101
|
Fällmar D, Haller S, Lilja J, Danfors T, Kilander L, Tolboom N, Egger K, Kellner E, Croon PM, Verfaillie SCJ, van Berckel BNM, Ossenkoppele R, Barkhof F, Larsson EM. Arterial spin labeling-based Z-maps have high specificity and positive predictive value for neurodegenerative dementia compared to FDG-PET. Eur Radiol 2017; 27:4237-4246. [PMID: 28374078 PMCID: PMC5579184 DOI: 10.1007/s00330-017-4784-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/23/2017] [Accepted: 02/16/2017] [Indexed: 11/30/2022]
Abstract
Objective Cerebral perfusion analysis based on arterial spin labeling (ASL) MRI has been proposed as an alternative to FDG-PET in patients with neurodegenerative disease. Z-maps show normal distribution values relating an image to a database of controls. They are routinely used for FDG-PET to demonstrate disease-specific patterns of hypometabolism at the individual level. This study aimed to compare the performance of Z-maps based on ASL to FDG-PET. Methods Data were combined from two separate sites, each cohort consisting of patients with Alzheimer’s disease (n = 18 + 7), frontotemporal dementia (n = 12 + 8) and controls (n = 9 + 29). Subjects underwent pseudocontinuous ASL and FDG-PET. Z-maps were created for each subject and modality. Four experienced physicians visually assessed the 166 Z-maps in random order, blinded to modality and diagnosis. Results Discrimination of patients versus controls using ASL-based Z-maps yielded high specificity (84%) and positive predictive value (80%), but significantly lower sensitivity compared to FDG-PET-based Z-maps (53% vs. 96%, p < 0.001). Among true-positive cases, correct diagnoses were made in 76% (ASL) and 84% (FDG-PET) (p = 0.168). Conclusion ASL-based Z-maps can be used for visual assessment of neurodegenerative dementia with high specificity and positive predictive value, but with inferior sensitivity compared to FDG-PET. Key points • ASL-based Z-maps yielded high specificity and positive predictive value in neurodegenerative dementia. • ASL-based Z-maps had significantly lower sensitivity compared to FDG-PET-based Z-maps. • FDG-PET might be reserved for ASL-negative cases where clinical suspicion persists. • Findings were similar at two study sites.
Collapse
Affiliation(s)
- David Fällmar
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden.
| | - Sven Haller
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden.,Department of Neuroradiology, University Medical Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Affidea CDRC - Centre Diagnostique Radiologique de Carouge, Carouge, Switzerland
| | - Johan Lilja
- Department of Surgical Sciences, Nuclear Medicine and PET, Uppsala University, Uppsala, Sweden.,Hermes Medical Solutions, Stockholm, Sweden
| | - Torsten Danfors
- Department of Surgical Sciences, Nuclear Medicine and PET, Uppsala University, Uppsala, Sweden
| | - Lena Kilander
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Nelleke Tolboom
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Neuroscience Campus, Amsterdam, The Netherlands
| | - Karl Egger
- Department of Neuroradiology, University Medical Center Freiburg, Freiburg, Germany
| | - Elias Kellner
- Department of Radiology, Medical Physics, Faculty of Medicine, Medical Center University of Freiburg, Freiburg, Germany
| | - Philip M Croon
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Neuroscience Campus, Amsterdam, The Netherlands
| | - Sander C J Verfaillie
- Department of Neurology, Alzheimer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Bart N M van Berckel
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Neuroscience Campus, Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Department of Neurology, Alzheimer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Neuroscience Campus, Amsterdam, The Netherlands.,Institutes of Neurology and Healthcare Engineering, UCL, London, UK
| | - Elna-Marie Larsson
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
102
|
Del Sole A, Malaspina S, Magenta Biasina A. Magnetic resonance imaging and positron emission tomography in the diagnosis of neurodegenerative dementias. FUNCTIONAL NEUROLOGY 2017; 31:205-215. [PMID: 28072381 DOI: 10.11138/fneur/2016.31.4.205] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Neuroimaging, both with magnetic resonance imaging (MRI) and positron emission tomography (PET), has gained a pivotal role in the diagnosis of primary neurodegenerative diseases. These two techniques are used as biomarkers of both pathology and progression of Alzheimer's disease (AD) and to differentiate AD from other neurodegenerative diseases. MRI is able to identify structural changes including patterns of atrophy characterizing neurodegenerative diseases, and to distinguish these from other causes of cognitive impairment, e.g. infarcts, space-occupying lesions and hydrocephalus. PET is widely used to identify regional patterns of glucose utilization, since distinct patterns of distribution of cerebral glucose metabolism are related to different subtypes of neurodegenerative dementia. The use of PET in mild cognitive impairment, though controversial, is deemed helpful for predicting conversion to dementia and the dementia clinical subtype. Recently, new radiopharmaceuticals for the in vivo imaging of amyloid burden have been licensed and more tracers are being developed for the assessment of tauopathies and inflammatory processes, which may underlie the onset of the amyloid cascade. At present, the cerebral amyloid burden, imaged with PET, may help to exclude the presence of AD as well as forecast its possible onset. Finally PET imaging may be particularly useful in ongoing clinical trials for the development of dementia treatments. In the near future, the use of the above methods, in accordance with specific guidelines, along with the use of effective treatments will likely lead to more timely and successful treatment of neurodegenerative dementias.
