101
|
Ghitza UE. ASPIRE Model for Treating Cannabis and Other Substance Use Disorders: A Novel Personalized-Medicine Framework. Front Psychiatry 2014; 5:180. [PMID: 25538635 PMCID: PMC4258994 DOI: 10.3389/fpsyt.2014.00180] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 11/25/2014] [Indexed: 01/23/2023] Open
Affiliation(s)
- Udi E Ghitza
- Center for the Clinical Trials Network, National Institute on Drug Abuse, National Institutes of Health , Bethesda, MD , USA
| |
Collapse
|
102
|
Blum K, Oscar-Berman M, Badgaiyan R, Braverman ER, Gold MS. Hypothesizing Darkness Induced Alcohol Intake Linked to Dopaminergic Regulation of Brain Function. ACTA ACUST UNITED AC 2014; 5:282-288. [PMID: 25009759 DOI: 10.4236/psych.2014.54038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Understanding the role of neurotransmission in the prefrontal cortex and mesolimbic brain regions has become the subject of intensive neuroscience research worldwide. In the 1970s, our group provided evidence that rats exposed to darkness significantly augmented their alcohol intake. At that time, we proposed that melatonin was the culprit. At around the same time, our laboratory, amongst a few others, proposed that dopamine-adducts with acetaldehyde to induce alcohol intake both in rodents and in humans. While the work in these areas has declined considerably over the years, more recent scientifically sound studies continue to show the importance of these earlier controversial ideas involving alcohol abuse and alcoholism. A review of the literature has provided impetus to systematically access the newer genetic and molecular neurobiological findings relevant to the physiological and psychological motives for high alcohol consumption in animals and humans alike. Thus, we hypothesize that darkness-induced alcohol intake is linked not only to serotonergic-melatonin mechanisms, but also to dopaminergic regulation of brain mesolimbic pathways involving neuronal expression switching in response to long photoperiods affecting gene expression.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida, College of Medicine , Gainesville, Florida, USA ; Department of Addiction Research & Therapy, Malibu Beach Recovery Center, Malibu Beach, California, USA. ; Department of Psychiatry & Human Integrated Services Unit, University of Vermont Center for Clinical & Translational Science, College of Medicine, Burlington, Vermont, USA ; Department of Clinical Neurology, Path Foundation, NY, New York, New York, USA ; Department of Clinical Neurology, Path Foundation, NY, New York, New York, USA ; Department of Personalized Medicine, IGENE, LLC. Austin, Texas, USA ; Dominion Diagnostics, LLC, North Kingstown, Rhode Island, USA
| | - Marlene Oscar-Berman
- Department of Psychiatry and Neurology, Boston University School of Medicine and Veterans Administration System, Boston, Massachusetts, USA
| | - Rajendra Badgaiyan
- Department of Psychiatry and Laboratory of Neuroimaging and Molecular Imaging, University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Eric R Braverman
- Department of Psychiatry & McKnight Brain Institute, University of Florida, College of Medicine , Gainesville, Florida, USA ; Department of Clinical Neurology, Path Foundation, NY, New York, New York, USA
| | - Mark S Gold
- Department of Psychiatry & McKnight Brain Institute, University of Florida, College of Medicine , Gainesville, Florida, USA
| |
Collapse
|
103
|
Anselme P, Robinson MJF. What motivates gambling behavior? Insight into dopamine's role. Front Behav Neurosci 2013; 7:182. [PMID: 24348355 PMCID: PMC3845016 DOI: 10.3389/fnbeh.2013.00182] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 11/12/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Patrick Anselme
- Département de Psychologie, Université de Liège Liège, Belgium
| | - Mike J F Robinson
- Department of Psychology, University of Michigan Michigan, MI, USA ; Department of Psychology, Wesleyan University Connecticut, CT, USA
| |
Collapse
|
104
|
