101
|
Muzalevskiy VM, Sizova ZA, Abaev VT, Nenajdenko VG. Synthesis of 2-trifluoromethylated quinolines from CF 3-alkenes. Org Biomol Chem 2021; 19:4303-4319. [PMID: 33899886 DOI: 10.1039/d1ob00098e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
α-CF3-enamines can be prepared by the reaction of pyrrolidine with the corresponding haloalkenes. The prepared enamines react with 2-nitrobenzaldehydes to give ortho-nitro-substituted α,β-diaryl-CF3-enones highly stereoselectively in up to 88% yield. Subsequent reduction of the nitro-group by an Fe-AcOH system promotes intramolecular cyclization to afford 2-CF3-3-arylquinolines in up to 99% isolated yield. High synthetic utility of all synthetic steps of the sequence was shown. A one-pot procedure was developed to give the target trifluoromethylated quinolines directly from enamines or haloalkenes.
Collapse
|
102
|
Maltais R, Roy J, Poirier D. Turning a Quinoline-based Steroidal Anticancer Agent into Fluorescent Dye for its Tracking by Cell Imaging. ACS Med Chem Lett 2021; 12:822-826. [PMID: 34055232 DOI: 10.1021/acsmedchemlett.1c00111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
RM-581 is an aminosteroid derivative comprised of a steroid core and a quinoline side chain showing potent cytotoxic activity on several types of cancer cells but for which the mechanism of action (MoA) remains to be fully elucidated. The opportunity to turn RM-581 into a fluorescent probe was explored because the addition of a N-dimethyl group was recently reported to induce fluorescence to quinoline derivatives. After the chemical synthesis of the N-dimethyl analogue of RM-581 (RM-581-Fluo), its fluorescent properties, as well as its cytotoxic activity in breast cancer MCF-7 cells, were confirmed. A cell imaging experiment in MCF-7 cells using confocal microscopy then revealed that RM-581-Fluo accumulated into the endoplasmic reticulum (ER) as highlighted by its colocalization with an ER-Tracker dye. This work provides a new tool for RM-581 MoA investigations as well as being a relevant example of a tailor-made quinolone-fluorescent version of a bioactive molecule.
Collapse
Affiliation(s)
- René Maltais
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec Research Center, Québec, Québec G1V 4G2, Canada
| | - Jenny Roy
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec Research Center, Québec, Québec G1V 4G2, Canada
| | - Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec Research Center, Québec, Québec G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
103
|
Ronzon Q, Zhang W, Casaretto N, Mouray E, Florent I, Nay B. Programmed Multiple C-H Bond Functionalization of the Privileged 4-hydroxyquinoline Template. Chemistry 2021; 27:7764-7772. [PMID: 33848033 DOI: 10.1002/chem.202100929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Indexed: 11/12/2022]
Abstract
The introduction of substituents on bare heterocyclic scaffolds can selectively be achieved by directed C-H functionalization. However, such methods have only occasionally been used, in an iterative manner, to decorate various positions of a medicinal scaffold to build chemical libraries. We herein report the multiple, site selective, metal-catalyzed C-H functionalization of a "programmed" 4-hydroxyquinoline. This medicinally privileged template indeed possesses multiple reactive sites for diversity-oriented functionalization, of which four were targeted. The C-2 and C-8 decorations were directed by an N-oxide, before taking benefit of an O-carbamoyl protection at C-4 to perform a Fries rearrangement and install a carboxamide at C-3. This also released the carbonyl group of 4-quinolones, the ultimate directing group to functionalize position 5. Our study highlights the power of multiple C-H functionalization to generate diversity in a biologically relevant library, after showing its strong antimalarial potential.
Collapse
Affiliation(s)
- Quentin Ronzon
- Laboratoire de Synthèse Organique, Ecole Polytechnique, ENSTA, CNRS, Institut Polytechnique de Paris, 91128, Palaiseau Cedex, France
| | - Wei Zhang
- Laboratoire de Synthèse Organique, Ecole Polytechnique, ENSTA, CNRS, Institut Polytechnique de Paris, 91128, Palaiseau Cedex, France
| | - Nicolas Casaretto
- Laboratoire de Chimie Moléculaire, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, 91128, Palaiseau Cedex, France
| | - Elisabeth Mouray
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR7245) Muséum national d'Histoire naturelle, CNRS, CP 52, 57 rue Cuvier, 75005, Paris, France
| | - Isabelle Florent
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR7245) Muséum national d'Histoire naturelle, CNRS, CP 52, 57 rue Cuvier, 75005, Paris, France
| | - Bastien Nay
- Laboratoire de Synthèse Organique, Ecole Polytechnique, ENSTA, CNRS, Institut Polytechnique de Paris, 91128, Palaiseau Cedex, France
| |
Collapse
|
104
|
Vellakkaran M, Hong S. Visible‐light‐induced Reactions Driven by Photochemical Activity of Quinolinone and Coumarin Scaffolds. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mari Vellakkaran
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) 34141 Daejeon Korea
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) 34141 Daejeon Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) 34141 Daejeon Korea
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) 34141 Daejeon Korea
| |
Collapse
|
105
|
Kim J, Umerani MJ, Kurakake R, Qin H, Ziller JW, Gorodetsky AA, Park YS. An aza-Diels-Alder approach to chlorinated quinolines, benzoquinolines, and polybenzoquinolines. RSC Adv 2021; 11:13722-13730. [PMID: 35423954 PMCID: PMC8697586 DOI: 10.1039/d0ra06744j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/09/2021] [Indexed: 11/29/2022] Open
Abstract
Quinolines and quinoline-containing macromolecules are renowned for their valuable biological activities and excellent materials properties. Herein, we validate a general strategy for the synthesis of chloro-containing quinoline, benzoquinoline and polybenzoquinoline variants via the aza-Diels-Alder reaction. The described findings could be ultimately implemented in other synthetic pathways and may open new opportunities for analogous quinoline-derived materials.
Collapse
Affiliation(s)
- Juhwan Kim
- Department of Chemical and Biomolecular Engineering, University of California, Irvine Irvine CA 92697 USA
| | - Mehran J Umerani
- Department of Materials Science and Engineering, University of California, Irvine Irvine CA 92697 USA
| | - Reina Kurakake
- Department of Materials Science and Engineering, University of California, Irvine Irvine CA 92697 USA
| | - Huiting Qin
- Department of Chemical and Biomolecular Engineering, University of California, Irvine Irvine CA 92697 USA
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine Irvine CA 92697 USA
| | - Alon A Gorodetsky
- Department of Chemical and Biomolecular Engineering, University of California, Irvine Irvine CA 92697 USA
- Department of Materials Science and Engineering, University of California, Irvine Irvine CA 92697 USA
- Department of Chemistry, University of California, Irvine Irvine CA 92697 USA
| | - Young S Park
- Department of Chemical and Biomolecular Engineering, University of California, Irvine Irvine CA 92697 USA
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| |
Collapse
|
106
|
Chen W, Li C, Li H, Wu Y. Intermolecular Amination of Ketoximes with Anthranils by Rh‐Catalyzed C−H Bond Activation in Air. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Weiqiang Chen
- Weihai Marine Organism & Medical Technology Research Institute Harbin Institute of Technology 2 Wenhuaxi Road Weihai 264209 P.R. China
| | - Chao‐Yi Li
- Weihai Marine Organism & Medical Technology Research Institute Harbin Institute of Technology 2 Wenhuaxi Road Weihai 264209 P.R. China
| | - Hui‐Jing Li
- Weihai Marine Organism & Medical Technology Research Institute Harbin Institute of Technology 2 Wenhuaxi Road Weihai 264209 P.R. China
- Weihai Huiankang Biotechnology Co., Ltd Weihai 264200 P. R. China
| | - Yan‐Chao Wu
- Weihai Marine Organism & Medical Technology Research Institute Harbin Institute of Technology 2 Wenhuaxi Road Weihai 264209 P.R. China
| |
Collapse
|
107
|
Sontakke GS, Shukla RK, Volla CMR. Deoxygenative C2-heteroarylation of quinoline N-oxides: facile access to α-triazolylquinolines. Beilstein J Org Chem 2021; 17:485-493. [PMID: 33727971 PMCID: PMC7934756 DOI: 10.3762/bjoc.17.42] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/30/2021] [Indexed: 12/24/2022] Open
Abstract
A metal- and additive-free, highly efficient, step-economical deoxygenative C2-heteroarylation of quinolines and isoquinolines was achieved from readily available N-oxides and N-sulfonyl-1,2,3-triazoles. A variety of α-triazolylquinoline derivatives were synthesized with good regioselectivity and in excellent yields under mild reaction conditions. Further, a gram-scale and one-pot synthesis illustrated the efficacy and simplicity of the developed protocol. The current transformation was also found to be compatible for the late-stage modification of natural products.