Collapse
|
103
|
Kampe KKW, Rotermund R, Tienken M, Thomalla G, Regier M, Klutmann S, Kluge S. Diagnostic Value of Positron Emission Tomography Combined with Computed Tomography for Evaluating Critically Ill Neurological Patients. Front Neurol 2017; 8:33. [PMID: 28261149 PMCID: PMC5306377 DOI: 10.3389/fneur.2017.00033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/24/2017] [Indexed: 12/13/2022] Open
Abstract
Purpose 18F-fluorodeoxyglucose positron emission tomography combined with computed tomography (FDG-PET/CT) is a promising new tool for the identification of inflammatory, infectious, and neoplastic foci. The aim of our work was to evaluate the diagnostic value of FDG-PET/CT in patients treated on a neurological/neurosurgical ICU or stroke unit. Methods We performed a single-center, 10-year, retrospective evaluation of the value of FDG-PET/CT in critically ill adult patients with severe neurological disease. Results 42 patients underwent FDG-PET/CT. Of these, 15 were ventilated and 10 were under vasopressor support. We identified four indications for performing FDG-PET/CT: (1) excluding a paraneoplastic etiology in an otherwise unexplained encephalitis, encephalopathy or neuropathy, (2) detecting a large-vessel vasculitis in patients with ischemic stroke, (3) detecting an infectious focus in sepsis, and less frequently (4) evaluating cerebral metabolism. In 22 patients who were evaluated for an unknown malignancy, 5 scans revealed either a previously unknown tumor or unknown metastases of a previously treated malignancy. Of 11 patients investigated for large-vessel vasculitis, 2 showed an inflammation of arteries supplying the brain. Of six sepsis cases, FDG-PET/CT identified an infectious focus in four. Summary We found FDG-PET/CT to be a helpful tool in critically ill neurological patients. The results of the FDG-PET/CT had direct therapeutic consequences in the 12 true-positive cases. In 24 of the 29 negative cases, FDG-PET/CT helped exclude alternative diagnoses and/or influenced therapy. Our findings demonstrate the feasibility and diagnostic benefit of FDG-PET/CT in this group of patients.
Collapse
Affiliation(s)
- Knut Kurt William Kampe
- Department of Intensive Care, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Roman Rotermund
- Department of Intensive Care, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Milena Tienken
- Nuclear Medicine, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Marc Regier
- Diagnostic and Interventional Radiology, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Susanne Klutmann
- Nuclear Medicine, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Stefan Kluge
- Department of Intensive Care, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| |
Collapse
|
104
|
Viglianti BL, Wong KK, Wimer SM, Parameswaran A, Nan B, Ky C, Townsend DM, Rubello D, Frey KA, Gross MD. Effect of hyperglycemia on brain and liver 18F-FDG standardized uptake value (FDG SUV) measured by quantitative positron emission tomography (PET) imaging. Biomed Pharmacother 2017; 88:1038-1045. [PMID: 28192877 DOI: 10.1016/j.biopha.2017.01.166] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 01/30/2017] [Accepted: 01/30/2017] [Indexed: 02/01/2023] Open
Abstract
PURPOSE Blood glucose is routinely measured prior to 18F-fluorodeoxyglucose (FDG) administration in positron emission tomography (PET) imaging to identify hyperglycemia that may affect image quality. In this study we explore the effects of blood glucose levels upon semi-quantitative standardized uptake value (SUV) measurements of target organs and tissues of interest and in particular address the relationship of blood glucose to FDG accumulation in the brain and liver. METHODS 436 FDG PET/CT consecutive studies performed for oncology staging in 229 patients (226 male) at the Ann Arbor Veterans Administration Healthcare System were reviewed. All patients had blood glucose measured (112.4±34.1mg/dL) prior to injection of 466.2±51.8MBq (12.6±1.4mCi) of FDG. SUV measurements of brain, aortic arch blood-pool, liver, and spleen were obtained at 64.5±10.2min' post-injection. RESULTS We found a negative inverse relationship of brain SUV with increasing plasma glucose, levels for both absolute and normalized (either to blood-pool or liver) values. Higher blood glucose levels had a mild effect upon liver and blood-pool SUV. By contrast, spleen SUV was independent of blood glucose, but demonstrated the greatest variability (deviation on linear regression). In contrast to other tissues, liver and spleen SUV normalized to blood-pool SUV were not dependent upon blood glucose levels. CONCLUSION The effects of hyperglycemia upon FDG uptake in brain and liver, over a range of blood glucose values generally considered acceptable for clinical PET imaging, may have measurable effects on semi-quantitative image analysis.
