101
|
Kumar RTK, Cherukuri K, Chadha R, Holderby V, Prasad S. Planar biochip system for combinatorial electrokinetics. BIOCHIP JOURNAL 2016. [DOI: 10.1007/s13206-016-0208-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
102
|
Rahmanian N, Bozorgmehr M, Torabi M, Akbari A, Zarnani AH. Cell separation: Potentials and pitfalls. Prep Biochem Biotechnol 2016; 47:38-51. [PMID: 27045194 DOI: 10.1080/10826068.2016.1163579] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell separation techniques play an indispensable part in numerous basic biological studies and even clinical settings. Although various cell isolation methods with diverse applications have been devised so far, not all of them have been able to gain widespread popularity among researchers and clinicians. There is not a single method known to be advantageous over all cell isolation techniques, and in fact, it is the researcher's aim in performing a study that determines the most suitable method. A perfect method for one study might not be necessarily a proper choice for another and likewise, expensive and complex isolation methods might not always be the best choices. There are several criteria such as cell purity, viability, activation status, and frequency that need to be given serious thought before selecting an isolation technique. Moreover, time and cost are two of the key elements that should be taken into consideration before implementing a project. Hence, here we provide a succinct description of six more popular cell separation methods with respect to their principles, advantages, and disadvantages as well as their most common applications. We further provide several key features of each technique so that it helps the researchers to take the first step toward opting for the best method that fits well into their projects.
Collapse
Affiliation(s)
- Narges Rahmanian
- a Department of Molecular Medicine, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Mohmood Bozorgmehr
- b Oncopathology Research Center , Iran University of Medical Sciences , Tehran , Iran
| | - Monir Torabi
- c Department of Pathology, Shariati Hospital , Tehran University of Medical Sciences , Tehran , Iran
| | - Abolfazl Akbari
- d Colorectal Research Center , Iran University of Medical Sciences , Tehran , Iran
| | - Amir-Hassan Zarnani
- e Department of Immunology , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran.,f Immunology Research Center , Iran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
103
|
Lab-on-paper micro- and nano-analytical devices: Fabrication, modification, detection and emerging applications. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1841-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
104
|
Jeong HH, Issadore D, Lee D. Recent developments in scale-up of microfluidic emulsion generation via parallelization. KOREAN J CHEM ENG 2016. [DOI: 10.1007/s11814-016-0041-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
105
|
Tsao CW, Lee YP. Magnetic microparticle-polydimethylsiloxane composite for reversible microchannel bonding. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2016; 17:2-11. [PMID: 27877852 PMCID: PMC5101923 DOI: 10.1080/14686996.2016.1140301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 06/06/2023]
Abstract
In this study, an iron oxide magnetic microparticles and poly(dimethylsiloxane) (MMPs-PDMS) composite material was employed to demonstrate a simple high-strength reversible magnetic bonding method. This paper presents the casting of opaque-view (where optical inspection through the microchannels was impossible) and clear-view (where optical inspection through the microchannel was possible) MMPs-PDMS. The influence of the microchannel geometries on the casting of the opaque-view casting was limited, which is similar to standard PDMS casting. Clear-view casting performance was highly associated with the microchannel geometries. The effects of the microchannel layout and the gap between the PDMS cover layer and the micromold substrate were thoroughly investigated. Compared with the native PDMS bonding strength of 31 kPa, the MMPs-PDMS magnetic bonding experiments showed that the thin PDMS film with an MMPs-PDMS layer effectively reduced the surface roughness and enhanced MMPs-PDMS reversible magnetic bonding strength. A thin PDMS film-coated opaque-view MMPs-PDMS device exhibited the greatest bonding strength of 110 kPa, and a clear-view MMPs-PDMS device with a thin PDMS film attained a magnetic bonding strength of 81 kPa.
Collapse
Affiliation(s)
- Chia-Wen Tsao
- Department of Mechanical Engineering, National Central University, Taoyuan, ROC
| | - Yueh-Pu Lee
- Department of Mechanical Engineering, National Central University, Taoyuan, ROC
| |
Collapse
|
106
|
Automation of static and dynamic non-dispersive liquid phase microextraction. Part 1: Approaches based on extractant drop-, plug-, film- and microflow-formation. Anal Chim Acta 2016; 906:22-40. [DOI: 10.1016/j.aca.2015.11.038] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/29/2015] [Accepted: 11/30/2015] [Indexed: 12/29/2022]
|
107
|
A review on recent developments for biomolecule separation at analytical scale using microfluidic devices. Anal Chim Acta 2016; 906:7-21. [DOI: 10.1016/j.aca.2015.11.037] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 02/05/2023]
|
108
|
Freitas CB, Moreira RC, de Oliveira Tavares MG, Coltro WK. Monitoring of nitrite, nitrate, chloride and sulfate in environmental samples using electrophoresis microchips coupled with contactless conductivity detection. Talanta 2016; 147:335-41. [DOI: 10.1016/j.talanta.2015.09.075] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 10/22/2022]
|
109
|
Zhang JM, Aguirre-Pablo AA, Li EQ, Buttner U, Thoroddsen ST. Droplet generation in cross-flow for cost-effective 3D-printed “plug-and-play” microfluidic devices. RSC Adv 2016. [DOI: 10.1039/c6ra11724d] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel low-cost 3D-printed plug-and-play microfluidic devices have been developed for droplet generation and applications. By combining a commercial tubing with the printed channel design we can generate well-controlled droplets down to 50 μm.
Collapse
Affiliation(s)
- Jia Ming Zhang
- Division of Physical Sciences and Engineering
- King Abdullah University of Science and Technology (KAUST)
- Thuwal
- Saudi Arabia
| | - Andres A. Aguirre-Pablo
- Division of Physical Sciences and Engineering
- King Abdullah University of Science and Technology (KAUST)
- Thuwal
- Saudi Arabia
| | - Er Qiang Li
- Division of Physical Sciences and Engineering
- King Abdullah University of Science and Technology (KAUST)
- Thuwal
- Saudi Arabia
| | - Ulrich Buttner
- Division of Computer
- Electrical and Mathematical Sciences and Engineering
- King Abdullah University of Science and Technology (KAUST)
- Thuwal
- Saudi Arabia
| | - Sigurdur T. Thoroddsen
- Division of Physical Sciences and Engineering
- King Abdullah University of Science and Technology (KAUST)
- Thuwal
- Saudi Arabia
- Clean Combustion Research Center
| |
Collapse
|
110
|
Solis-Tinoco V, Marquez S, Sepulveda B, Lechuga LM. Fabrication of well-ordered silicon nanopillars embedded in a microchannel via metal-assisted chemical etching: a route towards an opto-mechanical biosensor. RSC Adv 2016. [DOI: 10.1039/c6ra15485a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Nanofabrication methodology that integrates the creation of silicon nanopillars inside a microfluidic channel which has significant implications for the achievement of new optomechanical biosensors.