Collapse
Affiliation(s)
- Geetanjali S Sontakke
- Department of Chemistry, Indian Institute of Technology Bombay, Powai-400076, Mumbai, India
| | - Rahul K Shukla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai-400076, Mumbai, India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai-400076, Mumbai, India
| |
Collapse
|
108
|
Sultana R, Tippanna RR. Chromene, Quinoline Hybrids as Potential Anti-Cancer Agents: A Novel and Distinct Approach for the Synthesis of Quinoline Derivatives. LETT ORG CHEM 2021. [DOI: 10.2174/1570178617666200122095829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of novel quinoline derivatives (6-phenyl-6H-chromeno[4,3-b]quinoline) have been
prepared by using 4-chloro-2-phenyl-2H-chromene-3-carbaldehyde and various substituted isocyanides
as starting materials in the presence of HClO<sub>4</sub>-SiO<sub>2</sub> and Methanol. We screened eighteen compounds
of this novel series (6a-r) in six different cancer cell lines (A549 (lung cancer cells), DU145 (prostate
cancer cells), PC3 (prostate cancer cells), MCF7 (lung cancer cells), HT 29, HCT 116 (colon cancer
cells). Most of the compounds showed anti-cancer activity and compound 6b showed good cytotoxicity
IC50 = 2.61±0.34 μM against colon cancer on HT29 cell line among all. The key property of cell migration
was observed while treatment cells with 6b. Apoptosis in HT29 cells confirmed by annexin V
staining, acridine orange/ethidium bromide (AO/EB), DAPI, induced by 6b. This method is operationally
simple and works with a diverse range of substrates. These results indicate the anticancer potential
of these series and warrants future investigations for further anticancer drug development.
Collapse
|
109
|
Rathod PK, Jonnalagadda S, Panaganti L. A simple and efficient synthesis of benzofuroquinolines via the decarboxylative cross-coupling. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
110
|
Usman M, Khan RA, Khan MR, Abul Farah M, BinSharfan II, Alharbi W, Shaik JP, Parine NR, Alsalme A, Tabassum S. A novel biocompatible formate bridged 1D-Cu(ii) coordination polymer induces apoptosis selectively in human lung adenocarcinoma (A549) cells. Dalton Trans 2021; 50:2253-2267. [PMID: 33506238 DOI: 10.1039/d0dt03782f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Copper compounds are promising candidates for next-generation metal anticancer drugs. Therefore, we synthesized and characterized a formate bridged 1D coordination polymer [Cu(L)(HCOO)2]n, (L = 2-methoxy-6-methyl-3-((quinolin-8-ylimino)methyl)chroman-4-ol), PCU1, wherein the Cu(ii) center adopts a square pyramidal coordination environment with adjacent CuCu distances of 5.28 Å. Primarily, in vitro DNA interaction studies revealed a metallopolymer which possesses high DNA binding propensity and cleaves DNA via the oxidative pathway. We further analysed its potential on cancerous cells MCF-7, HeLa, A549, and two non-tumorigenic cells HEK293 and HBE. The selective cytotoxicity potential of PCU1 against A549 cells driven us to examine the mechanistic pathways comprehensively by carrying out various assays viz, cell cycle arrest, Annexin V-FTIC/PI assay, autophagy, intercellular localization, mitochondrial membrane potential 'MMP', antiproliferative assay, and gene expression of TGF-β and MMP-2.
Collapse
Affiliation(s)
- Mohammad Usman
- Department of Chemistry, Aligarh Muslim University, Aligarh-202002, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Elbadawi MM, Eldehna WM, Wang W, Agama KK, Pommier Y, Abe M. Discovery of 4-alkoxy-2-aryl-6,7-dimethoxyquinolines as a new class of topoisomerase I inhibitors endowed with potent in vitro anticancer activity. Eur J Med Chem 2021; 215:113261. [PMID: 33631697 DOI: 10.1016/j.ejmech.2021.113261] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/11/2021] [Accepted: 01/28/2021] [Indexed: 02/08/2023]
Abstract
In our attempt to develop potential anticancer agents targeting Topoisomerase I (TOP1), two novel series of 4-alkoxy-2-arylquinolines 14a-p and 19a-c were designed and synthesized based on structure activity relationships of the reported TOP1 inhibitors and structural features required for stabilization of TOP1-DNA cleavage complexes (TOP1ccs). The in vitro anticancer activity of these two series of compounds was evaluated at one dose level using NCI-60 cancer cell lines panel. Compounds 14e-h and 14m-p, with p-substituted phenyl at C2 and propyl linker at C4, were the most potent and were selected for assay at five doses level in which they exhibited potent anticancer activity at sub-micromolar level against diverse cancer cell lines. Compound 14m was the most potent with full panel GI50 MG-MID 1.26 μM and the most sensitive cancers were colon cancer, leukemia and melanoma with GI50 MG-MID 0.875, 0.904 and 0.926 μM, respectively. Melanoma (LOX IMVI) was the most sensitive cell line to all tested compounds displaying GI50 from 0.116 to 0.227 μM, TGI from 0.275 to 0.592 μM and LC50 at sub-micromolar concentration against almost of the tested compounds. Compounds 14e-h and 14m-p were assayed using TOP1-mediated DNA cleavage assay to evaluate their ability to stabilize TOP1ccs resulting in cancer cell death. The morpholino analogs 14h and 14p exhibited moderate TOP1 inhibitory activity compared to 1 μM camptothecin suggesting their use as lead compounds that can be optimized for the development of more potent anticancer agents with potential TOP1 inhibitory activity. Finally, Swiss ADME online web tool predicted that compounds 14h and 14p possessed good oral bioavailability and druglikeness characteristics.
Collapse
Affiliation(s)
- Mostafa M Elbadawi
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Wenjie Wang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Keli K Agama
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Manabu Abe
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
112
|
Shantharjun B, Vani D, Unnava R, Sandeep M, Reddy KR. Hydroxymethylation of quinolines via iron promoted oxidative C-H functionalization: synthesis of arsindoline-A and its derivatives. Org Biomol Chem 2021; 19:645-652. [PMID: 33393550 DOI: 10.1039/d0ob02212h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report a mild and efficient hydroxymethylation of quinolines via an iron promoted cross-dehydrogenative coupling reaction under external acid free conditions. Various hydroxyalkyl substituted quinolines were achieved in excellent yields with well tolerated functional groups. Importantly, a few of the hydroxylmethylated quinolines were further transformed into respective aldehydes, and were successfully utilized for the synthesis of alkaloid arsindoline-A and its derivatives.
