101
|
HIV-1 Tat membrane interactions probed using X-ray and neutron scattering, CD spectroscopy and MD simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:3078-87. [PMID: 25148702 DOI: 10.1016/j.bbamem.2014.08.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 07/08/2014] [Accepted: 08/05/2014] [Indexed: 11/21/2022]
Abstract
We report the effect on lipid bilayers of the Tat peptide Y47GRKKRRQRRR57 from the HIV-1 virus transactivator of translation (Tat) protein. Synergistic use of low-angle X-ray scattering (LAXS) and atomistic molecular dynamic simulations (MD) indicate Tat peptide binding to neutral dioleoylphosphocholine (DOPC) lipid headgroups. This binding induced the local lipid phosphate groups to move 3Å closer to the center of the bilayer. Many of the positively charged guanidinium components of the arginines were as close to the center of the bilayer as the locally thinned lipid phosphate groups. LAXS data for DOPC, DOPC/dioleoylphosphoethanolamine (DOPE), DOPC/dioleoylphosphoserine (DOPS), and a mimic of the nuclear membrane gave similar results. Generally, the Tat peptide decreased the bilayer bending modulus KC and increased the area/lipid. Further indications that Tat softens a membrane, thereby facilitating translocation, were provided by wide-angle X-ray scattering (WAXS) and neutron scattering. CD spectroscopy was also applied to further characterize Tat/membrane interactions. Although a mechanism for translation remains obscure, this study suggests that the peptide/lipid interaction makes the Tat peptide poised to translocate from the headgroup region.
Collapse
|
102
|
Pan J, Marquardt D, Heberle FA, Kučerka N, Katsaras J. Revisiting the bilayer structures of fluid phase phosphatidylglycerol lipids: Accounting for exchangeable hydrogens. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2966-9. [PMID: 25135659 DOI: 10.1016/j.bbamem.2014.08.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/06/2014] [Accepted: 08/08/2014] [Indexed: 11/30/2022]
Abstract
We recently published two papers detailing the structures of fluid phase phosphatidylglycerol (PG) lipid bilayers (Kučerka et al., 2012 J. Phys. Chem. B 116: 232-239; Pan et al., 2012 Biochim. Biophys. Acta Biomembr. 1818: 2135-2148), which were determined using the scattering density profile model. This hybrid experimental/computational technique utilizes molecular dynamics simulations to parse a lipid bilayer into components whose volume probabilities follow simple analytical functional forms. Given the appropriate scattering densities, these volume probabilities are then translated into neutron scattering length density (NSLD) and electron density (ED) profiles, which are used to jointly refine experimentally obtained small angle neutron and X-ray scattering data. However, accurate NSLD and ED profiles can only be obtained if the bilayer's chemical composition is known. Specifically, in the case of neutron scattering, the lipid's exchangeable hydrogens with aqueous D2O must be accounted for, as they can have a measureable effect on the resultant lipid bilayer structures. This was not done in our above-mentioned papers. Here we report on the molecular structures of PG lipid bilayers by appropriately taking into account the exchangeable hydrogens. Analysis indicates that the temperature-averaged PG lipid areas decrease by 1.5 to 3.8Å(2), depending on the lipid's acyl chain length and unsaturation, compared to PG areas when hydrogen exchange was not taken into account.
Collapse
Affiliation(s)
- Jianjun Pan
- Department of Physics, University of South Florida, Tampa, FL 33620, USA.
| | - Drew Marquardt
- Department of Physics, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Frederick A Heberle
- Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Norbert Kučerka
- Department of Physical Chemistry of Drugs, Comenius University, 832 32 Bratislava, Slovakia; Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - John Katsaras
- Department of Physics, Brock University, St. Catharines, ON L2S 3A1, Canada; Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Joint Institute for Neutron Scattering, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
103
|
Alsop RJ, Barrett MA, Zheng S, Dies H, Rheinstädter MC. Acetylsalicylic acid (ASA) increases the solubility of cholesterol when incorporated in lipid membranes. SOFT MATTER 2014; 10:4275-4286. [PMID: 24789086 DOI: 10.1039/c4sm00372a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cholesterol has been well established as a mediator of cell membrane fluidity. By interacting with lipid tails, cholesterol causes the membrane tails to be constrained thereby reducing membrane fluidity, well known as the condensation effect. Acetylsalicylic acid (ASA), the main ingredient in aspirin, has recently been shown to increase fluidity in lipid bilayers by primarily interacting with lipid head groups. We used high-resolution X-ray diffraction to study both ASA and cholesterol coexisting in model membranes of dimyristoylphosphatidylcholine (DMPC). While a high cholesterol concentration of 40 mol% cholesterol leads to the formation of immiscible cholesterol bilayers, as was reported previously, increasing the amount of ASA in the membranes between 0 to 12.5 mol% was found to significantly increase the fluidity of the bilayers and dissolve the cholesterol plaques. We, therefore, present experimental evidence for an interaction between cholesterol and ASA on the level of the cell membrane at elevated levels of cholesterol and ASA.
Collapse
Affiliation(s)
- Richard J Alsop
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
| | | | | | | | | |
Collapse
|
104
|
Dies H, Toppozini L, Rheinstädter MC. The interaction between amyloid-β peptides and anionic lipid membranes containing cholesterol and melatonin. PLoS One 2014; 9:e99124. [PMID: 24915524 PMCID: PMC4051683 DOI: 10.1371/journal.pone.0099124] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 05/11/2014] [Indexed: 12/21/2022] Open
Abstract
One of the hallmarks of Alzheimer's disease is the formation of senile plaques, primarily consisting of amyloid- (A) peptides. Peptide-membrane and peptide-lipid interactions are thought to be crucial in this process. We studied the interaction of A and A peptides with anionic lipid membranes made of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphoserine (DMPS) using X-ray diffraction. We compare the experimentally determined electron densities in the gel state of the membranes with density calculations from peptide structures reported in the Protein Data Bank in order to determine the position of the peptide in the bilayers. The full length peptide A was found to embed in the hydrocarbon core of the anionic lipid bilayers. Two populations were found for the A peptide: (1) membrane-bound states in the hydrophilic head group region of the bilayers, where the peptides align parallel to the membranes, and (2) an embedded state in the bilayer center. Aging plays an important role in the development of Alzheimer's, in particular with respect to changes in cholesterol and melatonin levels in the brain tissue. Immiscible cholesterol plaques were created by addition of 30 mol% cholesterol to the anionic membranes. The A peptides were found to strongly interact with the lipid bilayers, displacing further cholesterol molecules into the plaques, effectively lowering the cholesterol concentration in the membranes and increasing the total fraction of cholesterol plaques. Addition of 30 mol% melatonin molecules to the anionic membranes drastically reduced the population of the membrane-embedded A state. These results present experimental evidence for an interaction between A peptides, melatonin and cholesterol in lipid membranes.
Collapse
Affiliation(s)
- Hannah Dies
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Laura Toppozini
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Maikel C. Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
105
|
Abstract
When engineering lipid membranes for applications, it is essential to characterize them to avoid artifacts introduced by manipulation and the experimental environment. Wide-angle X-ray scattering is a powerful structural characterization tool for well-ordered lipid systems. It reveals remarkable differences in rotational order parameters for samples prepared in different ways. New data and perspectives are presented here for multilamellar systems that support and extend the characterization work on unilamellar systems that is reported by Watkins et al. in this issue of ACS Nano.
