101
|
Tight junctions in salivary epithelium. J Biomed Biotechnol 2010; 2010:278948. [PMID: 20182541 PMCID: PMC2825559 DOI: 10.1155/2010/278948] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 11/12/2009] [Accepted: 11/27/2009] [Indexed: 12/13/2022] Open
Abstract
Epithelial cell tight junctions (TJs) consist of a narrow belt-like structure in the apical region of the lateral plasma membrane that circumferentially binds each cell to its neighbor. TJs are found in tissues that are involved in polarized secretions, absorption functions, and maintaining barriers between blood and interstitial fluids. The morphology, permeability, and ion selectivity of TJ vary among different types of tissues and species. TJs are very dynamic structures that assemble, grow, reorganize, and disassemble during physiological or pathological events. Several studies have indicated the active role of TJ in intestinal, renal, and airway epithelial function; however, the functional significance of TJ in salivary gland epithelium is poorly understood. Interactions between different combinations of the TJ family (each with their own unique regulatory proteins) define tissue specificity and functions during physiopathological processes; however, these interaction patterns have not been studied in salivary glands. The purpose of this review is to analyze some of the current data regarding the regulatory components of the TJ that could potentially affect cellular functions of the salivary epithelium.
Collapse
|
102
|
Will C, Breiderhoff T, Thumfart J, Stuiver M, Kopplin K, Sommer K, Günzel D, Querfeld U, Meij IC, Shan Q, Bleich M, Willnow TE, Müller D. Targeted deletion of murine Cldn16 identifies extra- and intrarenal compensatory mechanisms of Ca2+ and Mg2+ wasting. Am J Physiol Renal Physiol 2010; 298:F1152-61. [PMID: 20147368 DOI: 10.1152/ajprenal.00499.2009] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Claudin-16 (CLDN16) is critical for renal paracellular epithelial transport of Ca(2+) and Mg(2+) in the thick ascending loop of Henle. To gain novel insights into the role of CLDN16 in renal Ca(2+) and Mg(2+) homeostasis and the pathological mechanisms underlying a human disease associated with CLDN16 dysfunction [familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC), OMIM 248250], we generated a mouse model of CLDN16 deficiency. Similar to patients, CLDN16-deficient mice displayed hypercalciuria and hypomagnesemia. Contrary to FHHNC patients, nephrocalcinosis was absent in our model, indicating the existence of compensatory pathways in ion handling in this model. In line with the renal loss of Ca(2+), compensatory mechanisms like parathyroid hormone and 1,25(OH)(2)D(3) were significantly elevated. Also, gene expression profiling revealed transcriptional upregulation of several Ca(2+) and Mg(2+) transport systems including Trpv5, Trpm6, and calbindin-D9k. Induced gene expression was also seen for the transcripts of two putative Mg(2+) transport proteins, Cnnm2 and Atp13a4. Moreover, urinary pH was significantly lower when compared with wild-type mice. Taken together, our findings demonstrate that loss of CLDN16 activity leads to specific alterations in Ca(2+) and Mg(2+) homeostasis and that CLDN16-deficient mice represent a useful model to further elucidate pathways involved in renal Ca(2+) and Mg(2+) handling.
Collapse
Affiliation(s)
- Constanze Will
- Dept. of Pediatric Nephrology, Charité, CVK, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Claudins and Renal Magnesium Handling. CURRENT TOPICS IN MEMBRANES 2010. [DOI: 10.1016/s1063-5823(10)65007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
104
|
Hereditary tubular transport disorders: implications for renal handling of Ca2+ and Mg2+. Clin Sci (Lond) 2009; 118:1-18. [PMID: 19780717 DOI: 10.1042/cs20090086] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The kidney plays an important role in maintaining the systemic Ca2+ and Mg2+ balance. Thus the renal reabsorptive capacity of these cations can be amended to adapt to disturbances in plasma Ca2+ and Mg2+ concentrations. The reabsorption of Ca2+ and Mg2+ is driven by transport of other electrolytes, sometimes through selective channels and often supported by hormonal stimuli. It is, therefore, not surprising that monogenic disorders affecting such renal processes may impose a shift in, or even completely blunt, the reabsorptive capacity of these divalent cations within the kidney. Accordingly, in Dent's disease, a disorder with defective proximal tubular transport, hypercalciuria is frequently observed. Dysfunctional thick ascending limb transport in Bartter's syndrome, familial hypomagnesaemia with hypercalciuria and nephrocalcinosis, and diseases associated with Ca2+-sensing receptor defects, markedly change tubular transport of Ca2+ and Mg2+. In the distal convolutions, several proteins involved in Mg2+ transport have been identified [TRPM6 (transient receptor potential melastatin 6), proEGF (pro-epidermal growth factor) and FXYD2 (Na+/K+-ATPase gamma-subunit)]. In addition, conditions such as Gitelman's syndrome, distal renal tubular acidosis and pseudohypoaldosteronism type II, as well as a mitochondrial defect associated with hypomagnesaemia, all change the renal handling of divalent cations. These hereditary disorders have, in many cases, substantially increased our understanding of the complex transport processes in the kidney and their contribution to the regulation of overall Ca2+ and Mg2+ balance.
Collapse
|
105
|
IKARI A. Molecular Physiological Study of Electrolyte Transporters in Renal Tubular Epithelial Cells. YAKUGAKU ZASSHI 2009; 129:1025-31. [DOI: 10.1248/yakushi.129.1025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Akira IKARI
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
106
|
Shuen AY, Wong BYL, Wei C, Liu Z, Li M, Cole DEC. Genetic determinants of extracellular magnesium concentration: analysis of multiple candidate genes, and evidence for association with the estrogen receptor alpha (ESR1) locus. Clin Chim Acta 2009; 409:28-32. [PMID: 19695239 DOI: 10.1016/j.cca.2009.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 08/08/2009] [Accepted: 08/10/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Serum magnesium concentration is a quantitative trait with substantial heritability. Although the pool of candidate genes continues to grow, only the histocompatibility locus has been associated with magnesium levels. To explore other possibilities, we targeted 6 candidate genes physiologically relevant to magnesium metabolism. METHODS We studied a large cohort (n=471) derived from a well-characterized population of healthy Caucasian women 18 to 35 years. Total serum magnesium and calcium were measured by atomic absorption spectrophotometry (aaMg & aaCa). Genomic DNA was amplified and SNPs in candidate genes (CASR, VDR, ESR1, CLDN16, EGF1, TRPM6) genotyped by routine methods. RESULTS We found a significant association between estrogen receptor alpha (ESR1) polymorphisms, PvuII and XbaI, and magnesium (r=-0.116, p=0.012 and r=-0.126, p=0.006, respectively). Stratifying by PvuII genotype (P/p alleles), the mean adjusted total magnesium (aaMg) concentration was significantly higher (p=0.01) in the pp group (0.823+/-0.005 mmol/l, n=130) than in PP homozygotes (0.805+/-0.006 mmol/l, n=70), and the mean in Pp heterozygotes was intermediate (0.810+/-0.005 mmol/l, n=180). No significant associations were observed with the other candidate genes tested. CONCLUSIONS The significant association between magnesium and ESR1 polymorphisms supports previous studies linking physiologic changes in serum magnesium to estrogen status.
Collapse
Affiliation(s)
- Andrew Y Shuen
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
107
|
Günzel D, Haisch L, Pfaffenbach S, Krug SM, Milatz S, Amasheh S, Hunziker W, Müller D. Claudin function in the thick ascending limb of Henle's loop. Ann N Y Acad Sci 2009; 1165:152-62. [PMID: 19538301 DOI: 10.1111/j.1749-6632.2009.04051.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
During the past decade, claudins have been established as major determinants of paracellular permeablilty in epithelia. In the kidney, each nephron segment expresses a distinct pattern of claudins. Cells of the thick ascending limb of Henle's loop (TAL), which is characterized by high paracellular cation permeability, co-express an unusually large number of different claudins: claudin-10, -16, and -19 and, depending on the species, also claudin-3, -4, -8, and/or -11. The function of most of these claudins has been investigated in vitro. We present a summary of their function with special emphasis on claudin-16 and -19. Mutations in the corresponding human genes lead to severely impaired renal Ca(2+) and Mg(2+) handling. To date, 42 different claudin-16 mutations and three claudin-19 mutations have been reported. These mutations prevent the claudins from reaching the surface membrane, decrease membrane residence time, or render them functionless. In spite of the clear clinical symptoms such as hypomagnesemia, hypercalciuria, nephrocalcinosis, and renal insufficiency, mechanisms that link claudin-16 and -19 to these symptoms are still unknown. Depending on the cell type used in overexpression studies, claudin-16 appears to cause a mild increase in paracellular Mg(2+)-permeability or a pronounced increase in Na(+) permeability. Claudin-19 selectively decreases Cl(-) permeability, thus synergistically increasing relative cation permeability, or indiscriminately decreases paracellular permeability. In the light of these results it is hypothesized that the renal Mg(2+)/Ca(2+) waste may not be solely due to reduced resorption in the TAL but at least in part to paracellular back-leak of Mg(2+)/Ca(2+) into the tubular lumen of the distal convoluted tubule.
Collapse
|
108
|
Findley MK, Koval M. Regulation and roles for claudin-family tight junction proteins. IUBMB Life 2009; 61:431-7. [PMID: 19319969 DOI: 10.1002/iub.175] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transmembrane proteins known as claudins play a critical role in tight junctions by regulating paracellular barrier permeability. The control of claudin assembly into tight junctions requires a complex interplay between several classes of claudins, other transmembrane proteins and scaffold proteins. Claudins are also subject to regulation by post-translational modifications including phosphorylation and palmitoylation. Several human diseases have been linked to claudin mutations, underscoring the physiologic function of these proteins. Roles for claudins in regulating cell phenotype and growth control also are beginning to emerge, suggesting a multifaceted role for claudins in regulation of cells beyond serving as a simple structural element of tight junctions.