Collapse
Affiliation(s)
- Bangarigalla Shantharjun
- Catalysis and Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad - 500007, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, U.P., India
| | - Damera Vani
- Catalysis and Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad - 500007, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, U.P., India
| | - Ramanjaneyulu Unnava
- Catalysis and Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad - 500007, India.
| | - Mummadi Sandeep
- Catalysis and Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad - 500007, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, U.P., India
| | - Kallu Rajender Reddy
- Catalysis and Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad - 500007, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, U.P., India
| |
Collapse
|
113
|
Microwave-Assisted Synthesis of (Piperidin-1-yl)quinolin-3-yl)methylene)hydrazinecarbothioamides as Potent Inhibitors of Cholinesterases: A Biochemical and In Silico Approach. Molecules 2021; 26:molecules26030656. [PMID: 33513837 PMCID: PMC7866225 DOI: 10.3390/molecules26030656] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/17/2022] Open
Abstract
Alzheimer’s disease (AD), a progressive neurodegenerative disorder, characterized by central cognitive dysfunction, memory loss, and intellectual decline poses a major public health problem affecting millions of people around the globe. Despite several clinically approved drugs and development of anti-Alzheimer’s heterocyclic structural leads, the treatment of AD requires safer hybrid therapeutics with characteristic structural and biochemical properties. In this endeavor, we herein report a microwave-assisted synthesis of a library of quinoline thiosemicarbazones endowed with a piperidine moiety, achieved via the condensation of 6/8-methyl-2-(piperidin-1-yl)quinoline-3-carbaldehydes and (un)substituted thiosemicarbazides. The target N-heterocyclic products were isolated in excellent yields. The structures of all the synthesized compounds were fully established using readily available spectroscopic techniques (FTIR, 1H- and 13C-NMR). Anti-Alzheimer potential of the synthesized heterocyclic compounds was evaluated using acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. The in vitro biochemical assay results revealed several compounds as potent inhibitors of both enzymes. Among them, five compounds exhibited IC50 values less than 20 μM. N-(3-chlorophenyl)-2-((8-methyl-2-(piperidin-1-yl)quinolin-3-yl)methylene)hydrazine carbothioamide emerged as the most potent dual inhibitor of AChE and BChE with IC50 values of 9.68 and 11.59 μM, respectively. Various informative structure–activity relationship (SAR) analyses were also concluded indicating the critical role of substitution pattern on the inhibitory efficacy of the tested derivatives. In vitro results were further validated through molecular docking analysis where interactive behavior of the potent inhibitors within the active pocket of enzymes was established. Quinoline thiosemicarbazones were also tested for their cytotoxicity using MTT assay against HepG2 cells. Among the 26 novel compounds, there were five cytotoxical and 18 showed proliferative properties.
Collapse
|
114
|
Patel AJ, Dholakia AB, Patel VC. A green perspective: Synthesis of 2-chloro-3-formylquinolines and its derivatives. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2020.1824277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ankitkumar J. Patel
- Department of Chemistry, Shri A. N. Patel P.G. Institute of Science and Research, Saradar Patel University, Anand, India
| | - Amitkumar B. Dholakia
- Department of Chemistry, Shri A. N. Patel P.G. Institute of Science and Research, Saradar Patel University, Anand, India
| | - Vishant C. Patel
- Department of Chemistry, Shri A. N. Patel P.G. Institute of Science and Research, Saradar Patel University, Anand, India
| |
Collapse
|
115
|
Peng HL, Li Y, Chen XY, Li LP, Ke Z, Ye BH. Visible-Light-Induced Amination of Quinoline at the C8 Position via a Postcoordinated Interligand-Coupling Strategy under Mild Conditions. Inorg Chem 2021; 60:908-918. [PMID: 33393292 DOI: 10.1021/acs.inorgchem.0c03026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The postcoordinated interligand-coupling strategy provides a useful and complementary protocol for synthesizing polydentate ligands. Herein, diastereoselective photoreactions of Λ-[Ir(pq)2(d-AA)] (Λ-d) and Λ-[Ir(pq)2(l-AA)] (Λ-l, where pq is 2-phenylquinoline and AA is an amino acid) are reported in the presence of O2 under mild conditions. Diastereomer Λ-d is dehydrogenatively oxidized into an imino acid complex, while diastereomer Λ-l mainly occurs via interligand C-N cross-dehydrogenative coupling between quinoline at the C8 position and AA ligands at room temperature, affording Λ-[Ir(pq)(l-pq-AA)]. Furthermore, the photoreaction of diastereomer Λ-l is temperature-dependent. Mechanistic experiments reveal the ligand-radical intermediates may be involved in the reaction. Density functional theory calculations were used to eluciate the origin of diastereoselectivity and temperature dependence. This will provide a new protocol for the amination of quinoline at the C8 position via the postcoordinated interligand C-N cross-coupling strategy under mild conditions.
Collapse
Affiliation(s)
- He-Long Peng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Yinwu Li
- School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Xing-Yang Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Li-Ping Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Zhuofeng Ke
- School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Bao-Hui Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| |
Collapse
|
116
|
Chanda R, Kar A, Das A, Chakraborty B, Jana U. Iron-catalyzed carboarylation of alkynes via activation of π-activated alcohols: rapid synthesis of substituted benzofused six-membered heterocycles. Org Biomol Chem 2021; 19:5155-5160. [PMID: 34037047 DOI: 10.1039/d1ob00488c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An Fe(OTf)3-catalysed carboarylation of alkynes is reported for the straightforward synthesis of densely substituted 1,2-dihydroquinolines from N-propargyl anilides and π-activated alcohols. The reaction provides a new method for the synthesis of highly substituted benzofused six-membered heterocycles by the formation of two carbon-carbon bonds and one ring in a single step. The power of the methodology was further extended to the synthesis of substituted chromene and thiochromene derivatives in high yields. In addition, substituted quinoline derivatives were also achieved in a single step in the presence of FeCl3 through detosylation/aromatisation. A number of control experiments have been performed and a plausible mechanism has also been proposed to explain the formation of the products.
Collapse
Affiliation(s)
- Rupsa Chanda
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Abhishek Kar
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Aniruddha Das
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Baitan Chakraborty
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Umasish Jana
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| |
Collapse
|
117
|
Umerani MJ, Yang H, Pratakshya P, Nowick JS, Gorodetsky AA. An aza-Diels–Alder route to quinoline-based unnatural amino acids and polypeptide surrogates. RSC Adv 2021. [DOI: 10.1039/d0ra04783j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The synthesis of quinoline-based unnatural amino acids and the subsequent preparation of polypeptide surrogates from these building blocks on solid support.
Collapse
Affiliation(s)
- M. J. Umerani
- Department of Materials Science and Engineering
- University of California, Irvine
- Irvine
- USA
| | - H. Yang
- Department of Chemistry
- University of California, Irvine
- Irvine
- USA
| | - P. Pratakshya
- Department of Chemistry
- University of California, Irvine
- Irvine
- USA
| | - J. S. Nowick
- Department of Chemistry
- University of California, Irvine
- Irvine
- USA
| | - A. A. Gorodetsky
- Department of Materials Science and Engineering
- University of California, Irvine
- Irvine
- USA
- Department of Chemistry
| |
Collapse
|
118
|
Yennamaneni DR, Amrutham V, Gajula KS, Banothu R, Boosa M, Nama N. An atom-economical addition of methyl azaarenes with aromatic aldehydes via benzylic C(sp 3)-H bond functionalization under solvent- and catalyst-free conditions. Beilstein J Org Chem 2020; 16:3093-3103. [PMID: 33425033 PMCID: PMC7770386 DOI: 10.3762/bjoc.16.259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/01/2020] [Indexed: 11/23/2022] Open
Abstract
A convenient practical approach for the synthesis of 2-(pyridin-2-yl)ethanols by direct benzylic addition of azaarenes and aldehydes under catalyst- and solvent-free conditions is reported. This reaction is metal-free, green, and was carried out in a facile operative environment without using any hazardous transition metal catalysts or any other coupling reagents. Different aromatic aldehydes and azaarenes were monitored, and the yields of the resulting products were moderate to excellent. We accomplished several azaarene derivatives under neat conditions through a highly atom-economical pathway. To evaluate the preparative potential of this process, gram-scale reactions were performed up to a 10 g scale.