Collapse
|
106
|
Armstrong CL, Häussler W, Seydel T, Katsaras J, Rheinstädter MC. Nanosecond lipid dynamics in membranes containing cholesterol. SOFT MATTER 2014; 10:2600-2611. [PMID: 24647350 DOI: 10.1039/c3sm51757h] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Lipid dynamics in the cholesterol-rich (40 mol%) liquid-ordered (lo) phase of dimyristoylphosphatidylcholine membranes were studied using neutron spin-echo and neutron backscattering. Recent theoretical and experimental evidence supports the notion of the liquid-ordered phase in phospholipid membranes as a locally structured liquid, with small ordered 'domains' of a highly dynamic nature in equilibrium with a disordered matrix [S. Meinhardt, R. L. C. Vink and F. Schmid, Proc. Natl. Acad. Sci. U. S. A., 2013, 110(12), 4476-4481, C. L. Armstrong et al., PLoS One, 2013, 8(6), e66162]. This local structure was found to have a pronounced impact on the membranes' dynamical properties. We found that the long-wavelength dynamics in the liquid-ordered phase, associated with the elastic properties of the membranes, were faster by two orders of magnitude as compared to the liquid disordered phase. At the same time, collective nanoscale diffusion was significantly slower. The presence of a soft-mode (a slowing down) in the long-wavelength dispersion relationship suggests an upper size limit for the ordered lipid domain of ≈220 Å. Moreover, from the relaxation rate of the collective lipid diffusion of lipid-lipid distances, the lifetime of these domains was estimated to be about 100 nanoseconds.
Collapse
Affiliation(s)
- Clare L Armstrong
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada.
| | | | | | | | | |
Collapse
|
107
|
Nagle JF, Jablin MS, Tristram-Nagle S, Akabori K. What are the true values of the bending modulus of simple lipid bilayers? Chem Phys Lipids 2014; 185:3-10. [PMID: 24746555 DOI: 10.1016/j.chemphyslip.2014.04.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/21/2014] [Accepted: 04/05/2014] [Indexed: 01/02/2023]
Abstract
Values of the bending modulus KC are reviewed, and possible causes for the considerable differences are discussed. One possible cause is the use of glucose and sucrose in the classical micromechanical manipulation and shape analysis methods. New data, using the more recent low angle X-ray method, are presented that do not support an effect of glucose or sucrose on KC. Another possible cause is using an incomplete theory to interpret the data. Adding a tilt term to the theory clearly does not affect the value obtained from the shape analysis method. It is shown that a tilt term, using a value of the modulus Kθ indicated by simulations, theory, and estimated from order parameters obtained from NMR and from the wide angle X-ray method, should also not affect the value obtained using the micromechanical manipulation method, although it does require a small correction when determining the value of the area compressibility modulus KA. It is still being studied whether including a tilt term will significantly affect the values of KC obtained using low angle X-ray data. It remains unclear what causes the differences in the experimental values of KC for simple lipid bilayers.
Collapse
Affiliation(s)
- John F Nagle
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Michael S Jablin
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | - Kiyotaka Akabori
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
108
|
Sun D, Lin X, Gu N. Cholesterol affects C₆₀ translocation across lipid bilayers. SOFT MATTER 2014; 10:2160-2168. [PMID: 24652350 DOI: 10.1039/c3sm52211c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cholesterol plays an important role in regulating the structural properties of phospholipid membranes and further influences the permeability of molecules and nanoparticles. However, nanoparticles' translocation across phospholipid membranes in the presence of cholesterol on the molecular scale is rarely studied. Here, we performed coarse-grained molecular dynamics simulations to probe the translocation of C60, one of the most popular nanoparticles, across dipalmitoylphosphatidylcholine bilayers with different concentrations of cholesterol molecules (0-50 mol%). The results reveal that the presence of cholesterol molecules induces lower area per lipid, larger bilayer thickness, and more ordered orientation of lipid tails. The higher the concentration of cholesterol molecules, the more significant is the condensing effect of lipid bilayer as just mentioned. Besides, dynamic processes, free energy profiles and permeability coefficients further indicate that the permeability of C60 decreases with increasing cholesterol concentration, which can be explained by the condensation effect and reduced free volume. Our researches provide an explicit description of the impact of cholesterol on C60 translocation across lipid bilayers.
Collapse
Affiliation(s)
- Dandan Sun
- State Key Laboratory of Bioelectronics, Jiangsu key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
| | | | | |
Collapse
|
109
|
Boscia AL, Akabori K, Benamram Z, Michel JA, Jablin MS, Steckbeck JD, Montelaro RC, Nagle JF, Tristram-Nagle S. Membrane structure correlates to function of LLP2 on the cytoplasmic tail of HIV-1 gp41 protein. Biophys J 2014; 105:657-66. [PMID: 23931314 DOI: 10.1016/j.bpj.2013.06.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 06/18/2013] [Accepted: 06/24/2013] [Indexed: 11/30/2022] Open
Abstract
Mutation studies previously showed that the lentivirus lytic peptide (LLP2) sequence of the cytoplasmic C-terminal tail of the HIV-1 gp41 envelope protein inhibited viral-initiated T-cell death and T-cell syncytium formation, at which time in the HIV life cycle the gp41 protein is embedded in the T-cell membrane. In striking contrast, the mutants did not affect virion infectivity, during which time the gp41 protein is embedded in the HIV envelope membrane. To examine the role of LLP2/membrane interactions, we applied synchrotron x-radiation to determine structure of hydrated membranes. We focused on WT LLP2 peptide (+3 charge) and MX2 mutant (-1 charge) with membrane mimics for the T-cell and the HIV-1 membranes. To investigate the influence of electrostatics, cholesterol content, and peptide palmitoylation, we also studied three other LLP2 variants and HIV-1 mimics without negatively charged lipids or cholesterol as well as extracted HIV-1 lipids. All LLP2 peptides bound strongly to T-cell membrane mimics, as indicated by changes in membrane structure and bending. In contrast, none of the weakly bound LLP2 variants changed the HIV-1 membrane mimic structure or properties. This correlates well with, and provides a biophysical basis for, previously published results that reported lack of a mutant effect in HIV virion infectivity in contrast to an inhibitory effect in T-cell syncytium formation. It shows that interaction of LLP2 with the T-cell membrane modulates biological function.
Collapse
Affiliation(s)
- Alexander L Boscia
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Boscia AL, Treece BW, Mohammadyani D, Klein-Seetharaman J, Braun AR, Wassenaar TA, Klösgen B, Tristram-Nagle S. X-ray structure, thermodynamics, elastic properties and MD simulations of cardiolipin/dimyristoylphosphatidylcholine mixed membranes. Chem Phys Lipids 2014; 178:1-10. [PMID: 24378240 PMCID: PMC4026202 DOI: 10.1016/j.chemphyslip.2013.12.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/18/2013] [Accepted: 12/20/2013] [Indexed: 12/13/2022]
Abstract
Cardiolipins (CLs) are important biologically for their unique role in biomembranes that couple phosphorylation and electron transport like bacterial plasma membranes, chromatophores, chloroplasts and mitochondria. CLs are often tightly coupled to proteins involved in oxidative phosphorylation. The first step in understanding the interaction of CL with proteins is to obtain the pure CL structure, and the structure of mixtures of CL with other lipids. In this work we use a variety of techniques to characterize the fluid phase structure, material properties and thermodynamics of mixtures of dimyristoylphosphatidylcholine (DMPC) with tetramyristoylcardiolipin (TMCL), both with 14-carbon chains, at several mole percentages. X-ray diffuse scattering was used to determine structure, including bilayer thickness and area/lipid, the bending modulus, KC, and SXray, a measure of chain orientational order. Our results reveal that TMCL thickens DMPC bilayers at all mole percentages, with a total increase of ∼6 Å in pure TMCL, and increases AL from 64 Å(2) (DMPC at 35 °C) to 109 Å(2) (TMCL at 50 °C). KC increases by ∼50%, indicating that TMCL stiffens DMPC membranes. TMCL also orders DMPC chains by a factor of ∼2 for pure TMCL. Coarse grain molecular dynamics simulations confirm the experimental thickening of 2 Å for 20mol% TMCL and locate the TMCL headgroups near the glycerol-carbonyl region of DMPC; i.e., they are sequestered below the DMPC phosphocholine headgroup. Our results suggest that TMCL plays a role similar to cholesterol in that it thickens and stiffens DMPC membranes, orders chains, and is positioned under the umbrella of the PC headgroup. CL may be necessary for hydrophobic matching to inner mitochondrial membrane proteins. Differential scanning calorimetry, SXray and CGMD simulations all suggest that TMCL does not form domains within the DMPC bilayers. We also determined the gel phase structure of TMCL, which surprisingly displays diffuse X-ray scattering, like a fluid phase lipid. AL=40.8 Å(2) for the ½TMCL gel phase, smaller than the DMPC gel phase with AL=47.2 Å(2), but similar to AL of DLPE=41 Å(2), consistent with untilted chains in gel phase TMCL.
