101
|
Ehmann N, Owald D, Kittel RJ. Drosophila active zones: From molecules to behaviour. Neurosci Res 2018; 127:14-24. [DOI: 10.1016/j.neures.2017.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 11/15/2022]
|
102
|
Zhao X, Lenek D, Dag U, Dickson BJ, Keleman K. Persistent activity in a recurrent circuit underlies courtship memory in Drosophila. eLife 2018; 7:31425. [PMID: 29322941 PMCID: PMC5800849 DOI: 10.7554/elife.31425] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/09/2018] [Indexed: 11/30/2022] Open
Abstract
Recurrent connections are thought to be a common feature of the neural circuits that encode memories, but how memories are laid down in such circuits is not fully understood. Here we present evidence that courtship memory in Drosophila relies on the recurrent circuit between mushroom body gamma (MBγ), M6 output, and aSP13 dopaminergic neurons. We demonstrate persistent neuronal activity of aSP13 neurons and show that it transiently potentiates synaptic transmission from MBγ>M6 neurons. M6 neurons in turn provide input to aSP13 neurons, prolonging potentiation of MBγ>M6 synapses over time periods that match short-term memory. These data support a model in which persistent aSP13 activity within a recurrent circuit lays the foundation for a short-term memory. Memories help to shape behavior, and can last from a few seconds to an entire lifetime. Working memory, in which information is temporarily held available for use in an ongoing task, is the most fleeting form of memory. It relies on persistent activation of a network of nerve cells or neurons that represent the information in question. Strengthening the connections between those neurons may result in a longer-lasting memory. But the mechanisms that support the formation of memories of different durations are not fully understood. Zhao et al. have now explored these mechanisms in the fruit fly by studying memory for courtship behavior. Inexperienced male fruit flies will attempt to court both virgin females and females who have recently mated. But the latter reject courtship attempts, and male fruit flies therefore learn to avoid them. This is known as courtship memory, and it relies on a network of neurons within a region of the fruit fly brain called the mushroom body. Within the mushroom body, dopamine neuron sends signals to a neuron called the Kenyon cell, which in turn sends signals to a mushroom body output neuron. The latter activates circuits responsible for decision-making and movement. But it also activates the dopamine neuron, thereby forming a recurrent circuit or loop. When the courtship is rejected, the dopamine neuron becomes persistently active, which generates a working memory of the experience. If the circuit is activated again during this period of persistent firing, the working memory may be converted into a longer-lasting memory. The results of Zhao et al. provide insights into the mechanisms by which memories form and undergo strengthening. They suggest that distinct processes within a single neural circuit give rise to memories of different durations. Recurrent loops are also present within the brains of mammals. Similar processes may thus support the formation and persistence of our own memories.
Collapse
Affiliation(s)
| | - Daniela Lenek
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Ugur Dag
- Janelia Research Campus, Ashburn, United States
| | - Barry J Dickson
- Janelia Research Campus, Ashburn, United States.,Queensland Brain Institute, University of Queensland, St Lucia, Australia
| | - Krystyna Keleman
- Janelia Research Campus, Ashburn, United States.,Research Institute of Molecular Pathology, Vienna, Austria
| |
Collapse
|
103
|
Abstract
The past decade has witnessed the development of powerful, genetically encoded tools for manipulating and monitoring neuronal function in freely moving animals. These tools are most readily deployed in genetic model organisms and efforts to map the circuits that govern behavior have increasingly focused on worms, flies, zebrafish, and mice. The traditional virtues of these animals for genetic studies in terms of small size, short generation times, and ease of animal husbandry in a laboratory setting have facilitated rapid progress, and the neural basis of an increasing number of behaviors is being established at cellular resolution in each of these animals. The depth and breadth of this analysis should soon offer a significantly more comprehensive understanding of how the circuitry underlying behavior is organized in particular animals and promises to help answer long-standing questions that have waited for such a brain-wide perspective on nervous system function. The comprehensive understanding achieved in genetic model animals is thus likely to make them into paradigmatic examples that will serve as touchstones for comparisons to understand how behavior is organized in other animals, including ourselves.
Collapse
Affiliation(s)
- Benjamin H White
- a Laboratory of Molecular Biology , National Institute of Mental Health, NIH , Bethesda , MD , USA
| |
Collapse
|
104
|
Abstract
Taste allows animals to discriminate the value and potential toxicity of food prior to ingestion. Many tastants elicit an innate attractive or avoidance response that is modifiable with nutritional state and prior experience. A powerful genetic tool kit, well-characterized gustatory system, and standardized behavioral assays make the fruit fly, Drosophila melanogaster, an excellent system for investigating taste processing and memory. Recent studies have used this system to identify the neural basis for acquired taste preference. These studies have revealed a role for dopamine-mediated plasticity of the mushroom bodies that modulate the threshold of response to appetitive tastants. The identification of neural circuitry regulating taste memory provides a system to study the genetic and physiological processes that govern plasticity within a defined memory circuit.
Collapse
Affiliation(s)
- Pavel Masek
- a Department of Biology , Binghamton University , Binghamton , NY , USA
| | - Alex C Keene
- b Department of Biological Sciences , Florida Atlantic University , Jupiter , FL , USA
| |
Collapse
|
105
|
Donlea JM. Neuronal and molecular mechanisms of sleep homeostasis. CURRENT OPINION IN INSECT SCIENCE 2017; 24:51-57. [PMID: 29208223 DOI: 10.1016/j.cois.2017.09.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
Sleep is necessary for survival, and prolonged waking causes a homeostatic increase in the need for recovery sleep. Homeostasis is a core component of sleep regulation and has been tightly conserved across evolution from invertebrates to man. Homeostatic sleep regulation was first identified among insects in cockroaches several decades ago, but the characterization of sleep rebound in Drosophila melanogaster opened the use of insect model species to understand homeostatic functions and regulation of sleep. This review describes circuits in two neuropil structures, the central complex and mushroom bodies, that influence sleep homeostasis and neuromodulatory systems that influence the accrual of homeostatic sleep need.
Collapse
Affiliation(s)
- Jeffrey M Donlea
- Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095-1763, USA.
| |
Collapse
|
106
|
Steijven K, Spaethe J, Steffan-Dewenter I, Härtel S. Learning performance and brain structure of artificially-reared honey bees fed with different quantities of food. PeerJ 2017; 5:e3858. [PMID: 29085743 PMCID: PMC5657415 DOI: 10.7717/peerj.3858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/06/2017] [Indexed: 11/24/2022] Open
Abstract
Background Artificial rearing of honey bee larvae is an established method which enables to fully standardize the rearing environment and to manipulate the supplied diet to the brood. However, there are no studies which compare learning performance or neuroanatomic differences of artificially-reared (in-lab) bees in comparison with their in-hive reared counterparts. Methods Here we tested how different quantities of food during larval development affect body size, brain morphology and learning ability of adult honey bees. We used in-lab rearing to be able to manipulate the total quantity of food consumed during larval development. After hatching, a subset of the bees was taken for which we made 3D reconstructions of the brains using confocal laser-scanning microscopy. Learning ability and memory formation of the remaining bees was tested in a differential olfactory conditioning experiment. Finally, we evaluated how bees reared with different quantities of artificial diet compared to in-hive reared bees. Results Thorax and head size of in-lab reared honey bees, when fed the standard diet of 160 µl or less, were slightly smaller than hive bees. The brain structure analyses showed that artificially reared bees had smaller mushroom body (MB) lateral calyces than their in-hive counterparts, independently of the quantity of food they received. However, they showed the same total brain size and the same associative learning ability as in-hive reared bees. In terms of mid-term memory, but not early long-term memory, they performed even better than the in-hive control. Discussion We have demonstrated that bees that are reared artificially (according to the Aupinel protocol) and kept in lab-conditions perform the same or even better than their in-hive sisters in an olfactory conditioning experiment even though their lateral calyces were consistently smaller at emergence. The applied combination of experimental manipulation during the larval phase plus subsequent behavioral and neuro-anatomic analyses is a powerful tool for basic and applied honey bee research.