Collapse
Affiliation(s)
- Divya Rohini Yennamaneni
- Catalysis and Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India.,Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Sector 19, Kamala Nehru Nagar, Ghaziabad, UP-201002, India
| | - Vasu Amrutham
- Catalysis and Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India.,Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Sector 19, Kamala Nehru Nagar, Ghaziabad, UP-201002, India
| | - Krishna Sai Gajula
- Catalysis and Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India.,Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Sector 19, Kamala Nehru Nagar, Ghaziabad, UP-201002, India
| | - Rammurthy Banothu
- Catalysis and Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India.,Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Sector 19, Kamala Nehru Nagar, Ghaziabad, UP-201002, India
| | - Murali Boosa
- Catalysis and Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India.,Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Sector 19, Kamala Nehru Nagar, Ghaziabad, UP-201002, India
| | - Narender Nama
- Catalysis and Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India.,Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Sector 19, Kamala Nehru Nagar, Ghaziabad, UP-201002, India
| |
Collapse
|
119
|
Teja C, Khan FRN. Radical Transformations towards the Synthesis of Quinoline: A Review. Chem Asian J 2020; 15:4153-4167. [PMID: 33135361 DOI: 10.1002/asia.202001156] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/25/2020] [Indexed: 12/21/2022]
Abstract
Quinoline is considered one of the most ubiquitous heterocycles due to its engaging biological activities and synthetic utility over organic transformations. Over the past few decades, numerous reports have been documented in the synthesis of quinolines. The classical methods including, Skraup, Friedlander, Doebner-von-Miller, Conrad-Limpach, Pfitzinger quinoline synthesis, and so forth, these are the well-known methods to construct principal quinoline scaffold with several advantages and limitations. Recently, radical insertion or catalyzed reactions have emerged as a powerful and efficient tool to construct heterocycles with high atom efficiency and step economy. In this concern, this minireview mainly focused on the developments of Quinoline synthesis via radical reactions. In addition, a brief description of the preparation procedure, reactivity, and mechanisms is also included, where as possible. Respectively, the synthesis of quinolines is classified and summarized based on its reactivity, so it will help the researchers to grab the information in this exploration area, as Quinolines are promising pharmacophores.
Collapse
Affiliation(s)
- Chitrala Teja
- Organic and Medicinal Chemistry Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| | - Fazlur Rahman Nawaz Khan
- Organic and Medicinal Chemistry Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| |
Collapse
|
120
|
Zhang X, Ma X, Qiu W, Awad J, Evans J, Zhang W. One‐Pot Mannich, Aza‐Wittig and Dehydrofluorinative Aromatization Reactions for Direct Synthesis of 2,3‐Disubstituted 4‐Aminoquinolines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xiaofeng Zhang
- Department of Chemistry University of Massachusetts Boston 100 Morrissey Boulevard Boston MA 02125 USA
- Department of Cancer Biology Dana-Farber Cancer Institute Department of Medicine Harvard Medical School Boston MA 02215 USA
| | - Xiaoming Ma
- School of Pharmacy Changzhou University Jiangsu 213164 People's Republic of China
| | - Weiqi Qiu
- Department of Chemistry University of Massachusetts Boston 100 Morrissey Boulevard Boston MA 02125 USA
| | - JohnMark Awad
- Department of Cancer Biology Dana-Farber Cancer Institute Department of Medicine Harvard Medical School Boston MA 02215 USA
| | - Jason Evans
- Department of Chemistry University of Massachusetts Boston 100 Morrissey Boulevard Boston MA 02125 USA
| | - Wei Zhang
- Department of Chemistry University of Massachusetts Boston 100 Morrissey Boulevard Boston MA 02125 USA
| |
Collapse
|
121
|
A review: Biologically active 3,4-heterocycle-fused coumarins. Eur J Med Chem 2020; 212:113034. [PMID: 33276991 DOI: 10.1016/j.ejmech.2020.113034] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/15/2020] [Accepted: 11/15/2020] [Indexed: 12/17/2022]
Abstract
The combination of heterocycles offers a new opportunity to create novel multicyclic compounds having improved biological activity. Coumarins are ubiquitous natural heterocycle widely adopted in the design of various biologically active compounds. Fusing different heterocycles with coumarin ring is one of the interesting approaches to generating novel hybrid molecules having highlighted biological activities. In the efforts to develop heterocyclic-fused coumarins, a wide range of 3,4-heterocycle-fused coumarins have been introduced bearing outstanding biological activity. The effect of heterocycles annulation at 3,4-positions of coumarin ring on the biological activity of the target structures were discussed. This review focuses on the important progress of 3,4-heterocycle-fused coumarins providing better insight for medicinal chemists on the design and preparation of biologically active heterocycle-fused coumarins with a significant therapeutic effect in the future.
Collapse
|
122
|
Sruthi PR, Sankar PU, Saranya TV, Anas S. Facile Synthesis of Dihydroquinolines via Palladium Catalyzed Sequential Amination and Cyclisation of Morita-Baylis-Hillman Alcohols. ChemistrySelect 2020; 5:13598-13602. [PMID: 33363255 PMCID: PMC7753362 DOI: 10.1002/slct.202003413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/05/2020] [Indexed: 11/11/2022]
Abstract
Quinolines and its derivatives are significant class of heterocyclic compounds which are identified as the key component in many natural products and biologically important molecules. We describe herein a facile method for the synthesis of quinoline derivatives from Morita-Baylis-Hillman (MBH) Alcohols via Palladium Catalyzed intramolecular aryl amination followed by allylic amination pathway. The reaction between a series of MBH alcohols and amino compounds (Tosyl, aliphatic and aromatic amines) under optimized reaction conditions with Pd(PPh3)2Cl2/DPPP catalyst system, afforded the corresponding 1,2-dihydroquinolines upto 95 % isolated yield.
Collapse
Affiliation(s)
| | - P. Uma Sankar
- Department of ChemistryAmrithaviswavidyapeetKollamKeralaIndia-690525
| | | | - Saithalavi Anas
- School of Chemical SciencesMahatma Gandhi UniversityKottayamKeralaIndia-686560
- Institute for Integrated Programmes & Research in Basic Sciences (IIRBS)Mahatma Gandhi UniversityKottayamKeralaIndia-686560
| |
Collapse
|
123
|
Rassias G, Leonardi S, Rigopoulou D, Vachlioti E, Afratis K, Piperigkou Z, Koutsakis C, Karamanos NK, Gavras H, Papaioannou D. Potent antiproliferative activity of bradykinin B2 receptor selective agonist FR-190997 and analogue structures thereof: A paradox resolved? Eur J Med Chem 2020; 210:112948. [PMID: 33139111 DOI: 10.1016/j.ejmech.2020.112948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/24/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022]
Abstract
Βradykinin stimulation of B2 receptor is known to activate the oncogenic ERK pathway and overexpression of bradykinin receptors B1 and B2 has been reported to occur in glioma, colorectal and cervical cancers. B1R and B2R antagonists have been shown to reverse tumor proliferation and invasion. Paradoxically, B1R and B2R agonism has also been reported to elicit antiproliferative benefits. In order to complement the data accumulated to date with the natural substrate bradykinin and peptidic B2R antagonists, we decided to examine for the first time the response elicited by B2R stimulation in breast cancer lines with a non-peptidic small molecule B2R agonist. We synthesized and assessed the highly selective and potent B2R partial agonist FR-190997 in MCF-7 and MDA-MBA-231 breast cancer lines and found it possessed significant antiproliferative activity (IC50 2.14 and 0.08 μΜ, respectively). The modular nature of FR-190997 allowed us to conduct a focused SAR study and discover compound 10 which exhibits subnanomolar antiproliferative activity (IC 50 0.06 nΜ) in the TNBC MDA-MBA-231 cell line. This performance surpasses, in most cases by several orders of magnitude, those of established anticancer agents and FDA-approved breast cancer drugs. In line with the established literature we suggest that this remarkable activity precipitates from a dual mode of action involving agonist-induced receptor internalization/degradation combined with sequestration of functional intracellular B2 receptors and inhibition of the associated endosomal signaling. The latter mode may be realized by appropriate ligands regardless of B2R agonist/antagonist designation which only relates to membrane residing GCPRs. Under this prism the controversy over the antiproliferative effects of B2 agonists and antagonists is potentially neutralized.