Collapse
Affiliation(s)
- Alexander L Boscia
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Bradley W Treece
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Dariush Mohammadyani
- Bioengineering Department, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Judith Klein-Seetharaman
- Metabolic & Vascular Health, Medical School, University of Warwick, Coventry, England CV4 7AL, United Kingdom
| | - Anthony R Braun
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| | - Tsjerk A Wassenaar
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Beate Klösgen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Stephanie Tristram-Nagle
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States.
| |
Collapse
|
111
|
Ramirez DMC, Jakubek ZJ, Lu Z, Ogilvie WW, Johnston LJ. Changes in order parameters associated with ceramide-mediated membrane reorganization measured using pTIRFM. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:15907-15918. [PMID: 24308875 DOI: 10.1021/la403585v] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The enzymatic generation of ceramide has significant effects on the biophysical properties of lipid bilayers and can lead to the extensive reorganization of cell membranes. We have synthesized and characterized a headgroup-labeled fluorescent lipid probe (NBD-ceramide, NBD-Cer) and demonstrated that it can be used for polarized total internal reflection fluorescence microscopy experiments to probe changes in membrane order that result from ceramide incorporation. NBD-Cer measures significantly higher order parameters for the liquid-ordered (Lo) domains ([P2] = 0.40 ± 0.03) than for the liquid-disordered phase (Ld, fluid, [P2] = 0.22 ± 0.02) of phase-separated bilayers prepared from egg sphingomyelin, dioleolyphosphatidylcholine, and cholesterol mixtures. The probe also responds to changes in packing induced by the direct incorporation of ceramide or the variation in the ionic strength of the aqueous medium. Order parameter maps obtained after enzyme treatment of bilayers with coexisting Lo and Ld phases show two distinct types of behavior. In regions of high enzyme activity, the initial Lo/Ld domains are replaced by large, dark features that have high membrane order corroborating previous hypotheses that these are ceramide-enriched regions of the membrane. In areas of low enzyme activity, the size and shape of the Lo domains are conserved, but there is an increase in the order parameter for the initial Ld phase ([P2] = 0.30 ± 0.01). This is attributed to the incorporation of ceramide in the Lo domains with the concomitant expulsion of cholesterol into the surrounding fluid phase, increasing its order parameter.
Collapse
Affiliation(s)
- Daniel M Carter Ramirez
- Measurement Science and Standards, National Research Council of Canada , Ottawa, Ontario K1A 0R6, Canada
| | | | | | | | | |
Collapse
|
112
|
Rheinstädter MC, Mouritsen OG. Small-scale structure in fluid cholesterol–lipid bilayers. Curr Opin Colloid Interface Sci 2013. [DOI: 10.1016/j.cocis.2013.07.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
113
|
Toward a better raft model: modulated phases in the four-component bilayer, DSPC/DOPC/POPC/CHOL. Biophys J 2013; 104:853-62. [PMID: 23442964 DOI: 10.1016/j.bpj.2013.01.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/18/2012] [Accepted: 01/04/2013] [Indexed: 01/20/2023] Open
Abstract
The liquid-liquid (Ld + Lo) coexistence region within a distearoyl-phosphatidylcholine/dioleoyl-phosphatidylcholine/palmitoyl-oleoyl-phosphatidylcholine/cholesterol (DSPC/DOPC/POPC/CHOL) mixture displays a nanoscopic-to-macroscopic transition of phase domains as POPC is replaced by DOPC. Previously, we showed that the transition goes through a modulated phase regime during this replacement, in which patterned liquid phase morphologies are observed on giant unilamellar vesicles (GUVs). Here, we describe a more detailed investigation of the modulated phase regime along two different thermodynamic tielines within the Ld + Lo region of this four-component mixture. Using fluorescence microscopy of GUVs, we found that the modulated phase regime occurs at relatively narrow DOPC/(DOPC+POPC) ratios. This modulated phase window shifts to higher values of DOPC/(DOPC+POPC) when CHOL concentration is increased, and coexisting phases become closer in properties. Monte Carlo simulations reproduced the patterns observed on GUVs, using a competing interactions model of line tension and curvature energies. Sufficiently low line tension and high bending moduli are required to generate stable modulated phases. Altogether, our studies indicate that by tuning the lipid composition, both the domain size and morphology can be altered drastically within a narrow composition space. This lends insight into a possible mechanism whereby cells can reorganize plasma membrane compartmentalization simply by tuning the local membrane composition or line tension.
Collapse
|
114
|
Chowdhary J, Harder E, Lopes PEM, Huang L, MacKerell AD, Roux B. A polarizable force field of dipalmitoylphosphatidylcholine based on the classical Drude model for molecular dynamics simulations of lipids. J Phys Chem B 2013; 117:9142-60. [PMID: 23841725 PMCID: PMC3799809 DOI: 10.1021/jp402860e] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A polarizable force field of saturated phosphatidylcholine-containing lipids based on the classical Drude oscillator model is optimized and used in molecular dynamics simulations of bilayer and monolayer membranes. The hierarchical parametrization strategy involves the optimization of parameters for small molecules representative of lipid functional groups, followed by their application in larger model compounds and full lipids. The polar headgroup is based on molecular ions tetramethyl ammonium and dimethyl phosphate, the esterified glycerol backbone is based on methyl acetate, and the aliphatic lipid hydrocarbon tails are based on linear alkanes. Parameters, optimized to best represent a collection of gas and liquid properties for these compounds, are assembled into a complete model of dipalmitoylphosphatidylcholine (DPPC) lipids that is tested against the experimental properties of bilayer and monolayer membranes. The polarizable model yields average structural properties that are in broad accord with experimental data. The area per lipid of the model is 60 Å(2), slightly smaller than the experimental value of 63 Å(2). The order parameters from nuclear magnetic resonance deuterium quadrupolar splitting measures, the electron density profile, and the monolayer dipole potential are in reasonable agreement with experimental data, and with the nonpolarizable CHARMM C36 lipid force field.
Collapse
Affiliation(s)
- Janamejaya Chowdhary
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois, 60637
| | | | - Pedro E. M. Lopes
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Maryland, 21201
| | - Lei Huang
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois, 60637
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Maryland, 21201
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois, 60637
| |
Collapse
|
115
|
The Observation of Highly Ordered Domains in Membranes with Cholesterol. PLoS One 2013; 8:e66162. [PMID: 23823623 PMCID: PMC3688844 DOI: 10.1371/journal.pone.0066162] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/02/2013] [Indexed: 12/22/2022] Open
Abstract
Rafts, or functional domains, are transient nano- or mesoscopic structures in the exoplasmic leaflet of the plasma membrane, and are thought to be essential for many cellular processes. Using neutron diffraction and computer modelling, we present evidence for the existence of highly ordered lipid domains in the cholesterol-rich (32.5 mol%) liquid-ordered ([Formula: see text]) phase of dipalmitoylphosphatidylcholine membranes. The liquid ordered phase in one-component lipid membranes has previously been thought to be a homogeneous phase. The presence of highly ordered lipid domains embedded in a disordered lipid matrix implies non-uniform distribution of cholesterol between the two phases. The experimental results are in excellent agreement with recent computer simulations of DPPC/cholesterol complexes [Meinhardt, Vink and Schmid (2013). Proc Natl Acad Sci USA 110(12): 4476-4481], which reported the existence of nanometer size [Formula: see text] domains in a liquid disordered lipid environment.