Collapse
Affiliation(s)
- V. Solis-Tinoco
- Nanobiosensors and Bioanalytical Applications Group
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- CSIC
- The Barcelona Institute of Science and Technology
- Bellaterra
| | - S. Marquez
- Nanobiosensors and Bioanalytical Applications Group
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- CSIC
- The Barcelona Institute of Science and Technology
- Bellaterra
| | - B. Sepulveda
- Nanobiosensors and Bioanalytical Applications Group
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- CSIC
- The Barcelona Institute of Science and Technology
- Bellaterra
| | - L. M. Lechuga
- Nanobiosensors and Bioanalytical Applications Group
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- CSIC
- The Barcelona Institute of Science and Technology
- Bellaterra
| |
Collapse
|
111
|
Sticker D, Rothbauer M, Lechner S, Hehenberger MT, Ertl P. Multi-layered, membrane-integrated microfluidics based on replica molding of a thiol-ene epoxy thermoset for organ-on-a-chip applications. LAB ON A CHIP 2015; 15:4542-54. [PMID: 26524977 DOI: 10.1039/c5lc01028d] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In this study we have investigated a photosensitive thermoset (OSTEMER 322-40) as a complementary material to readily fabricate complex multi-layered microdevices for applications in life science. Simple, versatile and robust fabrication of multifunctional microfluidics is becoming increasingly important for the development of customized tissue-, organ- and body-on-a-chip systems capable of mimicking tissue interfaces and biological barriers. In the present work key material properties including optical properties, vapor permeability, hydrophilicity and biocompatibility are evaluated for cell-based assays using fibroblasts, endothelial cells and mesenchymal stem cells. The excellent bonding strength of the OSTEMER thermoset to flexible fluoropolymer (FEP) sheets and poly(dimethylsiloxane) (PDMS) membranes further allows for the fabrication of integrated microfluidic components such as membrane-based microdegassers, microvalves and micropumps. We demonstrate the application of multi-layered, membrane-integrated microdevices that consist of up to seven layers and three membranes that specially confine and separate vascular cells from the epithelial barrier and 3D tissue structures.
Collapse
Affiliation(s)
- Drago Sticker
- BioSensor Technologies, AIT Austrian Institute of Technology GmbH, Muthgasse 11, 1190 Vienna, Austria.
| | | | | | | | | |
Collapse
|
112
|
Jang LW, Lee J, Razu ME, Jensen EC, Kim J. Fabrication of PDMS Nanocomposite Materials and Nanostructures for Biomedical Nanosystems. IEEE Trans Nanobioscience 2015; 14:841-9. [DOI: 10.1109/tnb.2015.2509602] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
113
|
Faustino V, Catarino SO, Lima R, Minas G. Biomedical microfluidic devices by using low-cost fabrication techniques: A review. J Biomech 2015; 49:2280-2292. [PMID: 26671220 DOI: 10.1016/j.jbiomech.2015.11.031] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 11/11/2015] [Indexed: 12/23/2022]
Abstract
One of the most popular methods to fabricate biomedical microfluidic devices is by using a soft-lithography technique. However, the fabrication of the moulds to produce microfluidic devices, such as SU-8 moulds, usually requires a cleanroom environment that can be quite costly. Therefore, many efforts have been made to develop low-cost alternatives for the fabrication of microstructures, avoiding the use of cleanroom facilities. Recently, low-cost techniques without cleanroom facilities that feature aspect ratios more than 20, for fabricating those SU-8 moulds have been gaining popularity among biomedical research community. In those techniques, Ultraviolet (UV) exposure equipment, commonly used in the Printed Circuit Board (PCB) industry, replaces the more expensive and less available Mask Aligner that has been used in the last 15 years for SU-8 patterning. Alternatively, non-lithographic low-cost techniques, due to their ability for large-scale production, have increased the interest of the industrial and research community to develop simple, rapid and low-cost microfluidic structures. These alternative techniques include Print and Peel methods (PAP), laserjet, solid ink, cutting plotters or micromilling, that use equipment available in almost all laboratories and offices. An example is the xurography technique that uses a cutting plotter machine and adhesive vinyl films to generate the master moulds to fabricate microfluidic channels. In this review, we present a selection of the most recent lithographic and non-lithographic low-cost techniques to fabricate microfluidic structures, focused on the features and limitations of each technique. Only microfabrication methods that do not require the use of cleanrooms are considered. Additionally, potential applications of these microfluidic devices in biomedical engineering are presented with some illustrative examples.
Collapse
Affiliation(s)
- Vera Faustino
- MEMS-UMinho Research Unit, Universidade do Minho, DEI, Campus de Azurém, 4800-058 Guimarães, Portugal; Transport Phenomena Research Center, Department of Chemical Engineering, Engineering Faculty, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Susana O Catarino
- MEMS-UMinho Research Unit, Universidade do Minho, DEI, Campus de Azurém, 4800-058 Guimarães, Portugal; Transport Phenomena Research Center, Department of Chemical Engineering, Engineering Faculty, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Rui Lima
- MEtRiCS, Department of Mechanical Engineering, Minho University, Campus de Azurém, 4800-058 Guimarães, Portugal; Transport Phenomena Research Center, Department of Chemical Engineering, Engineering Faculty, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Polytechnic Institute of Bragança, ESTiG/IPB, C. Sta. Apolonia, 5301-857 Bragança, Portugal.
| | - Graça Minas
- MEMS-UMinho Research Unit, Universidade do Minho, DEI, Campus de Azurém, 4800-058 Guimarães, Portugal.