Collapse
Affiliation(s)
- Mary K Findley
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
109
|
Günzel D, Amasheh S, Pfaffenbach S, Richter JF, Kausalya PJ, Hunziker W, Fromm M. Claudin-16 affects transcellular Cl- secretion in MDCK cells. J Physiol 2009; 587:3777-93. [PMID: 19528248 DOI: 10.1113/jphysiol.2009.173401] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Claudin-16 (paracellin-1) is a tight junction protein localized mainly in the thick ascending limb of Henle's loop and also in the distal nephron. Its defect causes familial hypomagnesaemia with hypercalciuria and nephrocalcinosis. This had been taken as an indication that claudin-16 conveys paracellular Mg(2+) and Ca(2+) transport; however, evidence is still conflicting. We studied paracellular ion permeabilities as well as effects of claudin-16 on the driving forces for passive ion movement. MDCK-C7 cells were stably transfected with wild-type (wt) and mutant (R146T, T233R) claudin-16. Results indicated that paracellular permeability to Mg(2+) but not to Ca(2+) is increased in cells transfected with wt compared to mutant claudin-16 and control cells. Increased basolateral Mg(2+) concentration activated a transcellular Cl(-) current which was greatly enhanced in cells transfected with wt and T233R claudin-16, as compared to R146T claudin-16-transfected or control cells. This current was triggered by the basolateral calcium-sensing receptor causing Ca(2+) release from internal stores, thus activating apical Ca(2+)-sensitive Cl(-) channels and basolateral Ca(2+)-sensitive K(+) channels. Immunohistochemical data suggest that the Cl(-) channel involved is bestrophin. We conclude that claudin-16 itself possesses only moderate paracellular Mg(2+) permeability but governs transcellular Cl(-) currents by interaction with apical Ca(2+)-activated Cl(-) channels, presumably bestrophin. As the transepithelial voltage generated by such a current alters the driving force for all ions, this may be the major mechanism to regulate Mg(2+) and Ca(2+) absorption in the kidney.
Collapse
Affiliation(s)
- Dorothee Günzel
- Institut für Klinische Physiologie, Charité Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
110
|
Genetic basis of renal cellular dysfunction and the formation of kidney stones. ACTA ACUST UNITED AC 2009; 37:169-80. [PMID: 19517103 DOI: 10.1007/s00240-009-0201-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 05/27/2009] [Indexed: 12/18/2022]
Abstract
Nephrolithiasis is a result of formation and retention of crystals within the kidneys. The driving force behind crystal formation is urinary supersaturation with respect to the stone-forming salts, which means that crystals form when the concentrations of participating ions are higher than the thermodynamic solubility for that salt. Levels of supersaturation are kept low and under control by proper functioning of a variety of cells including those that line the renal tubules. It is our hypothesis that crystal deposition, i.e., formation and retention in the kidneys, is a result of impaired cellular function, which may be intrinsic and inherent or triggered by external stimuli and challenges. Cellular impairment or dysfunction affects the supersaturation, by influencing the excretion of participating ions such as calcium, oxalate and citrate and causing hypercalciuria, hyperoxaluria or hypocitraturia. The production and excretion of macromolecular promoters and inhibitors of crystallization is also dependent upon proper functioning of the renal epithelial cells. Insufficient or ineffective crystallization modulators such as osteopontin, Tamm-Horsfall protein, bikunin, etc. are most likely produced by the impaired cells.
Collapse
|
111
|
Al-Haggar M, Bakr A, Tajima T, Fujieda K, Hammad A, Soliman O, Darwish A, Al-Said A, Yahia S, Abdel-Hady D. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis: unusual clinical associations and novel claudin16 mutation in an Egyptian family. Clin Exp Nephrol 2009; 13:288-294. [PMID: 19165416 DOI: 10.1007/s10157-008-0126-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 11/19/2008] [Indexed: 02/02/2023]
Abstract
BACKGROUND Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) is a rare autosomal recessive tubular disorder that eventually progresses to renal failure, depending upon the extent of nephrocalcinosis. Its basic pathogenesis is impaired tubular resorption of magnesium and calcium in the thick ascending limb of the loop of Henle (TAL) due to a genetic defect in paracellin-1 (a tight junction protein expressed in TAL). Mutations of the claudin16 gene (CLDN16), formerly called paracellin-1 gene (PCLN-1), have been linked to FHHNC. METHODS An extended Egyptian family with more than one member affection by nephrocalcionsis was included and thoroughly investigated in the current study after giving informed consent. Thorough history was taken for polyuria, polydipsia and hypocalcemia symptoms, as well as clinical examination with stress on anthropometric measurements and radiological evaluation for kidneys and bones. Laboratory workup for the differential diagnosis of nephrocalcinosis was done: complete urinalysis, including urinary calcium excretion, urine pH and electrolytes, arterial blood gas (ABG), serum electrolytes (sodium, potassium, calcium, magnesium and phosphorous), renal function tests as well as parathyroid and gonadotropin-sex hormone assay. DNA extraction from peripheral blood leukocytes was done followed by amplification using primers previously described, purification and finally sequencing to analyze each exon of the CLDN16 gene. RESULTS Two sibs for a consanguineous couple were affected by nephrocalcinosis and showed persistent hypocalcemia, hypercalciuria, nephrocalcinosis with persistently alkaline urine and ocular manifestations in the form of congenital cataracts, high myopia and retinal abnormalities. The elder sib showed genitourinary abnormalities in the form of hypospadias and cryptorchidism. These two sibs had a homozygous two-base deletion in exon 1 of the CLDN16 gene (C. 233_234 del GG; Ins C), causing a frame shift mutation (Arg55 fs); however, their parents were heterozygote carriers for that mutation. CONCLUSION The above-mentioned clinical data in the two affected sibs together with the family history of end-stage renal disease associated with nephrocalcinosis and high myopia suggested a diagnosis of FHHNC, which was confirmed for the first time in an Egyptian family by a novel mutation in exon 1 of the CLDN16 gene. Genitourinary associations with FHHNC have not yet been reported in the literature. Here, we will try to highlight the principles of mutation detection based on sequencing with the use of the online NCBI databases, statistics and other search tools.
Collapse
Affiliation(s)
- Mohammad Al-Haggar
- Genetics Unit, Mansoura University Children's Hospital, Mansoura, Egypt.
| | - Ashraf Bakr
- Nephrology Unit, Mansoura University Children's Hospital, Mansoura, Egypt
| | - Toshihiro Tajima
- Department of Pediatrics, Hokkaido University School of Medicine, Hokkaido, Japan
| | - Kenji Fujieda
- Department of Pediatrics, Asahikawa Medical College, Asahikawa, Japan
| | - Ayman Hammad
- Nephrology Unit, Mansoura University Children's Hospital, Mansoura, Egypt
| | - Othman Soliman
- Genetics Unit, Mansoura University Children's Hospital, Mansoura, Egypt
| | - Ahmad Darwish
- Nephrology Unit, Mansoura University Children's Hospital, Mansoura, Egypt
| | - Afaf Al-Said
- Genetics Unit, Mansoura University Children's Hospital, Mansoura, Egypt
| | - Sohier Yahia
- Genetics Unit, Mansoura University Children's Hospital, Mansoura, Egypt
| | - Dina Abdel-Hady
- Genetics Unit, Mansoura University Children's Hospital, Mansoura, Egypt
| |
Collapse
|
112
|
|
113
|
Knoers NVAM. Inherited forms of renal hypomagnesemia: an update. Pediatr Nephrol 2009; 24:697-705. [PMID: 18818955 PMCID: PMC7811505 DOI: 10.1007/s00467-008-0968-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 07/22/2008] [Accepted: 07/23/2008] [Indexed: 12/19/2022]
Abstract
The kidney plays an important role in ion homeostasis in the human body. Several hereditary disorders characterized by perturbations in renal magnesium reabsorption leading to hypomagnesemia have been described over the past 50 years, with the most important of these being Gitelman syndrome, familial hypomagnesemia with hypercalciuria and nephrocalcinosis, familial hypomagnesemia with secondary hypocalcemia, autosomal dominant hypomagnesemia with hypocalciuria, and autosomal recessive hypomagnesemia. Only recently, following positional cloning strategies in affected families, have mutations in renal ion channels and transporters been identified in these diseases. In this short review, I give an update on these hypomagnesemic disorders. Elucidation of the genetic etiology and, for most of these disorders, also the underlying pathophysiology of the disease, has greatly increased our understanding of the normal physiology of renal magnesium handling. This is yet another example of the importance of studying rare disorders in order to unravel physiological and pathophysiological processes in the human body.