Blum K, Oscar-Berman M, DiNubile N, Giordano J, Braverman ER, Truesdell CE, Barh D, Badgaiyan R. Coupling Genetic Addiction Risk Score (GARS) with Electrotherapy: Fighting Iatrogenic Opioid Dependence. JOURNAL OF ADDICTION RESEARCH & THERAPY 2013; 4:1000163. [PMID: 24616834 PMCID: PMC3946872 DOI: 10.4172/2155-6105.1000163] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The endemic of legal opioid iatrogenic induced prescription drug abuse is of major world-wide concern. Understanding pain pathways and the role of dopaminergic tone in the neurophysiology of pain relief provides potential therapeutic solutions. A 2011 NIDA report indicated that approximately 8.7% of the entire US population above the age of 12 years has used a psychoactive drug within the past 30 days. It has been reported that the overall genetic contribution to the variance of Substance Use Disorder (SUD) was approximately 60% but each candidate gene evaluated by GWAS was relatively small. In an attempt to combat this global endemic we are proposing a number of alternative strategies. Prevention of death due to opioid overdose and attenuation of prescription abuse should focus on strategies that target 1) high-dosage medical users; 2) persons who seek care from multiple doctors; 3) persons involved in "drug diversion"; 4) genetic testing for addiction liability and severity indices; 5) non-pharmacolgical analgesic treatments such as electrotherapy.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry, McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, FL, USA
- Department of Holistic Medicine, National Institute for Holistic Addiction STudies, Inc. North Miami Beach, Fl, USA
- Department of Clinical Neurology, PATH Foundation NY, New York, NY, USA
- Center for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purbe Medinpur, West Bengal, India
- Dominion Diagnostics, LLC., North Kingstown, Rhode Island, USA
- Department of Addiction Research & Therapy, Malibu Beach Recovery Center, Malibu Beach California, USA
- Department of Nutrigenomics, IGENE LLC., Austin Texas, USA
| | - Marlene Oscar-Berman
- Departments of Psychiatry and Anatomy & Neurobiology, Boston University School of Medicine, and Boston, VA Healthcare System, Boston, MA, USA
| | - Nicholas DiNubile
- Department of Orthopaedic Surgery at the University of Pennsylvania, Philidelphia, Pennslyvania, USA
| | - John Giordano
- Department of Holistic Medicine, National Institute for Holistic Addiction STudies, Inc. North Miami Beach, Fl, USA
| | - Eric R Braverman
- Department of Psychiatry, McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, FL, USA
- Department of Clinical Neurology, PATH Foundation NY, New York, NY, USA
| | | | - Debmalya Barh
- Center for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purbe Medinpur, West Bengal, India
| | - Rajendra Badgaiyan
- Department of Psychiatry, University at Buffalo & Harvard University, Psychiatrist, WNY VAMC, Buffalo, NY, USA
| |
Collapse
|
105
|
Greydanus DE, Hawver EK, Greydanus MM, Merrick J. Marijuana: current concepts(†). Front Public Health 2013; 1:42. [PMID: 24350211 PMCID: PMC3859982 DOI: 10.3389/fpubh.2013.00042] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/23/2013] [Indexed: 12/12/2022] Open
Abstract
Marijuana (cannabis) remains a controversial drug in the twenty-first century. This paper considers current research on use of Cannabis sativa and its constituents such as the cannabinoids. Topics reviewed include prevalence of cannabis (pot) use, other drugs consumed with pot, the endocannabinoid system, use of medicinal marijuana, medical adverse effects of cannabis, and psychiatric adverse effects of cannabis use. Treatment of cannabis withdrawal and dependence is difficult and remains mainly based on psychological therapy; current research on pharmacologic management of problems related to cannabis consumption is also considered. The potential role of specific cannabinoids for medical benefit will be revealed as the twenty-first century matures. However, potential dangerous adverse effects from smoking marijuana are well known and should be clearly taught to a public that is often confused by a media-driven, though false message and promise of benign pot consumption.