| |
Collapse
|
114
|
Li X, Yeh MH, Lin ZH, Guo H, Yang PK, Wang J, Wang S, Yu R, Zhang T, Wang ZL. Self-Powered Triboelectric Nanosensor for Microfluidics and Cavity-Confined Solution Chemistry. ACS NANO 2015; 9:11056-63. [PMID: 26469374 DOI: 10.1021/acsnano.5b04486] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Micro total analysis system (μTAS) is one of the important tools for modern analytical sciences. In this paper, we not only propose the concept of integrating the self-powered triboelectric microfluidic nanosensor (TMN) with μTAS, but also demonstrate that the developed system can be used as an in situ tool to quantify the flowing liquid for microfluidics and solution chemistry. The TMN automatically generates electric outputs when the fluid passing through it and the outputs are affected by the solution temperature, polarity, ionic concentration, and fluid flow velocity. The self-powered TMN can detect the flowing water velocity, position, reaction temperature, ethanol, and salt concentrations. We also integrate the TMNs in a μTAS platform to directly characterize the synthesis of Au nanoparticles by a chemical reduction method.
Collapse
Affiliation(s)
- Xiuhan Li
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
- School of Electronic and Information Engineering, Beijing Jiaotong University , Beijing 100044, China
| | - Min-Hsin Yeh
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Zong-Hong Lin
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
- Institute of Biomedical Engineering, National Tsing Hua University , Hsinchu 30013, Taiwan
| | - Hengyu Guo
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Po-Kang Yang
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Jie Wang
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Sihong Wang
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Ruomeng Yu
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Tiejun Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Zhong Lin Wang
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, China
| |
Collapse
|
115
|
Analysis of ofloxacin in ofloxacin ear drops by microfluidic chip coupled with contactless conductivity detection. Methods Mol Biol 2015; 1274:53-64. [PMID: 25673482 DOI: 10.1007/978-1-4939-2353-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
A method using a microfluidic chip coupled with contactless conductivity detection (C(4)D) is demonstrated for the determination of ofloxacin in Ofloxacin Ear Drops. Settings, optimizing procedures, electrophoresis conditions, regression equations, and the average recovery rate are discussed. Under optimum conditions, the determination of ofloxacin in standard solution is achieved within 1 min, which allows detection of ofloxacin in Ofloxacin Ear Drops. The demonstrated method is rapid, high efficient, sensitive, and economical.
Collapse
|
116
|
Westerwalbesloh C, Grünberger A, Stute B, Weber S, Wiechert W, Kohlheyer D, von Lieres E. Modeling and CFD simulation of nutrient distribution in picoliter bioreactors for bacterial growth studies on single-cell level. LAB ON A CHIP 2015; 15:4177-4186. [PMID: 26345659 DOI: 10.1039/c5lc00646e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A microfluidic device for microbial single-cell cultivation of bacteria was modeled and simulated using COMSOL Multiphysics. The liquid velocity field and the mass transfer within the supply channels and cultivation chambers were calculated to gain insight in the distribution of supplied nutrients and metabolic products secreted by the cultivated bacteria. The goal was to identify potential substrate limitations or product accumulations within the cultivation device. The metabolic uptake and production rates, colony size, and growth medium composition were varied covering a wide range of operating conditions. Simulations with glucose as substrate did not show limitations within the typically used concentration range, but for alternative substrates limitations could not be ruled out. This lays the foundation for further studies and the optimization of existing picoliter bioreactor systems.
Collapse
|
117
|
Asiaei S, Smith B, Nieva P. Enhancing conjugation rate of antibodies to carboxylates: Numerical modeling of conjugation kinetics in microfluidic channels and characterization of chemical over-exposure in conventional protocols by quartz crystal microbalance. BIOMICROFLUIDICS 2015; 9:064115. [PMID: 26697125 PMCID: PMC4684571 DOI: 10.1063/1.4937929] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 12/01/2015] [Indexed: 06/05/2023]
Abstract
This research reports an improved conjugation process for immobilization of antibodies on carboxyl ended self-assembled monolayers (SAMs). The kinetics of antibody/SAM binding in microfluidic heterogeneous immunoassays has been studied through numerical simulation and experiments. Through numerical simulations, the mass transport of reacting species, namely, antibodies and crosslinking reagent, is related to the available surface concentration of carboxyl ended SAMs in a microchannel. In the bulk flow, the mass transport equation (diffusion and convection) is coupled to the surface reaction between the antibodies and SAM. The model developed is employed to study the effect of the flow rate, conjugating reagents concentration, and height of the microchannel. Dimensionless groups, such as the Damköhler number, are used to compare the reaction and fluidic phenomena present and justify the kinetic trends observed. Based on the model predictions, the conventional conjugation protocol is modified to increase the yield of conjugation reaction. A quartz crystal microbalance device is implemented to examine the resulting surface density of antibodies. As a result, an increase in surface density from 321 ng/cm(2), in the conventional protocol, to 617 ng/cm(2) in the modified protocol is observed, which is quite promising for (bio-) sensing applications.
Collapse
Affiliation(s)
| | | | - Patricia Nieva
- Department of Mechanical and Mechatronics Engineering, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
118
|
Recent advances and future applications of microfluidic live-cell microarrays. Biotechnol Adv 2015; 33:948-61. [DOI: 10.1016/j.biotechadv.2015.06.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/16/2015] [Accepted: 06/19/2015] [Indexed: 12/31/2022]
|
119
|
Novel Electrokinetic Microfluidic Detector for Evaluating Effectiveness of Microalgae Disinfection in Ship Ballast Water. Int J Mol Sci 2015; 16:25560-75. [PMID: 26516836 PMCID: PMC4632816 DOI: 10.3390/ijms161025560] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/13/2015] [Accepted: 10/13/2015] [Indexed: 11/17/2022] Open
Abstract
Ship ballast water treatment methods face many technical challenges. The effectiveness of every treatment method usually is evaluated by using large scale equipment and a large volume of samples, which involves time-consuming, laborious, and complex operations. This paper reports the development of a novel, simple and fast platform of methodology in evaluating the efficiency and the best parameters for ballast water treatment systems, particularly in chemical disinfection. In this study, a microfluidic chip with six sample wells and a waste well was designed, where sample transportation was controlled by electrokinetic flow. The performance of this microfluidic platform was evaluated by detecting the disinfection of Dunaliella salina (D. salina) algae in ballast water treated by sodium hypochlorite (NaClO) solution. Light-induced chlorophyll fluorescence (LICF) intensity was used to determine the viability of microalgae cells in the system, which can be operated automatically with the dimension of the detector as small as 50 mm × 24 mm × 5 mm. The 40 µL volume of sample solution was used for each treatment condition test and the validity of detection can be accomplished within about five min. The results show that the viability of microalgae cells under different treatment conditions can be determined accurately and further optimal treatment conditions including concentrations of NaClO and treatment time can also be obtained. These results can provide accurate evaluation and optimal parameters for ballast water treatment methods.