Collapse
Affiliation(s)
- Nine V. A. M. Knoers
- grid.10417.330000000404449382Department of Human Genetics 849, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
114
|
Stechman MJ, Loh NY, Thakker RV. Genetic causes of hypercalciuric nephrolithiasis. Pediatr Nephrol 2009; 24:2321-32. [PMID: 18446382 PMCID: PMC2770137 DOI: 10.1007/s00467-008-0807-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 02/15/2008] [Accepted: 02/25/2008] [Indexed: 12/19/2022]
Abstract
Renal stone disease (nephrolithiasis) affects 3-5% of the population and is often associated with hypercalciuria. Hypercalciuric nephrolithiasis is a familial disorder in over 35% of patients and may occur as a monogenic disorder that is more likely to manifest itself in childhood. Studies of these monogenic forms of hypercalciuric nephrolithiasis in humans, e.g. Bartter syndrome, Dent's disease, autosomal dominant hypocalcemic hypercalciuria (ADHH), hypercalciuric nephrolithiasis with hypophosphatemia, and familial hypomagnesemia with hypercalciuria have helped to identify a number of transporters, channels and receptors that are involved in regulating the renal tubular reabsorption of calcium. Thus, Bartter syndrome, an autosomal disease, is caused by mutations of the bumetanide-sensitive Na-K-Cl (NKCC2) co-transporter, the renal outer-medullary potassium (ROMK) channel, the voltage-gated chloride channel, CLC-Kb, the CLC-Kb beta subunit, barttin, or the calcium-sensing receptor (CaSR). Dent's disease, an X-linked disorder characterized by low molecular weight proteinuria, hypercalciuria and nephrolithiasis, is due to mutations of the chloride/proton antiporter 5, CLC-5; ADHH is associated with activating mutations of the CaSR, which is a G-protein-coupled receptor; hypophosphatemic hypercalciuric nephrolithiasis associated with rickets is due to mutations in the type 2c sodium-phosphate co-transporter (NPT2c); and familial hypomagnesemia with hypercalciuria is due to mutations of paracellin-1, which is a member of the claudin family of membrane proteins that form the intercellular tight junction barrier in a variety of epithelia. These studies have provided valuable insights into the renal tubular pathways that regulate calcium reabsorption and predispose to hypercalciuria and nephrolithiasis.
Collapse
Affiliation(s)
- Michael J. Stechman
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford, OX3 7LJ UK
| | - Nellie Y. Loh
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford, OX3 7LJ UK
| | - Rajesh V. Thakker
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford, OX3 7LJ UK
| |
Collapse
|
115
|
Angelow S, Ahlstrom R, Yu ASL. Biology of claudins. Am J Physiol Renal Physiol 2008; 295:F867-76. [PMID: 18480174 PMCID: PMC2576152 DOI: 10.1152/ajprenal.90264.2008] [Citation(s) in RCA: 267] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 05/13/2008] [Indexed: 12/13/2022] Open
Abstract
Claudins are a family of tight junction membrane proteins that regulate paracellular permeability of epithelia, likely by forming the lining of the paracellular pore. Claudins are expressed throughout the renal tubule, and mutations in two claudin genes are now known to cause familial hypercalciuric hypomagnesemia with nephrocalcinosis. In this review, we discuss recent advances in our understanding of the physiological role of various claudins in normal kidney function, and in understanding the fundamental biology of claudins, including the molecular basis for selectivity of permeation, claudin interactions in tight junction formation, and regulation of claudins by protein kinases and other intracellular signals.
Collapse
Affiliation(s)
- Susanne Angelow
- Department of Medicine, University of Southern California Keck School of Medicine, Division of Nephrology, 2025 Zonal Ave, RMR 406, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
116
|
Hampson G, Konrad MA, Scoble J. Familial hypomagnesaemia with hypercalciuria and nephrocalcinosis (FHHNC): compound heterozygous mutation in the claudin 16 (CLDN16) gene. BMC Nephrol 2008; 9:12. [PMID: 18816383 PMCID: PMC2562370 DOI: 10.1186/1471-2369-9-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 09/24/2008] [Indexed: 12/26/2022] Open
Abstract
Background Familial hypomagnesaemia with hypercalciuria and nephrocalcinosis (FHHNC) is an autosomal recessive disorder of renal calcium and magnesium wasting frequently complicated by progressive chronic renal failure in childhood or adolescence. Methods A 7 year old boy was investigated following the findings of marked renal insufficiency and nephrocalcinosis in his 18-month old sister. He too was found to have extensive nephrocalcinosis with increased fractional excretion of magnesium: 12.4% (<4%) and hypercalciuria: 5.7 mmol (< 2.5/24 hours). He had renal impairment, partial distal renal tubular acidosis and defective urinary concentrating ability. Therapy with thiazide diuretics and magnesium supplements failed to halt the progression of the disorder. Both children subsequently underwent renal transplantation. Both children's parents are unaffected and there is one unaffected sibling. Results Mutation analysis revealed 2 heterozygous mutations in the claudin 16 gene (CLDN16) in both affected siblings; one missense mutation in exon 4: C646T which results in an amino acid change Arg216Cys in the second extracellular loop of CLDN16 and loss of function of the protein and a donor splice site mutation which changes intron 4 consensus splice site from 'GT' to 'TT' resulting in decreased splice efficiency and the formation of a truncated protein with loss of 64 amino acids in the second extracellular loop. Conclusion The mutations in CLDN16 in this kindred affect the second extra-cellular loop of claudin 16. The clinical course and molecular findings suggest complete loss of function of the protein in the 2 affected cases and highlight the case for molecular diagnosis in individuals with FHHNC.
Collapse
Affiliation(s)
- Geeta Hampson
- Department of Chemical Pathology, St Thomas Hospital, London, UK.
| | | | | |
Collapse
|
117
|
Günzel D, Yu ASL. Function and regulation of claudins in the thick ascending limb of Henle. Pflugers Arch 2008; 458:77-88. [PMID: 18795318 DOI: 10.1007/s00424-008-0589-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 09/04/2008] [Indexed: 01/25/2023]
Abstract
The thick ascending limb (TAL) of Henle mediates transcellular reabsorption of NaCl while generating a lumen-positive voltage that drives passive paracellular reabsorption of divalent cations. Disturbance of paracellular reabsorption leads to Ca(2+) and Mg(2+) wasting in patients with the rare inherited disorder of familial hypercalciuric hypomagnesemia with nephrocalcinosis (FHHNC). Recent work has shown that the claudin family of tight junction proteins form paracellular pores and determine the ion selectivity of paracellular permeability. Importantly, FHHNC has been found to be caused by mutations in two of these genes, claudin-16 and claudin-19, and mice with knockdown of claudin-16 reproduce many of the features of FHHNC. Here, we review the physiology of TAL ion transport, present the current view of the role and mechanism of claudins in determining paracellular permeability, and discuss the possible pathogenic mechanisms responsible for FHHNC.
Collapse
Affiliation(s)
- Dorothee Günzel
- Department of Clinical Physiology, Charité, Campus Benjamin Franklin, Berlin, Germany
| | | |
Collapse
|
118
|
Knockout animals and natural mutations as experimental and diagnostic tool for studying tight junction functions in vivo. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:813-9. [PMID: 18706387 DOI: 10.1016/j.bbamem.2008.07.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 07/08/2008] [Accepted: 07/21/2008] [Indexed: 12/28/2022]
Abstract
Two sides of functions of tight junctions; the barrier and the channel in the paracellular pathway are believed to be essential for the development and physiological functions of organs. Recent identification of molecular components of tight junctions has enabled us to analyze their functions by generating knockout mice of the corresponding genes. In addition, positional cloning has identified mutations in the genes of several components of tight junctions in hereditary diseases. These studies have highlighted in vivo functions of tight junctions.
Collapse
|
119
|
Alexander RT, Hoenderop JG, Bindels RJ. Molecular determinants of magnesium homeostasis: insights from human disease. J Am Soc Nephrol 2008; 19:1451-8. [PMID: 18562569 DOI: 10.1681/asn.2008010098] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The past decade has witnessed multiple advances in our understanding of magnesium (Mg(2+)) homeostasis. The discovery that mutations in claudin-16/paracellin-1 or claudin-19 are responsible for familial hypomagnesemia with hypercalciuria and nephrocalcinosis provided insight into the molecular mechanisms governing paracellular transport of Mg(2+). Our understanding of the transcellular movement of Mg(2+) was similarly enhanced by the realization that defects in transient receptor potential melastatin 6 (TRPM6) cause hypomagnesemia with secondary hypocalcemia. This channel regulates the apical entry of Mg(2+) into epithelia. In so doing, TRPM6 alters whole-body Mg(2+) homeostasis by controlling urinary excretion. Consequently, investigation into the regulation of TRPM6 has increased. Acid-base status, 17beta estradiol, and the immunosuppressive agents FK506 and cyclosporine affect plasma Mg(2+) levels by altering TRPM6 expression. A mutation in epithelial growth factor is responsible for isolated autosomal recessive hypomagnesemia, and epithelial growth factor activates TRPM6. A defect in the gamma-subunit of the Na,K-ATPase causes isolated dominant hypomagnesemia by altering TRPM6 activity through a decrease in the driving force for apical Mg(2+) influx. We anticipate that the next decade will provide further detail into the control of the gatekeeper TRPM6 and, therefore, overall whole-body Mg(2+) balance.
Collapse
Affiliation(s)
- R Todd Alexander
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | | | | |
Collapse
|
120
|
Peru H, Akin F, Elmas S, Elmaci AM, Konrad M. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis: report of three Turkish siblings. Pediatr Nephrol 2008; 23:1009-12. [PMID: 18253757 DOI: 10.1007/s00467-008-0758-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 12/12/2007] [Accepted: 12/14/2007] [Indexed: 11/30/2022]
Abstract
Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC), an autosomal recessive renal tubular disorder is characterized by the impaired tubular reabsorption of magnesium and calcium in the thick ascending limb of the loop of Henle. This disease is caused by mutations in the claudin-16 gene (CLDN16), which encodes the tight junction protein, claudin-16. Claudin-16 belongs to the claudin family and regulates the paracellular transport of magnesium and calcium. Here, we report on three Turkish siblings with typical clinical features of FHHNC in association with the homozygous mutation Leu151Phe.