Collapse
|
116
|
Gkeka P, Sarkisov L, Angelikopoulos P. Homogeneous Hydrophobic-Hydrophilic Surface Patterns Enhance Permeation of Nanoparticles through Lipid Membranes. J Phys Chem Lett 2013; 4:1907-1912. [PMID: 26283128 DOI: 10.1021/jz400679z] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We employ coarse-grained molecular dynamics simulations to understand why certain interaction patterns on the surface of a nanoparticle promote its translocation through a lipid membrane. We demonstrate that switching from a random, heterogeneous distribution of hydrophobic and hydrophilic areas on the surface of a nanoparticle to even, homogeneous patterns substantially flattens the translocation free-energy profile and dramatically enhances permeation. We then proceed to construct a more detailed coarse-grained model of a nanoparticle with flexible hydrophobic and hydrophilic ligands arranged into striped domains. Molecular dynamics simulations of these nanoparticles show that the terminal groups of the ligands tend to arrange themselves into homogeneous patterns, despite the underlying striped domains. These observations are linked to recent experimental studies.
Collapse
Affiliation(s)
- Paraskevi Gkeka
- †Institute for Materials and Processes, School of Engineering, University of Edinburgh, Edinburgh, United Kingdom
| | - Lev Sarkisov
- †Institute for Materials and Processes, School of Engineering, University of Edinburgh, Edinburgh, United Kingdom
| | - Panagiotis Angelikopoulos
- ‡Computational Science and Engineering Laboratory, Universitätstrasse 6, ETH Zurich, CH-8092, Switzerland
| |
Collapse
|
117
|
Toppozini L, Dies H, Deamer DW, Rheinstädter MC. Adenosine monophosphate forms ordered arrays in multilamellar lipid matrices: insights into assembly of nucleic acid for primitive life. PLoS One 2013; 8:e62810. [PMID: 23667523 PMCID: PMC3646914 DOI: 10.1371/journal.pone.0062810] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/26/2013] [Indexed: 11/18/2022] Open
Abstract
A fundamental question of biology is how nucleic acids first assembled and then were incorporated into the earliest forms of cellular life 4 billion years ago. The polymerization of nucleotides is a condensation reaction in which phosphodiester bonds are formed. This reaction cannot occur in aqueous solutions, but guided polymerization in an anhydrous lipid environment could promote a non-enzymatic condensation reaction in which oligomers of single stranded nucleic acids are synthesized. We used X-ray scattering to investigate 5′-adenosine monophosphate (AMP) molecules captured in a multilamellar phospholipid matrix composed of dimyristoylphosphatidylcholine. Bragg peaks corresponding to the lateral organization of the confined AMP molecules were observed. Instead of forming a random array, the AMP molecules are highly entangled, with the phosphate and ribose groups in close proximity. This structure may facilitate polymerization of the nucleotides into RNA-like polymers.
Collapse
Affiliation(s)
- Laura Toppozini
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
- Origins Institute, McMaster University, Hamilton, Ontario, Canada
- * E-mail: (LT); (DWD); (MCR))
| | - Hannah Dies
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - David W. Deamer
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (LT); (DWD); (MCR))
| | - Maikel C. Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
- Origins Institute, McMaster University, Hamilton, Ontario, Canada
- Canadian Neutron Beam Centre, National Research Council Canada, Chalk River Laboratories, Chalk River, Ontario, Canada
- * E-mail: (LT); (DWD); (MCR))
| |
Collapse
|
118
|
Chwastek G, Schwille P. A monolayer assay tailored to investigate lipid-protein systems. Chemphyschem 2013; 14:1877-81. [PMID: 23606346 DOI: 10.1002/cphc.201300035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Indexed: 11/10/2022]
Abstract
Model membrane systems have become invaluable tools to investigate specific features of cellular membranes. Although a variety of different experimental assays does exist, many of them are rather complicated in their preparation and difficult in their practical realisation. Here, we propose a new simple miniaturised monolayer assay that can easily be combined with standard analytical techniques such as confocal fluorescence microscopy and fluorescence correlation spectroscopy (FCS).
Collapse
|
119
|
Pan J, Heberle FA, Petruzielo RS, Katsaras J. Using small-angle neutron scattering to detect nanoscopic lipid domains. Chem Phys Lipids 2013; 170-171:19-32. [PMID: 23518250 DOI: 10.1016/j.chemphyslip.2013.02.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 11/25/2022]
Abstract
The cell plasma membrane is a complex system, which is thought to be capable of exhibiting non-random lateral organization. Studies of live cells and model membranes have yielded mechanisms responsible for the formation, growth, and maintenance of nanoscopic heterogeneities, although the existence and mechanisms that give rise to these heterogeneities remain controversial. Small-angle neutron scattering (SANS) is a tool ideally suited to interrogate lateral heterogeneity in model membranes, primarily due to its unique spatial resolution (i.e., ~5-100nm) and its ability to resolve structure with minimal perturbation to the membrane. In this review we examine several methods used to analyze the SANS signal arising from freely suspended unilamellar vesicles containing lateral heterogeneity. Specifically, we discuss an analytical model for a single, round domain on a spherical vesicle. We then discuss a numerical method that uses Monte Carlo simulation to describe systems with multiple domains and/or more complicated morphologies. Also discussed are several model-independent approaches that are sensitive to membrane heterogeneity. The review concludes with several recent applications of SANS to the study of membrane raft mixtures.
Collapse
Affiliation(s)
- Jianjun Pan
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| | | | | | | |
Collapse
|
120
|
Abstract
One of the many aspects of membrane biophysics dealt with in this Faraday Discussion regards the material moduli that describe energies at a supramolecular level. This introductory lecture first critically reviews differences in reported numerical values of the bending modulus K(C), which is a central property for the biologically important flexibility of membranes. It is speculated that there may be a reason that the shape analysis method tends to give larger values of K(C) than the micromechanical manipulation method or the more recent X-ray method that agree very well with each other. Another theme of membrane biophysics is the use of simulations to provide exquisite detail of structures and processes. This lecture critically reviews the application of atomic level simulations to the quantitative structure of simple single component lipid bilayers and diagnostics are introduced to evaluate simulations. Another theme of this Faraday Discussion was lateral heterogeneity in biomembranes with many different lipids. Coarse grained simulations and analytical theories promise to synergistically enhance experimental studies when their interaction parameters are tuned to agree with experimental data, such as the slopes of experimental tie lines in ternary phase diagrams. Finally, attention is called to contributions that add relevant biological molecules to bilayers and to contributions that study the exciting shape changes and different non-bilayer structures with different lipids.