Collapse
|
120
|
Geissler D, Belder D. Two-photon excitation in chip electrophoresis enabling label-free fluorescence detection in non-UV transparent full-body polymer chips. Electrophoresis 2015; 36:2976-82. [DOI: 10.1002/elps.201500192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 12/16/2022]
Affiliation(s)
- David Geissler
- Universität Leipzig; Institut für Analytische Chemie; Leipzig Germany
| | - Detlev Belder
- Universität Leipzig; Institut für Analytische Chemie; Leipzig Germany
| |
Collapse
|
121
|
Haghighi F, Talebpour Z, Sanati-Nezhad A. Through the years with on-a-chip gas chromatography: a review. LAB ON A CHIP 2015; 15:2559-2575. [PMID: 25994317 DOI: 10.1039/c5lc00283d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In recent years, the need for measurement and detection of samples in situ or with very small volume and low concentration (low and sub-parts per billion) is a cause for miniaturizing systems via microelectromechanical system (MEMS) technology. Gas chromatography (GC) is a common technique that is widely used for separating and measuring semi-volatile and volatile compounds. Conventional GCs are bulky and cannot be used for in situ analysis, hence in the past decades many studies have been reported with the aim of designing and developing chip-based GC. The focus of this review is to follow and investigate the development and the achievements in the field of chip-based GC and its components from the beginning up to the present.
Collapse
Affiliation(s)
- F Haghighi
- Chromatographic and Separation Laboratory, Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran, Iran.
| | | | | |
Collapse
|
122
|
Inexpensive, rapid prototyping of microfluidic devices using overhead transparencies and a laser print, cut and laminate fabrication method. Nat Protoc 2015; 10:875-86. [DOI: 10.1038/nprot.2015.051] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
123
|
Guo Y, Li L, Li F, Zhou H, Song Y. Inkjet print microchannels based on a liquid template. LAB ON A CHIP 2015; 15:1759-1764. [PMID: 25686015 DOI: 10.1039/c4lc01486c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A simple method to fabricate microchannels is demonstrated based on an inkjet printing liquid template. The morphology of the liquid template can be well controlled by using ink with viscosity sensitive to temperature. The as-prepared Y-shape microchannel is used as a microfluidic reactor for an acylation fluorigenic reaction in a matrix of polydimethylsiloxane (PDMS). Arbitrary modification of the microchannels could be easily realized synchronously with the formation of the microchannels. By grafting polyethylene glycol (PEG) onto the internal surface, an anti-biosorption microchannel is obtained. The facile method will be significant for the fabrication of a microfluidic chip with functional modifications.
Collapse
Affiliation(s)
- Yuzhen Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Lab of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | |
Collapse
|
124
|
Lin R, Skandarajah A, Gerver RE, Neira HD, Fletcher DA, Herr AE. A lateral electrophoretic flow diagnostic assay. LAB ON A CHIP 2015; 15:1488-96. [PMID: 25608872 PMCID: PMC4383188 DOI: 10.1039/c4lc01370k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Immunochromatographic assays are a cornerstone tool in disease screening. To complement existing lateral flow assays (based on wicking flow) we introduce a lateral flow format that employs directed electrophoretic transport. The format is termed a "lateral e-flow assay" and is designed to support multiplexed detection using immobilized reaction volumes of capture antigen. To fabricate the lateral e-flow device, we employ mask-based UV photopatterning to selectively immobilize unmodified capture antigen along the microchannel in a barcode-like pattern. The channel-filling polyacrylamide hydrogel incorporates a photoactive moiety (benzophenone) to immobilize capture antigen to the hydrogel without a priori antigen modification. We report a heterogeneous sandwich assay using low-power electrophoresis to drive biospecimen through the capture antigen barcode. Fluorescence barcode readout is collected via a low-resource appropriate imaging system (CellScope). We characterize lateral e-flow assay performance and demonstrate a serum assay for antibodies to the hepatitis C virus (HCV). In a pilot study, the lateral e-flow assay positively identifies HCV+ human sera in 60 min. The lateral e-flow assay provides a flexible format for conducting multiplexed immunoassays relevant to confirmatory diagnosis in near-patient settings.
Collapse
Affiliation(s)
- Robert Lin
- Department of Bioengineering, UC Berkeley, Berkeley, CA 94720 USA.
| | | | | | | | | | | |
Collapse
|
125
|
Sanavio B, Krol S. On the Slow Diffusion of Point-of-Care Systems in Therapeutic Drug Monitoring. Front Bioeng Biotechnol 2015; 3:20. [PMID: 25767794 PMCID: PMC4341557 DOI: 10.3389/fbioe.2015.00020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/09/2015] [Indexed: 12/22/2022] Open
Abstract
Recent advancements in point-of-care (PoC) technologies show great transformative promises for personalized preventative and predictive medicine. However, fields like therapeutic drug monitoring (TDM), that first allowed for personalized treatment of patients' disease, still lag behind in the widespread application of PoC devices for monitoring of patients. Surprisingly, very few applications in commonly monitored drugs, such as anti-epileptics, are paving the way for a PoC approach to patient therapy monitoring compared to other fields like intensive care cardiac markers monitoring, glycemic controls in diabetes, or bench-top hematological parameters analysis at the local drug store. Such delay in the development of portable fast clinically effective drug monitoring devices is in our opinion due more to an inertial drag on the pervasiveness of these new devices into the clinical field than a lack of technical capability. At the same time, some very promising technologies failed in the clinical practice for inadequate understanding of the outcome parameters necessary for a relevant technological breakthrough that has superior clinical performance. We hope, by over-viewing both TDM practice and its yet unmet needs and latest advancement in micro- and nanotechnology applications to PoC clinical devices, to help bridging the two communities, the one exploiting analytical technologies and the one mastering the most advanced techniques, into translating existing and forthcoming technologies in effective devices.