Collapse
Affiliation(s)
- Gerasimos Rassias
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, 26504, Patras, Greece.
| | - Sofia Leonardi
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, 26504, Patras, Greece
| | - Dionisia Rigopoulou
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, 26504, Patras, Greece
| | - Eleanna Vachlioti
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, 26504, Patras, Greece
| | - Konstantinos Afratis
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, 26504, Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504, Patras, Greece; Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Christos Koutsakis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504, Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504, Patras, Greece; Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Haralambos Gavras
- Hypertension and Atherosclerosis Section, Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Dionissios Papaioannou
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, 26504, Patras, Greece.
| |
Collapse
|
124
|
Hu J, Ye X, Hao S, Zhao Q, Zhao M, Wei Y, Wu Z, Wang N, Ji X. Amidation Reaction of Quinoline‐3‐carboxylic Acids with Tetraalkylthiuram Disulfides under Simple Conditions: A facile Synthesis of Quinoline‐3‐carboxamides. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jingyan Hu
- College of Tobacco Science, Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Xiefeng Ye
- College of Tobacco Science, Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Shuai Hao
- College of Tobacco Science, Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Qianrui Zhao
- College of Tobacco Science, Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Mingqin Zhao
- College of Tobacco Science, Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Yuewei Wei
- College of Tobacco Science, Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Zhiyong Wu
- College of Tobacco Science, Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Na Wang
- Technology Center China Tobacco Hubei Industrial Co., Ltd. 1355, Jinshan Road Wuhan 430040 P. R. China
| | - Xiaoming Ji
- College of Tobacco Science, Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| |
Collapse
|
125
|
Teja C, Nawaz Khan F. Recent Advances in the Synthesis of Thienoquinolines (Quinoline‐fused heterocycle). ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Chitrala Teja
- Organic and Medicinal Chemistry Research Laboratory School of Advanced Sciences Vellore Institute of Technology Vellore 632 014 Tamil Nadu India
| | - Fazlur‐Rahman Nawaz Khan
- Organic and Medicinal Chemistry Research Laboratory School of Advanced Sciences Vellore Institute of Technology Vellore 632 014 Tamil Nadu India
| |
Collapse
|
126
|
Mathi GR, Kweon B, Moon Y, Jeong Y, Hong S. Regioselective C−H Functionalization of Heteroarene
N
‐Oxides Enabled by a Traceless Nucleophile. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gangadhar Rao Mathi
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Byeongseok Kweon
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Yonghoon Moon
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Yujin Jeong
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| |
Collapse
|
127
|
Mathi GR, Kweon B, Moon Y, Jeong Y, Hong S. Regioselective C-H Functionalization of Heteroarene N-Oxides Enabled by a Traceless Nucleophile. Angew Chem Int Ed Engl 2020; 59:22675-22683. [PMID: 32888227 DOI: 10.1002/anie.202010597] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/24/2020] [Indexed: 11/05/2022]
Abstract
Although N-alkenoxyheteroarenium salts have been widely used as umpoled synthons with nucleophilic (hetero)arenes, the use of electron-poor heteroarenes has remained unexplored. To overcome the inherent electron deficiency of quinolinium salts, a traceless nucleophile-triggered strategy was designed, wherein the quinolinium segment is converted into a dearomatized intermediate, thereby allowing simultaneous C8-functionalization of quinolines at room temperature. Experimental and computational studies support the traceless operation of a nucleophile, which enables the previously inaccessible transformation of N-alkenoxyheteroarenium salts. Remarkably, the generality of this strategy has been further demonstrated by broad applications in the regioselective C-H functionalization of other electron-deficient heteroarenes such as phenanthridine, isoquinoline, and pyridine N-oxides, offering a practical tool for the late-stage functionalization of complex biorelevant molecules.
Collapse
Affiliation(s)
- Gangadhar Rao Mathi
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Byeongseok Kweon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Yonghoon Moon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Yujin Jeong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| |
Collapse
|
128
|
Yang QY, Cao QQ, Zhang YL, Xu XF, Deng CX, Kumar R, Zhu XM, Wang XJ, Liang H, Chen ZF. Synthesis, structural characterization and antitumor activity of six rare earth metal complexes with 8-hydroxyquinoline derivatives. J Inorg Biochem 2020; 211:111175. [DOI: 10.1016/j.jinorgbio.2020.111175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023]
|
129
|
Mao Y, Soni K, Sangani C, Yao Y. An Overview of Privileged Scaffold: Quinolines and Isoquinolines in Medicinal Chemistry as Anticancer Agents. Curr Top Med Chem 2020; 20:2599-2633. [PMID: 32942976 DOI: 10.2174/1568026620999200917154225] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/01/2020] [Accepted: 06/11/2020] [Indexed: 12/31/2022]
Abstract
Cancer is one of the most difficult diseases and causes of death for many decades. Many pieces of research are continuously going on to get a solution for cancer. Quinoline and isoquinoline derivatives have shown their possibilities to work as an antitumor agent in anticancer treatment. The members of this privileged scaffold quinoline and isoquinoline have shown their controlling impacts on cancer treatment through various modes. In particular, this review suggests the current scenario of quinoline and isoquinoline derivatives as antitumor agents and refine the path of these derivatives to find and develop new drugs against an evil known as cancer.
Collapse
Affiliation(s)
- Yanna Mao
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Children's Hospital,
Zhengzhou University, Zhengzhou 450018, China
| | - Kunjal Soni
- Shri Maneklal M. Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya University, Gandhinagar, Gujarat 362024, India
| | - Chetan Sangani
- Shri Maneklal M. Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya University, Gandhinagar, Gujarat 362024, India
| | - Yongfang Yao
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Children's Hospital,
Zhengzhou University, Zhengzhou 450018, China,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
130
|
Dantas JA, Echemendía R, Santos MS, Paixão MW, Ferreira MAB, Corrêa AG. Green Approach for Visible-Light-Induced Direct Functionalization of 2-Methylquinolines. J Org Chem 2020; 85:11663-11678. [PMID: 32852210 DOI: 10.1021/acs.joc.0c01203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A transition metal- and oxidant-free visible light-photoinduced protocol for direct functionalization of 2-methylquinolines has been developed. This protocol enabled the C-H functionalization of substituted 2-methylquinolines with diacetyl or ethyl pyruvate, under environmentally friendly conditions. A mechanistic investigation based on density functional theory (DFT) calculations provided details about the origins of reactivity and selectivity.
Collapse
Affiliation(s)
- Juliana A Dantas
- Centre of Excellence for Research in Sustainable Chemistry, Chemistry Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Radell Echemendía
- Centre of Excellence for Research in Sustainable Chemistry, Chemistry Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Marilia S Santos
- Centre of Excellence for Research in Sustainable Chemistry, Chemistry Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Márcio W Paixão
- Centre of Excellence for Research in Sustainable Chemistry, Chemistry Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Marco Antonio B Ferreira
- Centre of Excellence for Research in Sustainable Chemistry, Chemistry Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Arlene G Corrêa
- Centre of Excellence for Research in Sustainable Chemistry, Chemistry Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| |
Collapse
|
131
|
Kumar A, Prajapati R, Kant R, Narender T. One‐Pot Synthesis of Highly Substituted Quinolines in Aqueous Medium and Its Application for the Synthesis of Azalignans. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amrendra Kumar
- Medicinal and Process Chemistry Division CSIR‐Central Drug Research Institute ‐226031 Lucknow India
| | - Ramanand Prajapati
- Medicinal and Process Chemistry Division CSIR‐Central Drug Research Institute ‐226031 Lucknow India
| | - Ruchir Kant
- Molecular and Structural Biology Division CSIR‐Central Drug Research Institute ‐226031 Lucknow India
| | - Tadigoppula Narender
- Medicinal and Process Chemistry Division CSIR‐Central Drug Research Institute ‐226031 Lucknow India
| |
Collapse
|
132
|
Özcan E, Ökten S, Eren T. Decision making for promising quinoline-based anticancer agents through combined methodology. J Biochem Mol Toxicol 2020; 34:e22522. [PMID: 32407595 DOI: 10.1002/jbt.22522] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/16/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
During the development of effective drugs for the treatment of cancer, one of the most important tasks is to identify effective drug candidates having maximum antiproliferation and minimum side effects. This paper considers the problem of selecting the most promising anticancer agents, showing inhibition at low IC50 concentration and low releasing lactate dehydrogenase percentage (cytotoxicity). Recently, we prepared quinoline analogs bearing different functional groups and determined their anticancer potential against the HeLa, C6, and HT29 cancer cell lines using different anticancer assays. Experimentally, seven quinoline derivatives consisting of different substituents were determined as promising anticancer agents. We propose a multicriteria recommendation method to identify the most promising anticancer agents against all tested cell lines with an accurate prediction algorithm according to the available input data. A multicriteria decision-making methodology (MCDM) was used for the solution of the relevant problem in this study. Both the experimental results and MCDM method indicated that 5,7-dibromo-8-hydroxyquinoline (2) and 6,8-dibromo-1,2,3,4-tetrahydroquinoline (6) are the most promising anticancer agents against the HeLa, HT29, and C6 cell lines.