Collapse
Affiliation(s)
- Benjamin L Viglianti
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Nuclear Medicine Service, Department of Veterans Affairs Healthcare System, Ann Arbor, MI, USA.
| | - Ka Kit Wong
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie M Wimer
- Nuclear Medicine Service, Department of Veterans Affairs Healthcare System, Ann Arbor, MI, USA
| | - Aishwarya Parameswaran
- Michigan Institute for Clinical and Health Research (MICHR), University of Michigan, Ann Arbor, MI, USA
| | - Bin Nan
- Department of Biostatistics, University of Michigan, School of Public Health, Ann Arbor, MI, USA
| | - Christy Ky
- University of Michigan School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Danyelle M Townsend
- Department of Drug Discovery and Pharmaceutical Sciences, Medical University of Southern Carolina, USA
| | - Domenico Rubello
- Department of Nuclear Medicine, Radiology, NeuroRadiology, Medical Physics, Clinical Laboratory, Microbiology, Pathology, Santa Maria della Misericordia Hospital, Rovigo, Italy.
| | - Kirk A Frey
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Milton D Gross
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Nuclear Medicine Service, Department of Veterans Affairs Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
105
|
Yanai S, Toyohara J, Ishiwata K, Ito H, Endo S. Long-term cilostazol administration ameliorates memory decline in senescence-accelerated mouse prone 8 (SAMP8) through a dual effect on cAMP and blood-brain barrier. Neuropharmacology 2016; 116:247-259. [PMID: 27979612 DOI: 10.1016/j.neuropharm.2016.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/18/2016] [Accepted: 12/09/2016] [Indexed: 12/12/2022]
Abstract
Phosphodiesterases (PDEs), which hydrolyze and inactivate 3', 5'-cyclic adenosine monophosphate (cAMP) and 3', 5'-cyclic guanosine monophosphate (cGMP), play an important role in synaptic plasticity that underlies memory. Recently, several PDE inhibitors were assessed for their possible therapeutic efficacy in treating cognitive disorders. Here, we examined how cilostazol, a selective PDE3 inhibitor, affects brain functions in senescence-accelerated mouse prone 8 (SAMP8), an animal model of age-related cognitive impairment. Long-term administration of cilostazol restored the impaired context-dependent conditioned fear memory of SAMP8 to match that in normal aging control substrain SAMR1. Cilostazol also increased the number of cells containing phosphorylated cAMP-responsive element binding protein (CREB), a downstream component of the cAMP pathway. Finally, cilostazol improves blood-brain barrier (BBB) integrity, demonstrated by reduced extravasation of 2-deoxy-2-18F-fluoro-d-glucose and Evans Blue dye in the brains of SAMP8. This improvement in BBB integrity was associated with an increased amount of zona occludens protein 1 (ZO-1) and occludin proteins, components of tight junctions integral to the BBB. The results suggest that long-term administration of cilostazol exerts its beneficial effects on age-related cognitive impairment through a dual mechanism: by enhancing the cAMP system in the brain and by maintaining or improving BBB integrity.