Collapse
Affiliation(s)
- Barbara Sanavio
- IRCCS Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silke Krol
- IRCCS Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
126
|
Yang Y, Yang X, Zou J, Jia C, Hu Y, Du H, Wang H. Evaluation of photodynamic therapy efficiency using an in vitro three-dimensional microfluidic breast cancer tissue model. LAB ON A CHIP 2015; 15:735-744. [PMID: 25428803 DOI: 10.1039/c4lc01065e] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In recognition of the limitations of monolayer cell cultures and resource-intensive animal studies, a microfluidic culture system was developed for creation of physiologically relevant three-dimensional (3D) tissues. In this study, an in vitro 3D breast cancer tissue model was established in a microfluidic system with human breast cancer cells (MCF-7) and primary adipose-derived stromal cells (ASCs). It was evaluated for utility in determining the efficiency of photodynamic therapy (PDT) with therapeutic agents (i.e. photosensitizer and gold nanoparticles) under various irradiation conditions. We demonstrated, for the first time, the potential use of a microfluidic-based in vitro 3D breast cancer model for effective evaluation of PDT, with the capability of controlling 3D microenvironments for breast cancer tissue formation, real-time monitoring of tissue progression, implementing a circulation-like dynamic medium flow and drug supplements, and investigating the relation between light penetration and tissue depth in PDT.
Collapse
Affiliation(s)
- Yamin Yang
- Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| | | | | | | | | | | | | |
Collapse
|
127
|
Li CG, Dangol M, Lee CY, Jang M, Jung H. A self-powered one-touch blood extraction system: a novel polymer-capped hollow microneedle integrated with a pre-vacuum actuator. LAB ON A CHIP 2015; 15:382-390. [PMID: 25352059 DOI: 10.1039/c4lc00937a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Blood is the gold standard sample medium that can provide a wide variety of useful biological information for the diagnosis of various diseases. For portable point-of-care diagnosis, blood extraction systems have attracted attention as easier, safer, and more rapid methods of collecting small blood volumes. In this paper, we introduce a novel self-powered one-touch blood extraction system created by assembling a smart polymer-capped hollow microneedle in a pre-vacuum polydimethylsiloxane actuator. The optimized hollow microneedle was precisely fabricated by drawing lithography for minimally invasive blood extraction, with a length of 1800 μm, an inner diameter of 60 μm, an outer diameter of 130 μm, and a bevel angle of 15°. The system utilizes only a single step for operation; a finger press activates the blood sampling process based on the negative pressure-driven force built into the pre-vacuum activated actuator. A sufficient volume of blood (31.3 ± 2.0 μl) was successfully extracted from a rabbit for evaluation using a micro total analysis system. The entire system was made of low-cost and disposable materials to achieve easy operation with a miniature structure and to meet the challenging requirements for single-use application in a point-of-care system without the use of any external power equipment.
Collapse
Affiliation(s)
- Cheng Guo Li
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Korea.
| | | | | | | | | |
Collapse
|
128
|
Plouffe BD, Murthy SK, Lewis LH. Fundamentals and application of magnetic particles in cell isolation and enrichment: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:016601. [PMID: 25471081 PMCID: PMC4310825 DOI: 10.1088/0034-4885/78/1/016601] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Magnetic sorting using magnetic beads has become a routine methodology for the separation of key cell populations from biological suspensions. Due to the inherent ability of magnets to provide forces at a distance, magnetic cell manipulation is now a standardized process step in numerous processes in tissue engineering, medicine, and in fundamental biological research. Herein we review the current status of magnetic particles to enable isolation and separation of cells, with a strong focus on the fundamental governing physical phenomena, properties and syntheses of magnetic particles and on current applications of magnet-based cell separation in laboratory and clinical settings. We highlight the contribution of cell separation to biomedical research and medicine and detail modern cell-separation methods (both magnetic and non-magnetic). In addition to a review of the current state-of-the-art in magnet-based cell sorting, we discuss current challenges and available opportunities for further research, development and commercialization of magnetic particle-based cell-separation systems.
Collapse
Affiliation(s)
- Brian D Plouffe
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA. The Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | | | | |
Collapse
|
129
|
Wu Q, Ren W, Yu Z, Dong E, Zhang S, Xu RX. Microfabrication of polydimethylsiloxane phantoms to simulate tumor hypoxia and vascular anomaly. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:121308. [PMID: 26456687 DOI: 10.1117/1.jbo.20.12.121308] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 08/31/2015] [Indexed: 06/05/2023]
Abstract
We introduce a microfluidic approach to simulate tumor hypoxia and vascular anomaly. Polydimethylsiloxane (PDMS) phantoms with embedded microchannel networks were fabricated by a soft lithography process. A dialysis membrane was sandwiched between two PDMS slabs to simulate the controlled mass transport and oxygen metabolism. A tortuous microchannel network was fabricated to simulate tumor microvasculature. A dual-modal multispectral and laser speckle imaging system was used for oxygen and blood flow imaging in the tumor-simulating phantom. The imaging results were compared with those of the normal vasculature. Our experiments demonstrated the technical feasibility of simulating tumor hypoxia and vascular anomalies using the proposed PDMS phantom. Such a phantom fabrication technique may be potentially used to calibrate optical imaging devices, to study the mechanisms for tumor hypoxia and angiogenesis, and to optimize the drug delivery strategies.
