546-58. [PMID: 25468334 DOI: 10.1016/j.bpj.2014.10.035] [Citation(s) in RCA: 317] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/26/2014] [Accepted: 10/03/2014] [Indexed: 11/16/2022] Open
Abstract
Patients with mammographically dense breast tissue have a greatly increased risk of developing breast cancer. Dense breast tissue contains more stromal collagen, which contributes to increased matrix stiffness and alters normal cellular responses. Stromal collagen within and surrounding mammary tumors is frequently aligned and reoriented perpendicular to the tumor boundary. We have shown that aligned collagen predicts poor outcome in breast cancer patients, and postulate this is because it facilitates invasion by providing tracks on which cells migrate out of the tumor. However, the mechanisms by which alignment may promote migration are not understood. Here, we investigated the contribution of matrix stiffness and alignment to cell migration speed and persistence. Mechanical measurements of the stiffness of collagen matrices with varying density and alignment were compared with the results of a 3D microchannel alignment assay to quantify cell migration. We further interpreted the experimental results using a computational model of cell migration. We find that collagen alignment confers an increase in stiffness, but does not increase the speed of migrating cells. Instead, alignment enhances the efficiency of migration by increasing directional persistence and restricting protrusions along aligned fibers, resulting in a greater distance traveled. These results suggest that matrix topography, rather than stiffness, is the dominant feature by which an aligned matrix can enhance invasion through 3D collagen matrices.
Collapse
Affiliation(s)
- Kristin M Riching
- Biomedical Engineering Program, University of Wisconsin-Madison, Madison, Wisconsin; Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin
| | - Benjamin L Cox
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin; Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Max R Salick
- Materials Science Program, University of Wisconsin-Madison, Madison, Wisconsin; Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Carolyn Pehlke
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin
| | - Andrew S Riching
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Susan M Ponik
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Wendy C Crone
- Biomedical Engineering Program, University of Wisconsin-Madison, Madison, Wisconsin; Materials Science Program, University of Wisconsin-Madison, Madison, Wisconsin; Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Yi Jiang
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia
| | - Alissa M Weaver
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kevin W Eliceiri
- Biomedical Engineering Program, University of Wisconsin-Madison, Madison, Wisconsin; Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin; University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Patricia J Keely
- Biomedical Engineering Program, University of Wisconsin-Madison, Madison, Wisconsin; Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin; University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|