Collapse
Affiliation(s)
- Shuichi Yanai
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan
| | - Kiichi Ishiwata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan; Institute of Cyclotron and Drug Discovery Research, Southern TOHOKU Research Institute for Neuroscience, Koriyama, Fukushima 963-8052, Japan; Department of Biofunctional Imaging, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Hideki Ito
- Department of CNS Research, Otsuka Pharmaceutical Co., Ltd., Tokushima 771-0192, Japan
| | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan.
| |
Collapse
|
106
|
Abstract
Metabolic imaging is a field of molecular imaging that focuses and targets changes in metabolic pathways for the evaluation of different clinical conditions. Targeting and quantifying metabolic changes noninvasively is a powerful approach to facilitate diagnosis and evaluate therapeutic response. This review addresses only techniques targeting metabolic pathways. Other molecular imaging strategies, such as affinity or receptor imaging or microenvironment-dependent methods are beyond the scope of this review. Here we describe the current state of the art in clinically translatable metabolic imaging modalities. Specifically, we focus on PET and MR spectroscopy, including conventional (1)H- and (13)C-MR spectroscopy at thermal equilibrium and hyperpolarized MRI. In this article, we first provide an overview of metabolic pathways that are altered in many pathologic conditions and the corresponding probes and techniques used to study those alterations. We then describe the application of metabolic imaging to several common diseases, including cancer, neurodegeneration, cardiac ischemia, and infection or inflammation.
Collapse
Affiliation(s)
- Valentina Di Gialleonardo
- Department of Radiology and Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY
| | - David M Wilson
- Department of Radiology and Biomedical Imaging University of California San Francisco (UCSF), San Francisco, CA
| | - Kayvan R Keshari
- Department of Radiology and Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY.
| |
Collapse
|
107
|
Yamashiro K, Nakano M, Sawaki K, Okazaki F, Hirata Y, Takashiba S. The potential of positron emission tomography/computerized tomography (PET/CT) scanning as a detector of high-risk patients with oral infection during preoperative staging. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 122:242-9. [DOI: 10.1016/j.oooo.2016.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/31/2016] [Accepted: 04/12/2016] [Indexed: 10/21/2022]
|
108
|
Calabria FF, Barbarisi M, Gangemi V, Grillea G, Cascini GL. Molecular imaging of brain tumors with radiolabeled choline PET. Neurosurg Rev 2016; 41:67-76. [DOI: 10.1007/s10143-016-0756-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/16/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
|
109
|
Narayanan L, Murray AD. What can imaging tell us about cognitive impairment and dementia? World J Radiol 2016; 8:240-254. [PMID: 27029053 PMCID: PMC4807333 DOI: 10.4329/wjr.v8.i3.240] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/28/2015] [Accepted: 01/07/2016] [Indexed: 02/06/2023] Open
Abstract
Dementia is a contemporary global health issue with far reaching consequences, not only for affected individuals and their families, but for national and global socio-economic conditions. The hallmark feature of dementia is that of irreversible cognitive decline, usually affecting memory, and impaired activities of daily living. Advances in healthcare worldwide have facilitated longer life spans, increasing the risks of developing cognitive decline and dementia in late life. Dementia remains a clinical diagnosis. The role of structural and molecular neuroimaging in patients with dementia is primarily supportive role rather than diagnostic, American and European guidelines recommending imaging to exclude treatable causes of dementia, such as tumor, hydrocephalus or intracranial haemorrhage, but also to distinguish between different dementia subtypes, the commonest of which is Alzheimer’s disease. However, this depends on the availability of these imaging techniques at individual centres. Advanced magnetic resonance imaging (MRI) techniques, such as functional connectivity MRI, diffusion tensor imaging and magnetic resonance spectroscopy, and molecular imaging techniques, such as 18F fluoro-deoxy glucose positron emission tomography (PET), amyloid PET, tau PET, are currently within the realm of dementia research but are available for clinical use. Increasingly the research focus is on earlier identification of at risk preclinical individuals, for example due to family history. Intervention at the preclinical stages before irreversible brain damage occurs is currently the best hope of reducing the impact of dementia.