Collapse
Affiliation(s)
- Donald E Greydanus
- Department of Pediatric and Adolescent Medicine, Western Michigan University School of Medicine , Kalamazoo, MI , USA
| | - Elizabeth K Hawver
- Department of Pediatric and Adolescent Medicine, Western Michigan University School of Medicine , Kalamazoo, MI , USA
| | - Megan M Greydanus
- Department of Pediatric and Adolescent Medicine, Western Michigan University School of Medicine , Kalamazoo, MI , USA
| | - Joav Merrick
- National Institute of Child Health and Human Development , Jerusalem , Israel ; Health Services, Division for Intellectual and Developmental Disabilities, Ministry of Social Affairs and Social Services , Jerusalem , Israel ; Division of Pediatrics, Hadassah Hebrew University Medical Center, Mt. Scopus Campus , Jerusalem , Israel ; Kentucky Children's Hospital, University of Kentucky College of Medicine , Lexington, KY , USA
| |
Collapse
|
106
|
Elman I, Borsook D, Volkow ND. Pain and suicidality: insights from reward and addiction neuroscience. Prog Neurobiol 2013; 109:1-27. [PMID: 23827972 PMCID: PMC4827340 DOI: 10.1016/j.pneurobio.2013.06.003] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/03/2013] [Accepted: 06/18/2013] [Indexed: 01/09/2023]
Abstract
Suicidality is exceedingly prevalent in pain patients. Although the pathophysiology of this link remains unclear, it may be potentially related to the partial congruence of physical and emotional pain systems. The latter system's role in suicide is also conspicuous during setbacks and losses sustained in the context of social attachments. Here we propose a model based on the neural pathways mediating reward and anti-reward (i.e., allostatic adjustment to recurrent activation of the reward circuitry); both are relevant etiologic factors in pain, suicide and social attachments. A comprehensive literature search on neurobiology of pain and suicidality was performed. The collected articles were critically reviewed and relevant data were extracted and summarized within four key areas: (1) physical and emotional pain, (2) emotional pain and social attachments, (3) pain- and suicide-related alterations of the reward and anti-reward circuits as compared to addiction, which is the premier probe for dysfunction of these circuits and (4) mechanistically informed treatments of co-occurring pain and suicidality. Pain-, stress- and analgesic drugs-induced opponent and proponent states of the mesolimbic dopaminergic pathways may render reward and anti-reward systems vulnerable to sensitization, cross-sensitization and aberrant learning of contents and contexts associated with suicidal acts and behaviors. These findings suggest that pain patients exhibit alterations in the brain circuits mediating reward (depressed function) and anti-reward (sensitized function) that may affect their proclivity for suicide and support pain and suicidality classification among other "reward deficiency syndromes" and a new proposal for "enhanced anti-reward syndromes". We suggest that interventions aimed at restoring the balance between the reward and anti-reward networks in patients with chronic pain may help decreasing their suicide risk.
Collapse
Affiliation(s)
- Igor Elman
- Providence VA Medical Center and Cambridge Health Alliance, Harvard Medical School, 26 Central Street, Somerville, MA 02143, USA.
| | | | | |
Collapse
|
107
|
Ginty AT. Blunted responses to stress and reward: Reflections on biological disengagement? Int J Psychophysiol 2013; 90:90-4. [DOI: 10.1016/j.ijpsycho.2013.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 06/07/2013] [Accepted: 06/10/2013] [Indexed: 01/08/2023]
|
108
|
Jager G, Block RI, Luijten M, Ramsey NF. Tentative evidence for striatal hyperactivity in adolescent cannabis-using boys: a cross-sectional multicenter fMRI study. J Psychoactive Drugs 2013; 45:156-67. [PMID: 23909003 DOI: 10.1080/02791072.2013.785837] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Adolescents' risk-taking behavior has been linked to a maturational imbalance between reward ("go") and inhibitory-control ("stop")-related brain circuitry. This may drive adolescent drug-taking, such as cannabis use. In this study, we assessed the non-acute effects of adolescent cannabis use on reward-related brain function. We performed a two-site (United States and Netherlands; pooled data) functional magnetic resonance imaging (fMRI) study with a cross-sectional design. Twenty-one abstinent but frequent cannabis-using boys were compared with 24 non-using peers on reward-related brain function, using a monetary incentive delay task with fMRI. Focus was on anticipatory and response stages of reward and brain areas critically involved in reward processing like the striatum. Performance in users was normal. Region-of-interest analysis indicated striatal hyperactivity during anticipatory stages of reward in users. Intriguingly, this effect was most pronounced during non-rewarding events. Striatal hyperactivity in adolescent cannabis users may signify an overly sensitive motivational brain circuitry. Frequent cannabis use during adolescence may induce diminished ability to disengage the motivational circuit when no reward can be obtained. This could strengthen the search for reinforcements like drugs of abuse, even when facing the negative (non-rewarding) consequences.