Collapse
Affiliation(s)
- Karin Steijven
- Department of Animal Ecology & Tropical Biology, University of Würzburg, Würzburg, Germany.,Lectorat Bee Health-Domain Animals and Business, Van Hall Larenstein, University of Applied Sciences, Leeuwarden, Netherlands
| | - Johannes Spaethe
- Department of Behavioral Physiology & Sociobiology, University of Würzburg, Würzburg, Germany
| | | | - Stephan Härtel
- Department of Animal Ecology & Tropical Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
107
|
Takemura SY, Aso Y, Hige T, Wong A, Lu Z, Xu CS, Rivlin PK, Hess H, Zhao T, Parag T, Berg S, Huang G, Katz W, Olbris DJ, Plaza S, Umayam L, Aniceto R, Chang LA, Lauchie S, Ogundeyi O, Ordish C, Shinomiya A, Sigmund C, Takemura S, Tran J, Turner GC, Rubin GM, Scheffer LK. A connectome of a learning and memory center in the adult Drosophila brain. eLife 2017; 6. [PMID: 28718765 PMCID: PMC5550281 DOI: 10.7554/elife.26975] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 07/17/2017] [Indexed: 12/12/2022] Open
Abstract
Understanding memory formation, storage and retrieval requires knowledge of the underlying neuronal circuits. In Drosophila, the mushroom body (MB) is the major site of associative learning. We reconstructed the morphologies and synaptic connections of all 983 neurons within the three functional units, or compartments, that compose the adult MB’s α lobe, using a dataset of isotropic 8 nm voxels collected by focused ion-beam milling scanning electron microscopy. We found that Kenyon cells (KCs), whose sparse activity encodes sensory information, each make multiple en passant synapses to MB output neurons (MBONs) in each compartment. Some MBONs have inputs from all KCs, while others differentially sample sensory modalities. Only 6% of KC>MBON synapses receive a direct synapse from a dopaminergic neuron (DAN). We identified two unanticipated classes of synapses, KC>DAN and DAN>MBON. DAN activation produces a slow depolarization of the MBON in these DAN>MBON synapses and can weaken memory recall. DOI:http://dx.doi.org/10.7554/eLife.26975.001
Collapse
Affiliation(s)
- Shin-Ya Takemura
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Toshihide Hige
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Allan Wong
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Zhiyuan Lu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Patricia K Rivlin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Harald Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Ting Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Toufiq Parag
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Stuart Berg
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gary Huang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - William Katz
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Donald J Olbris
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Stephen Plaza
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Lowell Umayam
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Roxanne Aniceto
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Lei-Ann Chang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Shirley Lauchie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Omotara Ogundeyi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Christopher Ordish
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Aya Shinomiya
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Christopher Sigmund
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Satoko Takemura
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Julie Tran
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Glenn C Turner
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Louis K Scheffer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
108
|
Almeida-Carvalho MJ, Berh D, Braun A, Chen YC, Eichler K, Eschbach C, Fritsch PMJ, Gerber B, Hoyer N, Jiang X, Kleber J, Klämbt C, König C, Louis M, Michels B, Miroschnikow A, Mirth C, Miura D, Niewalda T, Otto N, Paisios E, Pankratz MJ, Petersen M, Ramsperger N, Randel N, Risse B, Saumweber T, Schlegel P, Schleyer M, Soba P, Sprecher SG, Tanimura T, Thum AS, Toshima N, Truman JW, Yarali A, Zlatic M. The Ol1mpiad: concordance of behavioural faculties of stage 1 and stage 3 Drosophila larvae. J Exp Biol 2017; 220:2452-2475. [DOI: 10.1242/jeb.156646] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/03/2017] [Indexed: 12/25/2022]
Abstract
ABSTRACT
Mapping brain function to brain structure is a fundamental task for neuroscience. For such an endeavour, the Drosophila larva is simple enough to be tractable, yet complex enough to be interesting. It features about 10,000 neurons and is capable of various taxes, kineses and Pavlovian conditioning. All its neurons are currently being mapped into a light-microscopical atlas, and Gal4 strains are being generated to experimentally access neurons one at a time. In addition, an electron microscopic reconstruction of its nervous system seems within reach. Notably, this electron microscope-based connectome is being drafted for a stage 1 larva – because stage 1 larvae are much smaller than stage 3 larvae. However, most behaviour analyses have been performed for stage 3 larvae because their larger size makes them easier to handle and observe. It is therefore warranted to either redo the electron microscopic reconstruction for a stage 3 larva or to survey the behavioural faculties of stage 1 larvae. We provide the latter. In a community-based approach we called the Ol1mpiad, we probed stage 1 Drosophila larvae for free locomotion, feeding, responsiveness to substrate vibration, gentle and nociceptive touch, burrowing, olfactory preference and thermotaxis, light avoidance, gustatory choice of various tastants plus odour–taste associative learning, as well as light/dark–electric shock associative learning. Quantitatively, stage 1 larvae show lower scores in most tasks, arguably because of their smaller size and lower speed. Qualitatively, however, stage 1 larvae perform strikingly similar to stage 3 larvae in almost all cases. These results bolster confidence in mapping brain structure and behaviour across developmental stages.
Collapse
Affiliation(s)
| | - Dimitri Berh
- Institute of Neurobiology and Behavioural Biology, University of Münster, 48149 Münster, Germany
- Department of Mathematics and Computer Science, University of Münster, 48149 Münster, Germany
| | - Andreas Braun
- EMBL/CRG Systems Biology Unit, Centre for Genomic Regulation, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Yi-chun Chen
- Leibniz Institute for Neurobiology (Genetics), 39118 Magdeburg, Germany
| | - Katharina Eichler
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Claire Eschbach
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | | | - Bertram Gerber
- Leibniz Institute for Neurobiology (Genetics), 39118 Magdeburg, Germany
- Institute of Biology, Otto von Guericke University Magdeburg, 39118 Magdeburg, Germany
- Center for Behavioral Brain Sciences, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Nina Hoyer
- Center for Molecular Neurobiology, University of Hamburg, 20251 Hamburg, Germany
| | - Xiaoyi Jiang
- Department of Mathematics and Computer Science, University of Münster, 48149 Münster, Germany
| | - Jörg Kleber
- Leibniz Institute for Neurobiology (Genetics), 39118 Magdeburg, Germany
| | - Christian Klämbt
- Institute of Neurobiology and Behavioural Biology, University of Münster, 48149 Münster, Germany
| | - Christian König
- Leibniz Institute for Neurobiology (Molecular Systems Biology), 39118 Magdeburg, Germany
- Institute of Pharmacology and Toxicology, Otto von Guericke University Magdeburg, 39118 Magdeburg, Germany
| | - Matthieu Louis
- EMBL/CRG Systems Biology Unit, Centre for Genomic Regulation, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, 08002 Barcelona, Spain
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93117, USA
| | - Birgit Michels
- Leibniz Institute for Neurobiology (Genetics), 39118 Magdeburg, Germany
| | | | - Christen Mirth
- Gulbenkian Institute of Science, 2780-156 Oeiras, Portugal
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Daisuke Miura
- Department of Biology, Kyushu University, 819-0395 Fukuoka, Japan
| | - Thomas Niewalda
- Leibniz Institute for Neurobiology (Genetics), 39118 Magdeburg, Germany
| | - Nils Otto
- Institute of Neurobiology and Behavioural Biology, University of Münster, 48149 Münster, Germany
| | - Emmanouil Paisios
- Leibniz Institute for Neurobiology (Genetics), 39118 Magdeburg, Germany
| | | | - Meike Petersen
- Center for Molecular Neurobiology, University of Hamburg, 20251 Hamburg, Germany
| | - Noel Ramsperger
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Nadine Randel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Benjamin Risse
- Institute of Neurobiology and Behavioural Biology, University of Münster, 48149 Münster, Germany
- Department of Mathematics and Computer Science, University of Münster, 48149 Münster, Germany
| | - Timo Saumweber
- Leibniz Institute for Neurobiology (Genetics), 39118 Magdeburg, Germany
| | | | - Michael Schleyer
- Leibniz Institute for Neurobiology (Genetics), 39118 Magdeburg, Germany
| | - Peter Soba
- Center for Molecular Neurobiology, University of Hamburg, 20251 Hamburg, Germany
| | - Simon G. Sprecher
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Teiichi Tanimura
