101
|
Environmental characteristics of anopheline mosquito larval habitats in a malaria endemic area in Iran. ASIAN PAC J TROP MED 2013; 6:510-5. [DOI: 10.1016/s1995-7645(13)60087-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 04/12/2013] [Accepted: 04/14/2013] [Indexed: 11/22/2022] Open
|
102
|
Phelan C, Rotiberg BD. An age-size reaction norm yields insight into environmental interactions affecting life-history traits: a factorial study of larval development in the malaria mosquito Anopheles gambiae sensu stricto. Ecol Evol 2013; 3:1837-47. [PMID: 23919132 PMCID: PMC3728927 DOI: 10.1002/ece3.589] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 11/12/2022] Open
Abstract
Environmental factors frequently act nonindependently to determine growth and development of insects. Because age and size at maturity strongly influence population dynamics, interaction effects among environmental variables complicate the task of predicting dynamics of insect populations under novel conditions. We reared larvae of the African malaria mosquito Anopheles gambiae sensu stricto (s.s.) under three factors relevant to changes in climate and land use: food level, water depth, and temperature. Each factor was held at two levels in a fully crossed design, for eight experimental treatments. Larval survival, larval development time, and adult size (wing length) were measured to indicate the importance of interaction effects upon population-level processes. For age and size at emergence, but not survival, significant interaction effects were detected for all three factors, in addition to sex. Some of these interaction effects can be understood as consequences of how the different factors influence energy usage in the context of a nonindependent relationship between age and size. Experimentally assessing interaction effects for all potential future sets of conditions is intractable. However, considering how different factors affect energy usage within the context of an insect's evolved developmental program can provide insight into the causes of complex environmental effects on populations.
Collapse
Affiliation(s)
- Conan Phelan
- Division of Biological Sciences, University of Montana Missoula, Canada
| | | |
Collapse
|
103
|
Mbare O, Lindsay SW, Fillinger U. Dose-response tests and semi-field evaluation of lethal and sub-lethal effects of slow release pyriproxyfen granules (Sumilarv®0.5G) for the control of the malaria vectors Anopheles gambiae sensu lato. Malar J 2013; 12:94. [PMID: 23497149 PMCID: PMC3600021 DOI: 10.1186/1475-2875-12-94] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/09/2013] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Recently research has shown that larviciding can be an effective tool for integrated malaria vector control. Nevertheless, the uptake of this intervention has been hampered by the need to re-apply larvicides frequently. There is a need to explore persistent, environmentally friendly larvicides for malaria vector control to reduce intervention efforts and costs by reducing the frequency of application. In this study, the efficacy of a 0.5% pyriproxyfen granule (Surmilarv®0.5G, Sumitomo Chemicals) was assessed for the control of Anopheles gambiae sensu stricto and Anopheles arabiensis, the major malaria vectors in sub-Saharan Africa. METHODS Dose-response and standardized field tests were implemented following standard procedures of the World Health Organization's Pesticide Evaluation Scheme to determine: (i) the susceptibility of vectors to this formulation; (ii) the residual activity and appropriate retreatment schedule for field application; and, (iii) sub-lethal impacts on the number and viability of eggs laid by adults after exposure to Sumilarv®0.5G during larval development. RESULTS Anopheles gambiae s.s. and An. arabiensis were highly susceptible to Sumilarv®0.5G. Estimated emergence inhibition (EI) values were very low and similar for both species. The minimum dosage that completely inhibited adult emergence was between 0.01-0.03 parts per million (ppm) active ingredient (ai). Compared to the untreated control, an application of 0.018 ppm ai prevented 85% (95% confidence interval (CI) 82%-88%) of adult emergence over six weeks under standardized field conditions. A fivefold increase in dosage of 0.09 ppm ai prevented 97% (95% CI 94%-98%) emergence. Significant sub-lethal effects were observed in the standardized field tests. Female An. gambiae s.s. that were exposed to 0.018 ppm ai as larvae laid 47% less eggs, and females exposed to 0.09 ppm ai laid 74% less eggs than females that were unexposed to the treatment. Furthermore, 77% of eggs laid by females exposed to 0.018 ppm ai failed to hatch, whilst 98% of eggs laid by females exposed to 0.09 ppm ai did not hatch. CONCLUSION Anopheles gambiae s.s. and An. arabiensis are highly susceptible to Sumilarv®0.5G at very low dosages. The persistence of this granule formulation in treated habitats under standardized field conditions and its sub-lethal impact, reducing the number of viable eggs from adults emerging from treated ponds, enhances its potential as malaria vector control tool. These unique properties warrant further field testing to determine its suitability for inclusion in malaria vector control programmes.
Collapse
Affiliation(s)
- Oscar Mbare
- icipe-Thomas Odhiambo Campus, Mbita, Kenya
- Disease Control Department, London School of Hygiene & Tropical Medicine, London, UK
| | - Steven W Lindsay
- School of Biological and Biomedical Sciences, Durham University, Durham, UK
| | - Ulrike Fillinger
- icipe-Thomas Odhiambo Campus, Mbita, Kenya
- Disease Control Department, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
104
|
Munga S, Vulule J, Kweka EJ. Response of Anopheles gambiae s.l. (Diptera: Culicidae) to larval habitat age in western Kenya highlands. Parasit Vectors 2013; 6:13. [PMID: 23324330 PMCID: PMC3564891 DOI: 10.1186/1756-3305-6-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/09/2013] [Indexed: 11/10/2022] Open
Abstract
Background Larval control is of paramount importance in the reduction of vector populations. Previous observations have suggested that, larvae of Anopheles gambiae s.l occur more often in small temporary habitats while other studies showed that long-lasting stable habitats are more productive than unstable habitats. In addition, the physical and biological conditions and stability of larval habitats can change rapidly in natural conditions. Therefore, we examined the effect of larval habitat age on productivity, larval survival and oviposition preference of Anopheles gambiae. Methods We sampled the three different habitat ages (10, 20 and 30 days) on a daily basis for a period of six months to determine mosquito larval abundance. In addition, we tested the effect of age of water (habitat age) on the oviposition choice preference of An. gambiae, larval development time and survivorship, and wing lengths of emerging adults. Additionally, chlorophyll a and abundance of mosquito larval predators in these habitats were monitored. Results Anopheles gambiae s.l. larvae were significantly more abundant (P=0.0002) in habitats that were cleared every 10 days compared to the other habitats. In particular, there were 1.7 times more larvae in this habitat age compared to the ones that were cleared every 30 days. There were significantly (P<0.001) more mosquito larval predators in the ‘30 day’ habitats compared to the other habitats. Oviposition experiments revealed that significantly more eggs (P<0.05) were laid in fresh water and water that was 5 days old compared to water that was 10 and 15 days old. However, pupation rate, development times and wing lengths of male and female An. gambiae in the different habitat ages was statistically insignificant (P>0.05). Conclusion The current study confirmed that age of the habitat significantly influences the productivity of malaria vectors in western Kenya highlands. Given that malaria vectors were found in all habitats with varying ages of water, simple environmental methods of maintaining the drainage ditches in the valley bottoms can help reduce larval abundance of malaria vectors. Such inexpensive methods of controlling mosquito breeding could be promoted to supplement other vector control methods, especially in areas where scarce resources are available for intensive mosquito control.
Collapse
Affiliation(s)
- Stephen Munga
- Centre for Global Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | | | | |
Collapse
|
105
|
Muriu SM, Coulson T, Mbogo CM, Godfray HCJ. Larval density dependence in Anopheles gambiae s.s., the major African vector of malaria. J Anim Ecol 2013; 82:166-74. [PMID: 23163565 PMCID: PMC5373432 DOI: 10.1111/1365-2656.12002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 09/04/2012] [Indexed: 12/01/2022]
Abstract
Anopheles gambiae sensu stricto is the most important vector of malaria in Africa although relatively little is known about the density-dependent processes determining its population size. Mosquito larval density was manipulated under semi-natural conditions using artificial larval breeding sites placed in the field in coastal Kenya; two experiments were conducted: one manipulating the density of a single cohort of larvae across a range of densities and the other employing fewer densities but with the treatments crossed with four treatments manipulating predator access. In the first experiment, larval survival, development rate and the size of the adult mosquito all decreased with larval density (controlling for block effects between 23% and 31% of the variance in the data could be explained by density). In the second experiment, the effects of predator manipulation were not significant, but again we observed strong density dependence in larval survival (explaining 30% of the variance). The results are compared with laboratory studies of A. gambiae larval competition and the few other studies conducted in the field, and the consequences for malaria control are discussed.
Collapse
Affiliation(s)
- Simon M Muriu
- Department of Entomology, KEMRI-Wellcome Trust Programme, P.O. Box 230, Kilifi, Kenya.
| | | | | | | |
Collapse
|
106
|
Kweka EJ, Zhou G, Munga S, Lee MC, Atieli HE, Nyindo M, Githeko AK, Yan G. Anopheline larval habitats seasonality and species distribution: a prerequisite for effective targeted larval habitats control programmes. PLoS One 2012; 7:e52084. [PMID: 23272215 PMCID: PMC3525533 DOI: 10.1371/journal.pone.0052084] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 11/15/2012] [Indexed: 11/21/2022] Open
Abstract
Background Larval control is of paramount importance in the reduction of malaria vector abundance and subsequent disease transmission reduction. Understanding larval habitat succession and its ecology in different land use managements and cropping systems can give an insight for effective larval source management practices. This study investigated larval habitat succession and ecological parameters which influence larval abundance in malaria epidemic prone areas of western Kenya. Methods and Findings A total of 51 aquatic habitats positive for anopheline larvae were surveyed and visited once a week for a period of 85 weeks in succession. Habitats were selected and identified. Mosquito larval species, physico-chemical parameters, habitat size, grass cover, crop cycle and distance to nearest house were recorded. Polymerase chain reaction revealed that An. gambiae s.l was the most dominant vector species comprised of An.gambiae s.s (77.60%) and An.arabiensis (18.34%), the remaining 4.06% had no amplification by polymerase chain reaction. Physico-chemical parameters and habitat size significantly influenced abundance of An. gambiae s.s (P = 0.024) and An. arabiensis (P = 0.002) larvae. Further, larval species abundance was influenced by crop cycle (P≤0.001), grass cover (P≤0.001), while distance to nearest houses significantly influenced the abundance of mosquito species larvae (r = 0.920;P≤0.001). The number of predator species influenced mosquito larval abundance in different habitat types. Crop weeding significantly influenced with the abundance of An.gambiae s.l (P≤0.001) when preceded with fertilizer application. Significantly higher anopheline larval abundance was recorded in habitats in pasture compared to farmland (P = 0.002). When habitat stability and habitat types were considered, hoof print were the most productive followed by disused goldmines. Conclusion These findings suggest that implementation of effective larval control programme should be targeted with larval habitats succession information when larval habitats are fewer and manageable. Crop cycles and distance from habitats to household should be considered as effective information in planning larval control.
Collapse
Affiliation(s)
- Eliningaya J Kweka
- Climate and Human Health Research Unit, Kenya Medical Research Institute, Kisumu, Kenya.
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Stryker JJ, Bomblies A. The impacts of land use change on malaria vector abundance in a water-limited, highland region of Ethiopia. ECOHEALTH 2012; 9:455-470. [PMID: 23212728 DOI: 10.1007/s10393-012-0801-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 08/07/2012] [Accepted: 08/08/2012] [Indexed: 06/01/2023]
Abstract
Changes in land use and climate are expected to alter the risk of malaria transmission in areas where rainfall limits vector abundance. We use a coupled hydrology-entomology model to investigate the effects of land use change on hydrological processes impacting mosquito abundance in a highland village of Ethiopia. Land use affects partitioning of rainfall into infiltration and runoff that reaches small-scale topographic depressions, which constitute the primary breeding habitat of Anopheles arabiensis mosquitoes. A physically based hydrology model isolates hydrological mechanisms by which land use impacts pool formation and persistence, and an agent-based entomology model evaluates the response of mosquito populations. This approach reproduced observed interannual variability in mosquito abundance between the 2009 and 2010 wet seasons. Several scenarios of land cover were then evaluated using the calibrated, field-validated model. Model results show variation in pool persistence and depth, as well as in mosquito abundance, due to land use changes alone. The model showed particular sensitivity to surface roughness, but also to root zone uptake. Scenarios in which land use was modified from agriculture to forest generally resulted in lowest mosquito abundance predictions; classification of the entire domain as rainforest produced a 34% decrease in abundance compared to 2010 results. This study also showed that in addition to vegetation type, spatial proximity of land use change to habitat locations has an impact on mosquito abundance. This modeling approach can be applied to assess impacts of climate and land use conditions that fall outside of the range of previously observed variability.