Collapse
Affiliation(s)
- Evrencan Özcan
- Department of Industrial Engineering, Faculty of Engineering, Kırıkkale University, Yahşihan, Kırıkkale, Turkey
| | - Salih Ökten
- Division of Science Education, Department of Mathematics and Science Education, Faculty of Education, Kırıkkale University, Yahşihan, Kırıkkale, Turkey
| | - Tamer Eren
- Department of Industrial Engineering, Faculty of Engineering, Kırıkkale University, Yahşihan, Kırıkkale, Turkey
| |
Collapse
|
133
|
Ma Z, Li J, Lin K, Ramachandran M, Li M, Li Y. Heterocyclic N-Oxides as Small-Molecule Fluorogenic Scaffolds: Rational Design and Applications of Their "On-Off" Fluorescence. Anal Chem 2020; 92:12282-12289. [PMID: 32790290 DOI: 10.1021/acs.analchem.0c01918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Small-molecule fluorescent probes are powerful tools in chemical analysis and biological imaging. However, as the foundation of probe design, the meager existing set of core fluorophores have largely limited the diversity of current probes. Consequently, there is a high demand to discover fluorophores with new scaffolds and optimize the existing fluorophores. Here, we put forward a facile strategy of heterocyclic N-oxidation to address these challenges. The introduced N-O bond reconstructs the electron "push-pull" system of heterocyclic scaffolds and dramatically improves their photophysical properties by red-shifting the spectra and increasing the Stokes shift. Meanwhile, the heterocyclic N-O bond also enables a function of the fluorescence switch. It can turn on the fluorescence of pyridine and increase the fluorescence of quinoline and, conversely, decrease the fluorescence of acridines and resorufin. As a further practical application, we successfully utilized the quinoline N-oxide scaffold to design fluorogenic probes for H2S (8) and formaldehyde (FA, 9). Given their ultraviolet-visible spectra, both probes with high selectivity and sensitivity could be conveniently used in the naked eye detection of target analytes under illumination with a portable UV lamp. More interestingly, the probes could be effectively used in the imaging of nuclear and cytoplasmic H2S or nuclear and perinuclear FA. This potentially overcomes the weaknesses of existing H2S or FA probes that can only work in the cytoplasm. These interesting findings demonstrate the ability to rapidly expand and optimize the existing fluorophore library through heterocyclic N-oxidation.
Collapse
Affiliation(s)
- Zhao Ma
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, California 95817, United States.,Department of Medicinal Chemistry, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jin Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, California 95817, United States
| | - Kai Lin
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, California 95817, United States
| | - Mythili Ramachandran
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, California 95817, United States
| | - Minyong Li
- Department of Medicinal Chemistry, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, California 95817, United States
| |
Collapse
|
134
|
Mohamed MFA, Abuo-Rahma GEDA. Molecular targets and anticancer activity of quinoline-chalcone hybrids: literature review. RSC Adv 2020; 10:31139-31155. [PMID: 35520674 PMCID: PMC9056499 DOI: 10.1039/d0ra05594h] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/30/2020] [Indexed: 01/01/2023] Open
Abstract
α,β-Unsaturated chalcone moieties and quinoline scaffolds play an important role in medicinal chemistry, especially in the identification and development of potential anticancer agents. The multi-target approach or hybridization is considered as a promising strategy in drug design and discovery. Hybridization may improve the affinity and potency while simultaneously decreasing the resistance and/or side effects. The conjugation of quinolines with chalcones has been a promising approach to the identification of potential anticancer agents. Most of these hybrids showed anticancer activities through the inhibition of tubulin polymerization, different kinases, topoisomerases, or by affecting DNA cleavage activity. Accordingly, this class of compounds can be classified based on their molecular modes of action. In this article, the quinolone-chalcone hybrids with potential anticancer activity have been reviewed. This class of compounds might be helpful for the design, discovery and development of new and potential multi-target anticancer agents or drugs.
Collapse
Affiliation(s)
- Mamdouh F A Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University 82524 Sohag Egypt (+20)-1018384461
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University Minia 61519 Egypt +201003069431
| |
Collapse
|
135
|
Muzalevskiy VM, Belyaeva KV, Trofimov BA, Nenajdenko VG. Organometal-Free Arylation and Arylation/Trifluoroacetylation of Quinolines by Their Reaction with CF 3-ynones and Base-Induced Rearrangement. J Org Chem 2020; 85:9993-10006. [PMID: 32631065 DOI: 10.1021/acs.joc.0c01277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reaction of quinolines with CF3-ynones resulted in the formation of 1,3-oxazinoquinolines. Subsequent treatment of the reaction mixture with a base initiated deep structural transformation of primary products. Both steps proceed in very high yield. As a result, unusual rearrangement of 1,3-oxazinoquinolines to form either 2-arylquinolines or 2-aryl-3-trifluoroacetylquinolines was discovered. The decisive role of the base in the reaction direction was shown. Using these reactions, highly efficient pathways to 2-arylquinolines and 2-aryl-3-trifluoroacetylquinolines were elaborated to provide the corresponding compounds in high yields using a simple one-pot procedure. The possible mechanism of rearrangement is discussed.
Collapse
Affiliation(s)
- Vasiliy M Muzalevskiy
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991 Russia
| | - Kseniya V Belyaeva
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Street, Irkutsk 664033, Russia
| | - Boris A Trofimov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Street, Irkutsk 664033, Russia
| | - Valentine G Nenajdenko
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991 Russia
| |
Collapse
|
136
|
da Rosa Monte Machado G, Diedrich D, Ruaro TC, Zimmer AR, Lettieri Teixeira M, de Oliveira LF, Jean M, Van de Weghe P, de Andrade SF, Baggio Gnoatto SC, Fuentefria AM. Quinolines derivatives as promising new antifungal candidates for the treatment of candidiasis and dermatophytosis. Braz J Microbiol 2020; 51:1691-1701. [PMID: 32737869 PMCID: PMC7394049 DOI: 10.1007/s42770-020-00348-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022] Open
Abstract
Fungal infections have emerged as a current serious global public health problem. The main problem involving these infections is the expansion of multidrug resistance. Therefore, the prospection of new compounds with efficacy antifungal becomes necessary. Thus, this study evaluated the antifungal profile and toxicological parameters of quinolines derivatives against Candida spp. and dermatophyte strains. As a result, a selective anti-dermatophytic action was demonstrated by compound 5 (geometric means (GM = 19.14 μg ml−1)). However, compounds 2 (GM = 50 μg ml−1) and 3 (GM = 47.19 μg ml−1) have presented only anti-Candida action. Compounds 3 and 5 did not present cytotoxic action. Compound 5 did not produce dermal and mucosal toxicity. In addition, this compound showed the absence of genotoxic potential, suggesting safety for topical and systemic use. Quinolines demonstrated a potent anti-dermatophytic and anti-yeast action. Moreover, compound 5 presented an excellent toxicological profile, acting as a strong candidate for the development of a new effective and safe compound against dermatophytosis of difficult treatment.