Collapse
Affiliation(s)
- Harun Peru
- Department of Pediatric Nephrology, Meram Medical Faculty, Selcuk University, 42080 Konya, Turkey.
| | | | | | | | | |
Collapse
|
121
|
Jungers P, Joly D, Blanchard A, Courbebaisse M, Knebelmann B, Daudon M. [Inherited monogenic kidney stone diseases: recent diagnostic and therapeutic advances]. Nephrol Ther 2008; 4:231-55. [PMID: 18499551 DOI: 10.1016/j.nephro.2007.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Accepted: 12/20/2007] [Indexed: 11/24/2022]
Abstract
Hereditary monogenic kidney stone diseases are rare diseases, since they account for nearly 2% of nephrolithiasis cases in adults and 10% in children. Most of them are severe, because they frequently are associated with nephrocalcinosis and lead to progressive impairment of renal function unless an early and appropriate etiologic treatment is instituted. Unfortunately, treatment is often lacking or started too late since they are often misdiagnosed or overlooked. The present review reports the genotypic and phenotypic characteristics of monogenic nephrolithiases, with special emphasis on the recent advances in the field of diagnosis and therapeutics. Monogenic stone diseases will be classified into three groups according to their mechanism: (1) inborn errors of the metabolism of oxalate (primary hyperoxalurias), uric acid (hereditary hyperuricemias) or other purines (2,8-dihydroxyadeninuria), which, in addition to stone formation, result in crystal deposition in the renal parenchyma; (2) congenital tubulopathies affecting the convoluted proximal tubule (such as Dent's disease, Lowe syndrome or hypophosphatemic rickets), the thick ascending limb of Henlé's loop (such as familial hypomagnesemia and Bartter's syndromes) or the distal past of the nephron (congenital distal tubular acidosis with or without hearing loss), which are frequently associated with nephrocalcinosis, phosphatic stones and extensive tubulointerstitial fibrosis; (3) cystinuria, an isolated defect in tubular reabsorption of cystine and dibasic aminoacids, which results only in the formation of stones but requires a cumbersome treatment. Analysis of stones appears of crucial value for the early diagnosis of these diseases, as in several of them the morphology and composition of stones is specific. In other cases, especially if nephrocalcinosis, phosphatic stones or proteinuria are present, the evaluation of blood and urine chemistry, especially with regard to calcium, phosphate and magnesium, is the key of diagnosis. Search for mutations is now increasingly performed in as much as genetic counselling is important for the detection of heterozygotes in autosomic recessive diseases and of carrier women in X-linked diseases. In conclusion, better awareness to the rare monogenic forms of nephrolithiasis and/or nephrocalcinosis should allow early diagnosis and treatment which are needed to prevent or substantially delay progression of end-stage renal disease. Analysis of every first stone both in children and in adults should never be neglected, in order to early detect unusual forms of nephrolithiasis requiring laboratory evaluation and deep etiologic treatment.
Collapse
Affiliation(s)
- Paul Jungers
- Service de Néphrologie, Hôpital Necker, AP-HP, Paris Cedex, France
| | | | | | | | | | | |
Collapse
|
122
|
Hou J, Renigunta A, Konrad M, Gomes AS, Schneeberger EE, Paul DL, Waldegger S, Goodenough DA. Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex. J Clin Invest 2008; 118:619-28. [PMID: 18188451 DOI: 10.1172/jci33970] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 11/07/2007] [Indexed: 12/12/2022] Open
Abstract
Tight junctions (TJs) play a key role in mediating paracellular ion reabsorption in the kidney. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) is an inherited disorder caused by mutations in the genes encoding the TJ proteins claudin-16 (CLDN16) and CLDN19; however, the mechanisms underlying the roles of these claudins in mediating paracellular ion reabsorption in the kidney are not understood. Here we showed that in pig kidney epithelial cells, CLDN19 functioned as a Cl(-) blocker, whereas CLDN16 functioned as a Na(+) channel. Mutant forms of CLDN19 that are associated with FHHNC were unable to block Cl(-) permeation. Coexpression of CLDN16 and CLDN19 generated cation selectivity of the TJ in a synergistic manner, and CLDN16 and CLDN19 were observed to interact using several criteria. In addition, disruption of this interaction by introduction of FHHNC-causing mutant forms of either CLDN16 or CLDN19 abolished their synergistic effect. Our data show that CLDN16 interacts with CLDN19 and that their association confers a TJ with cation selectivity, suggesting a mechanism for the role of mutant forms of CLDN16 and CLDN19 in the development of FHHNC.
Collapse
Affiliation(s)
- Jianghui Hou
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Vezzoli G, Soldati L, Gambaro G. Update on primary hypercalciuria from a genetic perspective. J Urol 2008; 179:1676-82. [PMID: 18343451 DOI: 10.1016/j.juro.2008.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Indexed: 10/22/2022]
Abstract
PURPOSE This review provides a brief update on genetic studies of primary hypercalciuria. We consider their possible implications for the pathogenesis and complications of primary hypercalciuria. MATERIALS AND METHODS Using the PubMed, MEDLINE and Scopus databases we reviewed the literature on pathogenesis and the complications of hypercalciuria, giving particular attention to genetic studies in humans. RESULTS Primary hypercalciuria is a defect occurring in 5% to 10% of the general population and it is most commonly detected in patients with calcium kidney stones or osteoporosis. In children it is associated with hematuria, renal stones or nocturnal enuresis. Although high penetrance, autosomal dominant inheritance cannot be ruled out, hypercalciuria is probably a polygenic disorder. A number of genes have been suggested as candidates in the pathogenesis of common idiopathic calcium nephrolithiasis and hypercalciuria, ie soluble adenylate cyclase, calcium sensing receptor, vitamin D receptor, chloride channel-5, sodium-phosphate cotransporter-2 and claudin-16. These genes may also have a role in complications of hypercalciuria. CONCLUSIONS The classic distinction among absorptive, renal and resorptive hypercalciuria seems insufficient to explain the many cellular and tissue modifications observed in patients with primary hypercalciuria. The condition seems to be a separate disorder, characterized by altered calcium transport in the intestine, kidney and bone, and caused by various combinations of multiple genetic and dietary changes.
Collapse
Affiliation(s)
- Giuseppe Vezzoli
- Nephrology Unit, San Raffaele Scientific Institute, Milan, Italy.
| | | | | |
Collapse
|
124
|
Vargas-Poussou R, Cochat P, Le Pottier N, Roncelin I, Liutkus A, Blanchard A, Jeunemaître X. Report of a family with two different hereditary diseases leading to early nephrocalcinosis. Pediatr Nephrol 2008; 23:149-53. [PMID: 17899212 DOI: 10.1007/s00467-007-0584-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 07/05/2007] [Accepted: 07/05/2007] [Indexed: 11/26/2022]
Abstract
The etiologies of early onset nephrocalcinosis in consanguineous families include five major inherited recessive disorders: primary hyperoxaluria (PH), familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC), distal renal tubular acidosis (dRTA), hereditary hypophosphatemic rickets with hypercalciuria (HHRH) and antenatal Bartter syndrome. In this paper, we describe two girls from consanguineous parents with early onset nephrocalcinosis. Based on both clinical and biochemical assessment in combination with molecular genetics, we have shown that the etiology of nephrocalcinosis is different in each girl: one had FHHNC and her sister had dRTA.
Collapse
Affiliation(s)
- Rosa Vargas-Poussou
- Département de Pédiatrie Médicale et Faculté de Médecine et de Pharmacie Rouen, Centre Hospitalier Universitaire de Rouen, Rouen, France.
| | | | | | | | | | | | | |
Collapse
|
125
|
Abstract
Tight junctions, gap junctions, adherens junctions, and desmosomes represent intricate structural intercellular channels and bridges that are present in several tissues, including epidermis. Clues to the important function of these units in epithelial cell biology have been gleaned from a variety of studies including naturally occurring and engineered mutations, animal models and other in vitro experiments. In this review, we focus on mutations that have been detected in human diseases. These observations provide intriguing insight into the biological complexities of cell-cell contact and intercellular communication as well as demonstrating the spectrum of inherited human diseases that are associated with mutations in genes encoding the component proteins. Over the last decade or so, human gene mutations have been reported in four tight junction proteins (claudin 1, 14, 16, and zona occludens 2), nine gap junction proteins (connexin 26, 30, 30.3, 31, 32, 40, 43, 46, and 50), one adherens junction protein (P-cadherin) and eight components of desmosomes (plakophilin (PKP) 1 and 2, desmoplakin, plakoglobin--which is also present in adherens junctions, desmoglein (DSG) 1, 2, 4, and corneodesmosin). These discoveries have often highlighted novel or unusual phenotypes, including abnormal skin barrier function, alterations in epidermal differentiation, and developmental anomalies of various ectodermal appendages, especially hair, as well as a range of extracutaneous pathologies. However, this review focuses mainly on inherited disorders of junctions that have an abnormal skin phenotype.