- Department of Biology, Kyushu University, 819-0395 Fukuoka, Japan
| | - Andreas S. Thum
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Naoko Toshima
- Leibniz Institute for Neurobiology (Genetics), 39118 Magdeburg, Germany
- Department of Biology, Kyushu University, 819-0395 Fukuoka, Japan
| | - Jim W. Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| | - Ayse Yarali
- Center for Behavioral Brain Sciences, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
- Leibniz Institute for Neurobiology (Molecular Systems Biology), 39118 Magdeburg, Germany
| | - Marta Zlatic
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| |
Collapse
|
109
|
Regulation of Drosophila Brain Wiring by Neuropil Interactions via a Slit-Robo-RPTP Signaling Complex. Dev Cell 2017; 39:267-278. [PMID: 27780041 PMCID: PMC5084709 DOI: 10.1016/j.devcel.2016.09.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 03/29/2016] [Accepted: 08/25/2016] [Indexed: 11/05/2022]
Abstract
The axonal wiring molecule Slit and its Round-About (Robo) receptors are conserved regulators of nerve cord patterning. Robo receptors also contribute to wiring brain circuits. Whether molecular mechanisms regulating these signals are modified to fit more complex brain wiring processes is unclear. We investigated the role of Slit and Robo receptors in wiring Drosophila higher-order brain circuits and identified differences in the cellular and molecular mechanisms of Robo/Slit function. First, we find that signaling by Robo receptors in the brain is regulated by the Receptor Protein Tyrosine Phosphatase RPTP69d. RPTP69d increases membrane availability of Robo3 without affecting its phosphorylation state. Second, we detect no midline localization of Slit during brain development. Instead, Slit is enriched in the mushroom body, a neuronal structure covering large areas of the brain. Thus, a divergent molecular mechanism regulates neuronal circuit wiring in the Drosophila brain, partly in response to signals from the mushroom body. In the Drosophila brain, mushroom bodies are a source of the Slit guidance cue Slit regulates axon growth in the vicinity of mushroom bodies via Robo receptors The phosphatase RPTP69D regulates Robo signaling in the brain RPTP69D regulates Robo3 membrane presentation independent of its enzymatic activity
Collapse
|
110
|
Plath JA, Entler BV, Kirkerud NH, Schlegel U, Galizia CG, Barron AB. Different Roles for Honey Bee Mushroom Bodies and Central Complex in Visual Learning of Colored Lights in an Aversive Conditioning Assay. Front Behav Neurosci 2017; 11:98. [PMID: 28611605 PMCID: PMC5447682 DOI: 10.3389/fnbeh.2017.00098] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 05/09/2017] [Indexed: 11/13/2022] Open
Abstract
The honey bee is an excellent visual learner, but we know little about how and why it performs so well, or how visual information is learned by the bee brain. Here we examined the different roles of two key integrative regions of the brain in visual learning: the mushroom bodies and the central complex. We tested bees' learning performance in a new assay of color learning that used electric shock as punishment. In this assay a light field was paired with electric shock. The other half of the conditioning chamber was illuminated with light of a different wavelength and not paired with shocks. The unrestrained bee could run away from the light stimulus and thereby associate one wavelength with punishment, and the other with safety. We compared learning performance of bees in which either the central complex or mushroom bodies had been transiently inactivated by microinjection of the reversible anesthetic procaine. Control bees learned to escape the shock-paired light field and to spend more time in the safe light field after a few trials. When ventral lobe neurons of the mushroom bodies were silenced, bees were no longer able to associate one light field with shock. By contrast, silencing of one collar region of the mushroom body calyx did not alter behavior in the learning assay in comparison to control treatment. Bees with silenced central complex neurons did not leave the shock-paired light field in the middle trials of training, even after a few seconds of being shocked. We discussed how mushroom bodies and the central complex both contribute to aversive visual learning with an operant component.
Collapse
Affiliation(s)
- Jenny A Plath
- Department of Biological Sciences, Macquarie UniversitySydney, NSW, Australia.,Department of Biology, University of KonstanzKonstanz, Germany
| | - Brian V Entler
- Department of Biological Sciences, Macquarie UniversitySydney, NSW, Australia.,Department of Biology, University of ScrantonScranton, PA, United States
| | - Nicholas H Kirkerud
- Department of Biology, University of KonstanzKonstanz, Germany.,International Max-Planck Research School for Organismal Biology, University of KonstanzKonstanz, Germany
| | - Ulrike Schlegel
- Department of Biology, University of KonstanzKonstanz, Germany.,Department of Biosciences, University of OsloOslo, Norway
| | | | - Andrew B Barron
- Department of Biological Sciences, Macquarie UniversitySydney, NSW, Australia
| |
Collapse
|
111
|
Liu Q, Gan L, Ni J, Chen Y, Chen Y, Huang Z, Huang X, Wen T. Dcf1 Improves Behavior Deficit in Drosophila and Mice Caused by Optogenetic Suppression. J Cell Biochem 2017; 118:4210-4215. [PMID: 28401598 DOI: 10.1002/jcb.26048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/10/2017] [Indexed: 11/11/2022]
Abstract
Optogenetics play a significant role in neuroscientific research by providing a tool for understanding neural circuits and brain functions. Natronomonas pharaonis halorhodopsin (NpHR) actively pumps chloride ions into the cells and hyperpolarizes neuronal membranes in response to yellow light. In this study, we generated transgenic Drosophila expressing NpHR under the control of the Gal4/UAS system and virus-infected mice expressing NpHR to explore the effect of dendritic cell factor 1 (Dcf1) on the behavior mediated by the mushroom body in Drosophila and the dentate gyrus (DG) in mice. Study of optogenetic behavior showed that NpHR suppressed the behavior in Drosophila larvae and mice, whereas Dcf1 rescued this suppression. These results suggest that Dcf1 plays an important role in behavior induced by the mushroom body and the hippocampus and provides novel insights into their functions. J. Cell. Biochem. 118: 4210-4215, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Qiang Liu
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Linhua Gan
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Jian Ni
- Department of Pharmacology, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Yu Chen
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Yanlu Chen
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Zhili Huang
- Department of Pharmacology, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Xu Huang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Tieqiao Wen
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| |
Collapse
|
112
|
Sudhakaran IP, Ramaswami M. Long-term memory consolidation: The role of RNA-binding proteins with prion-like domains. RNA Biol 2017; 14:568-586. [PMID: 27726526 PMCID: PMC5449092 DOI: 10.1080/15476286.2016.1244588] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/07/2016] [Accepted: 09/29/2016] [Indexed: 12/23/2022] Open
Abstract
Long-term and short-term memories differ primarily in the duration of their retention. At a molecular level, long-term memory (LTM) is distinguished from short-term memory (STM) by its requirement for new gene expression. In addition to transcription (nuclear gene expression) the translation of stored mRNAs is necessary for LTM formation. The mechanisms and functions for temporal and spatial regulation of mRNAs required for LTM is a major contemporary problem, of interest from molecular, cell biological, neurobiological and clinical perspectives. This review discusses primary evidence in support for translational regulatory events involved in LTM and a model in which different phases of translation underlie distinct phases of consolidation of memories. However, it focuses largely on mechanisms of memory persistence and the role of prion-like domains in this defining aspect of long-term memory. We consider primary evidence for the concept that Cytoplasmic Polyadenylation Element Binding (CPEB) protein enables the persistence of formed memories by transforming in prion-like manner from a soluble monomeric state to a self-perpetuating and persistent polymeric translationally active state required for maintaining persistent synaptic plasticity. We further discuss prion-like domains prevalent on several other RNA-binding proteins involved in neuronal translational control underlying LTM. Growing evidence indicates that such RNA regulatory proteins are components of mRNP (RiboNucleoProtein) granules. In these proteins, prion-like domains, being intrinsically disordered, could mediate weak transient interactions that allow the assembly of RNP granules, a source of silenced mRNAs whose translation is necessary for LTM. We consider the structural bases for RNA granules formation as well as functions of disordered domains and discuss how these complicate the interpretation of existing experimental data relevant to general mechanisms by which prion-domain containing RBPs function in synapse specific plasticity underlying LTM.