Collapse
Affiliation(s)
- John F Nagle
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
121
|
Pan J, Cheng X, Heberle FA, Mostofian B, Kučerka N, Drazba P, Katsaras J. Interactions between ether phospholipids and cholesterol as determined by scattering and molecular dynamics simulations. J Phys Chem B 2012. [PMID: 23199292 DOI: 10.1021/jp310345j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cholesterol and ether lipids are ubiquitous in mammalian cell membranes, and their interactions are crucial in ether lipid mediated cholesterol trafficking. We report on cholesterol's molecular interactions with ether lipids as determined using a combination of small-angle neutron and X-ray scattering, and all-atom molecular dynamics (MD) simulations. A scattering density profile model for an ether lipid bilayer was developed using MD simulations, which was then used to simultaneously fit the different experimental scattering data. From analysis of the data the various bilayer structural parameters were obtained. Surface area constrained MD simulations were also performed to reproduce the experimental data. This iterative analysis approach resulted in good agreement between the experimental and simulated form factors. The molecular interactions taking place between cholesterol and ether lipids were then determined from the validated MD simulations. We found that in ether membranes cholesterol primarily hydrogen bonds with the lipid headgroup phosphate oxygen, while in their ester membrane counterparts cholesterol hydrogen bonds with the backbone ester carbonyls. This different mode of interaction between ether lipids and cholesterol induces cholesterol to reside closer to the bilayer surface, dehydrating the headgroup's phosphate moiety. Moreover, the three-dimensional lipid chain spatial density distribution around cholesterol indicates anisotropic chain packing, causing cholesterol to tilt. These insights lend a better understanding of ether lipid-mediated cholesterol trafficking and the roles that the different lipid species have in determining the structural and dynamical properties of membrane associated biomolecules.
Collapse
Affiliation(s)
- Jianjun Pan
- Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
| | | | | | | | | | | | | |
Collapse
|
122
|
Waheed Q, Tjörnhammar R, Edholm O. Phase transitions in coarse-grained lipid bilayers containing cholesterol by molecular dynamics simulations. Biophys J 2012. [PMID: 23200046 DOI: 10.1016/j.bpj.2012.10.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Coarse-grained simulations of model membranes containing mixtures of phospholipid and cholesterol molecules at different concentrations and temperatures have been performed. A random mixing without tendencies for segregation or formation of domains was observed on spatial scales corresponding to a few thousand lipids and timescales up to several microseconds. The gel-to-liquid crystalline phase transition is successively weakened with increasing amounts of cholesterol without disappearing completely even at a concentration of cholesterol as high as 60%. The phase transition temperature increases slightly depending on the cholesterol concentration. The gel phase system undergoes a transition with increasing amounts of cholesterol from a solid-ordered phase into a liquid-ordered one. In the solid phase, the amplitude of the oscillations in the radial distribution function decays algebraically with a prefactor that goes to zero at the solid-liquid transition.
Collapse
Affiliation(s)
- Qaiser Waheed
- Theoretical Biological Physics, Department of Theoretical Physics, Royal Institute of Technology (KTH), AlbaNova University Center, Stockholm, Sweden
| | | | | |
Collapse
|
123
|
Use of X-ray scattering to aid the design and delivery of membrane-active drugs. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:915-29. [DOI: 10.1007/s00249-012-0821-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 04/30/2012] [Accepted: 05/05/2012] [Indexed: 10/28/2022]
|
124
|
Weinrich M, Nanda H, Worcester DL, Majkrzak CF, Maranville BB, Bezrukov SM. Halothane changes the domain structure of a binary lipid membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:4723-8. [PMID: 22352350 PMCID: PMC3302933 DOI: 10.1021/la204317k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
X-ray and neutron diffraction studies of a binary lipid membrane demonstrate that halothane at physiological concentrations produces a pronounced redistribution of lipids between domains of different lipid types identified by different lamellar d-spacings and isotope composition. In contrast, dichlorohexafluorocyclobutane (F6), a halogenated nonanesthetic, does not produce such significant effects. These findings demonstrate a specific effect of inhalational anesthetics on mixing phase equilibria of a lipid mixture.
Collapse
Affiliation(s)
- Michael Weinrich
- National Center for Medical Rehabilitation Research, Eunice Kennedy Shriver Institute of Child Health and Human Development, Bethesda, Maryland, United States.
| | | | | | | | | | | |
Collapse
|
125
|
Saito H, Shinoda W. Cholesterol Effect on Water Permeability through DPPC and PSM Lipid Bilayers: A Molecular Dynamics Study. J Phys Chem B 2011; 115:15241-50. [DOI: 10.1021/jp201611p] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hiroaki Saito
- Faculty of Mathematics and Physics, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
- CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Wataru Shinoda
- Nanosystem Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba 305-8568, Japan
- CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
126
|
Nyholm TKM, Lindroos D, Westerlund B, Slotte JP. Construction of a DOPC/PSM/cholesterol phase diagram based on the fluorescence properties of trans-parinaric acid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:8339-8350. [PMID: 21627141 DOI: 10.1021/la201427w] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Cell membranes have a nonhomogenous lateral organization. Most information about such nonhomogenous mixing has been obtained from model membrane studies where defined lipid mixtures have been characterized. Various experimental approaches have been used to determine binary and ternary phase diagrams for systems under equilibrium conditions. Such phase diagrams are the most useful tools for understanding the lateral organization in cellular membranes. Here we have used the fluorescence properties of trans-parinaric acid (tPA) for phase diagram determination. The fluorescence intensity, anisotropy, and fluorescence lifetimes of tPA were measured in bilayers composed of one to three lipid components. All of these parameters could be used to determine the presence of liquid-ordered and gel phases in the samples. However, the clearest information about the phase state of the lipid bilayers was obtained from the fluorescence lifetimes of tPA. This is due to the fact that an intermediate-length lifetime was found in samples that contain a liquid-ordered phase and a long lifetime was found in samples that contained a gel phase, whereas tPA in the liquid-disordered phase has a markedly shorter fluorescence lifetime. On the basis of the measured fluorescence parameters, a phase diagram for the 1,2-dioleoyl-sn-glycero-3-phosphocholine/N-palmitoyl sphingomyelin/cholesterol system at 23 °C was prepared with a 5 mol % resolution. We conclude that tPA is a good fluorophore for probing the phase behavior of complex lipid mixtures, especially because multilamellar vesicles can be used. The determined phase diagram shows a clear resemblance to the microscopically determined phase diagram for the same system. However, there are also significant differences that likely are due to tPA's sensitivity to the presence of submicroscopic liquid-ordered and gel phase domains.
Collapse
Affiliation(s)
- Thomas K M Nyholm
- Biochemistry, Department of Bioscience, Åbo Akademi University, Tykistökatu 6A, FIN-20520 Turku, Finland.
| | | | | | | |
Collapse
|
127
|
Perlmutter JD, Sachs JN. Interleaflet Interaction and Asymmetry in Phase Separated Lipid Bilayers: Molecular Dynamics Simulations. J Am Chem Soc 2011; 133:6563-77. [DOI: 10.1021/ja106626r] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jason D. Perlmutter
- Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jonathan N. Sachs
- Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
128
|
Ziblat R, Leiserowitz L, Addadi L. Kristalline Lipiddomänen: Charakterisierung durch Röntgenbeugung und ihre Rolle in der Biologie. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201004470] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
129
|
Ziblat R, Leiserowitz L, Addadi L. Crystalline lipid domains: characterization by X-ray diffraction and their relation to biology. Angew Chem Int Ed Engl 2011; 50:3620-9. [PMID: 21472900 DOI: 10.1002/anie.201004470] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Indexed: 12/29/2022]
Abstract
Biological membranes comprise thousands of different lipids, differing in their alkyl chains, headgroups, and degree of saturation. It is estimated that 5% of the genes in the human genome are responsible for regulating the lipid composition of cell membranes. Conceivably, the functional explanation for this diversity is found, at least in part, in the propensity of lipids to segregate into distinct domains, which are important for cell function. X-ray diffraction has been used increasingly to characterize the packing and phase behavior of lipids in membranes. Crystalline domains have been studied in synthetic membranes using wide- and small-angle X-ray scattering, and grazing incidence X-ray diffraction. Herein we summarize recent results obtained using the various X-ray methods, discuss the correlation between crystalline domains and liquid ordered domains studied with other techniques, and the relevance of crystalline domains to functional lipid domains in biological membranes.