Collapse
Affiliation(s)
- Joey E Lai-Cheong
- King's College London, The Guy's, King's College and St Thomas' School of Medicine, Genetic Skin Disease Group, Division of Genetics and Molecular Medicine, St John's Institute of Dermatology, London, UK
| | | | | |
Collapse
|
126
|
Konrad M, Hou J, Weber S, Dötsch J, Kari JA, Seeman T, Kuwertz-Bröking E, Peco-Antic A, Tasic V, Dittrich K, Alshaya HO, von Vigier RO, Gallati S, Goodenough DA, Schaller A. CLDN16 genotype predicts renal decline in familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol 2007; 19:171-81. [PMID: 18003771 DOI: 10.1681/asn.2007060709] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Martin Konrad
- Department of Pediatrics, University of Münster, Waldeyerstrasse 22, 48149 Münster, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Krause G, Winkler L, Mueller SL, Haseloff RF, Piontek J, Blasig IE. Structure and function of claudins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:631-45. [PMID: 18036336 DOI: 10.1016/j.bbamem.2007.10.018] [Citation(s) in RCA: 582] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 10/18/2007] [Accepted: 10/19/2007] [Indexed: 01/09/2023]
Abstract
Claudins are tetraspan transmembrane proteins of tight junctions. They determine the barrier properties of this type of cell-cell contact existing between the plasma membranes of two neighbouring cells, such as occurring in endothelia or epithelia. Claudins can completely tighten the paracellular cleft for solutes, and they can form paracellular ion pores. It is assumed that the extracellular loops specify these claudin functions. It is hypothesised that the larger first extracellular loop is critical for determining the paracellular tightness and the selective ion permeability. The shorter second extracellular loop may cause narrowing of the paracellular cleft and have a holding function between the opposing cell membranes. Sequence analysis of claudins has led to differentiation into two groups, designated as classic claudins (1-10, 14, 15, 17, 19) and non-classic claudins (11-13, 16, 18, 20-24), according to their degree of sequence similarity. This is also reflected in the derived sequence-structure function relationships for extracellular loops 1 and 2. The concepts evolved from these findings and first tentative molecular models for homophilic interactions may explain the different functional contribution of the two extracellular loops at tight junctions.
Collapse
Affiliation(s)
- Gerd Krause
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
128
|
Chiba H, Osanai M, Murata M, Kojima T, Sawada N. Transmembrane proteins of tight junctions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:588-600. [PMID: 17916321 DOI: 10.1016/j.bbamem.2007.08.017] [Citation(s) in RCA: 329] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 08/09/2007] [Accepted: 08/16/2007] [Indexed: 12/13/2022]
Abstract
Tight junctions contribute to the paracellular barrier, the fence dividing plasma membranes, and signal transduction, acting as a multifunctional complex in vertebrate epithelial and endothelial cells. The identification and characterization of the transmembrane proteins of tight junctions, claudins, junctional adhesion molecules (JAMs), occludin and tricellulin, have led to insights into the molecular nature of tight junctions. We provide an overview of recent progress in studies on these proteins and highlight their roles and regulation, as well as their functional significance in human diseases.
Collapse
Affiliation(s)
- Hideki Chiba
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan.
| | | | | | | | | |
Collapse
|
129
|
Abstract
With a lifetime incidence of up to 12% in man and 6% in woman, nephrolithiasis is a major health problem worldwide. Approximately, 80% of kidney stones are composed of calcium and hypercalciuria is found in up to 40% of stone-formers. Although the mechanisms resulting in precipitation and growth of calcium crystals in the urinary tract are multiple and not fully understood, hypercalciuria per se is recognized as an important and reversible risk factor in stone formation. In this brief review, we summarize the studies assessing the heritability of hypercalciuria and pinpoint recently identified human genetic disorders as well as relevant animal models that provided new insights into the segment-specific tubular handling of calcium and the pathophysiology of renal hypercalciuria and kidney stones. We also discuss novel strategies that may help to unravel the genetic bases of such complex conditions.
Collapse
Affiliation(s)
- O Devuyst
- Division of Nephrology, Université catholique de Louvain Medical School, Brussels, Belgium.
| | | |
Collapse
|
130
|
Izzedine H, Benalia H, Arzouk N, Jeunemaitre X, Hacini S, Bourry E, Barrou B. Nephrolithiasis with hypomagnesemia: what is the cause? Am J Kidney Dis 2007; 49:862-4. [PMID: 17533031 DOI: 10.1053/j.ajkd.2007.02.265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2006] [Accepted: 02/19/2007] [Indexed: 11/11/2022]
Affiliation(s)
- Hassane Izzedine
- Department of Nephrology, Pitié-Salpêtrière Hospital, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
131
|
Hou J, Shan Q, Wang T, Gomes AS, Yan Q, Paul DL, Bleich M, Goodenough DA. Transgenic RNAi depletion of claudin-16 and the renal handling of magnesium. J Biol Chem 2007; 282:17114-22. [PMID: 17442678 DOI: 10.1074/jbc.m700632200] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Tight junctions play a key role in mediating paracellular ion reabsorption in the kidney. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) is a human disorder caused by mutations in the tight junction protein claudin-16. However, the molecular mechanisms underlining the renal handling of magnesium and its dysfunction causing FHHNC are unknown. Here we show that claudin-16 plays a key role in maintaining the paracellular cation selectivity of the thick ascending limbs of the nephron. Using RNA interference, we have generated claudin-16-deficient mouse models. Claudin-16 knock-down (KD) mice exhibit chronic renal wasting of magnesium and calcium and develop renal nephrocalcinosis. Our data suggest that claudin-16 forms a non-selective paracellular cation channel, rather than a selective Mg(2+)/Ca(2+) channel as previously proposed. Our study highlights the pivotal importance of the tight junction in renal control of ion homeostasis and provides answer to the pathogenesis of FHHNC. We anticipate our study to be a starting point for more sophisticated in vivo analysis of tight junction proteins in renal functions. Furthermore, tight junction proteins could be major targets of drug development for electrolyte disorders.
Collapse
Affiliation(s)
- Jianghui Hou
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Sanjad SA, Hariri A, Habbal ZM, Lifton RP. A novel PCLN-1 gene mutation in familial hypomagnesemia with hypercalciuria and atypical phenotype. Pediatr Nephrol 2007; 22:503-8. [PMID: 17123117 DOI: 10.1007/s00467-006-0354-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 09/04/2006] [Accepted: 09/07/2006] [Indexed: 11/26/2022]
Abstract
Familial hypomagnesemic hypercalciuria and nephrocalcinosis (FHHNC [MIM 248250]) is a rare renal tubular disorder characterized by impaired reabsorption of magnesium and calcium in the thick ascending limb of Henle's loop (tALH), causing renal magnesium wasting and hypercalciuria. Patients with FHHNC usually present with recurrent urinary tract infections, polyuria, nephrolithiasis (NL) and nephrocalcinosis (NC) with many progressing to chronic renal failure (CRF). We have shown recently that loss of function mutations in paracellin-1 PCLN-1/claudin-16, a renal tight junction protein located in the TAL, are causative of FHHNC. We present clinical and molecular studies on a highly inbred family with FHHNC in association with an unusual phenotype in that all affected members were extremely short. Affected individuals were found to be homozygous for marker D3S1314 on chromosome 3q. Sequencing of the PCLN-1/claudin-16 gene revealed a previously unknown point mutation at S235Y on exon 4 on the 4th transmembrane domain, providing additional evidence that inactivating mutations in the PCLN-1/claudin-16 gene result in FHHNC.
Collapse
Affiliation(s)
- Sami A Sanjad
- Department of Pediatrics, American University of Beirut Medical Center, Beirut, Lebanon.
| | | | | | | |
Collapse
|
133
|
Srivastava T, Alon US. Pathophysiology of hypercalciuria in children. Pediatr Nephrol 2007; 22:1659-73. [PMID: 17464515 PMCID: PMC6904412 DOI: 10.1007/s00467-007-0482-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 03/11/2007] [Accepted: 03/12/2007] [Indexed: 12/17/2022]
Abstract
Urinary excretion of calcium is the result of a complex interplay between three organs-namely, the gastrointestinal tract, bone, and kidney-which is finely orchestrated by multiple hormones. Hypercalciuria is believed to be a polygenic trait and is influenced significantly by diet. This paper briefly reviews calcium handling by the renal tubule in normal and in hereditary disorders as it relates to the pathophysiology of hypercalciuria. The effects of dietary sodium, potassium, protein, calcium, and phosphate on calcium excretion, and the association of hypercalciuria with bone homeostasis is discussed, leading to recommendations on means to address excessive urinary calcium excretion.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Bone and Mineral Disorder Clinic, The Children’s Mercy Hospital and Clinics, University of Missouri, 2401 Gillham Road, Kansas City, MO 64108 USA
| | - Uri S. Alon
- Section of Nephrology, Bone and Mineral Disorder Clinic, The Children’s Mercy Hospital and Clinics, University of Missouri, 2401 Gillham Road, Kansas City, MO 64108 USA
| |
Collapse
|
134
|
van de Graaf SFJ, Bindels RJM, Hoenderop JGJ. Physiology of epithelial Ca2+ and Mg2+ transport. Rev Physiol Biochem Pharmacol 2007; 158:77-160. [PMID: 17729442 DOI: 10.1007/112_2006_0607] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ca2+ and Mg2+ are essential ions in a wide variety of cellular processes and form a major constituent of bone. It is, therefore, essential that the balance of these ions is strictly maintained. In the last decade, major breakthrough discoveries have vastly expanded our knowledge of the mechanisms underlying epithelial Ca2+ and Mg2+ transport. The genetic defects underlying various disorders with altered Ca2+ and/or Mg2+ handling have been determined. Recently, this yielded the molecular identification of TRPM6 as the gatekeeper of epithelial Mg2+ transport. Furthermore, expression cloning strategies have elucidated two novel members of the transient receptor potential family, TRPV5 and TRPV6, as pivotal ion channels determining transcellular Ca2+ transport. These two channels are regulated by a variety of factors, some historically strongly linked to Ca2+ homeostasis, others identified in a more serendipitous manner. Herein we review the processes of epithelial Ca2+ and Mg2+ transport, the molecular mechanisms involved, and the various forms of regulation.