Collapse
|
108
|
Boussari O, Moiroux N, Iwaz J, Djènontin A, Bio-Bangana S, Corbel V, Fonton N, Ecochard R. Use of a mixture statistical model in studying malaria vectors density. PLoS One 2012. [PMID: 23185626 PMCID: PMC3503967 DOI: 10.1371/journal.pone.0050452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vector control is a major step in the process of malaria control and elimination. This requires vector counts and appropriate statistical analyses of these counts. However, vector counts are often overdispersed. A non-parametric mixture of Poisson model (NPMP) is proposed to allow for overdispersion and better describe vector distribution. Mosquito collections using the Human Landing Catches as well as collection of environmental and climatic data were carried out from January to December 2009 in 28 villages in Southern Benin. A NPMP regression model with “village” as random effect is used to test statistical correlations between malaria vectors density and environmental and climatic factors. Furthermore, the villages were ranked using the latent classes derived from the NPMP model. Based on this classification of the villages, the impacts of four vector control strategies implemented in the villages were compared. Vector counts were highly variable and overdispersed with important proportion of zeros (75%). The NPMP model had a good aptitude to predict the observed values and showed that: i) proximity to freshwater body, market gardening, and high levels of rain were associated with high vector density; ii) water conveyance, cattle breeding, vegetation index were associated with low vector density. The 28 villages could then be ranked according to the mean vector number as estimated by the random part of the model after adjustment on all covariates. The NPMP model made it possible to describe the distribution of the vector across the study area. The villages were ranked according to the mean vector density after taking into account the most important covariates. This study demonstrates the necessity and possibility of adapting methods of vector counting and sampling to each setting.
Collapse
Affiliation(s)
- Olayidé Boussari
- International Chair in Mathematical Physics and Applications, Université d'Abomey-Calavi, Abomey-Calavi, Bénin, France.
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Godfray HCJ. Mosquito ecology and control of malaria. J Anim Ecol 2012; 82:15-25. [DOI: 10.1111/1365-2656.12003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 09/01/2012] [Indexed: 11/30/2022]
|
110
|
Afrane YA, Lawson BW, Brenya R, Kruppa T, Yan G. The ecology of mosquitoes in an irrigated vegetable farm in Kumasi, Ghana: abundance, productivity and survivorship. Parasit Vectors 2012; 5:233. [PMID: 23069265 PMCID: PMC3485118 DOI: 10.1186/1756-3305-5-233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 10/05/2012] [Indexed: 11/23/2022] Open
Abstract
Background Irrigated vegetable farms within the city of Kumasi, Ghana, create hotspots for the breeding of malaria vectors, which could lead to high transmission of malaria. This study investigated the abundance and productivity of mosquitoes in an irrigated vegetable farm in Kumasi, Ghana. Methods Adult mosquito productivity was estimated five days in a week in different irrigated scheme types (dug-out wells, furrows and footprints) for 12 weeks using emergence traps. Larval sampling was done five days a week to estimate the abundance of larvae from the different irrigated schemes types. Results Mosquito breeding in the irrigated vegetable field was confined to dug-out wells, furrows and human footprints. Mosquito productivity (m2/week) was highest in the dugout wells followed by the human footprints and the least was in the furrows (11.23, 5.07 and 4.34 An. gambiae/m2/week). Larval abundance for the late instars (3rd, 4th and pupae) also followed the same trend, with the dug-out wells having the highest larval abundance followed by the human footprints and then the furrows (13.24, 6.81, 5.87 larvae/week). Mosquito productivity and abundance was negatively correlated with rainfall (R2 = 0.209; P< 0.01). Conclusion This study showed that adult and larval mosquito abundance and larval survival were high in the irrigated fields in the irrigated vegetable farm. This therefore, contributed significantly to adult mosquito populations and hence malaria transmission in the city.
Collapse
Affiliation(s)
- Yaw A Afrane
- School of Health Sciences, Bondo University College, Bondo, Kenya.
| | | | | | | | | |
Collapse
|
111
|
Transmission attributes of periurban malaria in lusaka, zambia, precedent to the integrated vector management strategy: an entomological input. J Trop Med 2012; 2012:873852. [PMID: 23056060 PMCID: PMC3465919 DOI: 10.1155/2012/873852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/31/2012] [Accepted: 08/13/2012] [Indexed: 11/18/2022] Open
Abstract
Globalization and urbanization with their inherent developmental activities and ecological transformations impact on malaria epidemiology. Entomological factors involved in malaria transmission in periurban Lusaka were assessed prior to vector control reintroduction. Data was collected through standard entomological and epidemiological protocols and a pretested structured questionnaire. Larval habitats were characterized as transient (43%), semipermanent (36%), and permanent (21%). Anopheles arabiensis and An. gambiae ss. were the only vectors identified. A shift in vector population was noted, with the later outnumbering the former. Plasmodium falciparum monoinfection rates were 25.6% (95% CI: 20.9–30.7) (n = 297). Parasitaemia was 31.8% (95% CI: 23.2–42.2), 25.7% (95% CI: 13.5–41.3), and 23.3% (95% CI: 17.4–29.6) in under 5, 5 to 14, and above 15 age groups, respectively. Low knowledge levels on vector control tools with an average of 7 residents per household were also observed. This study confirmed a local malaria transmission paradigm. The epidemiology necessitated deployment of an integrated vector management strategy with intensified information education and communication.
Collapse
|
112
|
Samson DR, Muehlenbein MP, Hunt KD. Do chimpanzees (Pan troglodytes schweinfurthii) exhibit sleep related behaviors that minimize exposure to parasitic arthropods? A preliminary report on the possible anti-vector function of chimpanzee sleeping platforms. Primates 2012; 54:73-80. [DOI: 10.1007/s10329-012-0329-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/26/2012] [Indexed: 10/27/2022]
|
113
|
Parham PE, Pople D, Christiansen-Jucht C, Lindsay S, Hinsley W, Michael E. Modeling the role of environmental variables on the population dynamics of the malaria vector Anopheles gambiae sensu stricto. Malar J 2012; 11:271. [PMID: 22877154 PMCID: PMC3496602 DOI: 10.1186/1475-2875-11-271] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/31/2012] [Indexed: 12/02/2022] Open
Abstract
Background The impact of weather and climate on malaria transmission has attracted considerable attention in recent years, yet uncertainties around future disease trends under climate change remain. Mathematical models provide powerful tools for addressing such questions and understanding the implications for interventions and eradication strategies, but these require realistic modeling of the vector population dynamics and its response to environmental variables. Methods Published and unpublished field and experimental data are used to develop new formulations for modeling the relationships between key aspects of vector ecology and environmental variables. These relationships are integrated within a validated deterministic model of Anopheles gambiae s.s. population dynamics to provide a valuable tool for understanding vector response to biotic and abiotic variables. Results A novel, parsimonious framework for assessing the effects of rainfall, cloudiness, wind speed, desiccation, temperature, relative humidity and density-dependence on vector abundance is developed, allowing ease of construction, analysis, and integration into malaria transmission models. Model validation shows good agreement with longitudinal vector abundance data from Tanzania, suggesting that recent malaria reductions in certain areas of Africa could be due to changing environmental conditions affecting vector populations. Conclusions Mathematical models provide a powerful, explanatory means of understanding the role of environmental variables on mosquito populations and hence for predicting future malaria transmission under global change. The framework developed provides a valuable advance in this respect, but also highlights key research gaps that need to be resolved if we are to better understand future malaria risk in vulnerable communities.
Collapse
Affiliation(s)
- Paul E Parham
- Grantham Institute for Climate Change, Department of Infectious Disease Epidemiology, Imperial College, London W2 1PG, UK.
| | | | | | | | | | | |
Collapse
|
114
|
Araújo MDS, Gil LHS, e-Silva ADA. Larval food quantity affects development time, survival and adult biological traits that influence the vectorial capacity of Anopheles darlingi under laboratory conditions. Malar J 2012; 11:261. [PMID: 22856645 PMCID: PMC3469369 DOI: 10.1186/1475-2875-11-261] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/03/2012] [Indexed: 11/10/2022] Open
Abstract
Background The incidence of malaria in the Amazon is seasonal and mosquito vectorial capacity parameters, including abundance and longevity, depend on quantitative and qualitative aspects of the larval diet. Anopheles darlingi is a major malaria vector in the Amazon, representing >95% of total Anopheles population present in the Porto Velho region. Despite its importance in the transmission of the Plasmodium parasite, knowledge of the larval biology and ecology is limited. Studies regarding aspects of adult population ecology are more common than studies on larval ecology. However, in order develop effective control strategies and laboratory breeding conditions for this species, more data on the factors affecting vector biology is needed. The aim of the present study is to assess the effects of larval food quantity on the vectorial capacity of An. darling under laboratory conditions. Methods Anopheles darlingi was maintained at 28°C, 80% humidity and exposed to a daily photoperiod of 12 h. Larvae were divided into three experimental groups that were fed either a low, medium, or high food supply (based on the food amounts consumed by other species of culicids). Each experiment was replicated for six times. A cohort of adults were also exposed to each type of diet and assessed for several biological characteristics (e.g. longevity, bite frequency and survivorship), which were used to estimate the vectorial capacity of each experimental group. Results The group supplied with higher food amounts observed a reduction in development time while larval survival increased. In addition to enhanced longevity, increasing larval food quantity was positively correlated with increasing frequency of bites, longer blood meal duration and wing length, resulting in greater vectorial capacity. However, females had greater longevity than males despite having smaller wings. Conclusions Overall, several larval and adult biological traits were significantly affected by larval food availability. Greater larval food supply led to enhance larval and production and larger mosquitoes with longer longevity and higher biting frequency. Thus, larval food availability can alter important biological traits that influence the vectorial capacity of An. darlingi.
Collapse
Affiliation(s)
- Maisa da-Silva Araújo
- Laboratory of Entomology, Tropical Pathology Research Institute/Oswaldo Cruz Foundation, Porto Velho, Rondonia, Brazil.
| | | | | |
Collapse
|
115
|
Animut A, Gebre-Michael T, Balkew M, Lindtjørn B. Abundance and dynamics of anopheline larvae in a highland malarious area of south-central Ethiopia. Parasit Vectors 2012; 5:117. [PMID: 22695178 PMCID: PMC3414819 DOI: 10.1186/1756-3305-5-117] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 06/13/2012] [Indexed: 11/10/2022] Open
Abstract
Background Malaria is a public health problem in Ethiopia, and increasingly so in highland areas, possibly because of global warming. This study describes the distribution, breeding habitat and monthly dynamics of anopheline larvae in Butajira, a highland area in south-central Ethiopia. Methods A study of the abundance and dynamics of Anopheles larvae was undertaken at different sites and altitudes in Butajira from July 2008 to June 2010. The sites included Hobe (1817 m.a.s.l), Dirama (1995m.a.s.l.) and Wurib (2196m.a.s.l.). Potential anopheline larval habitats were surveyed once per month in each village. The recorded characteristics of the habitats included habitat type, pH, surface debris, emergent plants, algae, substrate, turbidity, temperature, length, width, depth, distance to the nearest house and anophelines. The Spearman correlation coefficient and Mann–Whitney U test were used to calculate the degree of association between the density of anopheline species and key environmental factors. Results Among the different types of habitat surveyed, the Odamo, Akamuja and Assas streams and Beko swamp were positive for anopheline larvae. A total of 3,957 third and fourth instar larvae were collected from the three localities, and they represented ten species of anophelines. These were: Anopheles cinereus (32.5%), An. arabiensis (31.4%), An. chrysti (23%), An. demeilloni (12.2%), An. pretoriensis (0.6%), An. azaniae (0.1%), An. rufipes(0.1%), An. sergentii (0.06%), An. garnhami (0.06%) and An. pharoensis (0.03%). The density of anopheline larvae was highest during the dry months. An. arabiensis was widely distributed, and its density decreased from the lowest elevation in Hobe to the highest in Wurib. The density of An. arabiensis larvae was correlated positively with larval habitat temperature (r = 0.33, p < 0.05) and negatively with depth of larval habitat (r = −0.56, p < 0.05). Conclusion Ten species of anophelines were identified, including two known vectors of malaria (An. arabiensis and An. pharoensis), along streams in Butajira. Larvae of An. arabiensis were found in streams at 2200m.a.s.l. This possible expansion of the malaria vector to highland areas indicates an increasing risk of malaria because a large proportion of the Ethiopian population live above this altitude.