Collapse
Affiliation(s)
- Gerry Jager
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
109
|
Oxytocin, motivation and the role of dopamine. Pharmacol Biochem Behav 2013; 119:49-60. [PMID: 23850525 DOI: 10.1016/j.pbb.2013.06.011] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/08/2013] [Accepted: 06/25/2013] [Indexed: 01/11/2023]
Abstract
The hypothalamic neuropeptide oxytocin has drawn the attention of scientists for more than a century. The understanding of the function of oxytocin has expanded dramatically over the years from a simple peptide adept at inducing uterine contractions and milk ejection to a complex neuromodulator with a capacity to shape human social behavior. Decades of research have outlined oxytocin's ability to enhance intricate social activities ranging from pair bonding, sexual activity, affiliative preferences, and parental behaviors. The precise neural mechanisms underlying oxytocin's influence on such behaviors have just begun to be understood. Research suggests that oxytocin interacts closely with the neural pathways responsible for processing motivationally relevant stimuli. In particular, oxytocin appears to impact dopaminergic activity within the mesocorticolimbic dopamine system, which is crucial not only for reward and motivated behavior but also for the expression of affiliative behaviors. Though most of the work performed in this area has been done using animal models, several neuroimaging studies suggest similar relationships may be observed in humans. In order to introduce this topic further, this paper will review the recent evidence that oxytocin may exert some of its social-behavioral effects through its impact on motivational networks.
Collapse
|
110
|
Mclaughlin T, Oscar-Berman M, Simpatico T, Giordano J, Jones S, Barh D, Downs WB, Waite RL, Madigan M, Dushaj K, Lohmann R, Braverman ER, Han D, Blum K. Hypothesizing repetitive paraphilia behavior of a medication refractive Tourette's syndrome patient having rapid clinical attenuation with KB220Z-nutrigenomic amino-acid therapy (NAAT). J Behav Addict 2013; 2:117-24. [PMID: 26165932 DOI: 10.1556/jba.2.2013.2.8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background and aims Many patients presenting multiple behaviors including drug and food abuse as well as other pathological repetitive unwanted activities such as gambling, self-mutilation and paraphilias may not be appropriately diagnosed. Here we present a case of a male presenting many of these seemingly diverse behaviors and finally diagnosed with reward deficiency syndrome (RDS) by his attending physician. Methods The use of the dopamine agonist, ropinirole after two weeks showed improvement in terms of sexual behavior but tolerance set in and was discontinued especially when an infraction occurred with the patient's insurance. In this article, we carefully explore the potential of ropinirole to downregulate dopamine receptors causing adenylate cyclase receptor supersensitivity and tolerance a feature of neurotransmitter cross-talk. Based on previous scientific evidence showing KB220Znutrigenomic amino-acid therapy (NAAT) to rapidly (post one-hour) activate dopaminergic pathways in both the pre-frontal cortex cingulate gyrus (relapse loci) and ventral tegmental area-caudate-accumbens-putamen (craving and emotion loci) the patient was prescribed NAAT. Results and discussion Within one week of utilization the repetitive paraphilia was eliminated. There were also a number of other positive effects such as enhanced focus that persisted even after the patient stopped using KB220Z suggesting neuroplasticity (e.g. altruistic thoughts). However, these observed profound benefits require more in-depth study, especially in a large cohort against a placebo. While this report focused on a rapid response rather than long-term benefits previously associated with NAAT, it is somewhat encouraging and longer term required follow-up and larger placebo controlled studies are warranted before any definitive conclusions could be gleaned from this case report.
Collapse
|
111
|
Grant JE, Schreiber LRN, Odlaug BL. Phenomenology and treatment of behavioural addictions. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2013; 58:252-9. [PMID: 23756285 DOI: 10.1177/070674371305800502] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Behavioural addictions are characterized by an inability to resist an urge or drive resulting in actions that are harmful to oneself or others. Behavioural addictions share characteristics with substance and alcohol abuse, and in areas such as natural history, phenomenology, and adverse consequences. Behavioural addictions include pathological gambling, kleptomania, pyromania, compulsive buying, compulsive sexual behaviour, Internet addiction, and binge eating disorder. Few studies have examined the efficacy of pharmacological and psychological treatment for the various behavioural addictions, and therefore, currently, no treatment recommendations can be made.