Collapse
Affiliation(s)
- S F J van de Graaf
- Radboud University Nijmegen Medical Centre, 286 Cell Physiology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
135
|
Konrad M, Schaller A, Seelow D, Pandey AV, Waldegger S, Lesslauer A, Vitzthum H, Suzuki Y, Luk JM, Becker C, Schlingmann KP, Schmid M, Rodriguez-Soriano J, Ariceta G, Cano F, Enriquez R, Juppner H, Bakkaloglu SA, Hediger MA, Gallati S, Neuhauss SCF, Nurnberg P, Weber S. Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet 2006; 79:949-57. [PMID: 17033971 PMCID: PMC1698561 DOI: 10.1086/508617] [Citation(s) in RCA: 338] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 08/21/2006] [Indexed: 02/06/2023] Open
Abstract
Claudins are major components of tight junctions and contribute to the epithelial-barrier function by restricting free diffusion of solutes through the paracellular pathway. We have mapped a new locus for recessive renal magnesium loss on chromosome 1p34.2 and have identified mutations in CLDN19, a member of the claudin multigene family, in patients affected by hypomagnesemia, renal failure, and severe ocular abnormalities. CLDN19 encodes the tight-junction protein claudin-19, and we demonstrate high expression of CLDN19 in renal tubules and the retina. The identified mutations interfere severely with either cell-membrane trafficking or the assembly of the claudin-19 protein. The identification of CLDN19 mutations in patients with chronic renal failure and severe visual impairment supports the fundamental role of claudin-19 for normal renal tubular function and undisturbed organization and development of the retina.
Collapse
Affiliation(s)
- Martin Konrad
- University Children's Hospital, Inselspital, Bern, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Türkmen M, Kasap B, Soylu A, Böber E, Konrad M, Kavukçu S. Paracellin-1 gene mutation with multiple congenital abnormalities. Pediatr Nephrol 2006; 21:1776-8. [PMID: 16924549 DOI: 10.1007/s00467-006-0247-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 05/10/2006] [Accepted: 05/11/2006] [Indexed: 02/08/2023]
Abstract
Familial hypomagnesemia with hypercalciuria and nephrocalcinosis is an autosomal recessive renal tubular disorder characterized by renal magnesium wasting, hypercalciuria, advanced nephrocalcinosis and progressive renal failure. Mutations in the paracellin-1 (CLDN16) gene have been defined as the underlying genetic defect. The tubular disorders and progression in renal failure are usually resistant to magnesium substitution and hydrochlorothiazide therapy, but hypomagnesemia may improve with advanced renal insufficiency. We present a patient with a homozygous truncating CLDN16 gene mutation (W237X) who had early onset of renal insufficiency despite early diagnosis at 2 months. He also had additional abnormalities including horseshoe kidney, neonatal teeth, atypical face, cardiac abnormalities including coarctation of the aorta associated with atrial and ventricular septal defects, umbilical hernia and hypertrichosis. To the best of our knowledge, this is the youngest case diagnosed as familial hypomagnesemia with hypercalciuria and nephrocalcinosis and the first case having such additional congenital abnormalities independent of the disease itself.
Collapse
Affiliation(s)
- Mehmet Türkmen
- Faculty of Medicine, Department of Pediatrics, Dokuz Eylül University, Izmir, Turkey
| | | | | | | | | | | |
Collapse
|
137
|
Abstract
Tight junctions restrict the flow of ions and aqueous molecules between cells by forming a selective barrier to the paracellular pathway. Permeability of the tight junction barrier is determined by a class of transmembrane proteins known as claudins. The relationship between claudins and paracellular permeability is complex and determined not only by the profile of claudin expression but also by the arrangement of claudins and other proteins into tight junction strands. This review summarizes progress in understanding how claudins are assembled into tight junctions and how they interact with other tight junction proteins.
Collapse
Affiliation(s)
- Michael Koval
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| |
Collapse
|
138
|
Müller D, Kausalya PJ, Bockenhauer D, Thumfart J, Meij IC, Dillon MJ, van't Hoff W, Hunziker W. Unusual clinical presentation and possible rescue of a novel claudin-16 mutation. J Clin Endocrinol Metab 2006; 91:3076-9. [PMID: 16705067 DOI: 10.1210/jc.2006-0200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) is caused by a dysfunction of Claudin-16 (CLDN16) and characterized by renal wasting of Mg(2+) and Ca(2+). OBJECTIVE The objectives of this study were to study the clinical parameters in suspected FHHNC patients, identify mutations in the CLDN16 gene, and analyze molecular defects associated with the mutant protein. DESIGN, SETTING, AND PARTICIPANTS CLDN16 genes from two siblings diagnosed with FHHNC were sequenced. Expression and characterization of the mutant protein in renal MDCK cells were studied. OUTCOME MEASURES Standard urine and serum parameters to diagnose FHHNC were determined. Mutations in the CLDN16 gene were identified. The subcellular distribution of the mutant protein was analyzed by immunofluorescence microscopy. RESULTS Urine and blood analysis showed signs typical for FHHNC. One patient, in addition, presented with hypocalcemic tetany, a phenomenon so far not described for FHHNC. Both siblings carry a novel mutation in CLDN16, Y207X. The review of medical records showed that hypocalcemia is not uncommon in the early childhood of FHHNC patients. Expressed in MDCK cells, the Y207X mutant is not detected at tight junctions but instead is found in lysosomes and, to a lesser extent, the endoplasmic reticulum. Surface expression can be rescued by inhibiting clathrin-mediated internalization. CONCLUSIONS We propose that mutations in CLDN16 are considered in childhood hypocalcemia. CLDN16 Y207X is transiently delivered to the plasma membrane but not retained and is rapidly retrieved by internalization. Inhibitors of endocytosis may provide novel therapeutic strategies.
Collapse
Affiliation(s)
- Dominik Müller
- Department of Pediatric Nephrology, Charite Children's Hospital and Center for Cardiovascular Research, 12200 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Kutluturk F, Temel B, Uslu B, Aral F, Azezli A, Orhan Y, Konrad M, Ozbey N. An unusual patient with hypercalciuria, recurrent nephrolithiasis, hypomagnesemia and G227R mutation of Paracellin-1. An unusual patient with hypercalciuria and hypomagnesemia unresponsive to thiazide diuretics. HORMONE RESEARCH 2006; 66:175-81. [PMID: 16804318 DOI: 10.1159/000094253] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Accepted: 05/15/2006] [Indexed: 11/19/2022]
Abstract
A 19-year-old female patient with hypercalciuria and recurrent nephrolithiasis/urinary tract infection unresponsive to thiazide type diuretics is presented. The patient first experienced nephrolithiasis at the age of 4 years. Afterwards, recurrent passages of stones and urinary tract infection occurred. On diagnostic evaluation at the age of 19 years, she also had hypocitraturia and hypomagnesemia. Her serum calcium concentrations were near the lower limit of normal (8.5-8.8 mg/dl; normal range: 8.5-10.5), her serum magnesium concentrations were 1.15-1.24 mg/dl (normal range: 1.4-2.5) and urinary calcium excretion was 900 mg/24 h. PTH concentrations were increased (110-156 pg/ml; normal range: 10-65). We tried to treat the patient with hydrochlorothiazide at a dose of 50 mg/day. During treatment with thiazide diuretics, PTH concentration remained high and the patient had recurrent urinary tract infections and passages of stones. Serum magnesium concentration did not normalize even under the parenteral magnesium infusion. Her mother had a history of nephrolithiasis 20 years ago. Severe hypomagnesemia in association with hypercalciuria/urinary stones is reported as a rare autosomal recessive disorder caused by impaired reabsorption of magnesium and calcium in the thick assending limp of Henle's loop. Recent studies showed that mutations in the CLDN16 gene encoding paracellin-1 cause the disorder. In exon 4, a homozygous nucleotide exchange (G679C) was identified for the patient. This results in a point mutation at position Glycine227, which is replaced by an Arginine residue (G227R). The mother was heterozygous for this mutation. G227 is located in the fourth transmembrane domain and is highly conserved in the claudin gene family. This case indicates the pathogenetic role of paracellin-1 mutation in familial hypomagnesemia with hypercalciuria and nephrocalcinosis and further underlines the risk of stone formation in heterozygous mutation carriers.
Collapse
Affiliation(s)
- Faruk Kutluturk
- Department of Endocrinology and Metabolism, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Zimmermann B, Plank C, Konrad M, Stöhr W, Gravou-Apostolatou C, Rascher W, Dötsch J. Hydrochlorothiazide in CLDN16 mutation. Nephrol Dial Transplant 2006; 21:2127-32. [PMID: 16595585 DOI: 10.1093/ndt/gfl144] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Hydrochlorothiazide (HCT) is applied in the therapy of familial hypomagnesaemia with hypercalciuria and nephrocalcinosis (FHHNC) caused by claudin-16 (CLDN16) mutation. However, the short-term efficacy of HCT to reduce hypercalciuria in FHHNC has not yet been demonstrated in a clinical trial. METHODS Four male and four female patients with FHHNC and CLDN16 mutation, under long-standing HCT therapy (0.4-1.2 mg/kg, median 0.9 mg/kg, dose according to calciuria), aged 0.7-22.4 years, were included in a clinical study to investigate the effect of HCT on calciuria. The study design consisted of three periods: continued therapy for 4 weeks, HCT withdrawal for 6 weeks and restart of therapy at the same dose for 4 weeks. Calciuria and magnesiuria were assessed weekly as Ca/creat and Mg/creat ratio, every 2 weeks in 24 h urine, and serum Mg, K and kaliuria (s-Mg, s-K and K/creat) at weeks 0, 6, 10 and 14. The data of each study period were averaged and analysed by Friedman and Wilcoxon test. RESULTS Ca/creat was significantly reduced by HCT (median before/at/after withdrawal 0.76/1.24/0.77 mol/mol creat; n = 8, P<0.05). The reduction of Ca/24 h by HCT was not statistically significant (0.13/0.19/0.13 mmol/kg x 24 h; n = 5). Serum Mg (0.51/0.64/0.56 mmol/l; n = 8, P<0.05) and Serum K (3.65/4.35/3.65 mmol/l; n = 8, P<0.05) were significantly higher during withdrawal. However, Mg/creat (0.98/0.90/0.90 mol/mol creat; n = 8), Mg/24 h (0.14/0.12/0.18 mmol/kg x 24h; n = 5) and K/creat (6.3/8.4/6.2 mol/mol creat; n = 8) remained statistically unchanged during withdrawal. CONCLUSIONS We demonstrated that HCT is effective in reducing hypercalciuria due to CLDN16 mutation on a short-term basis. However, the efficacy of HCT to attenuate disease progression remains to be elucidated.