Collapse
Affiliation(s)
- Abebe Animut
- Center for International Health, University of Bergen, Bergen, Norway.
| | | | | | | |
Collapse
|
116
|
Gouagna LC, Rakotondranary M, Boyer S, Lempérière G, Dehecq JS, Fontenille D. Abiotic and biotic factors associated with the presence of Anopheles arabiensis immatures and their abundance in naturally occurring and man-made aquatic habitats. Parasit Vectors 2012; 5:96. [PMID: 22608179 PMCID: PMC3461495 DOI: 10.1186/1756-3305-5-96] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 05/19/2012] [Indexed: 11/30/2022] Open
Abstract
Background Anopheles arabiensis (Diptera: Culicidae) is a potential malaria vector commonly present at low altitudes in remote areas in Reunion Island. Little attention has been paid to the environmental conditions driving larval development and abundance patterns in potential habitats. Two field surveys were designed to determine whether factors that discriminate between aquatic habitats with and without An. arabiensis larvae also drive larval abundance, comparatively in man-made and naturally occurring habitats. Methods In an initial preliminary survey, a representative sample of aquatic habitats that would be amenable to an intensive long-term study were selected and divided into positive and negative sites based on the presence or absence of Anopheles arabiensis larvae. Subsequently, a second survey was prompted to gain a better understanding of biotic and abiotic drivers of larval abundance, comparatively in man-made and naturally occurring habitats in the two studied locations. In both surveys, weekly sampling was performed to record mosquito species composition and larval density within individual habitats, as well as in situ biological characteristics and physico-chemical properties. Results Whilst virtually any stagnant water body could be a potential breeding ground for An. arabiensis, habitats occupied by their immatures had different structural and biological characteristics when compared to those where larvae were absent. Larval occurrence seemed to be influenced by flow velocity, macrofauna diversity and predation pressure. Interestingly, the relative abundance of larvae in man-made habitats (average: 0.55 larvae per dip, 95%CI [0.3–0.7]) was significantly lower than that recorded in naturally occurring ones (0.74, 95%CI [0.5–0.8]). Such differences may be accounted for in part by varying pressures that could be linked to a specific habitat. Conclusions If the larval ecology of An. arabiensis is in general very complex and factors affecting breeding site productivity sometimes not easy to highlight, our results, however, highlight lower populations of An. arabiensis immatures compared to those reported in comparable studies conducted in the African continent. Overall, this low larval abundance, resulting from both abiotic and biotic factors, suggests that vector control measures targeting larval habitats are likely to be successful in Reunion, but these could be better implemented by taking environmental variability into account.
Collapse
|
117
|
Imbahale SS, Githeko A, Mukabana WR, Takken W. Integrated mosquito larval source management reduces larval numbers in two highland villages in western Kenya. BMC Public Health 2012; 12:362. [PMID: 22607227 PMCID: PMC3433356 DOI: 10.1186/1471-2458-12-362] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 05/18/2012] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND In western Kenya, malaria remains one of the major health problems and its control remains an important public health measure. Malaria control is by either use of drugs to treat patients infected with malaria parasites or by controlling the vectors. Vector control may target the free living adult or aquatic (larval) stages of mosquito. The most commonly applied control strategies target indoor resting mosquitoes. However, because mosquitoes spend a considerable time in water, targeting the aquatic stages can complement well with existing adult control measures. METHODS Larval source management (LSM) of malaria vectors was examined in two villages i.e. Fort Ternan and Lunyerere, with the aim of testing strategies that can easily be accessed by the affected communities. Intervention strategies applied include environmental management through source reduction (drainage of canals, land levelling or by filling ditches with soil), habitat manipulation (by provision of shading from arrow root plant), application of Bacillus thuringiensis var israelensis (Bti) and the use of predatory fish, Gambusia affinis. The abundance of immature stages of Anopheles and Culex within intervention habitats was compared to that within non-intervention habitats. RESULTS The findings show that in Fort Ternan no significant differences were observed in the abundance of Anopheles early and late instars between intervention and non-intervention habitats. In Lunyerere, the abundance of Anopheles early instars was fifty five times more likely to be present within non-intervention habitats than in habitats under drainage. No differences in early instars abundance were observed between non-intervention and habitats applied with Bti. However, late instars had 89 % and 91 % chance of being sampled from non-intervention rather than habitats under drainage and those applied with Bti respectively. CONCLUSION Most of these interventions were applied in habitats that arose due to human activities. Involvement of community members in control programs would be beneficial in the long term once they understand the role they play in malaria transmission. Apart from the need for communities to be educated on their role in malaria transmission, there is a need to develop and test strategies that can easily be accessed and hence be used by the affected communities. The proposed LSM strategies target outdoor immature mosquitoes and hence can complement well with control measures that target indoor resting vectors. Therefore inclusion of LSM in Integrated Vector Management (IVM) program would be beneficial.
Collapse
Affiliation(s)
- Susan S Imbahale
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH, Wageningen, The Netherlands
- Kenya Medical Research Institute, Centre for Global Health Research, P.O Box 1578-40100, Kisumu, Kenya
- School of Pure and Applied Sciences, Kenya Polytechnic University College, P.O Box 52428-00200, Nairobi, Kenya
| | - Andrew Githeko
- Kenya Medical Research Institute, Centre for Global Health Research, P.O Box 1578-40100, Kisumu, Kenya
| | - Wolfgang R Mukabana
- International Centre of Insect Physiology and Ecology, P.O. Box 30772 – 00100 GPO, Nairobi, Kenya
- School of Biological Sciences, University of Nairobi, P.O. Box 30197-00100 GPO, Nairobi, Kenya
| | - Willem Takken
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH, Wageningen, The Netherlands
| |
Collapse
|
118
|
Balestrino F, Benedict MQ, Gilles JRL. A new larval tray and rack system for improved mosquito mass rearing. JOURNAL OF MEDICAL ENTOMOLOGY 2012; 49:595-605. [PMID: 22679867 DOI: 10.1603/me11188] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The requirement for efficient mosquito mass rearing technology has been one of the major obstacles preventing the large scale application of the Sterile Insect Technique against mosquitoes. At the Food and Agriculture Organization/International Atomic Energy Agency (FAO/ IAEA) Insect Pest Control Laboratories we developed a larval rearing unit based on the use of a stainless steel rack that operates 50 thermoformed ABS plastic trays and is expected to be able to successfully rear 140,000-175,000 Anopheles arabiensis (Patton) adult mosquitoes per rack. The mechanized rearing unit is simple to handle, maintains minimal water temperature variation and negligible water evaporation and allows normal larval development. The mosquito mass-rearing tray was designed to provide a large surface area of shallow water that would closely mimic natural breeding sites. The trays stack into a dedicated rack structure and filling and draining were easily performed. The close stacking of the trays in the rack and the possibility to tightly line up several racks makes this rearing unit a valid solution for maximal use of the space thus reducing construction, heating, and cooling costs. The low amount of labor required to operate the system also reduces labor costs that represent one of the main expenditures in any mass rearing facility operation. Preliminary experiments performed on Aedes albopictus (Skuse) also confirm the possibility of successfully extending the use of this technology to other mosquito species. Our larval rearing unit could enhance any mosquito control strategy in which large-scale releases of mosquitoes are needed to suppress or replace natural populations.
Collapse
Affiliation(s)
- F Balestrino
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Wagramerstrasse 5, A-1400 Vienna, Austria.
| | | | | |
Collapse
|
119
|
Dambach P, Machault V, Lacaux JP, Vignolles C, Sié A, Sauerborn R. Utilization of combined remote sensing techniques to detect environmental variables influencing malaria vector densities in rural West Africa. Int J Health Geogr 2012; 11:8. [PMID: 22443452 PMCID: PMC3331805 DOI: 10.1186/1476-072x-11-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 03/23/2012] [Indexed: 11/10/2022] Open
Abstract
Introduction The use of remote sensing has found its way into the field of epidemiology within the last decades. With the increased sensor resolution of recent and future satellites new possibilities emerge for high resolution risk modeling and risk mapping. Methods A SPOT 5 satellite image, taken during the rainy season 2009 was used for calculating indices by combining the image's spectral bands. Besides the widely used Normalized Difference Vegetation Index (NDVI) other indices were tested for significant correlation against field observations. Multiple steps, including the detection of surface water, its breeding appropriateness for Anopheles and modeling of vector imagines abundance, were performed. Data collection on larvae, adult vectors and geographic parameters in the field, was amended by using remote sensing techniques to gather data on altitude (Digital Elevation Model = DEM), precipitation (Tropical Rainfall Measurement Mission = TRMM), land surface temperatures (LST). Results The DEM derived altitude as well as indices calculations combining the satellite's spectral bands (NDTI = Normalized Difference Turbidity Index, NDWI Mac Feeters = Normalized Difference Water Index) turned out to be reliable indicators for surface water in the local geographic setting. While Anopheles larvae abundance in habitats is driven by multiple, interconnected factors - amongst which the NDVI - and precipitation events, the presence of vector imagines was found to be correlated negatively to remotely sensed LST and positively to the cumulated amount of rainfall in the preceding 15 days and to the Normalized Difference Pond Index (NDPI) within the 500 m buffer zone around capture points. Conclusions Remotely sensed geographical and meteorological factors, including precipitations, temperature, as well as vegetation, humidity and land cover indicators could be used as explanatory variables for surface water presence, larval development and imagines densities. This modeling approach based on remotely sensed information is potentially useful for counter measures that are putting on at the environmental side, namely vector larvae control via larviciding and water body reforming.
Collapse
Affiliation(s)
- Peter Dambach
- Institute of Public Health, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
120
|
Minakawa N, Dida GO, Sonye GO, Futami K, Njenga SM. Malaria vectors in Lake Victoria and adjacent habitats in western Kenya. PLoS One 2012; 7:e32725. [PMID: 22412913 PMCID: PMC3297610 DOI: 10.1371/journal.pone.0032725] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 02/01/2012] [Indexed: 12/03/2022] Open
Abstract
The prevalence of malaria among the residents of the Lake Victoria basin remains high. The environment associated with the lake may maintain a high number of malaria vectors. Lake habitats including water hyacinths have been suspected to be the source of vectors. This study investigated whether malaria vectors breed in the lake habitats and adjacent backwater pools. Anopheline larvae were collected within the littoral zone of the lake and adjacent pools located along approximately 24.3 km of the lakeshore in western Kenya, and their breeding sites characterized. Three primary vector species, Anopheles arabiensis, Anopheles gambiae s.s. and Anopheles funestus s.s., and three potential vectors, were found in the lake habitats. Unexpectedly, An. arabiensis was the most dominant vector species in the lake sampling sites. Its habitats were uncovered or covered with short grass. A potential secondary malaria vector, Anopheles rivulorum, dominated the water hyacinths in the lake. Most breeding sites in the lake were limited to areas that were surrounded by tall emergent plants, including trees, and those not exposed to waves. Nearly half of adjacent habitats were lagoons that were separated from the lake by sand bars. Lagoons contained a variety of microhabitats. Anopheles arabiensis dominated open habitats, whereas An. funestus s.s. was found mainly in vegetated habitats in lagoons. The current study confirmed that several breeding sites are associated with Lake Victoria. Given that Lake Victoria is the second largest lake in the world, the lake related habitats must be extensive; therefore, making targeted vector control difficult. Further exploration is necessary to estimate the effects of lake associated habitats on malaria transmission so as to inform a rational decision-making process for vector control.