Collapse
Affiliation(s)
- Gabriella da Rosa Monte Machado
- Postgraduate Program in Agricultural Microbiology and Environment, Federal University of Rio Grande do Sul, Sarmento Leite n° 500, Farroupilha, Porto Alegre, RS, 90050-170, Brazil. .,Laboratory of Applied Mycology - Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| | - Denise Diedrich
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Avenue Ipiranga, n° 2752 - Azenha, Porto Alegre, RS, 90610-000, Brazil
| | - Thaís Carine Ruaro
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Avenue Ipiranga, n° 2752 - Azenha, Porto Alegre, RS, 90610-000, Brazil
| | - Aline Rigon Zimmer
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Avenue Ipiranga, n° 2752 - Azenha, Porto Alegre, RS, 90610-000, Brazil
| | - Mário Lettieri Teixeira
- Pharmacology Laboratory, Federal Catarinense Institute, Highway SC 283 - Fragosos, Concórdia, SC, 89703-720, Brazil
| | - Luís Flávio de Oliveira
- Cell Toxicology Research Laboratory, Federal University of Pampa, BR 472 - Km 585, Uruguaiana, RS, 97501-970, Brazil
| | - Mickael Jean
- Natural Products Syntheses and Medicinal Chemistry Laboratory, Rennes University 1, Street du Thabor, 35000, Rennes, France
| | - Pierre Van de Weghe
- Natural Products Syntheses and Medicinal Chemistry Laboratory, Rennes University 1, Street du Thabor, 35000, Rennes, France
| | - Saulo Fernandes de Andrade
- Postgraduate Program in Agricultural Microbiology and Environment, Federal University of Rio Grande do Sul, Sarmento Leite n° 500, Farroupilha, Porto Alegre, RS, 90050-170, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Avenue Ipiranga, n° 2752 - Azenha, Porto Alegre, RS, 90610-000, Brazil
| | - Simone Cristina Baggio Gnoatto
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Avenue Ipiranga, n° 2752 - Azenha, Porto Alegre, RS, 90610-000, Brazil
| | - Alexandre Meneghello Fuentefria
- Postgraduate Program in Agricultural Microbiology and Environment, Federal University of Rio Grande do Sul, Sarmento Leite n° 500, Farroupilha, Porto Alegre, RS, 90050-170, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Avenue Ipiranga, n° 2752 - Azenha, Porto Alegre, RS, 90610-000, Brazil
| |
Collapse
|
137
|
Chinh PT, Tham PT, Van Tuyen N, Quynh DH, Van DT, Bang DN, Kien VT, Giang BD, Thuy NT, Nhan BT, Giang LT. Synthesis of several 2-carbaldehyde derivatives of quinoline and 1,4-dihydroquinoline. VIETNAM JOURNAL OF CHEMISTRY 2020. [DOI: 10.1002/vjch.2019000166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pham The Chinh
- Thai Nguyen University of Sciences, Tan Thinh; Thai Nguyen 24000 Viet Nam
| | - Pham Thi Tham
- Hanoi University of Industry; 219, Cau Dien, Bac Tu Liem Hanoi 10000 Viet Nam
| | - Nguyen Van Tuyen
- Institute of Chemistry - VAST; 18, Hoang Quoc Viet, Cau Giay Hanoi 10000 Viet Nam
| | - Duong Huong Quynh
- Institute of Chemistry - VAST; 18, Hoang Quoc Viet, Cau Giay Hanoi 10000 Viet Nam
| | - Dinh Thuy Van
- Thai Nguyen University of Sciences, Tan Thinh; Thai Nguyen 24000 Viet Nam
- Thai Nguyen University of Education; 20, Luong Ngoc Quyen, Thai Nguyen 24000 Viet Nam
| | - Duong Nghia Bang
- Thai Nguyen University of Sciences, Tan Thinh; Thai Nguyen 24000 Viet Nam
| | - Vu Tuan Kien
- Thai Nguyen University of Sciences, Tan Thinh; Thai Nguyen 24000 Viet Nam
| | - Bui Duong Giang
- Thai Nguyen University of Sciences, Tan Thinh; Thai Nguyen 24000 Viet Nam
| | - Nguyen Thi Thuy
- Thai Nguyen University of Sciences, Tan Thinh; Thai Nguyen 24000 Viet Nam
| | - Bui Thanh Nhan
- Thai Nguyen University of Sciences, Tan Thinh; Thai Nguyen 24000 Viet Nam
- Chu Van An High School, Dong Kinh; Lang Son 25000 Viet Nam
| | - Luu Truong Giang
- Thai Nguyen University of Sciences, Tan Thinh; Thai Nguyen 24000 Viet Nam
- Chu Van An High School, Dong Kinh; Lang Son 25000 Viet Nam
| |
Collapse
|
138
|
|
139
|
Sharma R. Data science-driven analyses of drugs inducing hypertension as an adverse effect. Mol Divers 2020; 25:801-810. [PMID: 32415493 DOI: 10.1007/s11030-020-10059-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/21/2020] [Indexed: 12/15/2022]
Abstract
The utilization of approved medication is a requisite to combat certain diseases for health; however, the undesirable adverse effects (AEs) due to medication are generally unavoidable. Hypertension is one of such AEs resulting from approved medication in which blood pressure in the arteries gets elevated and is a risk factor for several diseases including heart and kidney failure. HTs are the approved drugs that can cause hypertension as an AE. Here, the goal of the study is to investigate the structural and functional diversities of HTs. In our quest to unravel the structural parameters of the HTs, a systematic analysis of the HTs having a different number and type of ring systems was conducted. The cellular component, molecular function and biological processes adopted by the gene products were analyzed. Moreover, our systematically done analysis suggests that all the target families are active in a common pathway, that is, nerve transmission. A comparison of the selected structural and functional aspect of HTs with anti-hypertensives suggests that HTs follow certain structural and functional features in spite of many possibilities. Our study provides a promising methodology that considers the influence of structural diversity of AE causing agents on a functional perspective for precursory clinical decision making. This could be extended to explore the structural and functional trends that are adopted by agents causing certain diseases or AEs.
Collapse
Affiliation(s)
- Reetu Sharma
- CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, India.
| |
Collapse
|
140
|
Osorio M, Martinez E, Naranjo T, Castro C. Recent Advances in Polymer Nanomaterials for Drug Delivery of Adjuvants in Colorectal Cancer Treatment: A Scientific-Technological Analysis and Review. Molecules 2020; 25:E2270. [PMID: 32408538 PMCID: PMC7288015 DOI: 10.3390/molecules25102270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is the type with the second highest morbidity. Recently, a great number of bioactive compounds and encapsulation techniques have been developed. Thus, this paper aims to review the drug delivery strategies for chemotherapy adjuvant treatments for CRC, including an initial scientific-technological analysis of the papers and patents related to cancer, CRC, and adjuvant treatments. For 2018, a total of 167,366 cancer-related papers and 306,240 patents were found. Adjuvant treatments represented 39.3% of the total CRC patents, indicating the importance of adjuvants in the prognosis of patients. Chemotherapy adjuvants can be divided into two groups, natural and synthetic (5-fluorouracil and derivatives). Both groups can be encapsulated using polymers. Polymer-based drug delivery systems can be classified according to polymer nature. From those, anionic polymers have garnered the most attention, because they are pH responsive. The use of polymers tailors the desorption profile, improving drug bioavailability and enhancing the local treatment of CRC via oral administration. Finally, it can be concluded that antioxidants are emerging compounds that can complement today's chemotherapy treatments. In the long term, encapsulated antioxidants will replace synthetic drugs and will play an important role in curing CRC.