Collapse
Affiliation(s)
- Indulekha P. Sudhakaran
- National Center for Biological Sciences, TIFR, Bangalore, India
- Manipal University, Manipal, India
| | - Mani Ramaswami
- National Center for Biological Sciences, TIFR, Bangalore, India
- School of Genetics and Microbiology and School of Natural Sciences, Smurfit Institute of Genetics and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
113
|
Genes and neural circuits for sleep of the fruit fly. Neurosci Res 2017; 118:82-91. [DOI: 10.1016/j.neures.2017.04.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 02/07/2023]
|
114
|
Michels B, Saumweber T, Biernacki R, Thum J, Glasgow RDV, Schleyer M, Chen YC, Eschbach C, Stocker RF, Toshima N, Tanimura T, Louis M, Arias-Gil G, Marescotti M, Benfenati F, Gerber B. Pavlovian Conditioning of Larval Drosophila: An Illustrated, Multilingual, Hands-On Manual for Odor-Taste Associative Learning in Maggots. Front Behav Neurosci 2017; 11:45. [PMID: 28469564 PMCID: PMC5395560 DOI: 10.3389/fnbeh.2017.00045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/27/2017] [Indexed: 01/25/2023] Open
Abstract
Larval Drosophila offer a study case for behavioral neurogenetics that is simple enough to be experimentally tractable, yet complex enough to be worth the effort. We provide a detailed, hands-on manual for Pavlovian odor-reward learning in these animals. Given the versatility of Drosophila for genetic analyses, combined with the evolutionarily shared genetic heritage with humans, the paradigm has utility not only in behavioral neurogenetics and experimental psychology, but for translational biomedicine as well. Together with the upcoming total synaptic connectome of the Drosophila nervous system and the possibilities of single-cell-specific transgene expression, it offers enticing opportunities for research. Indeed, the paradigm has already been adopted by a number of labs and is robust enough to be used for teaching in classroom settings. This has given rise to a demand for a detailed, hands-on manual directed at newcomers and/or at laboratory novices, and this is what we here provide. The paradigm and the present manual have a unique set of features: The present manual can thus foster science education at an earlier age and enable research by a broader community than has been the case to date.
Collapse
Affiliation(s)
- Birgit Michels
- Department of Genetics, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Timo Saumweber
- Department of Genetics, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Roland Biernacki
- Department Neurobiology and Genetics, Julius Maximilians UniversityWürzburg, Germany
| | - Jeanette Thum
- Department Neurobiology and Genetics, Julius Maximilians UniversityWürzburg, Germany
| | - Rupert D V Glasgow
- Department of Genetics, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Michael Schleyer
- Department of Genetics, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Yi-Chun Chen
- Department of Genetics, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | | | | | - Naoko Toshima
- Department of Genetics, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | | | - Matthieu Louis
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa BarbaraSanta Barbara, CA, USA
| | - Gonzalo Arias-Gil
- Department Systems Physiology, Leibniz Institute for Neurobiology MagdeburgMagdeburg, Germany
| | | | - Fabio Benfenati
- Italian Institute of Technology, Center for Synaptic Neuroscience and TechnologyGenova, Italy
| | - Bertram Gerber
- Department of Genetics, Leibniz Institute for NeurobiologyMagdeburg, Germany.,Institute of Biology, Otto von Guericke UniversityMagdeburg, Germany.,Center for Behavioral Brain SciencesMagdeburg, Germany
| |
Collapse
|
115
|
Immonen EV, Dacke M, Heinze S, El Jundi B. Anatomical organization of the brain of a diurnal and a nocturnal dung beetle. J Comp Neurol 2017; 525:1879-1908. [PMID: 28074466 DOI: 10.1002/cne.24169] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/14/2016] [Accepted: 12/21/2016] [Indexed: 12/25/2022]
Abstract
To avoid the fierce competition for food, South African ball-rolling dung beetles carve a piece of dung off a dung-pile, shape it into a ball and roll it away along a straight line path. For this unidirectional exit from the busy dung pile, at night and day, the beetles use a wide repertoire of celestial compass cues. This robust and relatively easily measurable orientation behavior has made ball-rolling dung beetles an attractive model organism for the study of the neuroethology behind insect orientation and sensory ecology. Although there is already some knowledge emerging concerning how celestial cues are processed in the dung beetle brain, little is known about its general neural layout. Mapping the neuropils of the dung beetle brain is thus a prerequisite to understand the neuronal network that underlies celestial compass orientation. Here, we describe and compare the brains of a day-active and a night-active dung beetle species based on immunostainings against synapsin and serotonin. We also provide 3D reconstructions for all brain areas and many of the fiber bundles in the brain of the day-active dung beetle. Comparison of neuropil structures between the two dung beetle species revealed differences that reflect adaptations to different light conditions. Altogether, our results provide a reference framework for future studies on the neuroethology of insects in general and dung beetles in particular.
Collapse
Affiliation(s)
- Esa-Ville Immonen
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland.,Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Marie Dacke
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Stanley Heinze
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Basil El Jundi
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| |
Collapse
|
116
|
Ueoka Y, Hiroi M, Abe T, Tabata T. Suppression of a single pair of mushroom body output neurons in Drosophila triggers aversive associations. FEBS Open Bio 2017; 7:562-576. [PMID: 28396840 PMCID: PMC5377409 DOI: 10.1002/2211-5463.12203] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 11/14/2022] Open
Abstract
Memory includes the processes of acquisition, consolidation and retrieval. In the study of aversive olfactory memory in Drosophila melanogaster, flies are first exposed to an odor (conditioned stimulus, CS+) that is associated with an electric shock (unconditioned stimulus, US), then to another odor (CS−) without the US, before allowing the flies to choose to avoid one of the two odors. The center for memory formation is the mushroom body which consists of Kenyon cells (KCs), dopaminergic neurons (DANs) and mushroom body output neurons (MBONs). However, the roles of individual neurons are not fully understood. We focused on the role of a single pair of GABAergic neurons (MBON‐γ1pedc) and found that it could inhibit the effects of DANs, resulting in the suppression of aversive memory acquisition during the CS− odor presentation, but not during the CS+ odor presentation. We propose that MBON‐γ1pedc suppresses the DAN‐dependent effect that can convey the aversive US during the CS− odor presentation, and thereby prevents an insignificant stimulus from becoming an aversive US.
Collapse
Affiliation(s)
- Yutaro Ueoka
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuJapan
- Institute of Molecular and Cellular BiosciencesThe University of TokyoBunkyo‐kuJapan
| | - Makoto Hiroi
- Institute of Molecular and Cellular BiosciencesThe University of TokyoBunkyo‐kuJapan
| | - Takashi Abe
- Institute of Molecular and Cellular BiosciencesThe University of TokyoBunkyo‐kuJapan
| | - Tetsuya Tabata
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuJapan
- Institute of Molecular and Cellular BiosciencesThe University of TokyoBunkyo‐kuJapan
| |
Collapse
|
117
|
Schmitt F, Vanselow JT, Schlosser A, Wegener C, Rössler W. Neuropeptides in the desert antCataglyphis fortis: Mass spectrometric analysis, localization, and age-related changes. J Comp Neurol 2016; 525:901-918. [DOI: 10.1002/cne.24109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/10/2016] [Accepted: 08/24/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Franziska Schmitt
- Behavioral Physiology and Sociobiology, Theodor-Boveri-Institute, Biocenter; University of Würzburg; D-97074 Würzburg Germany
| | - Jens T. Vanselow
- Rudolf Virchow Center for Experimental Biomedicine; University of Würzburg; D-97080 Würzburg Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine; University of Würzburg; D-97080 Würzburg Germany
| | - Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter; University of Würzburg; D-97074 Würzburg Germany
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology, Theodor-Boveri-Institute, Biocenter; University of Würzburg; D-97074 Würzburg Germany
| |
Collapse
|
118
|
Kay LJ, Smulders-Srinivasan TK, Soundararajan M. Understanding the Multifaceted Role of Human Down Syndrome Kinase DYRK1A. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 105:127-71. [PMID: 27567487 DOI: 10.1016/bs.apcsb.2016.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The dual-specificity tyrosine (Y) phosphorylation-regulated kinase DYRK1A, also known as Down syndrome (DS) kinase, is a dosage-dependent signaling kinase that was originally shown to be highly expressed in DS patients as a consequence of trisomy 21. Although this was evident some time ago, it is only in recent investigations that the molecular roles of DYRK1A in a wide range of cellular processes are becoming increasingly apparent. Since initial knowledge on DYRK1A became evident through minibrain mnb, the Drosophila homolog of DYRK1A, this review will first summarize the scientific reports on minibrain and further expand on the well-established neuronal functions of mammalian and human DYRK1A. Recent investigations across the current decade have provided rather interesting and compelling evidence in establishing nonneuronal functions for DYRK1A, including its role in infection, immunity, cardiomyocyte biology, cancer, and cell cycle control. The latter part of this review will therefore focus in detail on the emerging nonneuronal functions of DYRK1A and summarize the regulatory role of DYRK1A in controlling Tau and α-synuclein. Finally, the emerging role of DYRK1A in Parkinson's disease will be outlined.