Collapse
Affiliation(s)
- Noboru Minakawa
- Department of Vector Ecology and Environment, Institute of Tropical Medicine (NEKKEN) and Global Center of Excellence Program, Nagasaki University, Nagasaki, Japan.
| | | | | | | | | |
Collapse
|
121
|
Chaves LF, Hashizume M, Satake A, Minakawa N. Regime shifts and heterogeneous trends in malaria time series from Western Kenya Highlands. Parasitology 2012; 139:14-25. [PMID: 21996447 PMCID: PMC3252560 DOI: 10.1017/s0031182011001685] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/02/2011] [Accepted: 08/25/2011] [Indexed: 11/09/2022]
Abstract
Large malaria epidemics in the East African highlands during the mid and late 1990s kindled a stream of research on the role that global warming might have on malaria transmission. Most of the inferences using temporal information have been derived from a malaria incidence time series from Kericho. Here, we report a detailed analysis of 5 monthly time series, between 15 and 41 years long, from West Kenya encompassing an altitudinal gradient along Lake Victoria basin. We found decreasing, but heterogeneous, malaria trends since the late 1980s at low altitudes (<1600 m), and the early 2000s at high altitudes (>1600 m). Regime shifts were present in 3 of the series and were synchronous in the 2 time series from high altitudes. At low altitude, regime shifts were associated with a shift from increasing to decreasing malaria transmission, as well as a decrease in variability. At higher altitudes, regime shifts reflected an increase in malaria transmission variability. The heterogeneity in malaria trends probably reflects the multitude of factors that can drive malaria transmission and highlights the need for both spatially and temporally fine-grained data to make sound inferences about the impacts of climate change and control/elimination interventions on malaria transmission.
Collapse
Affiliation(s)
- Luis Fernando Chaves
- Graduate School of Environmental Sciences and Global Center of Excellence Program on Integrated Field Environmental Science, Hokkaido University, Sapporo, Japan.
| | | | | | | |
Collapse
|
122
|
Fillinger U, Lindsay SW. Larval source management for malaria control in Africa: myths and reality. Malar J 2011; 10:353. [PMID: 22166144 PMCID: PMC3273449 DOI: 10.1186/1475-2875-10-353] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 12/13/2011] [Indexed: 08/15/2023] Open
Abstract
As malaria declines in many African countries there is a growing realization that new interventions need to be added to the front-line vector control tools of long-lasting impregnated nets (LLINs) and indoor residual spraying (IRS) that target adult mosquitoes indoors. Larval source management (LSM) provides the dual benefits of not only reducing numbers of house-entering mosquitoes, but, importantly, also those that bite outdoors. Large-scale LSM was a highly effective method of malaria control in the first half of the twentieth century, but was largely disbanded in favour of IRS with DDT. Today LSM continues to be used in large-scale mosquito abatement programmes in North America and Europe, but has only recently been tested in a few trials of malaria control in contemporary Africa. The results from these trials show that hand-application of larvicides can reduce transmission by 70-90% in settings where mosquito larval habitats are defined but is largely ineffectual where habitats are so extensive that not all of them can be covered on foot, such as areas that experience substantial flooding. Importantly recent evidence shows that LSM can be an effective method of malaria control, especially when combined with LLINs. Nevertheless, there are a number of misconceptions or even myths that hamper the advocacy for LSM by leading international institutions and the uptake of LSM by Malaria Control Programmes. Many argue that LSM is not feasible in Africa due to the high number of small and temporary larval habitats for Anopheles gambiae that are difficult to find and treat promptly. Reference is often made to the Ross-Macdonald model to reinforce the view that larval control is ineffective. This paper challenges the notion that LSM cannot be successfully used for malaria control in African transmission settings by highlighting historical and recent successes, discussing its potential in an integrated vector management approach working towards malaria elimination and critically reviewing the most common arguments that are used against the adoption of LSM.
Collapse
Affiliation(s)
- Ulrike Fillinger
- Department of Disease Control, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
- International Centre of Insect Physiology and Ecology, Thomas Odhiambo Campus, Mbita, Mbita 40305, Kenya
| | - Steven W Lindsay
- Department of Disease Control, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
123
|
Warburg A, Faiman R, Shtern A, Silberbush A, Markman S, Cohen JE, Blaustein L. Oviposition habitat selection by Anopheles gambiae in response to chemical cues by Notonecta maculata. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2011; 36:421-425. [PMID: 22129414 DOI: 10.1111/j.1948-7134.2011.00183.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A number of mosquito species avoid predator-inhabited oviposition sites by detecting predator-released kairomones. In the laboratory, we found that when offered de-ionized water and de-ionized water conditioned with Notonecta maculata, gravid Anopheles gambiae females preferentially oviposited into the former. We then conducted further experiments using two chemical components found in Notonecta-conditioned water, chemically pure n-tricosane and/or n-heneicosane, that was previously shown to repel oviposition by Culiseta longiareolata. These hydrocarbons failed to deter oviposition by An. gambiae females. Thus, different mosquito species may rely on distinct chemical cues to avoid predators. Identification and chemical characterization of such kairomones could facilitate innovative, environmentally sound mosquito control.
Collapse
Affiliation(s)
- Alon Warburg
- Department of Microbiology & Molecular Genetics, The Institute for Medical Research Israel-Canada, The Kuvin Centre for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| | | | | | | | | | | | | |
Collapse
|
124
|
Gadiaga L, Machault V, Pagès F, Gaye A, Jarjaval F, Godefroy L, Cissé B, Lacaux JP, Sokhna C, Trape JF, Rogier C. Conditions of malaria transmission in Dakar from 2007 to 2010. Malar J 2011; 10:312. [PMID: 22018223 PMCID: PMC3216462 DOI: 10.1186/1475-2875-10-312] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 10/21/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies in Dakar have highlighted the spatial and temporal heterogeneity of Anopheles gambiae s.l. biting rates. In order to improve the knowledge of the determinants of malaria transmission in this city, the present study reports the results of an extensive entomological survey that was conducted in 45 areas in Dakar from 2007 to 2010. METHODS Water collections were monitored for the presence of anopheline larvae. Adult mosquitoes were sampled by human landing collection. Plasmodium falciparum circumsporozoïte (CSP) protein indexes were measured by ELISA (enzyme-linked immunosorbent assay), and the entomological inoculation rates were calculated. RESULTS The presence of anopheline larvae were recorded in 1,015 out of 2,683 observations made from 325 water collections. A water pH of equal to or above 8.0, a water temperature that was equal to or above 30°C, the absence of larvivorous fishes, the wet season, the presence of surface vegetation, the persistence of water and location in a slightly urbanised area were significantly associated with the presence of anopheline larvae and/or with a higher density of anopheline larvae. Most of the larval habitats were observed in public areas, i.e., freely accessible. A total of 496,310 adult mosquitoes were caught during 3096 person-nights, and 44967 of these specimens were identified as An.gambiae s.l. The mean An. gambiae s.l. human-biting rate ranged from 0.1 to 248.9 bites per person per night during the rainy season. Anopheles arabiensis (93.14%), Anopheles melas (6.83%) and An. gambiae s.s. M form (0.03%) were the three members of the An. gambiae complex. Fifty-two An. arabiensis and two An. melas specimens were CSP-positive, and the annual CSP index was 0.64% in 2007, 0.09% in 2008-2009 and 0.12% in 2009-2010. In the studied areas, the average EIR ranged from 0 to 17.6 infected bites per person during the entire transmission season. CONCLUSION The spatial and temporal heterogeneity of An. gambiae s.l. larval density, adult human-biting rate (HBR) and malaria transmission in Dakar has been confirmed, and the environmental factors associated with this heterogeneity have been identified. These results pave the way for the creation of malaria risk maps and for a focused anti-vectorial control strategy.
Collapse
Affiliation(s)
- Libasse Gadiaga
- Institut de Recherche pour le Développement, UMR 198, Unité Mixte de Recherche 6236, Route des Pères Maristes, BP 1386 Dakar, Sénégal.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Huestis DL, Yaro AS, Traoré AI, Adamou A, Kassogué Y, Diallo M, Timbiné S, Dao A, Lehmann T. Variation in metabolic rate of Anopheles gambiae and A. arabiensis in a Sahelian village. ACTA ACUST UNITED AC 2011; 214:2345-53. [PMID: 21697426 DOI: 10.1242/jeb.054668] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the Sahel, the Anopheles gambiae complex consists of Anopheles arabiensis and the M and S molecular forms of A. gambiae sensu stricto. However, the composition of these malaria vectors varies spatially and temporally throughout the region and is thought to be linked to environmental factors such as rainfall, larval site characteristics and duration of the dry season. To examine possible physiological divergence between these taxa, we measured metabolic rates of mosquitoes during the wet season in a Sahelian village in Mali. To our knowledge, this study provides the first measurements of metabolic rates of A. gambiae and A. arabiensis in the field. The mean metabolic rate of A. arabiensis was higher than that of M-form A. gambiae when accounting for the effects of female gonotrophic status, temperature and flight activity. However, after accounting for their difference in body size, no significant difference in metabolic rate was found between these two species (whilst all other factors were found to be significant). Thus, body size may be a key character that has diverged in response to ecological differences between these two species. Alternatively, these species may display additional differences in metabolic rate only during the dry season. Overall, our results indicate that changes in behavior and feeding activity provide an effective mechanism for mosquitoes to reduce their metabolic rate, and provide insight into the possible strategies employed by aestivating individuals during the dry season. We hypothesize that female mosquitoes switch to sugar feeding while in dormancy because of elevated metabolism associated with blood digestion.
Collapse
Affiliation(s)
- Diana L Huestis
- Laboratory of Malaria and Vector Research, NIAID, NIH, 12735 Twinbrook Pkwy, Rockville, MD 20852, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Kweka EJ, Zhou G, Lee MC, Gilbreath TM, Mosha F, Munga S, Githeko AK, Yan G. Evaluation of two methods of estimating larval habitat productivity in western Kenya highlands. Parasit Vectors 2011; 4:110. [PMID: 21682875 PMCID: PMC3138440 DOI: 10.1186/1756-3305-4-110] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/17/2011] [Indexed: 11/18/2022] Open
Abstract
Background Malaria vector intervention and control programs require reliable and accurate information about vector abundance and their seasonal distribution. The availability of reliable information on the spatial and temporal productivity of larval vector habitats can improve targeting of larval control interventions and our understanding of local malaria transmission and epidemics. The main objective of this study was to evaluate two methods of estimating larval habitat productivity in the western Kenyan highlands, the aerial sampler and the emergence trap. Methods The study was conducted during the dry and rainy seasons in 2008, 2009 and 2010. Aerial samplers and emergence traps were set up for sixty days in each season in three habitat types: drainage ditches, natural swamps, and abandoned goldmines. Aerial samplers and emergence traps were set up in eleven places in each habitat type. The success of each in estimating habitat productivity was assessed according to method, habitat type, and season. The effect of other factors including algae cover, grass cover, habitat depth and width, and habitat water volume on species productivity was analysed using stepwise logistic regression Results Habitat productivity estimates obtained by the two sampling methods differed significantly for all species except for An. implexus. For for An. gambiae s.l. and An. funestus, aerial samplers performed better, 21.5 and 14.6 folds, than emergence trap respectively, while the emergence trap was shown to be more efficient for culicine species. Seasonality had a significant influence on the productivity of all species monitored. Dry season was most productive season. Overall, drainage ditches had significantly higher productivity in all seasons compared to other habitat types. Algae cover, debris, chlorophyll-a, and habitat depth and size had significant influence with respect to species. Conclusion These findings suggest that the aerial sampler is the better of the two methods for estimating the productivity of An. gambiae s.l. and An. funestus in the western Kenya highlands and possibly other malaria endemic parts of Africa. This method has proven to be a useful tool for monitoring malaria vector populations and for control program design, and provides useful means for determining the most suitable sites for targeted interventions.
Collapse
Affiliation(s)
- Eliningaya J Kweka
- Centre for Global Health Research, Kenya Medical Research Institute, P O Box 1578, Kisumu 40100, Kenya.