Collapse
Affiliation(s)
- Roy Ziblat
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | |
Collapse
|
130
|
de Joannis J, Coppock PS, Yin F, Mori M, Zamorano A, Kindt JT. Atomistic Simulation of Cholesterol Effects on Miscibility of Saturated and Unsaturated Phospholipids: Implications for Liquid-Ordered/Liquid-Disordered Phase Coexistence. J Am Chem Soc 2011; 133:3625-34. [DOI: 10.1021/ja110425s] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jason de Joannis
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Institutional Program of Molecular Biomedicine, ENMH-IPN, Mexico City, Mexico
| | - Patrick S. Coppock
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Institutional Program of Molecular Biomedicine, ENMH-IPN, Mexico City, Mexico
| | - Fuchang Yin
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Institutional Program of Molecular Biomedicine, ENMH-IPN, Mexico City, Mexico
| | - Makoto Mori
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Institutional Program of Molecular Biomedicine, ENMH-IPN, Mexico City, Mexico
| | - Absalom Zamorano
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Institutional Program of Molecular Biomedicine, ENMH-IPN, Mexico City, Mexico
| | - James T. Kindt
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Institutional Program of Molecular Biomedicine, ENMH-IPN, Mexico City, Mexico
| |
Collapse
|
131
|
Shvadchak VV, Falomir-Lockhart LJ, Yushchenko DA, Jovin TM. Specificity and kinetics of alpha-synuclein binding to model membranes determined with fluorescent excited state intramolecular proton transfer (ESIPT) probe. J Biol Chem 2011; 286:13023-32. [PMID: 21330368 DOI: 10.1074/jbc.m110.204776] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parkinson disease is characterized cytopathologically by the deposition in the midbrain of aggregates composed primarily of the presynaptic neuronal protein α-synuclein (AS). Neurotoxicity is currently attributed to oligomeric microaggregates subjected to oxidative modification and promoting mitochondrial and proteasomal dysfunction. Unphysiological binding to membranes of these and other organelles is presumably involved. In this study, we performed a systematic determination of the influence of charge, phase, curvature, defects, and lipid unsaturation on AS binding to model membranes using a new sensitive solvatochromic fluorescent probe. The interaction of AS with vesicular membranes is fast and reversible. The protein dissociates from neutral membranes upon thermal transition to the liquid disordered phase and transfers to vesicles with higher affinity. The binding of AS to neutral and negatively charged membranes occurs by apparently different mechanisms. Interaction with neutral bilayers requires the presence of membrane defects; binding increases with membrane curvature and rigidity and decreases in the presence of cholesterol. The association with negatively charged membranes is much stronger and much less sensitive to membrane curvature, phase, and cholesterol content. The presence of unsaturated lipids increases binding in all cases. These findings provide insight into the relation between membrane physical properties and AS binding affinity and dynamics that presumably define protein localization in vivo and, thereby, the role of AS in the physiopathology of Parkinson disease.
Collapse
Affiliation(s)
- Volodymyr V Shvadchak
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | |
Collapse
|
132
|
Extracting Experimental Measurables from Molecular Dynamics Simulations of Membranes. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/b978-0-444-53835-2.00006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
133
|
Sapay N, Tieleman DP. Combination of the CHARMM27 force field with united-atom lipid force fields. J Comput Chem 2010; 32:1400-10. [PMID: 21425293 DOI: 10.1002/jcc.21726] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 10/27/2010] [Accepted: 11/06/2010] [Indexed: 11/05/2022]
Abstract
Computer simulations offer a valuable way to study membrane systems, from simple lipid bilayers to large transmembrane protein complexes and lipid-nucleic acid complexes for drug delivery. Their accuracy depends on the quality of the force field parameters used to describe the components of a particular system. We have implemented the widely used CHARMM22 and CHARMM27 force fields in the GROMACS simulation package to (i) combine the CHARMM22 protein force field with two sets of united-atom lipids parameters; (ii) allow comparisons of the lipid CHARMM27 force field with other lipid force fields or lipid-protein force field combinations. Our tests do not show any particular issue with the combination of the all-atom CHARMM22 force field with united-atoms lipid parameters, although pertinent experimental data are lacking to assess the quality of the lipid-protein interactions. The conversion utilities allow automatic generation of GROMACS simulation files with CHARMM nucleic acids and protein parameters and topologies, starting from pdb files using the standard GROMACS pdb2gmx method. CMAP is currently not implemented.
Collapse
Affiliation(s)
- Nicolas Sapay
- Centre de Recherches sur les Macromolécules Végétales, CNRS, BP 53, Grenoble, France.
| | | |
Collapse
|
134
|
Ungar G, Liu F, Zeng XB, Glettner B, Prehm M, Kieffer R, Tschierske C. GISAXS in the study of supramolecular and hybrid liquid crystals. ACTA ACUST UNITED AC 2010. [DOI: 10.1088/1742-6596/247/1/012032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
135
|
Farkas ER, Webb WW. Multiphoton polarization imaging of steady-state molecular order in ternary lipid vesicles for the purpose of lipid phase assignment. J Phys Chem B 2010; 114:15512-22. [PMID: 21058681 DOI: 10.1021/jp107025h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have investigated lipid acyl chain order parameters of giant unilamellar vesicles (GUVs) using multiphoton fluorescence microscopy. We compare two widely used models of lipid acyl chain order parameters: the "wobble-on-a-cone" model and the Gaussian distribution model. For the first time, we systematically address a ternary system for which the phase diagram encompassing both composition and temperature space has been mapped in order to determine tie-line directions and thus phase assignment. In addition, because miscibility and chain melting transitions can be observed directly and simultaneously with multiphoton microscopy, our technique is applicable to determining the extent of the coupling between chain order and miscibility; thus, it provides a more robust platform for comparison with theory.