Collapse
Affiliation(s)
- L J Kay
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - T K Smulders-Srinivasan
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - M Soundararajan
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
119
|
Honda T, Lee CY, Honjo K, Furukubo-Tokunaga K. Artificial Induction of Associative Olfactory Memory by Optogenetic and Thermogenetic Activation of Olfactory Sensory Neurons and Octopaminergic Neurons in Drosophila Larvae. Front Behav Neurosci 2016; 10:137. [PMID: 27445732 PMCID: PMC4923186 DOI: 10.3389/fnbeh.2016.00137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 06/15/2016] [Indexed: 11/25/2022] Open
Abstract
The larval brain of Drosophila melanogaster provides an excellent system for the study of the neurocircuitry mechanism of memory. Recent development of neurogenetic techniques in fruit flies enables manipulations of neuronal activities in freely behaving animals. This protocol describes detailed steps for artificial induction of olfactory associative memory in Drosophila larvae. In this protocol, the natural reward signal is substituted by thermogenetic activation of octopaminergic neurons in the brain. In parallel, the odor signal is substituted by optogenetic activation of a specific class of olfactory receptor neurons. Association of reward and odor stimuli is achieved with the concomitant application of blue light and heat that leads to activation of both sets of neurons in living transgenic larvae. Given its operational simplicity and robustness, this method could be utilized to further our knowledge on the neurocircuitry mechanism of memory in the fly brain.
Collapse
Affiliation(s)
- Takato Honda
- Institute of Biological Sciences, University of TsukubaTsukuba, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of TsukubaTsukuba, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of TsukubaTsukuba, Japan
| | - Chi-Yu Lee
- Institute of Biological Sciences, University of TsukubaTsukuba, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of TsukubaTsukuba, Japan
| | - Ken Honjo
- Institute of Biological Sciences, University of Tsukuba Tsukuba, Japan
| | | |
Collapse
|
120
|
Strunov A, Schneider DI, Albertson R, Miller WJ. Restricted distribution and lateralization of mutualistic Wolbachia in the Drosophila brain. Cell Microbiol 2016; 19. [PMID: 27353950 DOI: 10.1111/cmi.12639] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/17/2016] [Accepted: 06/24/2016] [Indexed: 12/28/2022]
Abstract
Microbial symbionts are universal entities of all living organisms that can significantly affect host fitness traits in manifold ways but, even more fascinating, also their behaviour. Although better known from parasitic symbionts, we currently lack any cases where 'neurotrophic' symbionts have co-evolved mutualistic behavioural interactions from which both partners profit. By theory, most mutualistic associations have originated from ancestral parasitic ones during their long-term co-evolution towards a cost-benefit equilibrium. To manipulate host behaviour in a way where both partners benefit in a reciprocal manner, the symbiont has to target and remain restricted to defined host brain regions to minimize unnecessary fitness costs. By using the classic Drosophila paulistorum model system we demonstrate that (i) mutualistic Wolbachia are restricted to various Drosophila brain areas, (ii) form bacteriocyte-like structures within the brain, (iii) exhibit strictly lateral tropism, and (iv) finally propose that their selective neuronal infection affects host sexual behaviour adaptively.
Collapse
Affiliation(s)
- Anton Strunov
- Department of Cell Biology, Institute of Cytology and Genetics, Novosibirsk, Russia.,Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Daniela I Schneider
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | | | - Wolfgang J Miller
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
121
|
Aso Y, Rubin GM. Dopaminergic neurons write and update memories with cell-type-specific rules. eLife 2016; 5:e16135. [PMID: 27441388 PMCID: PMC4987137 DOI: 10.7554/elife.16135] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/18/2016] [Indexed: 12/13/2022] Open
Abstract
Associative learning is thought to involve parallel and distributed mechanisms of memory formation and storage. In Drosophila, the mushroom body (MB) is the major site of associative odor memory formation. Previously we described the anatomy of the adult MB and defined 20 types of dopaminergic neurons (DANs) that each innervate distinct MB compartments (Aso et al., 2014a, 2014b). Here we compare the properties of memories formed by optogenetic activation of individual DAN cell types. We found extensive differences in training requirements for memory formation, decay dynamics, storage capacity and flexibility to learn new associations. Even a single DAN cell type can either write or reduce an aversive memory, or write an appetitive memory, depending on when it is activated relative to odor delivery. Our results show that different learning rules are executed in seemingly parallel memory systems, providing multiple distinct circuit-based strategies to predict future events from past experiences.
Collapse
Affiliation(s)
- Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
122
|
Khanna MR, Fortini ME. Transcriptomic Analysis of Drosophila Mushroom Body Neurons Lacking Amyloid-β Precursor-Like Protein Activity. J Alzheimers Dis 2016; 46:913-28. [PMID: 26402626 DOI: 10.3233/jad-141491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The amyloid-β protein precursor (AβPP) is subjected to sequential intramembrane proteolysis by α-, β-, andγ-secretases, producing secreted amyloid-β (Aβ) peptides and a cytoplasmically released AβPP Intracellular Domain (AICD). AICD complexes with transcription factors in the nucleus, suggesting that this AβPP fragment serves as an active signaling effector that regulates downstream genes, although its nuclear targets are poorly defined. To further understand this potential signaling mechanism mediated by AβPP, we performed a transcriptomic identification of the Drosophila genome that is regulated by the fly AβPP orthologue in fly mushroom body neurons, which control learning- and memory-based behaviors. We find significant changes in expression of 245 genes, representing approximately 1.6% of the Drosophila genome, with the changes ranging from +6 fold to -40 fold. The largest class of responsive targets corresponds to non-protein coding genes and includes microRNAs that have been previously implicated in Alzheimer's disease pathophysiology. Several genes were identified in our Drosophila microarray analyses that have also emerged as putative AβPP targets in similar mammalian transcriptomic studies. Our results also indicate a role for AβPP in cellular pathways involving the regulation of Drosophila Casein Kinase II, mitochondrial oxidative phosphorylation, RNA processing, and innate immunity. Our findings provide insights into the intracellular events that are regulated by AβPP activity in healthy neurons and that might become dysregulated as a result of abnormal AβPP proteolysis in AD.
Collapse
|
123
|
Inability to activate Rac1-dependent forgetting contributes to behavioral inflexibility in mutants of multiple autism-risk genes. Proc Natl Acad Sci U S A 2016; 113:7644-9. [PMID: 27335463 DOI: 10.1073/pnas.1602152113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The etiology of autism is so complicated because it involves the effects of variants of several hundred risk genes along with the contribution of environmental factors. Therefore, it has been challenging to identify the causal paths that lead to the core autistic symptoms such as social deficit, repetitive behaviors, and behavioral inflexibility. As an alternative approach, extensive efforts have been devoted to identifying the convergence of the targets and functions of the autism-risk genes to facilitate mapping out causal paths. In this study, we used a reversal-learning task to measure behavioral flexibility in Drosophila and determined the effects of loss-of-function mutations in multiple autism-risk gene homologs in flies. Mutations of five autism-risk genes with diversified molecular functions all led to a similar phenotype of behavioral inflexibility indicated by impaired reversal-learning. These reversal-learning defects resulted from the inability to forget or rather, specifically, to activate Rac1 (Ras-related C3 botulinum toxin substrate 1)-dependent forgetting. Thus, behavior-evoked activation of Rac1-dependent forgetting has a converging function for autism-risk genes.