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Tuten HC. Habitat characteristics of larval mosquitoes in zoos of South Carolina, USA. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2011; 27:111-119. [PMID: 21805842 DOI: 10.2987/10-6061.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
To investigate whether the unique assemblage of habitats in zoos could affect mosquito oviposition behavior and to provide zoos with suggestions for mosquito control, larvae were sampled and associated habitat variables were measured in 2 zoos in South Carolina, U.S.A. Fifty-nine sites were sampled from March 2008 to January 2009. A total of 1630 larvae representing 16 species was collected and identified. The dominant species was Aedes albopictus (46.0%), followed by Ae. triseriatus (23.6%), Culex restuans (12.4%), and Cx. pipiens complex (9.7%). Principal components and multiple logistic regression analyses showed that across both zoos the distribution of Ae. albopictus larvae was predicted by ambient and site temperature, precipitation, dissolved oxygen, and container habitats. The distribution of Ae. triseriatus larvae was predicted by natural containers and shade height < or =2 m. Overall larval mosquito presence (regardless of species) was predicted by ambient and site temperature, precipitation, dissolved oxygen, presence of natural habitats, and absence of aquatic vegetation. Additionally, C8 values of pairwise species associations indicated significant habitat-based relationships between Ae. albopictus and Ae. triseriatus, and Cx. pipiens complex and Cx. restuans. In general, species-habitat associations conformed to previously published studies. Recommendations to zoo personnel include elimination of artificial container habitats, reduction of shade sources < or =2 m over aquatic habitats, use of approved mosquito larvicides, and training in recognizing and mitigating larval mosquito habitats.
Collapse
Affiliation(s)
- Holly C Tuten
- Department of Entomology, Soils and Plant Sciences, Clemson University, SC 29634-0315, USA
| |
Collapse
|
128
|
Ndenga BA, Simbauni JA, Mbugi JP, Githeko AK, Fillinger U. Productivity of malaria vectors from different habitat types in the western Kenya highlands. PLoS One 2011; 6:e19473. [PMID: 21559301 PMCID: PMC3085476 DOI: 10.1371/journal.pone.0019473] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 04/04/2011] [Indexed: 11/18/2022] Open
Abstract
Background Mosquito Larval Source Management (LSM) could be a valuable additional tool for integrated malaria vector control especially in areas with focal transmission like the highlands of western Kenya if it were not for the need to target all potential habitats at frequent intervals. The ability to determine the productivity of malaria vectors from identified habitats might be used to target LSM only at productive ones. Methods Each aquatic habitat within three highland sites in western Kenya was classified as natural swamp, cultivated swamp, river fringe, puddle, open drain or burrow pit. Three habitats of each type were selected in each site in order to study the weekly productivity of adult malaria vectors from February to May 2009 using a sweep-net and their habitat characteristics recorded. Results All surveyed habitat types produced adult malaria vectors. Mean adult productivity of Anopheles gambiae sensu lato in puddles (1.8/m2) was 11–900 times higher than in the other habitat types. However, puddles were the most unstable habitats having water at 43% of all sampling occasions and accounted for 5% of all habitats mapped in the study areas whereas open drains accounted for 72%. Densities of anopheline late instars larvae significantly increased with the presence of a biofilm but decreased with increasing surface area or when water was flowing. Taking stability and frequency of the habitat into account, puddles were still the most productive habitat types for malaria vectors but closely followed by open drains. Conclusion Even though productivity of An. gambiae s.l. was greatest in small and unstable habitats, estimation of their overall productivity in an area needs to consider the more stable habitats over time and their surface extension. Therefore, targeting only the highly productive habitats is unlikely to provide sufficient reduction in malaria vector densities.
Collapse
Affiliation(s)
- Bryson A Ndenga
- Department of Zoological Sciences, Kenyatta University, Nairobi, Kenya.
| | | | | | | | | |
Collapse
|
129
|
Imbahale SS, Paaijmans KP, Mukabana WR, van Lammeren R, Githeko AK, Takken W. A longitudinal study on Anopheles mosquito larval abundance in distinct geographical and environmental settings in western Kenya. Malar J 2011; 10:81. [PMID: 21477340 PMCID: PMC3080801 DOI: 10.1186/1475-2875-10-81] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 04/10/2011] [Indexed: 11/12/2022] Open
Abstract
Background As the ecology of mosquito larvae can be complex there is need to develop a rational framework for undertaking larval ecological studies. Local environmental characteristics, such as altitude, climate and land use, can significantly impact on phenology and population dynamics of mosquito larvae, and indirectly affect the dynamics of mosquito-borne diseases. The aim of this study was to assess the feasibility of implementing an integrated approach to larval source management under the distinct ecological settings. Methods The study was conducted in two highland villages and one village, at a lower altitude, in the Lake Victoria basin, where malaria is endemic and transmitted by the same Anopheles mosquito species. In each village the stability of mosquito larval habitats was classified as either temporary or permanent. The productivity of these habitat types was quantified by carrying out weekly larval sampling using a standard dipping method for a period of two years. During sampling the physical characteristic of the larval habitat, including the vegetation cover were noted. Ambient temperature, rainfall and relative humidity were recorded on a 21 × Micro-datalogger in each study site. Results Anopheles gambiae sensu lato larvae were found in all study sites. Anopheles arabiensis was more abundant (93%) in Nyalenda (Lake Victoria basin) and Fort Ternan (highland area; 71%). In Lunyerere (highland area), An. gambiae sensu stricto comprised 93% of the total An. gambiae s.l. larvae. Larvae of An. gambiae s.l. mosquitoes were present in both temporary and permanent habitats with monthly variations dependent on rainfall intensity and location. Anopheles larvae were more likely to be found in man-made as opposed to natural habitats. Grassy habitats were preferred and were, therefore, more productive of Anopheles larvae compared to other habitat types. Weekly rainfall intensity led to an increase or decrease in mosquito larval abundance depending on the location. Conclusion The majority of mosquito breeding habitats were man made in all sites. Both temporary and permanent habitats were suitable for An. gambiae breeding. In Fort Ternan temporary sites were favoured for mosquito breeding above permanent sites. Significant differences in larval abundance were found depending on weekly rainfall intensity. Larval source management programmes should target permanent and temporary habitats equally and work closely with land and home owners as a majority of the breeding habitats are man made.
Collapse
Affiliation(s)
- Susan S Imbahale
- Laboratory of Entomology, Wageningen University and Research Centre, PO Box 8031, 6700 EH Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
130
|
A network population model of the dynamics and control of African malaria vectors. Trans R Soc Trop Med Hyg 2011; 104:669-75. [PMID: 20813387 DOI: 10.1016/j.trstmh.2010.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 07/30/2010] [Accepted: 07/30/2010] [Indexed: 11/24/2022] Open
Abstract
A more robust assessment of malaria control through mosquito larval habitat destruction will come from a better understanding of the distribution, productivity and connectivity of breeding sites. The present study examines the significance of vector dispersal ability, larval habitat stability and productivity on the persistence and extinction of a mosquito population inhabiting a dynamic network of breeding sites. We use this novel method of vector modelling to show that when dispersal is limited or vector distribution is patchy, the spread and growth of a mosquito population at the onset of a rainy season is delayed and extinction through larval habitat destruction is more readily achieved. We also determine the impact of two alternative dry-season survival strategies on mosquito dynamics. Simulations suggest that if adult vectors remain dormant throughout the dry season, the stage structure of the population will be synchronized at the onset of the wet season and its growth will be delayed. In contrast, a population that continues to breed throughout the dry season grows more rapidly and is more difficult to control. Our findings have important implications on the development of integrative malaria vector management strategies and on the understanding of dry-season survival mechanisms of African malaria vectors.
Collapse
|
131
|
Ermert V, Fink AH, Jones AE, Morse AP. Development of a new version of the Liverpool Malaria Model. I. Refining the parameter settings and mathematical formulation of basic processes based on a literature review. Malar J 2011; 10:35. [PMID: 21314922 PMCID: PMC3055220 DOI: 10.1186/1475-2875-10-35] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 02/11/2011] [Indexed: 11/10/2022] Open
Abstract
Background A warm and humid climate triggers several water-associated diseases such as malaria. Climate- or weather-driven malaria models, therefore, allow for a better understanding of malaria transmission dynamics. The Liverpool Malaria Model (LMM) is a mathematical-biological model of malaria parasite dynamics using daily temperature and precipitation data. In this study, the parameter settings of the LMM are refined and a new mathematical formulation of key processes related to the growth and size of the vector population are developed. Methods One of the most comprehensive studies to date in terms of gathering entomological and parasitological information from the literature was undertaken for the development of a new version of an existing malaria model. The knowledge was needed to allow the justification of new settings of various model parameters and motivated changes of the mathematical formulation of the LMM. Results The first part of the present study developed an improved set of parameter settings and mathematical formulation of the LMM. Important modules of the original LMM version were enhanced in order to achieve a higher biological and physical accuracy. The oviposition as well as the survival of immature mosquitoes were adjusted to field conditions via the application of a fuzzy distribution model. Key model parameters, including the mature age of mosquitoes, the survival probability of adult mosquitoes, the human blood index, the mosquito-to-human (human-to-mosquito) transmission efficiency, the human infectious age, the recovery rate, as well as the gametocyte prevalence, were reassessed by means of entomological and parasitological observations. This paper also revealed that various malaria variables lack information from field studies to be set properly in a malaria modelling approach. Conclusions Due to the multitude of model parameters and the uncertainty involved in the setting of parameters, an extensive literature survey was carried out, in order to produce a refined set of settings of various model parameters. This approach limits the degrees of freedom of the parameter space of the model, simplifying the final calibration of undetermined parameters (see the second part of this study). In addition, new mathematical formulations of important processes have improved the model in terms of the growth of the vector population.
Collapse
Affiliation(s)
- Volker Ermert
- Institute of Geophysics and Meteorology, University of Cologne, Cologne, Germany.
| | | | | | | |
Collapse
|
132
|
Ng'habi KRN, Mwasheshi D, Knols BGJ, Ferguson HM. Establishment of a self-propagating population of the African malaria vector Anopheles arabiensis under semi-field conditions. Malar J 2010; 9:356. [PMID: 21143870 PMCID: PMC3017536 DOI: 10.1186/1475-2875-9-356] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 12/08/2010] [Indexed: 11/21/2022] Open
Abstract
Background The successful control of insect disease vectors relies on a thorough understanding of their ecology and behaviour. However, knowledge of the ecology of many human disease vectors lags behind that of agricultural pests. This is partially due to the paucity of experimental tools for investigating their ecology under natural conditions without risk of exposure to disease. Assessment of vector life-history and demographic traits under natural conditions has also been hindered by the inherent difficulty of sampling these seasonally and temporally varying populations with the limited range of currently available tools. Consequently much of our knowledge of vector biology comes from studies of laboratory colonies, which may not accurately represent the genetic and behavioural diversity of natural populations. Contained semi-field systems (SFS) have been proposed as more appropriate tools for the study of vector ecology. SFS are relatively large, netting-enclosed, mesocosms in which vectors can fly freely, feed on natural plant and vertebrate host sources, and access realistic resting and oviposition sites. Methods A self-replicating population of the malaria vector Anopheles arabiensis was established within a large field cage (21 × 9.1 × 7.1 m) at the Ifakara Health Institute, Tanzania that mimics the natural habitat features of the rural village environments where these vectors naturally occur. Offspring from wild females were used to establish this population whose life-history, behaviour and demography under semi-field conditions was monitored over 24 generations. Results This study reports the first successful establishment and maintenance of an African malaria vector population under SFS conditions for multiple generations (> 24). The host-seeking behaviour, time from blood feeding to oviposition, larval development, adult resting and swarming behaviour exhibited by An. arabiensis under SFS conditions were similar to those seen in nature. Conclusions This study presents proof-of-principle that populations of important African malaria vectors can be established within environmentally realistic, contained semi-field settings. Such SFS will be valuable tools for the experimental study of vector ecology and assessment of their short-term ecological and longer-term evolutionary responses to existing and new vector control interventions.