Collapse
Affiliation(s)
- Elaine R Farkas
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | | |
Collapse
|
136
|
de Meyer FJM, Benjamini A, Rodgers JM, Misteli Y, Smit B. Molecular Simulation of the DMPC-Cholesterol Phase Diagram. J Phys Chem B 2010; 114:10451-61. [DOI: 10.1021/jp103903s] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Frédérick J.-M. de Meyer
- Department of Chemical Engineering, University of California, Berkeley, 101B Gilman Hall, Berkeley, California 94720-1462, Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Department of Chemistry, University of California, Berkeley, 101B Gilman Hall, Berkeley, California 94720-1462, and Department of Computer Science, ETH Zürich, Switzerland
| | - Ayelet Benjamini
- Department of Chemical Engineering, University of California, Berkeley, 101B Gilman Hall, Berkeley, California 94720-1462, Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Department of Chemistry, University of California, Berkeley, 101B Gilman Hall, Berkeley, California 94720-1462, and Department of Computer Science, ETH Zürich, Switzerland
| | - Jocelyn M. Rodgers
- Department of Chemical Engineering, University of California, Berkeley, 101B Gilman Hall, Berkeley, California 94720-1462, Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Department of Chemistry, University of California, Berkeley, 101B Gilman Hall, Berkeley, California 94720-1462, and Department of Computer Science, ETH Zürich, Switzerland
| | - Yannick Misteli
- Department of Chemical Engineering, University of California, Berkeley, 101B Gilman Hall, Berkeley, California 94720-1462, Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Department of Chemistry, University of California, Berkeley, 101B Gilman Hall, Berkeley, California 94720-1462, and Department of Computer Science, ETH Zürich, Switzerland
| | - Berend Smit
- Department of Chemical Engineering, University of California, Berkeley, 101B Gilman Hall, Berkeley, California 94720-1462, Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Department of Chemistry, University of California, Berkeley, 101B Gilman Hall, Berkeley, California 94720-1462, and Department of Computer Science, ETH Zürich, Switzerland
| |
Collapse
|
137
|
Tristram-Nagle S, Chan R, Kooijman E, Uppamoochikkal P, Qiang W, Weliky DP, Nagle JF. HIV fusion peptide penetrates, disorders, and softens T-cell membrane mimics. J Mol Biol 2010; 402:139-53. [PMID: 20655315 DOI: 10.1016/j.jmb.2010.07.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 07/12/2010] [Accepted: 07/13/2010] [Indexed: 02/01/2023]
Abstract
This work investigates the interaction of N-terminal gp41 fusion peptide (FP) of human immunodeficiency virus type 1 (HIV-1) with model membranes in order to elucidate how FP leads to fusion of HIV and T-cell membranes. FP constructs were (i) wild-type FP23 (23 N-terminal amino acids of gp41), (ii) water-soluble monomeric FP that adds six lysines on the C-terminus of FP23 (FPwsm), and (iii) the C-terminus covalently linked trimeric version (FPtri) of FPwsm. Model membranes were (i) LM3 (a T-cell mimic), (ii) 1,2-dioleoyl-sn-glycero-3-phosphocholine, (iii) 1,2-dioleoyl-sn-glycero-3-phosphocholine/30 mol% cholesterol, (iv) 1,2-dierucoyl-sn-glycero-3-phosphocholine, and (v) 1,2-dierucoyl-sn-glycero-3-phosphocholine/30 mol% cholesterol. Diffuse synchrotron low-angle x-ray scattering from fully hydrated samples, supplemented by volumetric data, showed that FP23 and FPtri penetrate into the hydrocarbon region and cause membranes to thin. Depth of penetration appears to depend upon a complex combination of factors including bilayer thickness, presence of cholesterol, and electrostatics. X-ray data showed an increase in curvature in hexagonal phase 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine, which further indicates that FP23 penetrates into the hydrocarbon region rather than residing in the interfacial headgroup region. Low-angle x-ray scattering data also yielded the bending modulus K(C), a measure of membrane stiffness, and wide-angle x-ray scattering yielded the S(xray) orientational order parameter. Both FP23 and FPtri decreased K(C) and S(xray) considerably, while the weak effect of FPwsm suggests that it did not partition strongly into LM3 model membranes. Our results are consistent with the HIV FP disordering and softening the T-cell membrane, thereby lowering the activation energy for viral membrane fusion.
Collapse
Affiliation(s)
- Stephanie Tristram-Nagle
- Biological Physics Group, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | |
Collapse
|
138
|
|
139
|
Brewer J, de la Serna JB, Wagner K, Bagatolli LA. Multiphoton excitation fluorescence microscopy in planar membrane systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1301-8. [DOI: 10.1016/j.bbamem.2010.02.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 02/18/2010] [Accepted: 02/18/2010] [Indexed: 12/20/2022]
|
140
|
Mannock DA, Lewis RN, McMullen TP, McElhaney RN. The effect of variations in phospholipid and sterol structure on the nature of lipid–sterol interactions in lipid bilayer model membranes. Chem Phys Lipids 2010; 163:403-48. [DOI: 10.1016/j.chemphyslip.2010.03.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 03/13/2010] [Accepted: 03/27/2010] [Indexed: 01/30/2023]
|
141
|
Tristram-Nagle S, Kim DJ, Akhunzada N, Kucerka N, Mathai JC, Katsaras J, Zeidel M, Nagle JF. Structure and water permeability of fully hydrated diphytanoylPC. Chem Phys Lipids 2010; 163:630-7. [PMID: 20447383 DOI: 10.1016/j.chemphyslip.2010.04.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/24/2010] [Accepted: 04/26/2010] [Indexed: 10/19/2022]
Abstract
Diphytanoylphosphatidylcholine (DPhyPC) is a branched chain lipid often used for model membrane studies, including peptide/lipid interactions, ion channels and lipid rafts. This work reports results of volume measurements, water permeability measurements P(f), X-ray scattering from oriented samples, and X-ray and neutron scattering from unilamellar vesicles at T=30 degrees C. We measured the volume/lipid V(L)=1426+/-1A(3). The area/lipid was found to be 80.5+/-1.5A(2) when both X-ray and neutron data were combined with the SDP model analysis (Kucerka, N., Nagle, J.F., Sachs, J.N., Feller, S.E., Pencer, J., Jackson, A., Katsaras, J., 2008. Lipid bilayer structure determined by the simultaneous analysis of neutron and X-ray scattering data. Biophys. J. 95, 2356-2367); this is substantially larger than the area of DOPC which has the largest area of the common linear chain lipids. P(f) was measured to be (7.0+/-1.0)x10(-3)cm/s; this is considerably smaller than predicted by the recently proposed 3-slab model (Nagle, J.F., Mathai, J.C., Zeidel, M.L., Tristram-Nagle, S., 2008. Theory of passive permeability through lipid bilayers. J. Gen. Physiol. 131, 77-85). This disagreement can be understood if there is a diminished diffusion coefficient in the hydrocarbon core of DPhyPC and that is supported by previous molecular dynamics simulations (Shinoda, W., Mikami, M., Baba, T., Hato, M., 2004. Molecular dynamics study on the effects of chain branching on the physical properties of lipid bilayers. 2. Permeability. J. Phys. Chem. B 108, 9346-9356). While the DPhyPC head-head thickness (D(HH)=36.4A), and Hamaker parameter (H=4.5x10(-21)J) were similar to the linear chain lipid DOPC, the bending modulus (K(C)=5.2+/-0.5x10(-21)J) was 30% smaller. Our results suggest that, from the biophysical perspective, DPhyPC belongs to a different family of lipids than phosphatidylcholines that have linear chain hydrocarbon chains.
Collapse
Affiliation(s)
- Stephanie Tristram-Nagle
- Biological Physics Group, Physics, Carnegie Mellon University, Pittsburgh, PA 15213, United States.
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Tumaneng PW, Pandit SA, Zhao G, Scott HL. Lateral organization of complex lipid mixtures from multiscale modeling. J Chem Phys 2010; 132:065104. [PMID: 20151760 PMCID: PMC2833188 DOI: 10.1063/1.3314729] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 01/20/2010] [Indexed: 11/14/2022] Open
Abstract
The organizational properties of complex lipid mixtures can give rise to functionally important structures in cell membranes. In model membranes, ternary lipid-cholesterol (CHOL) mixtures are often used as representative systems to investigate the formation and stabilization of localized structural domains ("rafts"). In this work, we describe a self-consistent mean-field model that builds on molecular dynamics simulations to incorporate multiple lipid components and to investigate the lateral organization of such mixtures. The model predictions reveal regions of bimodal order on ternary plots that are in good agreement with experiment. Specifically, we have applied the model to ternary mixtures composed of dioleoylphosphatidylcholine:18:0 sphingomyelin:CHOL. This work provides insight into the specific intermolecular interactions that drive the formation of localized domains in these mixtures. The model makes use of molecular dynamics simulations to extract interaction parameters and to provide chain configuration order parameter libraries.