Collapse
Affiliation(s)
- Jon E Grant
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA.
| | | | | |
Collapse
|
112
|
Pain and analgesia: the value of salience circuits. Prog Neurobiol 2013; 104:93-105. [PMID: 23499729 DOI: 10.1016/j.pneurobio.2013.02.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 02/07/2023]
Abstract
Evaluating external and internal stimuli is critical to survival. Potentially tissue-damaging conditions generate sensory experiences that the organism must respond to in an appropriate, adaptive manner (e.g., withdrawal from the noxious stimulus, if possible, or seeking relief from pain and discomfort). The importance we assign to a signal generated by a noxious state, its salience, reflects our belief as to how likely the underlying situation is to impact our chance of survival. Importantly, it has been hypothesized that aberrant functioning of the brain circuits which assign salience values to stimuli may contribute to chronic pain. We describe examples of this phenomenon, including 'feeling pain' in the absence of a painful stimulus, reporting minimal pain in the setting of major trauma, having an 'analgesic' response in the absence of an active treatment, or reporting no pain relief after administration of a potent analgesic medication, which may provide critical insights into the role that salience circuits play in contributing to numerous conditions characterized by persistent pain. Collectively, a refined understanding of abnormal activity or connectivity of elements within the salience network may allow us to more effectively target interventions to relevant components of this network in patients with chronic pain.
Collapse
|
113
|
Limbrick-Oldfield EH, van Holst RJ, Clark L. Fronto-striatal dysregulation in drug addiction and pathological gambling: Consistent inconsistencies? NEUROIMAGE-CLINICAL 2013; 2:385-93. [PMID: 24179792 PMCID: PMC3777686 DOI: 10.1016/j.nicl.2013.02.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/20/2013] [Accepted: 02/23/2013] [Indexed: 02/05/2023]
Abstract
Alterations in appetitive processing are central to the major psychological theories of addiction, with differential predictions made by the reward deficiency, incentive salience, and impulsivity hypotheses. Functional MRI has become the chief means of testing these predictions, with experiments reliably highlighting disturbances at the level of the striatum, medial prefrontal cortex, and affiliated regions. However, demonstrations of hypo-reactivity and hyper-reactivity of this circuitry in drug addicted groups are reported in approximately equal measure. Similar findings are echoed in the emergent neuroimaging literature on pathological gambling, which has recently witnessed a coming of age. The first aim of this article is to consider some of the methodological aspects of these experiments that could influence the observed direction of group-level effects, including the baseline condition, trial structure and timing, and the nature of the appetitive cues (drug-related, monetary, or primary rewards). The second aim is to highlight the conceptual traction that is offered by pathological gambling, as a model of a ‘toxicity free’ addiction and an illness where tasks of monetary reinforcement afford a more direct mapping to the abused commodity. Our conclusion is that relatively subtle decisions in task design appear capable of driving group differences in fronto-striatal circuitry in entirely opposing directions, even with tasks and task variants that look ostensibly similar. Differentiation between the psychological theories of addiction will require a greater breadth of experimental designs, with more research needed on processing of primary appetitive cues, aversive processing, and in vulnerable/at-risk groups. We outline the current psychological theories of addiction and their predictions. We review recent fMRI literature of substance addictions and appetitive processing. Reasons for opposing results (hyper- vs hypo-active reward regions) are discussed. Recent fMRI findings of appetitive processing in pathological gambling are reviewed. Pathological gambling is suggested as a prototypical addiction for imaging research.
Collapse
|
114
|
Volkow ND, Wang GJ, Tomasi D, Baler RD. Unbalanced neuronal circuits in addiction. Curr Opin Neurobiol 2013; 23:639-48. [PMID: 23434063 DOI: 10.1016/j.conb.2013.01.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/21/2012] [Accepted: 01/06/2013] [Indexed: 01/29/2023]
Abstract
Through sequential waves of drug-induced neurochemical stimulation, addiction co-opts the brain's neuronal circuits that mediate reward, motivation to behavioral inflexibility and a severe disruption of self-control and compulsive drug intake. Brain imaging technologies have allowed neuroscientists to map out the neural landscape of addiction in the human brain and to understand how drugs modify it.