Collapse
|
124
|
Berck ME, Khandelwal A, Claus L, Hernandez-Nunez L, Si G, Tabone CJ, Li F, Truman JW, Fetter RD, Louis M, Samuel AD, Cardona A. The wiring diagram of a glomerular olfactory system. eLife 2016; 5. [PMID: 27177418 PMCID: PMC4930330 DOI: 10.7554/elife.14859] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/06/2016] [Indexed: 12/12/2022] Open
Abstract
The sense of smell enables animals to react to long-distance cues according to learned and innate valences. Here, we have mapped with electron microscopy the complete wiring diagram of the Drosophila larval antennal lobe, an olfactory neuropil similar to the vertebrate olfactory bulb. We found a canonical circuit with uniglomerular projection neurons (uPNs) relaying gain-controlled ORN activity to the mushroom body and the lateral horn. A second, parallel circuit with multiglomerular projection neurons (mPNs) and hierarchically connected local neurons (LNs) selectively integrates multiple ORN signals already at the first synapse. LN-LN synaptic connections putatively implement a bistable gain control mechanism that either computes odor saliency through panglomerular inhibition, or allows some glomeruli to respond to faint aversive odors in the presence of strong appetitive odors. This complete wiring diagram will support experimental and theoretical studies towards bridging the gap between circuits and behavior. DOI:http://dx.doi.org/10.7554/eLife.14859.001 Our sense of smell can tell us about bread being baked faraway in the kitchen, or whether a leftover piece finally went bad. Similarly to the eyes, the nose enables us to make up a mental image of what lies at a distance. In mammals, the surface of the nose hosts a huge number of olfactory sensory cells, each of which is tuned to respond to a small set of scent molecules. The olfactory sensory cells communicate with a region of the brain called the olfactory bulb. Olfactory sensory cells of the same type converge onto the same small pocket of the olfactory bulb, forming a structure called a glomerulus. Similarly to how the retina generates an image, the combined activity of multiple glomeruli defines an odor. A particular smell is the combination of many volatile compounds, the odorants. Therefore the interactions between different olfactory glomeruli are important for defining the nature of the perceived odor. Although the types of neurons involved in these interactions were known in insects, fish and mice, a precise wiring diagram of a complete set of glomeruli had not been described. In particular, the points of contact through which neurons communicate with each other – known as synapses – among all the neurons participating in an olfactory system were not known. Berck, Khandelwal et al. have now taken advantage of the small size of the olfactory system of the larvae of Drosophila fruit flies to fully describe, using high-resolution imaging, all its neurons and their synapses. The results define the complete wiring diagram of the neural circuit that processes the signals sent by olfactory sensory neurons in the larva’s olfactory circuits. In addition to the neurons that read out the activity of a single glomerulus and send it to higher areas of the brain for further processing, there are also numerous neurons that read out activity from multiple glomeruli. These neurons represent a system, encoded in the genome, for quickly extracting valuable olfactory information and then relaying it to other areas of the brain. An essential aspect of sensation is the ability to stop noticing a stimulus if it doesn't change. This allows an animal to, for example, find food by moving in a direction that increases the intensity of an odor. Inhibition mediates some aspects of this capability. The discovery of structure in the inhibitory connections among glomeruli, together with prior findings on the inner workings of the olfactory system, enabled Berck, Khandelwal et al. to hypothesize how the olfactory circuits enable odor gradients to be navigated. Further investigation revealed more about how the circuits could detect slight changes in odor concentration regardless of whether the overall odor intensity is strong or faint. And, crucially, it revealed how the worst odors – which can signal danger – can still be perceived in the presence of very strong pleasant odors. With the wiring diagram, theories about the sense of smell can now be tested using the genetic tools available for Drosophila, leading to an understanding of how neural circuits work. DOI:http://dx.doi.org/10.7554/eLife.14859.002
Collapse
Affiliation(s)
- Matthew E Berck
- Department of Physics, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Avinash Khandelwal
- EMBL-CRG Systems Biology Program, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Lindsey Claus
- Department of Physics, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Luis Hernandez-Nunez
- Department of Physics, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Guangwei Si
- Department of Physics, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | | | - Feng Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Rick D Fetter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Matthieu Louis
- EMBL-CRG Systems Biology Program, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Aravinthan Dt Samuel
- Department of Physics, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
125
|
Crocker A, Guan XJ, Murphy CT, Murthy M. Cell-Type-Specific Transcriptome Analysis in the Drosophila Mushroom Body Reveals Memory-Related Changes in Gene Expression. Cell Rep 2016; 15:1580-1596. [PMID: 27160913 DOI: 10.1016/j.celrep.2016.04.046] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 02/21/2016] [Accepted: 04/08/2016] [Indexed: 12/25/2022] Open
Abstract
Learning and memory formation in Drosophila rely on a network of neurons in the mushroom bodies (MBs). Whereas numerous studies have delineated roles for individual cell types within this network in aspects of learning or memory, whether or not these cells can also be distinguished by the genes they express remains unresolved. In addition, the changes in gene expression that accompany long-term memory formation within the MBs have not yet been studied by neuron type. Here, we address both issues by performing RNA sequencing on single cell types (harvested via patch pipets) within the MB. We discover that the expression of genes that encode cell surface receptors is sufficient to identify cell types and that a subset of these genes, required for sensory transduction in peripheral sensory neurons, is not only expressed within individual neurons of the MB in the central brain, but is also critical for memory formation.
Collapse
Affiliation(s)
- Amanda Crocker
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Xiao-Juan Guan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Coleen T Murphy
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Paul F. Glenn Laboratories for Aging Research, Princeton University, Princeton, NJ 08544, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
126
|
Das G, Lin S, Waddell S. Remembering Components of Food in Drosophila. Front Integr Neurosci 2016; 10:4. [PMID: 26924969 PMCID: PMC4759284 DOI: 10.3389/fnint.2016.00004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/25/2016] [Indexed: 12/28/2022] Open
Abstract
Remembering features of past feeding experience can refine foraging and food choice. Insects can learn to associate sensory cues with components of food, such as sugars, amino acids, water, salt, alcohol, toxins and pathogens. In the fruit fly Drosophila some food components activate unique subsets of dopaminergic neurons (DANs) that innervate distinct functional zones on the mushroom bodies (MBs). This architecture suggests that the overall dopaminergic neuron population could provide a potential cellular substrate through which the fly might learn to value a variety of food components. In addition, such an arrangement predicts that individual component memories reside in unique locations. DANs are also critical for food memory consolidation and deprivation-state dependent motivational control of the expression of food-relevant memories. Here, we review our current knowledge of how nutrient-specific memories are formed, consolidated and specifically retrieved in insects, with a particular emphasis on Drosophila.
Collapse
Affiliation(s)
- Gaurav Das
- Centre for Neural Circuits and Behaviour, University of OxfordOxford, UK
| | - Suewei Lin
- Centre for Neural Circuits and Behaviour, University of OxfordOxford, UK
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, University of OxfordOxford, UK
| |
Collapse
|
127
|
Unique and Overlapping Functions of Formins Frl and DAAM During Ommatidial Rotation and Neuronal Development in Drosophila. Genetics 2016; 202:1135-51. [PMID: 26801180 DOI: 10.1534/genetics.115.181438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/18/2016] [Indexed: 01/14/2023] Open
Abstract
The noncanonical Frizzled/planar cell polarity (PCP) pathway regulates establishment of polarity within the plane of an epithelium to generate diversity of cell fates, asymmetric, but highly aligned structures, or to orchestrate the directional migration of cells during convergent extension during vertebrate gastrulation. In Drosophila, PCP signaling is essential to orient actin wing hairs and to align ommatidia in the eye, in part by coordinating the movement of groups of photoreceptor cells during ommatidial rotation. Importantly, the coordination of PCP signaling with changes in the cytoskeleton is essential for proper epithelial polarity. Formins polymerize linear actin filaments and are key regulators of the actin cytoskeleton. Here, we show that the diaphanous-related formin, Frl, the single fly member of the FMNL (formin related in leukocytes/formin-like) formin subfamily affects ommatidial rotation in the Drosophila eye and is controlled by the Rho family GTPase Cdc42. Interestingly, we also found that frl mutants exhibit an axon growth phenotype in the mushroom body, a center for olfactory learning in the Drosophila brain, which is also affected in a subset of PCP genes. Significantly, Frl cooperates with Cdc42 and another formin, DAAM, during mushroom body formation. This study thus suggests that different formins can cooperate or act independently in distinct tissues, likely integrating various signaling inputs with the regulation of the cytoskeleton. It furthermore highlights the importance and complexity of formin-dependent cytoskeletal regulation in multiple organs and developmental contexts.
Collapse
|
128
|
ICHINOSE T, TANIMOTO H. Dynamics of memory-guided choice behavior in Drosophila. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2016; 92:346-357. [PMID: 27725473 PMCID: PMC5243950 DOI: 10.2183/pjab.92.346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
Memory retrieval requires both accuracy and speed. Olfactory learning of the fruit fly Drosophila melanogaster serves as a powerful model system to identify molecular and neuronal substrates of memory and memory-guided behavior. The behavioral expression of olfactory memory has traditionally been tested as a conditioned odor response in a simple T-maze, which measures the result, but not the speed, of odor choice. Here, we developed multiplexed T-mazes that allow video recording of the choice behavior. Automatic fly counting in each arm of the maze visualizes choice dynamics. Using this setup, we show that the transient blockade of serotonergic neurons slows down the choice, while leaving the eventual choice intact. In contrast, activation of the same neurons impairs the eventual performance leaving the choice speed unchanged. Our new apparatus contributes to elucidating how the speed and the accuracy of memory retrieval are implemented in the fly brain.