Collapse
Affiliation(s)
- Qiang Wu
- University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, 96 Jinzhai Road, Hefei, Anhui 230027, China
| | - Wenqi Ren
- University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, 96 Jinzhai Road, Hefei, Anhui 230027, ChinabThe Ohio State University, Department of Biomedical Engineering, 1080 Carmack Road, Columbus, Ohio
| | - Zelin Yu
- University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, 96 Jinzhai Road, Hefei, Anhui 230027, China
| | - Erbao Dong
- University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, 96 Jinzhai Road, Hefei, Anhui 230027, China
| | - Shiwu Zhang
- University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, 96 Jinzhai Road, Hefei, Anhui 230027, China
| | - Ronald X Xu
- University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, 96 Jinzhai Road, Hefei, Anhui 230027, ChinabThe Ohio State University, Department of Biomedical Engineering, 1080 Carmack Road, Columbus, Ohio
| |
Collapse
|
130
|
Stoller MA, Konda A, Kottwitz MA, Morin SA. Thermoplastic building blocks for the fabrication of microfluidic masters. RSC Adv 2015. [DOI: 10.1039/c5ra22742a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This manuscript reports a building-block-based approach for the design and fabrication of masters that enables “ultra-rapid” prototyping of functional microfluidic systems.
Collapse
Affiliation(s)
| | - Abhiteja Konda
- Department of Chemistry
- University of Nebraska–Lincoln
- Lincoln
- USA
| | | | - Stephen A. Morin
- Department of Chemistry
- University of Nebraska–Lincoln
- Lincoln
- USA
- Nebraska Center for Materials and Nanoscience
| |
Collapse
|
131
|
Tollkötter A, Sackmann J, Baldhoff T, Schomburg WK, Kockmann N. Ultrasonic Hot Embossed Polymer Microreactors for Optical Measurement of Chemical Reactions. Chem Eng Technol 2014. [DOI: 10.1002/ceat.201400522] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
132
|
Negri P, Schultz ZD. Online SERS detection of the 20 proteinogenic L-amino acids separated by capillary zone electrophoresis. Analyst 2014; 139:5989-98. [PMID: 25268706 PMCID: PMC4249764 DOI: 10.1039/c4an01177e] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A sheath-flow surface-enhanced Raman scattering (SERS) detector is demonstrated to provide chemical information enabling identification of the 20 proteinogenic L-amino acids separated by capillary zone electrophoresis (CZE). Amino acids were used to illustrate the chemical specificity of SERS detection from structurally related molecules. Analysis of the SERS electropherograms obtained from the separation and sequential online detection of six groups of structurally related amino acids shows that our sheath-flow SERS detector is able to resolve the characteristic Raman bands attributed to the amine, carboxyl, and side chain constituents. The results demonstrate the chemical information available from our detector and also provide insight into the nature of the analyte interaction with the silver SERS substrate. The spectra extracted from the SERS electropherogram of a mixture containing the 20 proteinogenic L-amino acids show unique signatures characteristic to each amino acid, thus enabling identification. The results presented here demonstrate the potential of this sheath-flow SERS detector as a general purpose method for high throughput characterization and identification following separations of complex biomolecular mixtures.
Collapse
Affiliation(s)
- Pierre Negri
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | |
Collapse
|
133
|
|
134
|
Negri P, Flaherty RJ, Dada OO, Schultz ZD. Ultrasensitive online SERS detection of structural isomers separated by capillary zone electrophoresis. Chem Commun (Camb) 2014; 50:2707-10. [PMID: 24395125 DOI: 10.1039/c3cc49030k] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A mixture of structural isomers was separated and identified at nanomolar concentrations (∼100,000 molecules) by incorporating capillary zone electrophoresis (CZE) with a sheath flow surface-enhanced Raman scattering (SERS) detector. Baseline resolution was obtained from three structural isomers of rhodamine using a planar silver SERS substrate, demonstrating the utility of this approach for trace chemical analysis.
Collapse
Affiliation(s)
- Pierre Negri
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | | | |
Collapse
|
135
|
Construction of a microrobot system using magnetotactic bacteria for the separation of Staphylococcus aureus. Biomed Microdevices 2014; 16:761-70. [DOI: 10.1007/s10544-014-9880-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
136
|
Teles F, Fonseca L. The Contribution of Smart Materials and Advanced Clinical Diagnostic Micro‐ Devices on the Progress and Improvement of Human Health Care. Adv Healthc Mater 2014. [DOI: 10.1002/9781118774205.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
137
|
Park SM, Sabour AF, Son JH, Lee SH, Lee LP. Toward integrated molecular diagnostic system (i MDx): principles and applications. IEEE Trans Biomed Eng 2014; 61:1506-21. [PMID: 24759281 PMCID: PMC4141683 DOI: 10.1109/tbme.2014.2309119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Integrated molecular diagnostic systems ( iMDx), which are automated, sensitive, specific, user-friendly, robust, rapid, easy-to-use, and portable, can revolutionize future medicine. This review will first focus on the components of sample extraction, preservation, and filtration necessary for all point-of-care devices to include for practical use. Subsequently, we will look for low-powered and precise methods for both sample amplification and signal transduction, going in-depth to the details behind their principles. The final field of total device integration and its application to the clinical field will also be addressed to discuss the practicality for future patient care. We envision that microfluidic systems hold the potential to breakthrough the number of problems brought into the field of medical diagnosis today.
Collapse
Affiliation(s)
- Seung-min Park
- Department of Bioengineering, and the Berkeley Sensor and Actuator Center, UC Berkeley, University of California, Berkeley, Berkeley, CA 94720 USA, and also with the Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305 USA
| | - Andrew F. Sabour
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Jun Ho Son
- Department of Bioengineering, and the Berkeley Sensor and Actuator Center, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Sang Hun Lee
- Department of Bioengineering, and the Berkeley Sensor and Actuator Center, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Luke P. Lee
- Department of Bioengineering, and the Berkeley Sensor and Actuator Center, University of California, Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
138
|
Malon RSP, Chua KY, Wicaksono DHB, Córcoles EP. Cotton fabric-based electrochemical device for lactate measurement in saliva. Analyst 2014; 139:3009-16. [PMID: 24776756 DOI: 10.1039/c4an00201f] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lactate measurement is vital in clinical diagnostics especially among trauma and sepsis patients. In recent years, it has been shown that saliva samples are an excellent applicable alternative for non-invasive measurement of lactate. In this study, we describe a method for the determination of lactate concentration in saliva samples by using a simple and low-cost cotton fabric-based electrochemical device (FED). The device was fabricated using template method for patterning the electrodes and wax-patterning technique for creating the sample placement/reaction zone. Lactate oxidase (LOx) enzyme was immobilised at the reaction zone using a simple entrapment method. The LOx enzymatic reaction product, hydrogen peroxide (H2O2) was measured using chronoamperometric measurements at the optimal detection potential (-0.2 V vs. Ag/AgCl), in which the device exhibited a linear working range between 0.1 to 5 mM, sensitivity (slope) of 0.3169 μA mM(-1) and detection limit of 0.3 mM. The low detection limit and wide linear range were suitable to measure salivary lactate (SL) concentration, thus saliva samples obtained under fasting conditions and after meals were evaluated using the FED. The measured SL varied among subjects and increased after meals randomly. The proposed device provides a suitable analytical alternative for rapid and non-invasive determination of lactate in saliva samples. The device can also be adapted to a variety of other assays that requires simplicity, low-cost, portability and flexibility.