Collapse
Affiliation(s)
- Nora D Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, United States.
| | | | | | | |
Collapse
|
115
|
Blum K, Oscar-Berman M, Barh D, Giordano J, Gold MS. Dopamine Genetics and Function in Food and Substance Abuse. JOURNAL OF GENETIC SYNDROMES & GENE THERAPY 2013; 4:1000121. [PMID: 23543775 PMCID: PMC3609029 DOI: 10.4172/2157-7412.1000121] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Having entered the genomics era with confidence in the future of medicine, including psychiatry, identifying the role of DNA and polymorphic associations with brain reward circuitry has led to a new understanding of all addictive behaviors. It is noteworthy that this strategy may provide treatment for the millions who are the victims of "Reward Deficiency Syndrome" (RDS) a genetic disorder of brain reward circuitry. This article will focus on drugs and food being mutuality addictive, and the role of dopamine genetics and function in addictions, including the interaction of the dopamine transporter, and sodium food. We will briefly review our concept that concerns the genetic antecedents of multiple-addictions (RDS). Studies have also shown that evaluating a panel of established reward genes and polymorphisms enables the stratification of genetic risk to RDS. The panel is called the "Genetic Addiction Risk Score (GARS)", and is a tool for the diagnosis of a genetic predisposition for RDS. The use of this test, as pointed out by others, would benefit the medical community by identifying at risk individuals at a very early age. We encourage, in depth work in both animal and human models of addiction. We encourage further exploration of the neurogenetic correlates of the commonalities between food and drug addiction and endorse forward thinking hypotheses like "The Salted Food Addiction Hypothesis".
Collapse
Affiliation(s)
- K Blum
- Department of Psychiatry & McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal, India
- Department of Nutrigenomics, LifeGen, Inc., Austin, Texas, USA
| | - M Oscar-Berman
- Department of Anatomy & Neurobiology, Boston University School of Medicine, 72 East Concord Street, Boston, MA, USA
| | - D Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal, India
| | - J Giordano
- Department of Holistic Medicine, G & G Health Care Services LLC, North Miami Beach, FL, USA
| | - MS Gold
- Department of Psychiatry & McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
116
|
Robinson JD, Versace F, Lam CY, Minnix JA, Engelmann JM, Cui Y, Karam-Hage M, Shete SS, Tomlinson GE, Chen TTL, Wetter DW, Green CE, Cinciripini PM. The CHRNA3 rs578776 Variant is Associated with an Intrinsic Reward Sensitivity Deficit in Smokers. Front Psychiatry 2013; 4:114. [PMID: 24065931 PMCID: PMC3779859 DOI: 10.3389/fpsyt.2013.00114] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/06/2013] [Indexed: 01/16/2023] Open
Abstract
A compromised brain reward system has been postulated as a key feature of drug dependence. We examined whether several polymorphisms of genes found to regulate nicotinic acetylcholine receptor (nAChR) and dopamine expression were related to an intrinsic reward sensitivity (IRS) deficit we previously identified among a subgroup of smokers using event-related potentials (ERPs). We examined genetic polymorphisms within the CHRNA5-A3-B4 gene cluster (CHRNA3 rs578776, CHRNA5 rs16969968, LOC123688 rs8034191, and CHRNA3 rs1051730), the ANKK1 gene (rs1800497), and the D2 dopamine receptor gene (DRD2 rs1079597, DRD2 rs1799732) from 104 smokers of European ancestry in a smoking cessation trial. Prior to treatment, we recorded ERPs evoked by emotional (both pleasant and unpleasant), neutral, and cigarette-related pictures. Smokers were assigned to two groups (IRS+/IRS-) based on the amplitude of the late positive potential (LPP) component to the pictures, a neural marker of motivational salience. Smokers (n = 42) with blunted brain responses to intrinsically rewarding (pleasant) pictures and enhanced responses to cigarette pictures were assigned to the IRS- group, while smokers (n = 62) with the opposite pattern of LPP responding were assigned to the IRS+ group. Carriers of the protective minor T allele (T/T, C/T) of the CHRNA3 rs578776 were less likely to be members of the IRS- group than those homozygous for the at-risk C allele (C/C). The CHRNA3 rs578776 polymorphism did not differ on questionnaires of nicotine dependence, depressed mood, or trait affective disposition and did not predict abstinence at 6 months after the quit date. These results suggest that polymorphisms of genes influencing nAChR expression are related to an endophenotype of reward sensitivity in smokers.