Collapse
|
110
|
Banerjee G, Wilson D, Jäger HR, Werring DJ. Novel imaging techniques in cerebral small vessel diseases and vascular cognitive impairment. Biochim Biophys Acta Mol Basis Dis 2015; 1862:926-38. [PMID: 26687324 DOI: 10.1016/j.bbadis.2015.12.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 11/27/2022]
Abstract
Dementia is a global growing concern, affecting over 35 million people with a global economic impact of over $604 billion US. With an ageing population the number of people affected is expected double over the next two decades. Vascular cognitive impairment can be caused by various types of cerebrovascular disease, including cortical and subcortical infarcts, and the more diffuse white matter injury due to cerebral small vessel disease. Although this type of cognitive impairment is usually considered the second most common form of dementia after Alzheimer's disease, there is increasing recognition of the vascular contribution to neurodegeneration, with both pathologies frequently coexisting. The aim of this review is to highlight the recent advances in the understanding of vascular cognitive impairment, with a focus on small vessel diseases of the brain. We discuss recently identified small vessel imaging markers that have been associated with cognitive impairment, namely cerebral microbleeds, enlarged perivascular spaces, cortical superficial siderosis, and microinfarcts. We will also consider quantitative techniques including diffusion tensor imaging, magnetic resonance perfusion imaging with arterial spin labelling, functional magnetic resonance imaging and positron emission tomography. As well as potentially shedding light on the mechanism by which cerebral small vessel diseases cause dementia, these novel imaging biomarkers are also of increasing relevance given their ability to guide diagnosis and reflect disease progression, which may in the future be useful for therapeutic interventions. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.
Collapse
Affiliation(s)
- Gargi Banerjee
- UCL Stroke Research Centre, Department of Brain Repair & Rehabilitation, UCL Institute of Neurology, 10-12 Russell Square, London WC1B 3EE, UK
| | - Duncan Wilson
- UCL Stroke Research Centre, Department of Brain Repair & Rehabilitation, UCL Institute of Neurology, 10-12 Russell Square, London WC1B 3EE, UK
| | - Hans R Jäger
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - David J Werring
- UCL Stroke Research Centre, Department of Brain Repair & Rehabilitation, UCL Institute of Neurology, 10-12 Russell Square, London WC1B 3EE, UK
| |
Collapse
|
111
|
Abstract
OPINION STATEMENT It is increasingly evident that early identification of cognitive impairment in older adults presents opportunities for interventions that aim to mitigate the impact of cognitive symptoms on daily function and that attempt to delay (or ultimately prevent) progression from mild cognitive impairment (MCI) to dementia. To date, no intervention has proven protective in ultimately preventing conversion to dementia. However, several lifestyle, dietary, and pharmacologic interventions have suggested symptomatic benefit for those having MCI. A number of diet and lifestyle recommendations have been associated with decreased risk of dementia both in cognitively intact older adults and in those having mild cognitive impairment. Thus, these recommendations may be appropriate for both people presenting with subjective cognitive concerns and for those having objective evidence of memory problems. It remains less certain whether adopting these lifestyle habits in later life confers the benefits seen in epidemiological cohorts (where people have likely practiced them for many years). Discussion of starting on a cholinesterase inhibitor is appropriate for those having MCI, particularly those in whom the MCI is thought to have a vascular etiology or to represent the prodromal stage of a neurodegenerative disease. Recent meta-analyses exploring the use of cholinesterase inhibitors in patients having MCI have concluded that there is no evidence to support this practice. Although meta-analytic techniques seemingly strengthen the confidence in a recommendation via the incorporation of a large number of subjects analyzed, the technique is not capable of overcoming any inherent weaknesses of the individual studies included in the analysis. It is arguable whether studies in MCI may have employed endpoints poorly adapted to investigating effect of cholinesterase inhibitors. Most studies have used cognitive screening examinations, all of which stretch their detection ability to identify subjects with MCI, let alone discriminate subtle differences between them. Some have used conversion from MCI to dementia as an endpoint, which may not be the best measure for a symptomatic treatment. Further, once conversion to dementia has occurred, a cholinesterase inhibitor would be started in most (if not all) clinical settings, a reality not well reflected in most study designs. Additionally, several large studies have not permitted subject stratification by APOE carrier status, another important defect in assessing outcome. In clinical practice, our center typically does recommend cholinesterase inhibitors for patients having MCI. Despite the modest effect size, many patients do wish to start on treatment. It appears that this is a generally accepted practice and experience, as most clinical trials for prodromal Alzheimer's disease specify that participants should be taking a cholinesterase inhibitor.
Collapse
Affiliation(s)
- Brendan J Kelley
- Department of Neurology, The Ohio State University, 395 W. 12th Ave.-7th Floor, Columbus, OH, 43210, USA,
| |
Collapse
|