Collapse
Affiliation(s)
- Radha S P Malon
- Faculty of Biosciences and Medical Engineering (FBME), Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor, Malaysia.
| | | | | | | |
Collapse
|
139
|
Polymeric microfluidic devices exhibiting sufficient capture of cancer cell line for isolation of circulating tumor cells. Biomed Microdevices 2014; 15:611-616. [PMID: 23666489 DOI: 10.1007/s10544-013-9775-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Here, we developed polymeric microfluidic devices for the isolation of circulating tumor cells. The devices, with more than 30,000 microposts in the channel, were produced successfully by a UV light-curing process lasting 3 min. The device surface was coated with anti-epithelial cell adhesion molecule antibody by just contacting the antibody solution, and a flow system including the device was established to send a cell suspension through it. We carried out flow tests for evaluation of the device's ability to capture tumor cells using an esophageal cancer cell line, KYSE220, dispersed in phosphate-buffered saline or mononuclear cell separation from whole blood. After the suspension flowed through the chip, many cells were seen to be captured on the microposts coated with the antibody, whereas there were few cells in the device without the antibody. Owing to the transparency of the device, we could observe the intact and the stained cells captured on the microposts by transmitted light microscopy and phase contrast microscopy, in addition to fluorescent microscopy, which required fluorescence labeling. Cell capture efficiencies (i.e., recovery rates of the flowing cancer cells by capture with the microfluidic device) were measured. The resulting values were 0.88 and 0.95 for cell suspension in phosphate-buffered saline, and 0.85 for the suspension in the mononuclear cell separation, suggesting the sufficiency of this device for the isolation of circulating tumor cells. Therefore, our device may be useful for research and treatments that rely on investigation of circulating tumor cells in the blood of cancer patients.
Collapse
|
140
|
Chen B, Mai Q, Chen Q. DETERMINATION OF OFLOXACIN IN OFLOXACIN EAR DROPS BY MICROFLUIDIC CHIP WITH CONTACTLESS CONDUCTIVITY DETECTION. J LIQ CHROMATOGR R T 2014. [DOI: 10.1080/10826076.2013.778638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Bing Chen
- a College of Chemistry and Technology, Zhanjiang Normal University , Zhanjiang , P. R. China
- b Development Center for New Materials Engineering & Technology in Universities of Guangdong , Zhanjiang , P. R. China
| | - Qihong Mai
- a College of Chemistry and Technology, Zhanjiang Normal University , Zhanjiang , P. R. China
| | - Qiumei Chen
- a College of Chemistry and Technology, Zhanjiang Normal University , Zhanjiang , P. R. China
| |
Collapse
|
141
|
Bissonnette L, Bergeron MG. Next revolution in the molecular theranostics of infectious diseases: microfabricated systems for personalized medicine. Expert Rev Mol Diagn 2014; 6:433-50. [PMID: 16706745 DOI: 10.1586/14737159.6.3.433] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The molecular diagnosis of infectious diseases is currently going through a revolution sustained by the regulatory approval of amplification tests that have been shown to be equivalent or superior to existing gold standard methods. The recent approval of a microarray system for the pharmacogenomic profiling of cytochrome P450-mediated drug metabolism is paving the way to novel, rapid, sensitive, robust and economical microfabricated systems for point-of-care diagnostics, which are utilized closer and closer to the patient's bedside. These systems will enable the multiparametric genetic evaluation of several medical conditions, including infectious diseases. This forecoming revolution will position molecular theranostics in a broader integrated view of personalized medicine, which exploits genetic information from microbes and human hosts to optimize patient management and disease treatment.
Collapse
Affiliation(s)
- Luc Bissonnette
- Département de Biologie Médicale (Microbiologie), Faculté de Médecine, Université Laval, Québec City, Canada.
| | | |
Collapse
|
142
|
Chrimes AF, Khoshmanesh K, Stoddart PR, Mitchell A, Kalantar-Zadeh K. Microfluidics and Raman microscopy: current applications and future challenges. Chem Soc Rev 2014; 42:5880-906. [PMID: 23624774 DOI: 10.1039/c3cs35515b] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Raman microscopy systems are becoming increasingly widespread and accessible for characterising chemical species. Microfluidic systems are also progressively finding their way into real world applications. Therefore, it is anticipated that the integration of Raman systems with microfluidics will become increasingly attractive and practical. This review aims to provide an overview of Raman microscopy-microfluidics integrated systems for researchers who are actively interested in utilising these tools. The fundamental principles and application strengths of Raman microscopy are discussed in the context of microfluidics. Various configurations of microfluidics that incorporate Raman microscopy methods are presented, with applications highlighted. Data analysis methods are discussed, with a focus on assisting the interpretation of Raman-microfluidics data from complex samples. Finally, possible future directions of Raman-microfluidic systems are presented.