Collapse
Affiliation(s)
- Kija R N Ng'habi
- Biomedical and Environmental Thematic Group, Ifakara Health Institute, Box 53, Ifakara, Tanzania.
| | | | | | | |
Collapse
|
133
|
Sinka ME, Bangs MJ, Manguin S, Coetzee M, Mbogo CM, Hemingway J, Patil AP, Temperley WH, Gething PW, Kabaria CW, Okara RM, Van Boeckel T, Godfray HCJ, Harbach RE, Hay SI. The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis. Parasit Vectors 2010; 3:117. [PMID: 21129198 PMCID: PMC3016360 DOI: 10.1186/1756-3305-3-117] [Citation(s) in RCA: 435] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 12/03/2010] [Indexed: 11/10/2022] Open
Abstract
Background This is the second in a series of three articles documenting the geographical distribution of 41 dominant vector species (DVS) of human malaria. The first paper addressed the DVS of the Americas and the third will consider those of the Asian Pacific Region. Here, the DVS of Africa, Europe and the Middle East are discussed. The continent of Africa experiences the bulk of the global malaria burden due in part to the presence of the An. gambiae complex. Anopheles gambiae is one of four DVS within the An. gambiae complex, the others being An. arabiensis and the coastal An. merus and An. melas. There are a further three, highly anthropophilic DVS in Africa, An. funestus, An. moucheti and An. nili. Conversely, across Europe and the Middle East, malaria transmission is low and frequently absent, despite the presence of six DVS. To help control malaria in Africa and the Middle East, or to identify the risk of its re-emergence in Europe, the contemporary distribution and bionomics of the relevant DVS are needed. Results A contemporary database of occurrence data, compiled from the formal literature and other relevant resources, resulted in the collation of information for seven DVS from 44 countries in Africa containing 4234 geo-referenced, independent sites. In Europe and the Middle East, six DVS were identified from 2784 geo-referenced sites across 49 countries. These occurrence data were combined with expert opinion ranges and a suite of environmental and climatic variables of relevance to anopheline ecology to produce predictive distribution maps using the Boosted Regression Tree (BRT) method. Conclusions The predicted geographic extent for the following DVS (or species/suspected species complex*) is provided for Africa: Anopheles (Cellia) arabiensis, An. (Cel.) funestus*, An. (Cel.) gambiae, An. (Cel.) melas, An. (Cel.) merus, An. (Cel.) moucheti and An. (Cel.) nili*, and in the European and Middle Eastern Region: An. (Anopheles) atroparvus, An. (Ano.) labranchiae, An. (Ano.) messeae, An. (Ano.) sacharovi, An. (Cel.) sergentii and An. (Cel.) superpictus*. These maps are presented alongside a bionomics summary for each species relevant to its control.
Collapse
Affiliation(s)
- Marianne E Sinka
- Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Randell HF, Dickinson KL, Shayo EH, Mboera LEG, Kramer RA. Environmental management for malaria control: knowledge and practices in Mvomero, Tanzania. ECOHEALTH 2010; 7:507-516. [PMID: 20694503 DOI: 10.1007/s10393-010-0343-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 06/30/2010] [Accepted: 07/08/2010] [Indexed: 05/29/2023]
Abstract
Environmental conditions play an important role in the transmission of malaria; therefore, regulating these conditions can help to reduce disease burden. Environmental management practices for disease control can be implemented at the community level to complement other malaria control methods. This study assesses current knowledge and practices related to mosquito ecology and environmental management for malaria control in a rural, agricultural region of Tanzania. Household surveys were conducted with 408 randomly selected respondents from 10 villages and qualitative data were collected through focus group discussions and in-depth interviews. Results show that respondents are well aware of the links between mosquitoes, the environment, and malaria. Most respondents stated that cleaning the environment around the home, clearing vegetation around the home, or draining stagnant water can reduce mosquito populations, and 63% of respondents reported performing at least one of these techniques to protect themselves from malaria. It is clear that many respondents believe that these environmental management practices are effective malaria control methods, but the actual efficacy of these techniques for controlling populations of vectors or reducing malaria prevalence in the varying ecological habitats in Mvomero is unknown. Further research should be conducted to determine the effects of different environmental management practices on both mosquito populations and malaria transmission in this region, and increased participation in effective techniques should be promoted.
Collapse
|
135
|
Balestrino F, Soliban SM, Gilles J, Oliva C, Benedict MQ. Ovipositional behavior in the context of mass rearing of Anopheles arabiensis. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2010; 26:365-372. [PMID: 21290931 DOI: 10.2987/10-6008.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Large-scale production of mosquitoes is a key factor for a successful sterile insect technique program. A manageable mass-production cage must contain appropriate features for adult resting, mating, feeding, and ovipositional activities. In order to maximize egg collections, tests were conducted to determine the physical characteristics of ovipositional sites for caged Anopheles arabiensis. Effects of texture, shade, height, and shape of the ovipositional container on female behavior were investigated. Results indicate a strong preference for oviposition on humid substrates over free-standing water. The shade and texture of the cup's walls also influenced site choice, with black rough inner vertical walls of the cup resulting in the largest number of eggs. Ovipositional sites with square shape were preferred rather than circular cups, and in the square cups, >60% of the eggs were laid in the corners. Height also affected oviposition, as An. arabiensis significantly favored the lowest sites even though some oviposition occurred at higher sites. Based on this study and from available literature, we determined the characteristics of an artificial ovipositional site that includes all these characteristics, which will yield large numbers of eggs required for mass production of this species.
Collapse
Affiliation(s)
- Fabrizio Balestrino
- Entomology Unit, FAO/IAEA Agriculture & Biotechnology Laboratory, Joint FAO/IAEA Programme, International Atomic Energy Agency, PO Box 100, Wagramerstrasse 5, A-1400 Vienna, Austria
| | | | | | | | | |
Collapse
|
136
|
Wachira SW, Ndung'u M, Njagi PGN, Hassanali A. Comparative responses of ovipositing Anopheles gambiae and Culex quinquefasciatus females to the presence of Culex egg rafts and larvae. MEDICAL AND VETERINARY ENTOMOLOGY 2010; 24:369-74. [PMID: 21058965 DOI: 10.1111/j.1365-2915.2010.00913.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Field observations have demonstrated that gravid Anopheles gambiae Giles s.s. (Diptera: Culicidae) are selective in their choice of oviposition sites. For example, immature stages of An. gambiae s.s. are rarely found in water that contains Culex quinquefasciatus Say immatures. The possibility that this may, in part at least, reflect a response by ovipositing An. gambiae s.s. females to volatile signals associated with Culex juveniles was evaluated by testing the response of An. gambiae s.s. females to varying densities of Cx. quinquefasciatus egg rafts and/or larvae in oviposition choice assays. For comparison, the oviposition choices of Cx. quinquefasciatus to conspecific egg rafts and/or larvae were similarly assayed. At a low density of Cx. quinquefasciatus egg rafts (1-15 egg rafts/100 mL water), An. gambiae s.s. females laid more eggs in the treatment water than in the control, with a maximum of twice as many in the treatment water at 5 egg rafts/100 mL water. At higher egg raft densities and in all treatments that included Cx. quinquefasciatus larvae, oviposition decreased significantly in the treatment dishes in a density-dependent manner. As previous studies have indicated, ovipositing Cx. quinquefasciatus females were attracted to and laid egg rafts in dishes containing conspecific egg rafts and, interestingly, also in dishes containing larvae.
Collapse
Affiliation(s)
- S W Wachira
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya.
| | | | | | | |
Collapse
|
137
|
Ofulla AVO, Karanja D, Omondi R, Okurut T, Matano A, Jembe T, Abila R, Boera P, Gichuki J. Relative abundance of mosquitoes and snails associated with water hyacinth and hippo grass in the Nyanza gulf of Lake Victoria. ACTA ACUST UNITED AC 2010. [DOI: 10.1111/j.1440-1770.2010.00434.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | | | - R. Omondi
- Kenya Marine and Fisheries Research Institute
| | - T. Okurut
- Lake Victoria Basin Commission, Kisumu, Kenya
| | - A. Matano
- Lake Victoria Basin Commission, Kisumu, Kenya
| | - T. Jembe
- Kenya Marine and Fisheries Research Institute
| | - R. Abila
- Kenya Marine and Fisheries Research Institute
| | - P. Boera
- Kenya Marine and Fisheries Research Institute
| | - J. Gichuki
- Kenya Marine and Fisheries Research Institute
| |
Collapse
|
138
|
Mwangangi JM, Shililu J, Muturi EJ, Muriu S, Jacob B, Kabiru EW, Mbogo CM, Githure J, Novak RJ. Anopheles larval abundance and diversity in three rice agro-village complexes Mwea irrigation scheme, central Kenya. Malar J 2010; 9:228. [PMID: 20691120 PMCID: PMC2927610 DOI: 10.1186/1475-2875-9-228] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 08/09/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The diversity and abundance of Anopheles larvae has significant influence on the resulting adult mosquito population and hence the dynamics of malaria transmission. Studies were conducted to examine larval habitat dynamics and ecological factors affecting survivorship of aquatic stages of malaria vectors in three agro-ecological settings in Mwea, Kenya. METHODS Three villages were selected based on rice husbandry and water management practices. Aquatic habitats in the 3 villages representing planned rice cultivation (Mbui Njeru), unplanned rice cultivation (Kiamachiri) and non-irrigated (Murinduko) agro-ecosystems were sampled every 2 weeks to generate stage-specific estimates of mosquito larval densities, relative abundance and diversity. Records of distance to the nearest homestead, vegetation coverage, surface debris, turbidity, habitat stability, habitat type, rice growth stage, number of rice tillers and percent Azolla cover were taken for each habitat. RESULTS Captures of early, late instars and pupae accounted for 78.2%, 10.9% and 10.8% of the total Anopheles immatures sampled (n = 29,252), respectively. There were significant differences in larval abundance between 3 agro-ecosystems. The village with 'planned' rice cultivation had relatively lower Anopheles larval densities compared to the villages where 'unplanned' or non-irrigated. Similarly, species composition and richness was higher in the two villages with either 'unplanned' or limited rice cultivation, an indication of the importance of land use patterns on diversity of larval habitat types. Rice fields and associated canals were the most productive habitat types while water pools and puddles were important for short periods during the rainy season. Multiple logistic regression analysis showed that presence of other invertebrates, percentage Azolla cover, distance to nearest homestead, depth and water turbidity were the best predictors for Anopheles mosquito larval abundance. CONCLUSION These results suggest that agricultural practices have significant influence on mosquito species diversity and abundance and that certain habitat characteristics favor production of malaria vectors. These factors should be considered when implementing larval control strategies which should be targeted based on habitat productivity and water management.
Collapse
Affiliation(s)
- Joseph M Mwangangi
- Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, PO Box 428, Kilifi 80108, Kenya.
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Paaijmans KP, Imbahale SS, Thomas MB, Takken W. Relevant microclimate for determining the development rate of malaria mosquitoes and possible implications of climate change. Malar J 2010; 9:196. [PMID: 20618930 PMCID: PMC2912924 DOI: 10.1186/1475-2875-9-196] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 07/09/2010] [Indexed: 11/29/2022] Open
Abstract
Background The relationship between mosquito development and temperature is one of the keys to understanding the current and future dynamics and distribution of vector-borne diseases such as malaria. Many process-based models use mean air temperature to estimate larval development times, and hence adult vector densities and/or malaria risk. Methods Water temperatures in three different-sized water pools, as well as the adjacent air temperature in lowland and highland sites in western Kenya were monitored. Both air and water temperatures were fed into a widely-applied temperature-dependent development model for Anopheles gambiae immatures, and subsequently their impact on predicted vector abundance was assessed. Results Mean water temperature in typical mosquito breeding sites was 4-6°C higher than the mean temperature of the adjacent air, resulting in larval development rates, and hence population growth rates, that are much higher than predicted based on air temperature. On the other hand, due to the non-linearities in the relationship between temperature and larval development rate, together with a marginal buffering in the increase in water temperature compared with air temperature, the relative increases in larval development rates predicted due to climate change are substantially less. Conclusions Existing models will tend to underestimate mosquito population growth under current conditions, and may overestimate relative increases in population growth under future climate change. These results highlight the need for better integration of biological and environmental information at the scale relevant to mosquito biology.