Collapse
Affiliation(s)
- Bettina Zimmermann
- Klinik für Kinder und Jugendliche, Friedrich-Alexander-University of Erlangen-Nuremberg, Loschgestr. 15, D-91054 Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
141
|
Kausalya PJ, Amasheh S, Günzel D, Wurps H, Müller D, Fromm M, Hunziker W. Disease-associated mutations affect intracellular traffic and paracellular Mg2+ transport function of Claudin-16. J Clin Invest 2006; 116:878-91. [PMID: 16528408 PMCID: PMC1395478 DOI: 10.1172/jci26323] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 01/10/2006] [Indexed: 12/20/2022] Open
Abstract
Claudin-16 (Cldn16) is selectively expressed at tight junctions (TJs) of renal epithelial cells of the thick ascending limb of Henle's loop, where it plays a central role in the reabsorption of divalent cations. Over 20 different mutations in the CLDN16 gene have been identified in patients with familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC), a disease of excessive renal Mg2+ and Ca2+ excretion. Here we show that disease-causing mutations can lead to the intracellular retention of Cldn16 or affect its capacity to facilitate paracellular Mg2+ transport. Nine of the 21 Cldn16 mutants we characterized were retained in the endoplasmic reticulum, where they underwent proteasomal degradation. Three mutants accumulated in the Golgi complex. Two mutants were efficiently delivered to lysosomes, one via clathrin-mediated endocytosis following transport to the cell surface and the other without appearing on the plasma membrane. The remaining 7 mutants localized to TJs, and 4 were found to be defective in paracellular Mg2+ transport. We demonstrate that pharmacological chaperones rescued surface expression of several retained Cldn16 mutants. We conclude that FHHNC can result from mutations in Cldn16 that affect intracellular trafficking or paracellular Mg2+ permeability. Knowledge of the molecular defects associated with disease-causing Cldn16 mutations may open new venues for therapeutic intervention.
Collapse
Affiliation(s)
- P. Jaya Kausalya
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Singapore.
Department of Clinical Physiology, Charité, Campus Benjamin Franklin, and
Department of Pediatric Nephrology and Center for Cardiovascular Research, Charité, Berlin, Germany
| | - Salah Amasheh
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Singapore.
Department of Clinical Physiology, Charité, Campus Benjamin Franklin, and
Department of Pediatric Nephrology and Center for Cardiovascular Research, Charité, Berlin, Germany
| | - Dorothee Günzel
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Singapore.
Department of Clinical Physiology, Charité, Campus Benjamin Franklin, and
Department of Pediatric Nephrology and Center for Cardiovascular Research, Charité, Berlin, Germany
| | - Henrik Wurps
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Singapore.
Department of Clinical Physiology, Charité, Campus Benjamin Franklin, and
Department of Pediatric Nephrology and Center for Cardiovascular Research, Charité, Berlin, Germany
| | - Dominik Müller
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Singapore.
Department of Clinical Physiology, Charité, Campus Benjamin Franklin, and
Department of Pediatric Nephrology and Center for Cardiovascular Research, Charité, Berlin, Germany
| | - Michael Fromm
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Singapore.
Department of Clinical Physiology, Charité, Campus Benjamin Franklin, and
Department of Pediatric Nephrology and Center for Cardiovascular Research, Charité, Berlin, Germany
| | - Walter Hunziker
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Singapore.
Department of Clinical Physiology, Charité, Campus Benjamin Franklin, and
Department of Pediatric Nephrology and Center for Cardiovascular Research, Charité, Berlin, Germany
| |
Collapse
|
142
|
Simard A, Di Pietro E, Young CR, Plaza S, Ryan AK. Alterations in heart looping induced by overexpression of the tight junction protein Claudin-1 are dependent on its C-terminal cytoplasmic tail. Mech Dev 2006; 123:210-27. [PMID: 16500087 DOI: 10.1016/j.mod.2005.12.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 12/21/2005] [Accepted: 12/21/2005] [Indexed: 10/25/2022]
Abstract
In vertebrates, the positioning of the internal organs relative to the midline is asymmetric and evolutionarily conserved. A number of molecules have been shown to play critical roles in left-right patterning. Using representational difference analysis to identify genes that are differentially expressed on the left and right sides of the chick embryo, we cloned chick Claudin-1, an integral component of epithelial tight junctions. Here, we demonstrate that retroviral overexpression of Claudin-1, but not Claudin-3, on the right side of the chick embryo between HH stages 4 and 7 randomizes the direction of heart looping. This effect was not observed when Claudin-1 was overexpressed on the left side of the embryo. A small, but reproducible, induction of Nodal expression in the perinodal region on the right side of the embryo was noted in embryos that were injected with Claudin-1 retroviral particles on their right sides. However, no changes in Lefty,Pitx2 or cSnR expression were observed. In addition, Flectin expression remained higher in the left dorsal mesocardial folds of embryos with leftwardly looped hearts resulting from Claudin-1 overexpression on the right side of the embryo. We demonstrated that Claudin-1's C-terminal cytoplasmic tail is essential for this effect: mutation of a PKC phosphorylation site in the Claudin-1 C-terminal cytoplasmic domain at threonine-206 eliminates Claudin-1's ability to randomize the direction of heart looping. Taken together, our data provide evidence that appropriate expression of the tight junction protein Claudin-1 is required for normal heart looping and suggest that phosphorylation of its cytoplasmic tail is responsible for mediating this function.
Collapse
Affiliation(s)
- Annie Simard
- Departments of Pediatrics and Human Genetics, McGill University, Montréal, Que., Canada
| | | | | | | | | |
Collapse
|
143
|
Abstract
The epithelial tight junction (TJ) has three major functions. As a "gate," it serves as a regulatory barrier separating and maintaining biological fluid compartments of different composition. As a "fence," it generates and maintains the apicobasal polarity of cells that form the confluent epithelium. Finally, the TJ proteins form a trafficking and signaling platform that regulates cell growth, proliferation, differentiation, and dedifferentiation. Six examples are selected that illustrate the emerging link between TJ dysfunction and kidney disease. First, the glomerular slit diaphragm (GSD) is evolved, in part, from the TJ and, on maturation, exhibits all three functions of the TJ. GSD dysfunction leads to proteinuria and, in some instances, podocyte dedifferentiation and proliferation. Second, accumulating evidence supports epithelial-mesenchymal transformation (EMT) as a major player in renal fibrosis, the final common pathway that leads to end-stage renal failure. EMT is characterized by a loss of cell-cell contact and apicobasal polarity, which are hallmarks of TJ dysfunction. Third, in autosomal dominant polycystic kidney disease, mutations of the polycystins may disrupt their known interactions with the apical junction complex, of which the TJ is a major component. This can lead to disturbances in epithelial polarity regulation with consequent abnormal tubulogenesis and cyst formation. Fourth, evidence for epithelial barrier and polarity dysregulation in the pathogenesis of ischemic acute renal failure will be summarized. Fifth, the association between mutations of paracellin-1, the first TJ channel identified, and clinical disorders of magnesium and calcium wasting and bovine renal fibrosis will be used to highlight an integral TJ protein that can serve multiple TJ functions. Finally, the role of WNK4 protein kinase in shunting chloride across the TJ of the distal nephron will be addressed.
Collapse
Affiliation(s)
- David B N Lee
- Division of Nephrology, Veterans Affairs Greater Los Angeles Healthcare System, California, USA.
| | | | | |
Collapse
|
144
|
Ohta H, Adachi H, Takiguchi M, Inaba M. Restricted Localization of Claudin-16 at the Tight Junction in the Thick Ascending Limb of Henle's Loop Together with Claudins 3, 4, and 10 in Bovine Nephrons. J Vet Med Sci 2006; 68:453-63. [PMID: 16757888 DOI: 10.1292/jvms.68.453] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Claudin-16 is one of the tight junction protein claudins and has been shown to contribute to reabsorption of divalent cations in the human kidney. In cattle, total deficiency of claudin-16 causes severe renal tubular dysplasia without aberrant metabolic changes of divalent cations, suggesting that bovine claudin-16 has some roles in renal tubule formation and paracellular transport that are somewhat different from those expected from the pathology of human disease. As the first step to clarify these roles, we examined the expression and distribution of claudin-16 and several other major claudin subtypes, claudins 1-4 and 10, in bovine renal tubular segments by immunofluorescence microscopy. Claudin-16 was exclusively distributed to the tight junction in the tubular segment positive for Tamm-Horsfall glycoprotein, the thick ascending limb (TAL) of Henle's loop, and was found colocalized with claudins 3, 4, and 10. This study also demonstrates that bovine kidneys possess segment-specific expression patterns for claudins 2-4 and 10 that are different from those reported for mice. Particularly, distribution of claudin-4 in the TAL and distal convoluted tubules was characteristic of bovine nephrons as were differences in the expression patterns of claudins 2 and 3. These findings demonstrate that the total lack of claudin-16 in the TAL segment is the sole cause of renal tubular dysplasia in cattle and suggest that the tight junctions in distinct tubular segments including the TAL have barrier functions in paracellular permeability that are different among animal species.