Collapse
Affiliation(s)
- Toshiharu ICHINOSE
- Tohoku University Graduate School of Life Sciences, Sendai, Japan
- Max-Planck Institut für Neurobiologie, Martinsried, Germany
| | - Hiromu TANIMOTO
- Tohoku University Graduate School of Life Sciences, Sendai, Japan
- Max-Planck Institut für Neurobiologie, Martinsried, Germany
| |
Collapse
|
129
|
Sitaraman D, Aso Y, Rubin GM, Nitabach MN. Control of Sleep by Dopaminergic Inputs to the Drosophila Mushroom Body. Front Neural Circuits 2015; 9:73. [PMID: 26617493 PMCID: PMC4637407 DOI: 10.3389/fncir.2015.00073] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/23/2015] [Indexed: 01/08/2023] Open
Abstract
The Drosophila mushroom body (MB) is an associative learning network that is important for the control of sleep. We have recently identified particular intrinsic MB Kenyon cell (KC) classes that regulate sleep through synaptic activation of particular MB output neurons (MBONs) whose axons convey sleep control signals out of the MB to downstream target regions. Specifically, we found that sleep-promoting KCs increase sleep by preferentially activating cholinergic sleep-promoting MBONs, while wake-promoting KCs decrease sleep by preferentially activating glutamatergic wake-promoting MBONs. Here we use a combination of genetic and physiological approaches to identify wake-promoting dopaminergic neurons (DANs) that innervate the MB, and show that they activate wake-promoting MBONs. These studies reveal a dopaminergic sleep control mechanism that likely operates by modulation of KC-MBON microcircuits.
Collapse
Affiliation(s)
- Divya Sitaraman
- Department of Cellular and Molecular Physiology, Yale University School of Medicine New Haven, CT, USA ; Janelia Research Campus, Howard Hughes Medical Institute Ashburn, VA, USA
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute Ashburn, VA, USA
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute Ashburn, VA, USA
| | - Michael N Nitabach
- Department of Cellular and Molecular Physiology, Yale University School of Medicine New Haven, CT, USA ; Janelia Research Campus, Howard Hughes Medical Institute Ashburn, VA, USA ; Department of Genetics, Yale University School of Medicine New Haven, CT, USA ; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine New Haven, CT, USA
| |
Collapse
|
130
|
Sitaraman D, Aso Y, Jin X, Chen N, Felix M, Rubin GM, Nitabach MN. Propagation of Homeostatic Sleep Signals by Segregated Synaptic Microcircuits of the Drosophila Mushroom Body. Curr Biol 2015; 25:2915-27. [PMID: 26455303 DOI: 10.1016/j.cub.2015.09.017] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/12/2015] [Accepted: 09/04/2015] [Indexed: 12/17/2022]
Abstract
The Drosophila mushroom body (MB) is a key associative memory center that has also been implicated in the control of sleep. However, the identity of MB neurons underlying homeostatic sleep regulation, as well as the types of sleep signals generated by specific classes of MB neurons, has remained poorly understood. We recently identified two MB output neuron (MBON) classes whose axons convey sleep control signals from the MB to converge in the same downstream target region: a cholinergic sleep-promoting MBON class and a glutamatergic wake-promoting MBON class. Here, we deploy a combination of neurogenetic, behavioral, and physiological approaches to identify and mechanistically dissect sleep-controlling circuits of the MB. Our studies reveal the existence of two segregated excitatory synaptic microcircuits that propagate homeostatic sleep information from different populations of intrinsic MB "Kenyon cells" (KCs) to specific sleep-regulating MBONs: sleep-promoting KCs increase sleep by preferentially activating the cholinergic MBONs, while wake-promoting KCs decrease sleep by preferentially activating the glutamatergic MBONs. Importantly, activity of the sleep-promoting MB microcircuit is increased by sleep deprivation and is necessary for homeostatic rebound sleep (i.e., the increased sleep that occurs after, and in compensation for, sleep lost during deprivation). These studies reveal for the first time specific functional connections between subsets of KCs and particular MBONs and establish the identity of synaptic microcircuits underlying transmission of homeostatic sleep signals in the MB.
Collapse
Affiliation(s)
- Divya Sitaraman
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Xin Jin
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Nan Chen
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Mario Felix
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Michael N Nitabach
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
131
|
The Formin DAAM Functions as Molecular Effector of the Planar Cell Polarity Pathway during Axonal Development in Drosophila. J Neurosci 2015; 35:10154-67. [PMID: 26180192 DOI: 10.1523/jneurosci.3708-14.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent studies established that the planar cell polarity (PCP) pathway is critical for various aspects of nervous system development and function, including axonal guidance. Although it seems clear that PCP signaling regulates actin dynamics, the mechanisms through which this occurs remain elusive. Here, we establish a functional link between the PCP system and one specific actin regulator, the formin DAAM, which has previously been shown to be required for embryonic axonal morphogenesis and filopodia formation in the growth cone. We show that dDAAM also plays a pivotal role during axonal growth and guidance in the adult Drosophila mushroom body, a brain center for learning and memory. By using a combination of genetic and biochemical assays, we demonstrate that Wnt5 and the PCP signaling proteins Frizzled, Strabismus, and Dishevelled act in concert with the small GTPase Rac1 to activate the actin assembly functions of dDAAM essential for correct targeting of mushroom body axons. Collectively, these data suggest that dDAAM is used as a major molecular effector of the PCP guidance pathway. By uncovering a signaling system from the Wnt5 guidance cue to an actin assembly factor, we propose that the Wnt5/PCP navigation system is linked by dDAAM to the regulation of the growth cone actin cytoskeleton, and thereby growth cone behavior, in a direct way.
Collapse
|
132
|
Schmidt RL, Sheeley SL. Mating and memory: an educational primer for use with "epigenetic control of learning and memory in Drosophila by Tip60 HAT action". Genetics 2015; 200:21-8. [PMID: 25953906 PMCID: PMC4423364 DOI: 10.1534/genetics.115.176313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/12/2015] [Indexed: 01/21/2023] Open
Abstract
An article by Xu et al. in the December 2014 issue of GENETICS can be used to illustrate epigenetic modification of gene expression, reverse genetic manipulation, genetic/epigenetic influence on behavioral studies, and studies using the Drosophila model organism applied to human disease. This Primer provides background information; technical explanations of genetic, biochemical, and behavioral approaches from the study; and an example of an approach for classroom use with discussion questions to aid in student comprehension of the research article.
Collapse
Affiliation(s)
- Rebecca L Schmidt
- Department of Biology and Chemistry, Upper Iowa University, Fayette, Iowa 52132
| | - Sara L Sheeley
- Department of Biology and Chemistry, Upper Iowa University, Fayette, Iowa 52132
| |
Collapse
|
133
|
Activity of defined mushroom body output neurons underlies learned olfactory behavior in Drosophila. Neuron 2015; 86:417-27. [PMID: 25864636 PMCID: PMC4416108 DOI: 10.1016/j.neuron.2015.03.025] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/16/2014] [Accepted: 02/20/2015] [Indexed: 01/24/2023]
Abstract
During olfactory learning in fruit flies, dopaminergic neurons assign value to odor representations in the mushroom body Kenyon cells. Here we identify a class of downstream glutamatergic mushroom body output neurons (MBONs) called M4/6, or MBON-β2β′2a, MBON-β′2mp, and MBON-γ5β′2a, whose dendritic fields overlap with dopaminergic neuron projections in the tips of the β, β′, and γ lobes. This anatomy and their odor tuning suggests that M4/6 neurons pool odor-driven Kenyon cell synaptic outputs. Like that of mushroom body neurons, M4/6 output is required for expression of appetitive and aversive memory performance. Moreover, appetitive and aversive olfactory conditioning bidirectionally alters the relative odor-drive of M4β′ neurons (MBON-β′2mp). Direct block of M4/6 neurons in naive flies mimics appetitive conditioning, being sufficient to convert odor-driven avoidance into approach, while optogenetically activating these neurons induces avoidance behavior. We therefore propose that drive to the M4/6 neurons reflects odor-directed behavioral choice. Glutamatergic mushroom body output neurons are required for memory expression Training bidirectionally alters relative odor drive to output neurons Blocking glutamatergic mushroom body output neurons mimics appetitive conditioning Optogenetic activation drives avoidance behavior
Collapse
|
134
|
Ping Y, Hahm ET, Waro G, Song Q, Vo-Ba DA, Licursi A, Bao H, Ganoe L, Finch K, Tsunoda S. Linking aβ42-induced hyperexcitability to neurodegeneration, learning and motor deficits, and a shorter lifespan in an Alzheimer's model. PLoS Genet 2015; 11:e1005025. [PMID: 25774758 PMCID: PMC4361604 DOI: 10.1371/journal.pgen.1005025] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/25/2015] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia in the elderly. β-amyloid (Aβ) accumulation in the brain is thought to be a primary event leading to eventual cognitive and motor dysfunction in AD. Aβ has been shown to promote neuronal hyperactivity, which is consistent with enhanced seizure activity in mouse models and AD patients. Little, however, is known about whether, and how, increased excitability contributes to downstream pathologies of AD. Here, we show that overexpression of human Aβ42 in a Drosophila model indeed induces increased neuronal activity. We found that the underlying mechanism involves the selective degradation of the A-type K+ channel, Kv4. An age-dependent loss of Kv4 leads to an increased probability of AP firing. Interestingly, we find that loss of Kv4 alone results in learning and locomotion defects, as well as a shortened lifespan. To test whether the Aβ42-induced increase in neuronal excitability contributes to, or exacerbates, downstream pathologies, we transgenically over-expressed Kv4 to near wild-type levels in Aβ42-expressing animals. We show that restoration of Kv4 attenuated age-dependent learning and locomotor deficits, slowed the onset of neurodegeneration, and partially rescued premature death seen in Aβ42-expressing animals. We conclude that Aβ42-induced hyperactivity plays a critical role in the age-dependent cognitive and motor decline of this Aβ42-Drosophila model, and possibly in AD.