Collapse
Affiliation(s)
- Krijn P Paaijmans
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700EH Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
140
|
Bayoh MN, Mathias DK, Odiere MR, Mutuku FM, Kamau L, Gimnig JE, Vulule JM, Hawley WA, Hamel MJ, Walker ED. Anopheles gambiae: historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza Province, Kenya. Malar J 2010; 9:62. [PMID: 20187956 PMCID: PMC2838909 DOI: 10.1186/1475-2875-9-62] [Citation(s) in RCA: 335] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 02/26/2010] [Indexed: 12/02/2022] Open
Abstract
Background High coverage of insecticide-treated bed nets in Asembo and low coverage in Seme, two adjacent communities in western Nyanza Province, Kenya; followed by expanded coverage of bed nets in Seme, as the Kenya national malaria programme rolled out; provided a natural experiment for quantification of changes in relative abundance of two primary malaria vectors in this holoendemic region. Both belong to the Anopheles gambiae sensu lato (s.l.) species complex, namely A. gambiae sensu stricto (s.s.) and Anopheles arabiensis. Historically, the former species was proportionately dominant in indoor resting collections of females. Methods Data of the relative abundance of adult A. gambiae s.s. and A. arabiensis sampled from inside houses were obtained from the literature from 1970 to 2002 for sites west of Kisumu, Kenya, to the region of Asembo ca. 50 km from the city. A sampling transect was established from Asembo (where bed net use was high due to presence of a managed bed net distribution programme) eastward to Seme, where no bed net programme was in place. Adults of A. gambiae s.l. were sampled from inside houses along the transect from 2003 to 2009, as were larvae from nearby aquatic habitats, providing data over a nearly 40 year period of the relative abundance of the two species. Relative proportions of A. gambiae s.s. and A. arabiensis were determined for each stage by identifying species by the polymerase chain reaction method. Household bed net ownership was measured with surveys during mosquito collections. Data of blood host choice, parity rate, and infection rate for Plasmodium falciparum in A. gambiae s.s. and A. arabiensis were obtained for a sample from Asembo and Seme from 2005. Results Anopheles gambiae s.s. adult females from indoor collections predominated from 1970 to 1998 (ca. 85%). Beginning in 1999, A. gambiae s.s decreased proportionately relative to A. arabiensis, then precipitously declined to rarity coincident with increased bed net ownership as national bed net distribution programmes commenced in 2004 and 2006. By 2009, A. gambiae s.s. comprised proportionately ca. 1% of indoor collections and A. arabiensis 99%. In Seme compared to Asembo in 2003, proportionately more larvae were A. gambiae s.s., larval density was higher, and more larval habitats were occupied. As bed net use rose in Seme, the proportion of A. gambiae larvae declined as well. These trends continued to 2009. Parity and malaria infection rates were lower in both species in Asembo (high bed net use) compared to Seme (low bed net use), but host choice did not vary within species in both communities (predominantly cattle for A. arabiensis, humans for A. gambiae s.s.). Conclusions A marked decline of the A. gambiae s.s. population occurred as household ownership of bed nets rose in a region of western Kenya over a 10 year period. The increased bed net coverage likely caused a mass effect on the composition of the A. gambiae s.l. species complex, resulting in the observed proportionate increase in A. arabiensis compared to its closely related sibling species, A. gambiae s.s. These observations are important in evaluating the process of regional malaria elimination, which requires sustained vector control as a primary intervention.
Collapse
Affiliation(s)
- M Nabie Bayoh
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Himeidan YE, Zhou G, Yakob L, Afrane Y, Munga S, Atieli H, El-Rayah EA, Githeko AK, Yan G. Habitat stability and occurrences of malaria vector larvae in western Kenya highlands. Malar J 2009; 8:234. [PMID: 19845968 PMCID: PMC2771030 DOI: 10.1186/1475-2875-8-234] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 10/21/2009] [Indexed: 11/10/2022] Open
Abstract
Background Although the occurrence of malaria vector larvae in the valleys of western Kenya highlands is well documented, knowledge of larval habitats in the uphill sites is lacking. Given that most inhabitants of the highlands actually dwell in the uphill regions, it is important to develop understanding of mosquito breeding habitat stability in these sites in order to determine their potential for larval control. Methods A total of 128 potential larval habitats were identified in hilltops and along the seasonal streams in the Sigalagala area of Kakamega district, western Kenya. Water availability in the habitats was followed up daily from August 3, 2006 to February 23, 2007. A habitat is defined as stable when it remains aquatic continuously for at least 12 d. Mosquito larvae were observed weekly. Frequencies of aquatic, stable and larvae positive habitats were compared between the hilltop and seasonal stream area using χ2-test. Factors affecting the presence/absence of Anopheles gambiae larvae in the highlands were determined using multiple logistic regression analysis. Results Topography significantly affected habitat availability and stability. The occurrence of aquatic habitats in the hilltop was more sporadic than in the stream area. The percentage of habitat occurrences that were classified as stable during the rainy season is 48.76% and 80.79% respectively for the hilltop and stream area. Corresponding frequencies of larvae positive habitats were 0% in the hilltop and 5.91% in the stream area. After the rainy season, only 23.42% of habitat occurrences were stable and 0.01% larvae positive habitats were found in the hilltops, whereas 89.75% of occurrences remained stable in the stream area resulting in a frequency of 12.21% larvae positive habitats. The logistic regression analysis confirmed the association between habitat stability and larval occurrence and indicated that habitat surface area was negatively affecting the occurrence of An. gambiae larvae. While An. gambiae and An. funestus larvae occurred throughout the study period along the streams, a total of only 15 An. gambiae larvae were counted in the hilltops, and no An. funestus were found. Moreover, no larvae managed to develop into adults in the hilltops, and the density of adult An. gambiae was consistently low, averaging at 0.06 females per house per survey. Conclusion The occurrence of malaria vector larvae in the hilltop area was uncommon as a result of the low availability and high instability of habitats. To optimize the cost-effectiveness of malaria interventions in the western Kenya highlands, larval control should be focused primarily along the streams, as these are likely the only productive habitats at high altitude.
Collapse
Affiliation(s)
- Yousif E Himeidan
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P.O. Box 1578, Kisumu 40100, Kenya.
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Jarju LBS, Fillinger U, Green C, Louca V, Majambere S, Lindsay SW. Agriculture and the promotion of insect pests: rice cultivation in river floodplains and malaria vectors in The Gambia. Malar J 2009; 8:170. [PMID: 19635125 PMCID: PMC2734858 DOI: 10.1186/1475-2875-8-170] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 07/27/2009] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Anthropogenic modification of natural habitats can create conditions in which pest species associated with humans can thrive. In order to mitigate for these changes, it is necessary to determine which aspects of human management are associated with the promotion of those pests. Anopheles gambiae, the main Africa malaria vector, often breeds in rice fields. Here the impact of the ancient practice of 'swamp rice' cultivation, on the floodplains of the Gambia River, on the production of anopheline mosquitoes was investigated. METHODS Routine surveys were carried out along 500 m transects crossing rice fields from the landward edge of the floodplains to the river during the 2006 rainy season. Aquatic invertebrates were sampled using area samplers and emergence traps and fish sampled using nets. Semi-field experiments were used to investigate whether nutrients used for swamp rice cultivation affected mosquito larval abundance. RESULTS At the beginning of the rainy season rice is grown on the landward edge of the floodplain; the first area to flood with fresh water and one rich in cattle dung. Later, rice plants are transplanted close to the river, the last area to dry out on the floodplain. Nearly all larval and adult stages of malaria vectors were collected 0-100 m from the landward edge of the floodplains, where immature rice plants were grown. These paddies contained stagnant freshwater with high quantities of cattle faeces. Semi-field studies demonstrated that cattle faeces nearly doubled the number of anopheline larvae compared with untreated water. CONCLUSION Swamp rice cultivation creates ideal breeding sites for malaria vectors. However, only those close to the landward edge harboured vectors. These sites were productive since they were large areas of standing freshwater, rich in nutrients, protected from fish, and situated close to human habitation, where egg-laying mosquitoes from the villages had short distances to fly. The traditional practice of 'swamp rice' cultivation uses different bodies of water on the floodplains to cultivate rice during the rainy season. A consequence of this cultivation is the provizion of ideal conditions for malaria vectors to thrive. As the demand for locally-produced rice grows, increased rice farming will generate great numbers of vectors; emphasizing the need to protect local communities against malaria.
Collapse
Affiliation(s)
| | - Ulrike Fillinger
- Disease Control & Vector Biology Unit, London School of Hygiene and Tropical Medicine, London, UK
| | - Clare Green
- School of Biological and Biomedical Sciences, Durham University, Durham, UK
| | - Vasilis Louca
- School of Biological and Biomedical Sciences, Durham University, Durham, UK
| | | | - Steven W Lindsay
- School of Biological and Biomedical Sciences, Durham University, Durham, UK
| |
Collapse
|
143
|
Machault V, Gadiaga L, Vignolles C, Jarjaval F, Bouzid S, Sokhna C, Lacaux JP, Trape JF, Rogier C, Pagès F. Highly focused anopheline breeding sites and malaria transmission in Dakar. Malar J 2009; 8:138. [PMID: 19552809 PMCID: PMC2713260 DOI: 10.1186/1475-2875-8-138] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 06/24/2009] [Indexed: 11/19/2022] Open
Abstract
Background Urbanization has a great impact on the composition of the vector system and malaria transmission dynamics. In Dakar, some malaria cases are autochthonous but parasite rates and incidences of clinical malaria attacks have been recorded at low levels. Ecological heterogeneity of malaria transmission was investigated in Dakar, in order to characterize the Anopheles breeding sites in the city and to study the dynamics of larval density and adult aggressiveness in ten characteristically different urban areas. Methods Ten study areas were sampled in Dakar and Pikine. Mosquitoes were collected by human landing collection during four nights in each area (120 person-nights). The Plasmodium falciparum circumsporozoite (CSP) index was measured by ELISA and the entomological inoculation rates (EIR) were calculated. Open water collections in the study areas were monitored weekly for physico-chemical characterization and the presence of anopheline larvae. Adult mosquitoes and hatched larvae were identified morphologically and by molecular methods. Results In September-October 2007, 19,451 adult mosquitoes were caught among which, 1,101 were Anopheles gambiae s.l. The Human Biting Rate ranged from 0.1 bites per person per night in Yoff Village to 43.7 in Almadies. Seven out of 1,101 An. gambiae s.l. were found to be positive for P. falciparum (CSP index = 0.64%). EIR ranged from 0 infected bites per person per year in Yoff Village to 16.8 in Almadies. The An. gambiae complex population was composed of Anopheles arabiensis (94.8%) and Anopheles melas (5.2%). None of the An. melas were infected with P. falciparum. Of the 54 water collection sites monitored, 33 (61.1%) served as anopheline breeding sites on at least one observation. No An. melas was identified among the larval samples. Some physico-chemical characteristics of water bodies were associated with the presence/absence of anopheline larvae and with larval density. A very close parallel between larval and adult densities was found in six of the ten study areas. Conclusion The results provide evidence of malaria transmission in downtown Dakar and its surrounding suburbs. Spatial heterogeneity of human biting rates was very marked and malaria transmission was highly focal. In Dakar, mean figures for transmission would not provide a comprehensive picture of the entomological situation; risk evaluation should therefore be undertaken on a small scale.
Collapse
Affiliation(s)
- Vanessa Machault
- Unité d'Entomologie Médicale, Equipe 7 Maladies Emergentes et Moustiques, Institut de Médecine Tropicale du Service de Santé des Armées, Allée du Médecin colonel Jamot, Parc du Pharo, 13262 Marseille cedex 07, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Mutuku FM, Bayoh MN, Hightower AW, Vulule JM, Gimnig JE, Mueke JM, Amimo FA, Walker ED. A supervised land cover classification of a western Kenya lowland endemic for human malaria: associations of land cover with larval Anopheles habitats. Int J Health Geogr 2009; 8:19. [PMID: 19371425 PMCID: PMC2676261 DOI: 10.1186/1476-072x-8-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 04/16/2009] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND A supervised land cover classification was developed from very high resolution IKONOS satellite data and extensive ground truth sampling of a ca. 10 sq km malaria-endemic lowland in western Kenya. The classification was then applied to an investigation of distribution of larval Anopheles habitats. The hypothesis was that the distribution and abundance of aquatic habitats of larvae of various species of mosquitoes in the genus Anopheles is associated with identifiable landscape features. RESULTS AND DISCUSSION The classification resulted in 7 distinguishable land cover types, each with a distinguishable vegetation pattern, was highly accurate (89%, Kappa statistic = 0.86), and had a low rate of omission and commission errors. A total of 1,198 habitats and 19,776 Anopheles larvae of 9 species were quantified in samples from a rainy season, and 184 habitats and 582 larvae from a dry season. Anopheles gambiae s.l. was the dominant species complex (51% of total) and A. arabiensis the dominant species. Agricultural land covers (mature maize fields, newly cultivated fields, and pastured grasslands) were positively associated with presence of larval habitats, and were located relatively close to stream channels; whilst nonagricultural land covers (short shrubs, medium shrubs, tall shrubs, and bare soil around residences) were negatively associated with presence of larval habitats and were more distant from stream channels. Number of larval habitats declined exponentially with distance from streams. IKONOS imagery was not useful in direct detection of larval habitats because they were small and turbid (resembling bare soil), but was useful in localization of them through statistical associations with specific land covers. CONCLUSION A supervised classification of land cover types in rural, lowland, western Kenya revealed a largely human-modified and fragmented landscape consisting of agricultural and domestic land uses. Within it, larval habitats of Anopheles vectors of human malaria were associated with certain land cover types, of largely agricultural origin, and close to streams. Knowledge of these associations can inform malaria control to gather information on potential larval habitats more efficiently than by field survey and can do so over large areas.