Collapse
Affiliation(s)
- Jason D Robinson
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Blum K, Oscar-Berman M, Stuller E, Miller D, Giordano J, Morse S, McCormick L, Downs WB, Waite RL, Barh D, Neal D, Braverman ER, Lohmann R, Borsten J, Hauser M, Han D, Liu Y, Helman M, Simpatico T. Neurogenetics and Nutrigenomics of Neuro-Nutrient Therapy for Reward Deficiency Syndrome (RDS): Clinical Ramifications as a Function of Molecular Neurobiological Mechanisms. ACTA ACUST UNITED AC 2013; 3:139. [PMID: 23926462 DOI: 10.4172/2155-6105.1000139] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In accord with the new definition of addiction published by American Society of Addiction Medicine (ASAM) it is well-known that individuals who present to a treatment center involved in chemical dependency or other documented reward dependence behaviors have impaired brain reward circuitry. They have hypodopaminergic function due to genetic and/or environmental negative pressures upon the reward neuro-circuitry. This impairment leads to aberrant craving behavior and other behaviors such as Substance Use Disorder (SUD). Neurogenetic research in both animal and humans revealed that there is a well-defined cascade in the reward site of the brain that leads to normal dopamine release. This cascade has been termed the "Brain Reward Cascade" (BRC). Any impairment due to either genetics or environmental influences on this cascade will result in a reduced amount of dopamine release in the brain reward site. Manipulation of the BRC has been successfully achieved with neuro-nutrient therapy utilizing nutrigenomic principles. After over four decades of development, neuro-nutrient therapy has provided important clinical benefits when appropriately utilized. This is a review, with some illustrative case histories from a number of addiction professionals, of certain molecular neurobiological mechanisms which if ignored may lead to clinical complications.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry, University of Florida, McKnight Brain Institute, Gainesville, Fl, 100183, USA ; Department of Nutrigenomic, LifeGen, Inc. San Diego, CA, 92101, USA ; Department of Holistic Medicine, G&G Holistic Addiction Treatment Center, North Miami Beach, Fl, 33162, USA ; Center for Genomics and Applied Gene Technology, Institute of Integrative Omics and applied Biotechnology (IIOAB), Nonakuri, Purbe Medinpur, West Bengal, 721172, India ; Path Foundation NY, New York, 10001, New York USA ; Malibu Beach Recovery Center, Malibu Beach, California, 9026, USA ; Dominion Diagnostics, North Kingstown Rhode Island, 02852, USA ; Global Integrated Services Unit University of Vermont Center for Clinical & Translational Science, College of Medicine, Burlington, VT, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Miller M, Chen ALC, Stokes SD, Silverman S, Bowirrat A, Manka M, Manka D, Miller DK, Perrine K, Chen TJH, Bailey JA, Downs W, Waite RL, Madigan MA, Braverman ER, Damle U, Kerner M, Giordano J, Morse S, Oscar-Berman M, Barh D, Blum K. Early intervention of intravenous KB220IV--neuroadaptagen amino-acid therapy (NAAT) improves behavioral outcomes in a residential addiction treatment program: a pilot study. J Psychoactive Drugs 2012; 44:398-409. [PMID: 23457891 PMCID: PMC4074362 DOI: 10.1080/02791072.2012.737727] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Substance use disorders (SUD) are inheritable and the culprit is hypodopaminergic function regulated by reward genes. We evaluated a natural dopaminergic agonist; KB220 intravenous (IV) and oral variants, to improve dopaminergic function in SUD. Our pilot experiment found a significant reduction of chronic symptoms, measured by the Chronic Abstinence Symptom Severity (CASS) Scale. The combined group (IV and oral) did significantly better than the oral-only group over the first week and 30-day follow-up period. Next, the combination was given to 129 subjects and three factors; Emotion, Somatic, and Impaired Cognition, with eigenvalues greater than one were extracted for baseline CASS-Revised (CASS-R) variables. Paired sample t-tests for pre and post-treatment scales showed significant declines (p = .00001) from pre- to post-treatment: t = 19.1 for Emotion, t = 16.1 for Somatic, and t = 14.9 for Impaired Cognition. In a two-year follow-up of 23 subjects who underwent KB220IV therapy (at least five IV treatments over seven days) plus orals for 30+ days: 21 (91%) were sober at six months, 19 (82%) having no relapse; 19 (82%) were sober at one year, 18 (78%) having no relapse; and 21 (91%) were sober two-years post-treatment, 16(70%) having no relapse. We await additional research and advise caution in interpreting these encouraging results.