Collapse
Affiliation(s)
- Adam F Chrimes
- School of Electrical and Computer Engineering, RMIT University, 124 LaTrobe St, Melbourne, Australia.
| | | | | | | | | |
Collapse
|
143
|
Laher M, Hild S. A detailed micrometer scale investigation of the solvent bonding process for microfluidic chip fabrication. RSC Adv 2014. [DOI: 10.1039/c3ra45167d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
144
|
Jena RK, Yue CY, Yun KX. Effect of a CNT based composite micromold on the replication fidelity during the microfabrication of polymeric microfluidic devices. RSC Adv 2014. [DOI: 10.1039/c3ra45618h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
145
|
Renaudot R, Agache V, Fouillet Y, Laffite G, Bisceglia E, Jalabert L, Kumemura M, Collard D, Fujita H. A programmable and reconfigurable microfluidic chip. LAB ON A CHIP 2013; 13:4517-24. [PMID: 24154859 DOI: 10.1039/c3lc50850a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This article reports an original concept enabling the rapid fabrication of continuous-flow microfluidic chips with a programmable and reconfigurable geometry. The concept is based on a digital microfluidic platform featuring an array of individually addressable electrodes. A selection of electrodes is switched on sequentially to create a de-ionized (DI) water finger specific pattern, while the surrounding medium consists of liquid-phase paraffin. The water displacement is induced by both electrowetting on dielectric and liquid dielectrophoresis phenomena. Once the targeted DI water pattern is obtained, the chip temperature is lowered by turning on an integrated thermoelectric cooler, forming channel structures made of solidified paraffin with edges delimitated by the DI water pattern. As a result, the chip can be used afterwards to conduct in-flow continuous microfluidic experiments. This process is resettable and reversible by heating up the chip to melt the paraffin and reconfigure the microchannel design on demand, offering the advantages of cost, adaptability, and robustness. This paper reports experimental results describing the overall concept, which is illustrated with typical and basic fluidic geometries.
Collapse
|
146
|
Aminosilane layers on the plasma activated thermoplastics: Influence of solvent on its structure and morphology. J Colloid Interface Sci 2013; 411:122-8. [DOI: 10.1016/j.jcis.2013.08.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/13/2013] [Accepted: 08/19/2013] [Indexed: 02/06/2023]
|
147
|
Shih TT, Lin CH, Hsu IH, Chen JY, Sun YC. Development of a Titanium Dioxide-Coated Microfluidic-Based Photocatalyst-Assisted Reduction Device to Couple High-Performance Liquid Chromatography with Inductively Coupled Plasma-Mass Spectrometry for Determination of Inorganic Selenium Species. Anal Chem 2013; 85:10091-8. [DOI: 10.1021/ac400934e] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tsung-Ting Shih
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 30013 Hisnchu, Taiwan
| | - Cheng-Hsing Lin
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 30013 Hisnchu, Taiwan
| | - I-Hsiang Hsu
- Center for Measurement Standards, Industrial Technology Research Institute, 30011 Hsinchu, Taiwan
| | - Jian-Yi Chen
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 30013 Hisnchu, Taiwan
| | - Yuh-Chang Sun
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 30013 Hisnchu, Taiwan
| |
Collapse
|
148
|
Byun CK, Abi-Samra K, Cho YK, Takayama S. Pumps for microfluidic cell culture. Electrophoresis 2013; 35:245-57. [DOI: 10.1002/elps.201300205] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 07/09/2013] [Accepted: 07/09/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Chang Kyu Byun
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST); Eonyang-eop; Ulju-gun Ulsan Republic of Korea
| | - Kameel Abi-Samra
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST); Eonyang-eop; Ulju-gun Ulsan Republic of Korea
| | - Yoon-Kyoung Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST); Eonyang-eop; Ulju-gun Ulsan Republic of Korea
| | - Shuichi Takayama
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST); Eonyang-eop; Ulju-gun Ulsan Republic of Korea
- Department of Biomedical Engineering, University of Michigan; Biointerfaces Institute; Ann Arbor MI USA
| |
Collapse
|
149
|
Rani SD, Park T, You BH, Soper SA, Murphy MC, Nikitopoulos DE. Modeling of misalignment effects in microfluidic interconnects for modular bio-analytical chip applications. Electrophoresis 2013; 34:2988-95. [DOI: 10.1002/elps.201300110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/17/2013] [Accepted: 06/17/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Sudheer D. Rani
- Washington University in St. Louis; Department of Radiology; Saint Louis; MO; USA
| | - Taehyun Park
- School of Mechanical Engineering; Kyungnam University; Changwon; Republic of Korea
| | | | | | | | | |
Collapse
|
150
|
Borysiak MD, Bielawski KS, Sniadecki NJ, Jenkel CF, Vogt BD, Posner JD. Simple replica micromolding of biocompatible styrenic elastomers. LAB ON A CHIP 2013; 13:2773-84. [PMID: 23670166 PMCID: PMC3799950 DOI: 10.1039/c3lc50426c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In this work, we introduce a simple solvent-assisted micromolding technique for the fabrication of high-fidelity styrene-ethylene/butylene-styrene (SEBS) microfluidic devices with high polystyrene (PS) content (42 wt% PS, SEBS42). SEBS triblock copolymers are styrenic thermoplastic elastomers that exhibit both glassy thermoplastic and elastomeric properties resulting from their respective hard PS and rubbery ethylene/butylene segments. The PS fraction gives SEBS microdevices many of the appealing properties of pure PS devices, while the elastomeric properties simplify fabrication of the devices, similar to PDMS. SEBS42 devices have wettable, stable surfaces (both contact angle and zeta potential) that support cell attachment and proliferation consistent with tissue culture dish substrates, do not adsorb hydrophobic molecules, and have high bond strength to wide range of substrates (glass, PS, SEBS). Furthermore, SEBS42 devices are mechanically robust, thermally stable, as well as exhibit low auto-fluorescence and high transmissivity. We characterize SEBS42 surface properties by contact angle measurements, cell culture studies, zeta potential measurements, and the adsorption of hydrophobic molecules. The PS surface composition of SEBS microdevices cast on different substrates is determined by time-of-flight secondary ion mass spectrometry (ToF-SIMS). The attractive SEBS42 material properties, coupled with the simple fabrication method, make SEBS42 a quality substrate for microfluidic applications where the properties of PS are desired but the ease of PDMS micromolding is favoured.
Collapse
Affiliation(s)
- Mark D. Borysiak
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Kevin S. Bielawski
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Nathan J. Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Colin F. Jenkel
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Bryan D. Vogt
- Department of Polymer Engineering, University of Akron, Akron, OH 44325, USA
| | - Jonathan D. Posner
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|