Collapse
Affiliation(s)
- Marlon Osorio
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín 050031, Colombia; (M.O.); (E.M.)
| | - Estefanía Martinez
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín 050031, Colombia; (M.O.); (E.M.)
| | - Tonny Naranjo
- School of Health Sciences, Universidad Pontificia Bolivariana, Calle 78 B # 72 A-109, Medellín 050034, Colombia;
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas, Carrera 72 A # 78 B-141, Medellín 050034, Colombia
| | - Cristina Castro
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín 050031, Colombia; (M.O.); (E.M.)
| |
Collapse
|
141
|
Synthesis of Derivatives of the 2-Arylquinoline Alkaloid Dubamine and their Cytotoxicity. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-03074-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
142
|
Boualia I, Debache A, Boulcina R, Roisnel T, Berrée F, Vidal J, Carboni B. Synthesis of novel 3-(quinazol-2-yl)-quinolines via SNAr and aluminum chloride-induced (hetero) arylation reactions and biological evaluation as proteasome inhibitors. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
143
|
Qi L, Chen J, Zhang B, Nie R, Qi Z, Kobayashi T, Bao Z, Yang Q, Ren Q, Sun Q, Zhang Z, Huang W. Deciphering a Reaction Network for the Switchable Production of Tetrahydroquinoline or Quinoline with MOF-Supported Pd Tandem Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00899] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Long Qi
- U.S. DOE Ames Laboratory, Iowa State University, Ames, Iowa 50010, United States
| | - Jingwen Chen
- Department of Chemistry, Iowa State University, Ames, Iowa 50010, United States
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Biying Zhang
- Department of Chemistry, Iowa State University, Ames, Iowa 50010, United States
| | - Renfeng Nie
- Department of Chemistry, Iowa State University, Ames, Iowa 50010, United States
| | - Zhiyuan Qi
- Department of Chemistry, Iowa State University, Ames, Iowa 50010, United States
| | - Takeshi Kobayashi
- U.S. DOE Ames Laboratory, Iowa State University, Ames, Iowa 50010, United States
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qi Sun
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wenyu Huang
- U.S. DOE Ames Laboratory, Iowa State University, Ames, Iowa 50010, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50010, United States
| |
Collapse
|
144
|
Li Y, Tang B, Dong S, Gao W, Jiang W, Chen Y. Solvent‐Free Synthesis and In Vitro Antitumor Activity of a New Class of (
Z
)‐3‐Arylidene‐1
H
‐pyrano[3,4‐
b
]quinolin‐4(3
H
)‐ones. ChemistrySelect 2020. [DOI: 10.1002/slct.201904434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yang Li
- Institute of Superfine ChemicalsBohai University, 19 Keji Rd. Jinzhou City 121000 P.R. China
| | - Bingyue Tang
- Institute of Superfine ChemicalsBohai University, 19 Keji Rd. Jinzhou City 121000 P.R. China
| | - Shiyu Dong
- Institute of Superfine ChemicalsBohai University, 19 Keji Rd. Jinzhou City 121000 P.R. China
| | - Wentao Gao
- Institute of Superfine ChemicalsBohai University, 19 Keji Rd. Jinzhou City 121000 P.R. China
| | - Wenting Jiang
- College of Life ScienceYan'an University, 580 Shengdi Rd. Yan'an City 716000 P. R. China
| | - Yu Chen
- School of Life Science and BiopharmaceuticsShenyang Pharmaceutical University, 103 Wenhua Rd. Shenyang City 110866 P. R. China
| |
Collapse
|
145
|
Elʼchishcheva NV, Dmitriev MV, Konovalova VV. Functionalization of the Methyl C(sp3)–H Bond of 2,3-Dimethylquinoxaline with
5-Arylfuran-2,3-diones. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020030069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
146
|
Li B, Zhu F, He F, Huang Q, Liu X, Wu T, Zhao T, Qiu Y, Wu Z, Xue Y, Fang M. Synthesis and biological evaluations of N′-substituted methylene-4-(quinoline-4-amino) benzoylhydrazides as potential anti-hepatoma agents. Bioorg Chem 2020; 96:103592. [DOI: 10.1016/j.bioorg.2020.103592] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/17/2022]
|
147
|
Zhu S, Shi K, Zhu H, Jia ZK, Xia XF, Wang D, Zou LH. Copper-Catalyzed Annulation or Homocoupling of Sulfoxonium Ylides: Synthesis of 2,3-Diaroylquinolines or α,α,β-Tricarbonyl Sulfoxonium Ylides. Org Lett 2020; 22:1504-1509. [PMID: 32043889 DOI: 10.1021/acs.orglett.0c00085] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An unprecedented copper-catalyzed reaction of sulfoxonium ylides and anthranils is reported that enables an easy access to 2,3-diaroylquinolines through a [4+1+1] annulation. Copper-catalyzed homocoupling of sulfoxonium ylides provided α,α,β-tricarbonyl sulfoxonium ylides, which provides a strategy to extend the carbon chain through C-C bond formation. The utility of the products as well as the mechanistic details of the process are presented.
Collapse
Affiliation(s)
- Shuai Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences , Jiangnan University . Lihu Avenue 1800 , Wuxi 214122 , Jiangsu Province , P.R. China
| | - Kai Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences , Jiangnan University . Lihu Avenue 1800 , Wuxi 214122 , Jiangsu Province , P.R. China
| | - Hao Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences , Jiangnan University . Lihu Avenue 1800 , Wuxi 214122 , Jiangsu Province , P.R. China
| | - Zhe-Kang Jia
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences , Jiangnan University . Lihu Avenue 1800 , Wuxi 214122 , Jiangsu Province , P.R. China
| | - Xiao-Feng Xia
- School of Chemical and Material Engineering , Jiangnan University , Wuxi 214122 , Jiangsu Province , P.R. China
| | - Dawei Wang
- School of Chemical and Material Engineering , Jiangnan University , Wuxi 214122 , Jiangsu Province , P.R. China
| | - Liang-Hua Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences , Jiangnan University . Lihu Avenue 1800 , Wuxi 214122 , Jiangsu Province , P.R. China
| |
Collapse
|
148
|
Musiol R. Styrylquinoline – A Versatile Scaffold in Medicinal Chemistry. Med Chem 2020; 16:141-154. [PMID: 31161997 DOI: 10.2174/1573406415666190603103012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 03/08/2019] [Accepted: 05/03/2019] [Indexed: 11/22/2022]
Abstract
Background: :
Styrylquinolines are characteristic fully aromatic compounds with flat,
rather lipophilic structures. The first reports on their synthesis and biological activity were published
roughly a century ago. However, their low selectivity, unfavorable toxicity and problems
with their mechanism of action significantly hampered their development. As a result, they have
been abandoned for most of the time since they were discovered.
Objective: :
Their renaissance was observed by the antiretroviral activity of several styrylquinoline
derivatives that have been reported to be HIV integrase inhibitors. Subsequently, other activities
such as their antifungal and anticancer abilities have also been revisited.
Methods:
In the present review, the spectrum of the activity of styrylquinolines and their use in
drug design is presented and analyzed.
Results:
New properties and applications that were reported recently have re-established
styrylquinolines within medicinal and material chemistry. The considerable increase in the number
of published papers regarding their activity spectrum will ensure further discoveries in the field.
Conclusions:
Styrylquinolines have earned a much stronger position in medicinal chemistry due to
the discovery of their new activities, profound mechanisms of action and as drug candidates in
clinical trials.
Collapse
Affiliation(s)
- Robert Musiol
- Institute of Chemistry, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500, Chorzow, Poland
| |
Collapse
|
149
|
Bilavendran JD, Manikandan A, Thangarasu P, Sivakumar K. Synthesis and biological activities of nitro‐hydroxy‐phenylquinolines; validation of antibiotics effect over DNA gyrase inhibition and antimicrobial activity. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- J D. Bilavendran
- Research and Development CentreBharathiar University Coimbatore India
| | - Alagumuthu Manikandan
- Department of BiotechnologySchool of Bio‐Sciences and Technology, VIT University Vellore India
| | | | - K Sivakumar
- Department of ChemistryAdhiyamaan College of Engineering India
| |
Collapse
|
150
|
Spurlin S, Blocker M, LoBue J, Wu J, Padgett C, Shaikh A. Regioselective electrolytic 5,8-difluorination of quinolines. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|