Collapse
Affiliation(s)
- Paul W Tumaneng
- Department of Biological, Chemical and Physical Sciences and Center for the Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois 60616, USA.
| | | | | | | |
Collapse
|
143
|
Livanec PW, Huckabay HA, Dunn RC. Exploring the effects of sterols in model lipid membranes using single-molecule orientations. J Phys Chem B 2009; 113:10240-8. [PMID: 19572622 DOI: 10.1021/jp903908m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Single-molecule orientations of the fluorescent lipid analogue BODIPY-PC doped into lipid monolayers and bilayers of DPPC are used to characterize the structure present in the films as a function of sterol content. Out-of-focus polarized total internal reflection fluorescence microscopy (PTIRF-M) measurements are used to characterize the single-molecule tilt angles with respect to the membrane normal. Tilt angle histograms for Langmuir-Blodgett monolayers of DPPC reveal bimodal distributions at all surface pressures studied. A linear dependence in the dye population oriented normal to the membrane plane with surface pressure is found and used to characterize the equivalent surface pressure of supported bilayers formed through vesicle fusion. These measurements reveal an equivalent surface pressure of approximately 23 mN/m, which is somewhat lower than the currently accepted value of approximately 30-35 mN/m.(1-7) The effect of cholesterol, ergosterol, and lanosterol on membrane structure is also compared between DPPC bilayers and monolayers transferred at approximately 23 mN/m. The addition of cholesterol leads to dramatic changes in the tilt angle histograms while lanosterol has essentially no effect. The addition of ergosterol has a slight influence at higher concentrations. Using the average tilt angle calculated from the single-molecule histograms, the order parameter S is calculated as a function of cholesterol and compared with previous studies.(8-10).
Collapse
Affiliation(s)
- Philip W Livanec
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA
| | | | | |
Collapse
|
144
|
Poger D, Mark AE. On the Validation of Molecular Dynamics Simulations of Saturated and cis-Monounsaturated Phosphatidylcholine Lipid Bilayers: A Comparison with Experiment. J Chem Theory Comput 2009; 6:325-36. [PMID: 26614341 DOI: 10.1021/ct900487a] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular dynamics simulations of fully hydrated pure bilayers of four widely studied phospholipids, 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine (POPC) using a recent revision of the GROMOS96 force field are reported. It is shown that the force field reproduces the structure and the hydration of bilayers formed by each of the four lipids with high accuracy. Specifically, the solvation and the orientation of the dipole of the phosphocholine headgroup and of the ester carbonyls show that the structure of the primary hydration shell in the simulations closely matches experimental findings. This work highlights the need to reproduce a broad range of properties beyond the area per lipid, which is poorly defined experimentally, and to consider the effect of system size and sampling times well beyond those commonly used.
Collapse
Affiliation(s)
- David Poger
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, University of Queensland, Brisbane St Lucia, QLD 4072, Australia
| | - Alan E Mark
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, University of Queensland, Brisbane St Lucia, QLD 4072, Australia
| |
Collapse
|
145
|
Quinn PJ. Long N-acyl fatty acids on sphingolipids are responsible for miscibility with phospholipids to form liquid-ordered phase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2267-76. [DOI: 10.1016/j.bbamem.2009.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 06/18/2009] [Accepted: 06/25/2009] [Indexed: 01/06/2023]
|
146
|
Pan J, Tristram-Nagle S, Nagle JF. Alamethicin aggregation in lipid membranes. J Membr Biol 2009; 231:11-27. [PMID: 19789905 DOI: 10.1007/s00232-009-9199-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
Abstract
X-ray scattering features induced by aggregates of alamethicin (Alm) were obtained in oriented stacks of model membranes of DOPC(diC18:1PC) and diC22:1PC. The first feature obtained near full hydration was Bragg rod in-plane scattering near 0.11 A(-1) in DOPC and near 0.08 A(-1) in diC22:1PC at a 1:10 Alm:lipid ratio. This feature is interpreted as bundles consisting of n Alm monomers in a barrel-stave configuration surrounding a water pore. Fitting the scattering data to previously published molecular dynamics simulations indicates that the number of peptides per bundle is n = 6 in DOPC and n >or= 9 in diC22:1PC. The larger bundle size in diC22:1PC is explained by hydrophobic mismatch of Alm with the thicker bilayer. A second diffuse scattering peak located at q(r) approximately 0.7 A(-1) is obtained for both DOPC and diC22:1PC at several peptide concentrations. Theoretical calculations indicate that this peak cannot be caused by the Alm bundle structure. Instead, we interpret it as being due to two-dimensional hexagonally packed clusters in equilibrium with Alm bundles. As the relative humidity was reduced, interactions between Alm in neighboring bilayers produced more peaks with three-dimensional crystallographic character that do not index with the conventional hexagonal space groups.
Collapse
Affiliation(s)
- Jianjun Pan
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
147
|
Golovina EA, Golovin AV, Hoekstra FA, Faller R. Water replacement hypothesis in atomic detail--factors determining the structure of dehydrated bilayer stacks. Biophys J 2009; 97:490-9. [PMID: 19619463 DOI: 10.1016/j.bpj.2009.05.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 04/28/2009] [Accepted: 05/01/2009] [Indexed: 10/20/2022] Open
Abstract
According to the water replacement hypothesis, trehalose stabilizes dry membranes by preventing the decrease of spacing between membrane lipids under dehydration. In this study, we use molecular-dynamics simulations to investigate the influence of trehalose on the area per lipid (APL) and related structural properties of dehydrated bilayers in atomic detail. The starting conformation of a palmitoyloleolylphosphatidylcholine lipid bilayer in excess water was been obtained by self-assembly. A series of molecular-dynamics simulations of palmitoyloleolylphosphatidylcholine with different degrees of dehydration (28.5, 11.7, and 5.4 waters per lipid) and different molar trehalose/lipid ratios (<1:1, 1:1, and >1:1) were carried out in the NPT ensemble. Water removal causes the formation of multilamellar "stacks" through periodic boundary conditions. The headgroups reorient from pointing outward to inward with dehydration. This causes changes in the electrostatic interactions between interfaces, resulting in interface interpenetration. Interpenetration creates self-spacing of the bilayers and prevents gel-phase formation. At lower concentrations, trehalose does not separate the interfaces, and acting together with self-spacing, it causes a considerable increase of APL. APL decreases at higher trehalose concentrations when the layer of sugar physically separates the interfaces. When interfaces are separated, the model confirms the water replacement hypothesis.
Collapse
Affiliation(s)
- Elena A Golovina
- Wageningen NMR Center and Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
148
|
Thermotropic and structural evaluation of the interaction of natural sphingomyelins with cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1877-89. [DOI: 10.1016/j.bbamem.2009.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 06/24/2009] [Accepted: 07/08/2009] [Indexed: 11/23/2022]
|
149
|
Wang T, Wang N, Jin X, Zhang K, Li T. A novel procedure for preparation of submicron liposomes-lyophilization of oil-in-water emulsions. J Liposome Res 2009; 19:231-40. [DOI: 10.1080/08982100902788390] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
150
|
Marsh D. Cholesterol-induced fluid membrane domains: a compendium of lipid-raft ternary phase diagrams. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2114-23. [PMID: 19699712 DOI: 10.1016/j.bbamem.2009.08.004] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 07/20/2009] [Accepted: 08/13/2009] [Indexed: 10/20/2022]
Abstract
The biophysical underpinning of the lipid-raft concept in cellular membranes is the liquid-ordered phase that is induced by moderately high concentrations of cholesterol. Although the crucial feature is the coexistence of phase-separated fluid domains, direct evidence for this in mixtures of cholesterol with a single lipid is extremely sparse. More extensive evidence comes from ternary mixtures of a high chain-melting lipid and a low chain-melting lipid with cholesterol, including those containing sphingomyelin that are taken to be a raft paradigm. There is, however, not complete agreement between the various phase diagrams and their interpretation. In this review, the different ternary phase diagrams of cholesterol-containing systems are presented in a uniform way, using simple x,y-coordinates to increase accessibility for the non-specialist. It is then possible to appreciate the common features and examine critically the discrepancies and hence what direct biophysical evidence there is that supports the raft concept.
Collapse
Affiliation(s)
- Derek Marsh
- Max-Planck-Institut für biophysikalische Chemie, Abteilung Spektroskopie und photochemische Kinetik, 37070 Göttingen, Germany.
| |
Collapse
|