Collapse
Affiliation(s)
- Hiroshi Ohta
- Laboratory of Molecular Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Japan
| | | | | | | |
Collapse
|
145
|
Ohta H, Adachi H, Inaba M. Developmental Changes in the Expression of Tight Junction Protein Claudins in Murine Metanephroi and Embryonic Kidneys. J Vet Med Sci 2006; 68:149-55. [PMID: 16520537 DOI: 10.1292/jvms.68.149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Claudins are the major constituents of tight junction (TJ) strands and participate in the cell-cell adhesion and permeability barrier in epithelial cell layers. To investigate the suitability of metanephroi for analysis of the function of the TJ protein claudins in renal tubular formation, mouse metanephroi from embryos at day 12 of gestation were cultured and expression of claudins was compared with that in embryonic kidneys. During in vitro culture for 8 days, the metanephroi showed expression patterns very similar to those observed in embryonic kidneys in reverse transcription-polymerase chain reaction for the claudins examined, including claudins 1-4, 8, 10, 11, and 16, and the TJ proteins occludin and ZO-1. Immunofluorescence microscopy for claudins 1-4, 8, 10, and 16 showed localization of these claudins at the TJ with occludin and ZO-1 in some restricted tubular segments. These findings indicate that the metanephroi show developmental changes in the expression of the TJ protein claudins, representing those in embryonic kidneys, and thus suggest that the mouse metanephros is suitable to examine the functions of specific claudins in the kidney.
Collapse
Affiliation(s)
- Hiroshi Ohta
- Laboratory of Molecular Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | |
Collapse
|
146
|
Abstract
The luminal environment of the epididymis is highly specialized with specific proteins, ions, pH, etc. required for sperm maturation. Tight junctions between epididymal principal cells are responsible for the formation of the blood-epididymal barrier, which regulates this luminal environment. Claudins (Cldns) are a recently discovered family of transmembrane proteins and are essential components of tight junctions. Previous work from our laboratory has demonstrated the presence and localization of Cldn-1 in all regions of the rat epididymis. The objective of this study was to determine the presence and localization of other Cldns in the epididymis. Using RT-PCR we have identified mRNA transcripts for Cldn-3 through -9 in each region of the adult rat epididymis. Immunolocalization of Cldn-3, Cldn-4, and Cldn-5 were done in adult as well as in 42- and 14-day-old rats. Cldn-5 in adult rats was localized exclusively in blood vessels of the interstitium. Cldn-3 was localized apically in the epididymal epithelium between adjacent principal cells throughout the epididymis, where tight junctions have been reported histologically. There were no differences in the localization of Cldn-3 in epididymides of rats at the different ages. In 14-day-old rats, Cldn-4 was localized all along the lateral plasma membrane between adjacent principal cells. The immunostaining was more pronounced in the proximal regions of the epididymis. In both 42-day-old rats and adults, Cldn-4 was localized primarily to apical tight junctions between principal cells and staining was more pronounced in the proximal region of the epididymis. Cldn-16 transcripts were also identified by RT-PCR. These transcripts were present in both proximal and distal regions of the epididymis of young (Day 14 and 21) animals, but only in the proximal (initial segment) region of the adult epididymis. These data indicate that epididymal tight junctions are composed of several Cldns, suggestive of a complex regulation of the blood-epididymal barrier.
Collapse
Affiliation(s)
- Mary Gregory
- INRS-Institut Armand-Frappier, Université du Québec, Pointe Claire, Quebec, Canada
| | | |
Collapse
|
147
|
Abstract
About 5% of American women and 12% of men will develop a kidney stone at some time in their life, and prevalence has been rising in both sexes. Approximately 80% of stones are composed of calcium oxalate (CaOx) and calcium phosphate (CaP); 10% of struvite (magnesium ammonium phosphate produced during infection with bacteria that possess the enzyme urease), 9% of uric acid (UA); and the remaining 1% are composed of cystine or ammonium acid urate or are diagnosed as drug-related stones. Stones ultimately arise because of an unwanted phase change of these substances from liquid to solid state. Here we focus on the mechanisms of pathogenesis involved in CaOx, CaP, UA, and cystine stone formation, including recent developments in our understanding of related changes in human kidney tissue and of underlying genetic causes, in addition to current therapeutics.
Collapse
Affiliation(s)
- Fredric L Coe
- Renal Section, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
148
|
Jungers P, Joly D, Barbey F, Choukroun G, Daudon M. Insuffisance rénale terminale d'origine lithiasique : fréquence, causes et prévention. Nephrol Ther 2005; 1:301-10. [PMID: 16895699 DOI: 10.1016/j.nephro.2005.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 04/20/2005] [Accepted: 08/12/2005] [Indexed: 11/26/2022]
Abstract
Nephrolithiasis still remains a too frequent - and under-appreciated - cause of end-stage renal disease (ESRD), and this is all the most unfortunate since such an untoward course is now preventable in most cases. Among 1391 patients who started maintenance dialysis at Necker hospital between 1989 and 2000, nephrolithiasis was identified as the cause of ESRD in 45 of them, an overall prevalence of 3.2%. Infection stones accounted for 42.2% of cases, calcium stones for 26.7%, uric acid stones for 17.8% and hereditary diseases for 13.3%. The proportion of nephrolithiasis-associated ESRD declined from 4.7% to 2.2% from the 1989-1991 to the 1998-2000 period, as a result of the decreased incidence of ESRD in patients with infection and calcium nephrolithiasis. Based on our observations and on published reports, it emerges that most cases of nephrolithiasis-associated ESRD were due to sub-optimal management (especially in the case of infection or cystine stones) or to late (or erroneous) etiologic diagnosis, precluding early institution of appropriate therapeutic measures. In particular, several patients with primary hyperoxaluria or 2,8-dihydroxyadeninuria were diagnosed while already on dialysis or after unsuccessful kidney transplantation, due to wrong initial diagnosis. In conclusion, thanks to recent advances in diagnosis and management of stone formers, ESRD should now be prevented in the great majority of patients, at the condition of early etiologic diagnosis based on accurate morphoconstitutional analysis of calculi and metabolic evaluation, and early implementation of appropriate preventive medical treatment.
Collapse
Affiliation(s)
- Paul Jungers
- Hôpital Necker, 149, rue de Sèvres, 75743 Paris cedex 15, France
| | | | | | | | | |
Collapse
|
149
|
Hou J, Paul DL, Goodenough DA. Paracellin-1 and the modulation of ion selectivity of tight junctions. J Cell Sci 2005; 118:5109-18. [PMID: 16234325 DOI: 10.1242/jcs.02631] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tight junctions play a key selectivity role in the paracellular conductance of ions. Paracellin-1 is a member of the tight junction claudin protein family and mutations in the paracellin-1 gene cause a human hereditary disease, familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) with severe renal Mg2+ wasting. The mechanism of paracellin-1 function and its role in FHHNC are not known. Here, we report that in LLC-PK1 epithelial cells paracellin-1 modulated the ion selectivity of the tight junction by selectively and significantly increasing the permeability of Na+ (with no effects on Cl-) and generated a high permeability ratio of Na+ to Cl-. Mutagenesis studies identified a locus of amino acids in paracellin-1 critical for this function. Mg2+ flux across cell monolayers showed a far less-pronounced change (compared to monovalent alkali cations) following exogenous protein expression, suggesting that paracellin-1 did not form Mg2+-selective paracellular channels. We hypothesize that in the thick ascending limb of the nephron, paracellin-1 dysfunction, with a concomitant loss of cation selectivity, could contribute to the dissipation of the lumen-positive potential that is the driving force for the reabsorption of Mg2+.
Collapse
Affiliation(s)
- Jianghui Hou
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
150
|
Agarwal R, D'Souza T, Morin PJ. Claudin-3 and claudin-4 expression in ovarian epithelial cells enhances invasion and is associated with increased matrix metalloproteinase-2 activity. Cancer Res 2005; 65:7378-85. [PMID: 16103090 DOI: 10.1158/0008-5472.can-05-1036] [Citation(s) in RCA: 272] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Claudin proteins form a large family of integral membrane proteins crucial for tight junction formation and function. Our previous studies have revealed that claudin-3 and claudin-4 proteins are highly overexpressed in ovarian cancer. To clarify the roles of claudins in ovarian tumorigenesis, we have generated human ovarian surface epithelial (HOSE) cells constitutively expressing wild-type claudin-3 and claudin-4. Expression of these claudins in HOSE cells increased cell invasion and motility as measured by Boyden chamber assays and wound-healing experiments. Conversely, small interfering RNA (siRNA)-mediated knockdown of claudin-3 and claudin-4 expression in ovarian cancer cell lines reduced invasion. Claudin expression also increased cell survival in HOSE cells but did not significantly affect cell proliferation. Moreover, the claudin-expressing ovarian epithelial cells were found to have increased matrix metalloproteinase-2 (MMP-2) activity indicating that claudin-mediated increased invasion might be mediated through the activation of MMP proteins. However, siRNA inactivation of claudins in ovarian cancer cell lines did not have a significant effect on the high endogenous MMP-2 activity present in these cells, showing that malignant cells have alternative or additional pathways to fully activate MMP-2. Taken together, our results suggest that claudin overexpression may promote ovarian tumorigenesis and metastasis through increased invasion and survival of tumor cells.
Collapse
Affiliation(s)
- Rachana Agarwal
- Laboratory of Cellular and Molecular Biology, Gerontology Research Center, National Institute on Aging, Baltimore, Maryland 22124, USA
| | | | | |
Collapse
|