Collapse
|
119
|
Blum K, Oscar-Berman M, Giordano J, Downs BW, Simpatico T, Han D, Femino J. Neurogenetic Impairments of Brain Reward Circuitry Links to Reward Deficiency Syndrome (RDS): Potential Nutrigenomic Induced Dopaminergic Activation. JOURNAL OF GENETIC SYNDROMES & GENE THERAPY 2012; 3:1000e115. [PMID: 23264886 PMCID: PMC3525955 DOI: 10.4172/2157-7412.1000e115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Work from our laboratory in both in-patient and outpatient facilities utilizing the Comprehensive Analysis of Reported Drugs (CARD)(™) found a significant lack of compliance to prescribed treatment medications and a lack of abstinence from drugs of abuse during active recovery. This unpublished, ongoing research provides an impetus to develop accurate genetic diagnosis and holistic approaches that will safely activate brain reward circuitry in the mesolimbic dopamine system. This editorial focuses on the neurogenetics of brain reward systems with particular reference to genes related to dopaminergic function. The terminology "Reward Deficiency Syndrome" (RDS), used to describe behaviors found to have an association with gene-based hypodopaminergic function, is a useful concept to help expand our understanding of Substance Use Disorder (SUD), process addictions, and other obsessive, compulsive and impulsive behaviors. This editorial covers the neurological basis of pleasure and the role of natural and unnatural reward in motivating and reinforcing behaviors. Additionally, it briefly describes the concept of natural dopamine D2 receptor agonist therapy coupled with genetic testing of a panel of reward genes, the Genetic Addiction Risk Score (GARS). It serves as a spring-board for this combination of novel approaches to the prevention and treatment of RDS that was developed from fundamental genomic research. We encourage further required studies.
Collapse
Affiliation(s)
- K Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, FL, USA
- G & G Holistic Addiction Treatment Center, North Miami Beach, FL, USA
- Dominion Diagnostics, Inc. North Kingstown, Rhode Island, USA
- Path Foundation NY, New York, NY, USA
- Department of Addiction Research a & Therapy, Malibu Beach Recovery Center, Malibu Beach, CA, USA
- Department of Nutrigenomics, LifeGen, Inc., Austin, TX, USA
- Institute of Integrative Omics & Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal, India
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - M Oscar-Berman
- Departments of Psychiatry, Neurology, and Anatomy & Neurobiology, Boston University School of Medicine, and Boston VA Healthcare System, Boston, MA, USA
| | - J Giordano
- G & G Holistic Addiction Treatment Center, North Miami Beach, FL, USA
| | - BW Downs
- Department of Nutrigenomics, LifeGen, Inc., Austin, TX, USA
| | - T Simpatico
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - D Han
- Department of Management Science and Statistics, University of Texas at San Antonio, San Antonio, TX, USA
| | - John Femino
- Meadows Edge Treatment Center, North Kingstown, RI, USA
| |
Collapse
|
120
|
A future without chronic pain: neuroscience and clinical research. CEREBRUM : THE DANA FORUM ON BRAIN SCIENCE 2012; 2012:7. [PMID: 23447793 PMCID: PMC3574803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Chronic pain affects 1.5 billion people worldwide, an estimated 100 million of whom live in the United States. Yet we currently have no effective treatment options. Fortunately, writes David Borsook, director of the Pain and Imaging Neuroscience Group at Children's Hospital Boston, Massachusetts General Hospital, and McLean Hospital, research advances have determined some of the ways in which chronic pain changes the brain, and several promising research areas could lead to better treatment approaches. Dr. Borsook recommends steps to facilitate these new treatments, including the establishment of integrated clinical neuroscience centers bridging the gap between bench and bedside.
Collapse
|
121
|
Abstract
Addiction is a primary, chronic disease involving brain reward, motivation, memory and related circuitry; it can lead to relapse, progressive development, and the potential for fatality if not treated. While pathological use of alcohol and, more recently, psychoactive substances have been accepted as addictive diseases, developing brain science has set the stage for inclusion of the process addictions, including food, sex, shopping and gambling problems, in a broader definition of addiction as set forth by the American Society of Addiction Medicine in 2011.
Collapse
|