Collapse
Affiliation(s)
- FM Mutuku
- Centers for Disease Control and Prevention/Kenya Medical Research Institute, Kisumu, Kenya
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - MN Bayoh
- Centers for Disease Control and Prevention/Kenya Medical Research Institute, Kisumu, Kenya
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - AW Hightower
- Centers for Disease Control and Prevention/Kenya Medical Research Institute, Kisumu, Kenya
| | - JM Vulule
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - JE Gimnig
- Division of Parasitic Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - JM Mueke
- Department of Zoological Sciences, Kenyatta University, Nairobi, Kenya
| | - FA Amimo
- Department of Biology, University of Eastern Africa, Baraton, Kenya
| | - ED Walker
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
145
|
Fillinger U, Sombroek H, Majambere S, van Loon E, Takken W, Lindsay SW. Identifying the most productive breeding sites for malaria mosquitoes in The Gambia. Malar J 2009; 8:62. [PMID: 19361337 PMCID: PMC2674466 DOI: 10.1186/1475-2875-8-62] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 04/10/2009] [Indexed: 11/17/2022] Open
Abstract
Background Ideally larval control activities should be targeted at sites that generate the most adult vectors, thereby reducing operational costs. Despite the plethora of potential mosquito breeding sites found in the floodplains of the Gambia River, about 150 km from its mouth, during the rainy season, only a small proportion are colonized by anophelines on any day. This study aimed to determine the characteristics of larval habitats most frequently and most densely populated by anopheline larvae and to estimate the numbers of adults produced in different habitats. Methods A case-control design was used to identify characteristics of sites with or without mosquitoes. Sites were surveyed for their physical water properties and invertebrate fauna. The characteristics of 83 sites with anopheline larvae (cases) and 75 sites without (controls) were collected between June and November 2005. Weekly adult productivity was estimated with emergence traps in water-bodies commonly containing larvae. Results The presence of anopheline larvae was associated with high invertebrate diversity (Odds Ratio, OR 11.69, 95% CI 5.61–24.34, p < 0.001), the presence of emergent vegetation (OR 2.83, 95% CI 1.35–5.95, p = 0.006), and algae (at borderline significance; OR 1.87, 95% CI 0.96–3.618, p = 0.065). The density of larvae was reduced in sites that were larger than 100 m in perimeter (OR 0.151; 95% CI 0.060–0.381, p < 0.001), where water was tidal (OR 0.232; 95% CI 0.101–0.533, p = 0.001), vegetation shaded over 25% of the habitat (OR 0.352; 95% CI 0.136–0.911, p = 0.031) and water conductivity was above 2,000 μS/cm (OR 0.458; 95% CI 0.220–0.990, p = 0.048). Pools produced the highest numbers of Anopheles gambiae adults compared with rice fields, floodwater areas close to the edge of the floodplain or close to the river, and stream fringes. Pools were characterized by high water temperature and turbidity, low conductivity, increased presence of algae, and absence of tidal water. Conclusion There are few breeding sites that produce a high number of adult vectors in the middle reaches of the river in The Gambia, whereas those with low productivity are larger in area and can be found throughout the rainy season. Even though risk factors could be identified for the presence and density of larvae and productivity of habitats, the results indicate that anti-larval interventions in this area of The Gambia cannot be targeted in space or time during the rainy season.
Collapse
Affiliation(s)
- Ulrike Fillinger
- Disease Control & Vector Biology Unit, London School of Hygiene and Tropical Medicine, London, UK.
| | | | | | | | | | | |
Collapse
|
146
|
Effect of temperature and inter-specific competition on the development and survival of Anopheles gambiae sensu stricto and An. arabiensis larvae. Acta Trop 2009; 109:118-23. [PMID: 19013420 DOI: 10.1016/j.actatropica.2008.09.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 07/15/2008] [Accepted: 09/17/2008] [Indexed: 11/21/2022]
Abstract
The two major African malaria vectors Anopheles gambiae sensu stricto and An. arabiensis are sibling species that occupy different climatic niches but are frequently found in the same larval habitats. Differences in survival and development of the aquatic larval stages of these species at different temperatures may help explain adult distribution. The development time from first instar larva to adult at constant water temperatures (25, 30 and 35 degrees C) was measured in these two species when reared together in the same container (ratio 1:1) and separately. Survival to adult was highest in both species reared at 25 degrees C and decreased with increasing temperature. More adult An. gambiae s.s. were produced at 25 degrees C than An. arabiensis (80% interquartile range (78-88) versus 68% (63-78)) but this situation was reversed at 35 degrees C (7% (3-17) versus 33% (27-32)). The survival of An. gambiae s.s. when reared alone was similar to that when reared in the presence of An. arabiensis. In marked contrast An. arabiensis suffered reduced survival when raised with An. gambiae s.s. at 30 degrees C (20% (7-57)) than when reared independently (57% (45-72)). Mean age at eclosion and adult size decreased for both species with increasing water temperature, however An. arabiensis larvae developed at a slower rate and resulted in larger adults than An. gambiae s.s. throughout. The apparent greater production of An. arabiensis at high water temperatures and An. gambiae s.s. at lower water temperatures may in part explain the spatial and temporal distribution of the two species.
Collapse
|
147
|
Paaijmans KP, Huijben S, Githeko AK, Takken W. Competitive interactions between larvae of the malaria mosquitoes Anopheles arabiensis and Anopheles gambiae under semi-field conditions in western Kenya. Acta Trop 2009; 109:124-30. [PMID: 18760989 DOI: 10.1016/j.actatropica.2008.07.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 07/29/2008] [Indexed: 11/18/2022]
Abstract
The present paper reports the occurrence of competition between larvae of the malaria mosquito sibling species Anopheles arabiensis and An. gambiae under ambient conditions in western Kenya. Larvae of both species were reared at the same density and under the same food conditions outdoors in single-species and mixed-species populations (species ratio 1:1) in transparent cups that floated in small and large semi-natural pools, which experienced different diurnal variations in water temperature. In a second experiment, both species were reared at similar densities and under the same food conditions in trays in either single-species or mixed-species populations at different proportions (species ratio 1:1, 1:3 or 3:1). Competition affected the development rate of both species in an opposite way: the development time of larvae of An. arabiensis increased whereas the development time of larvae of An. gambiae decreased in the presence of its sibling species. In small pools larvae developing in mixed-species populations experienced a higher mortality than larvae reared in single-species populations, whereas no such effect was observed in the large pools. In both species the time to pupation was longer and emerging females were larger in the small pools. Larval mortality of An. arabiensis was lower in the small pools compared to the large pools, whereas An. gambiae showed the opposite trend. Overall An. arabiensis showed reduced development rates, higher mortality rates and emerged with a larger body size compared to An. gambiae. The implication of these competitive interactions between larvae of An. arabiensis and An. gambiae under semi-filed conditions needs to be considered in the design and implementation of programmes that aim to reduce malaria transmission as competition may alter the species composition in the field.
Collapse
|
148
|
Juliano SA. Species interactions among larval mosquitoes: context dependence across habitat gradients. ANNUAL REVIEW OF ENTOMOLOGY 2009; 54:37-56. [PMID: 19067629 PMCID: PMC2664081 DOI: 10.1146/annurev.ento.54.110807.090611] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Biotic interactions involving mosquito larvae are context dependent, with effects of interactions on populations altered by ecological conditions. Relative impacts of competition and predation change across a gradient of habitat size and permanence. Asymmetrical competition is common and ecological context changes competitive advantage, potentially facilitating landscape-level coexistence of competitors. Predator effects on mosquito populations sometimes depend on habitat structure and on emergent effects of multiple predators, particularly interference among predators. Nonlethal effects of predators on mosquito oviposition, foraging, and life history are common, and their consequences for populations and for mosquito-borne disease are poorly understood. Context-dependent beneficial effects of detritus shredders on mosquitoes occur in container habitats, but these interactions appear to involve more than simple resource modification by shredders. Investigations of context-dependent interactions among mosquito larvae will yield greater understanding of mosquito population dynamics and provide useful model systems for testing theories of context dependence in communities.
Collapse
Affiliation(s)
- Steven A Juliano
- Department of Biological Sciences, Behavior, Ecology, Evolution, and Systematics Section, Illinois State University, Normal, Illinois 61790-4120, USA.
| |
Collapse
|
149
|
Milne MA, Townsend VJ, Smelser P, Felgenhauer BE, Moore MK, Smyth FJ. Larval aquatic and terrestrial mites infesting a temperate assemblage of mosquitoes. EXPERIMENTAL & APPLIED ACAROLOGY 2009; 47:19-33. [PMID: 18807202 DOI: 10.1007/s10493-008-9194-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 09/02/2008] [Indexed: 05/26/2023]
Abstract
We collected 22,769 adult female mosquitoes, representing 27 species, from light traps in Norfolk, Virginia (2006-2007) and examined them to assess infestation by larval mites. Mosquitoes were parasitized by two species of aquatic (Acari: Arrenuridae: Arrenurus) and three species of terrestrial mites (Acari: Erythraeidae). The prevalence of infestation varied from 0.55% (2006) to 0.17% (2007). The mean intensity of parasitism ranged from 3.6 mites per host (2006) to 1.8 mites per host (2007). The most common host species for aquatic mites was Culex erraticus, while the most common host for terrestrial mites was Anopheles quadrimaculatus. Relationships between biotic and abiotic factors were investigated in an attempt to provide insight into temporal, spatial, and interspecific variation in mite-mosquito interactions. Scanning electron microscopy was used to examine the mode of attachment for larval mites. While the prevalence of aquatic mite parasitism was correlated for Culex erraticus, the invasive mosquito, Aedes albopictus, was never parasitized through the duration of the study.
Collapse
Affiliation(s)
- Marc A Milne
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA.
| | | | | | | | | | | |
Collapse
|
150
|
Paaijmans KP, Takken W, Githeko AK, Jacobs AFG. The effect of water turbidity on the near-surface water temperature of larval habitats of the malaria mosquito Anopheles gambiae. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2008; 52:747-53. [PMID: 18633650 DOI: 10.1007/s00484-008-0167-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 04/24/2008] [Accepted: 05/08/2008] [Indexed: 05/19/2023]
Abstract
Water temperature is an important determinant in many aquatic biological processes, including the growth and development of malaria mosquito (Anopheles arabiensis and A. gambiae) immatures. Water turbidity affects water temperature, as suspended particles in a water column absorb and scatter sunlight and hence determine the extinction of solar radiation. To get a better understanding of the relationship between water turbidity and water temperature, a series of semi-natural larval habitats (diameter 0.32 m, water depth 0.16 m) with increasing water turbidity was created. Here we show that at midday (1300 hours) the upper water layer (thickness of 10 mm) of the water pool with the highest turbidity was on average 2.8 degrees C warmer than the same layer of the clearest water pool. Suspended soil particles increase the water temperature and furthermore change the temperature dynamics of small water collections during daytime, exposing malaria mosquito larvae, which live in the top water layer, longer to higher temperatures.
Collapse
Affiliation(s)
- K P Paaijmans
- Meteorology and Air Quality, Wageningen University, Wageningen, The Netherlands.
| | | | | | | |
Collapse
|