Collapse
Affiliation(s)
- Yong Ping
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Eu-Teum Hahm
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Girma Waro
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Qian Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Dai-An Vo-Ba
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Ashley Licursi
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Han Bao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Logan Ganoe
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Kelly Finch
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Susan Tsunoda
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
135
|
Solanki N, Wolf R, Heisenberg M. Central complex and mushroom bodies mediate novelty choice behavior in Drosophila. J Neurogenet 2015; 29:30-7. [PMID: 25585638 DOI: 10.3109/01677063.2014.1002661] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Novelty choice, a visual paired-comparison task, for the fly Drosophila melanogaster is studied with severely restrained single animals in a flight simulator. The virtual environment simulates free flight for rotation in the horizontal plane. The behavior has three functional components: visual azimuth orientation, working memory, and pattern discrimination (perception). Here we study novelty choice in relation to its neural substrate in the brain and show that it requires the central complex and, in particular, the ring neurons of the ellipsoid body. Surprisingly, it also involves the mushroom bodies which are needed specifically in the comparison of patterns of different sizes.
Collapse
Affiliation(s)
- Narendra Solanki
- Rudolf-Virchow-Center, University of Würzburg , Josef-Schneider-Straße 2, Würzburg , Germany
| | | | | |
Collapse
|
136
|
Aso Y, Sitaraman D, Ichinose T, Kaun KR, Vogt K, Belliart-Guérin G, Plaçais PY, Robie AA, Yamagata N, Schnaitmann C, Rowell WJ, Johnston RM, Ngo TTB, Chen N, Korff W, Nitabach MN, Heberlein U, Preat T, Branson KM, Tanimoto H, Rubin GM. Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. eLife 2014; 3:e04580. [PMID: 25535794 PMCID: PMC4273436 DOI: 10.7554/elife.04580] [Citation(s) in RCA: 439] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/07/2014] [Indexed: 12/11/2022] Open
Abstract
Animals discriminate stimuli, learn their predictive value and use this knowledge to modify their behavior. In Drosophila, the mushroom body (MB) plays a key role in these processes. Sensory stimuli are sparsely represented by ∼2000 Kenyon cells, which converge onto 34 output neurons (MBONs) of 21 types. We studied the role of MBONs in several associative learning tasks and in sleep regulation, revealing the extent to which information flow is segregated into distinct channels and suggesting possible roles for the multi-layered MBON network. We also show that optogenetic activation of MBONs can, depending on cell type, induce repulsion or attraction in flies. The behavioral effects of MBON perturbation are combinatorial, suggesting that the MBON ensemble collectively represents valence. We propose that local, stimulus-specific dopaminergic modulation selectively alters the balance within the MBON network for those stimuli. Our results suggest that valence encoded by the MBON ensemble biases memory-based action selection.
Collapse
Affiliation(s)
- Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Divya Sitaraman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, United States
- Department of Genetics, Yale School of Medicine, New Haven, United States
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, United States
| | - Toshiharu Ichinose
- Max Planck Institute of Neurobiology, Martinsried, Germany
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Karla R Kaun
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Katrin Vogt
- Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Ghislain Belliart-Guérin
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, Centre National de la Recherche Scientifique, ESPCI, Paris, France
| | - Pierre-Yves Plaçais
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, Centre National de la Recherche Scientifique, ESPCI, Paris, France
| | - Alice A Robie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Nobuhiro Yamagata
- Max Planck Institute of Neurobiology, Martinsried, Germany
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | - William J Rowell
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Rebecca M Johnston
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Teri-T B Ngo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Nan Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Wyatt Korff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Michael N Nitabach
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, United States
- Department of Genetics, Yale School of Medicine, New Haven, United States
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, United States
| | - Ulrike Heberlein
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Thomas Preat
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, Centre National de la Recherche Scientifique, ESPCI, Paris, France
| | - Kristin M Branson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Hiromu Tanimoto
- Max Planck Institute of Neurobiology, Martinsried, Germany
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
137
|
Aso Y, Hattori D, Yu Y, Johnston RM, Iyer NA, Ngo TTB, Dionne H, Abbott LF, Axel R, Tanimoto H, Rubin GM. The neuronal architecture of the mushroom body provides a logic for associative learning. eLife 2014; 3:e04577. [PMID: 25535793 PMCID: PMC4273437 DOI: 10.7554/elife.04577] [Citation(s) in RCA: 636] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/05/2014] [Indexed: 12/18/2022] Open
Abstract
We identified the neurons comprising the Drosophila mushroom body (MB), an associative center in invertebrate brains, and provide a comprehensive map describing their potential connections. Each of the 21 MB output neuron (MBON) types elaborates segregated dendritic arbors along the parallel axons of ∼2000 Kenyon cells, forming 15 compartments that collectively tile the MB lobes. MBON axons project to five discrete neuropils outside of the MB and three MBON types form a feedforward network in the lobes. Each of the 20 dopaminergic neuron (DAN) types projects axons to one, or at most two, of the MBON compartments. Convergence of DAN axons on compartmentalized Kenyon cell-MBON synapses creates a highly ordered unit that can support learning to impose valence on sensory representations. The elucidation of the complement of neurons of the MB provides a comprehensive anatomical substrate from which one can infer a functional logic of associative olfactory learning and memory.
Collapse
Affiliation(s)
- Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Daisuke Hattori
- Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Yang Yu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Rebecca M Johnston
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Nirmala A Iyer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Teri-T B Ngo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Heather Dionne
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - L F Abbott
- Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, United States
| | - Richard Axel
- Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Hiromu Tanimoto
- Tohuku University Graduate School of Life Sciences, Sendai, Japan
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
138
|
Mosqueiro TS, Huerta R. Computational models to understand decision making and pattern recognition in the insect brain. CURRENT OPINION IN INSECT SCIENCE 2014; 6:80-85. [PMID: 25593793 PMCID: PMC4289906 DOI: 10.1016/j.cois.2014.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Odor stimuli reaching olfactory systems of mammals and insects are characterized by remarkable non-stationary and noisy time series. Their brains have evolved to discriminate subtle changes in odor mixtures and find meaningful variations in complex spatio-temporal patterns. Insects with small brains can effectively solve two computational tasks: identify the presence of an odor type and estimate the concentration levels of the odor. Understanding the learning and decision making processes in the insect brain can not only help us to uncover general principles of information processing in the brain, but it can also provide key insights to artificial chemical sensing. Both olfactory learning and memory are dominantly organized in the Antennal Lobe (AL) and the Mushroom Bodies (MBs). Current computational models yet fail to deliver an integrated picture of the joint computational roles of the AL and MBs. This review intends to provide an integrative overview of the computational literature analyzed in the context of the problem of classification (odor discrimination) and regression (odor concentration estimation), particularly identifying key computational ingredients necessary to solve pattern recognition.
Collapse
|
139
|
Abstract
The mushroom bodies in the insect brain serve as a central information processing area. Here, focusing mainly on olfaction, we discuss functionally related roles the mushroom bodies play in signal gain control, response sparsening, the separation of similar signals (decorrelation), and learning and memory. In sum, the mushroom bodies assemble and format a context-appropriate representation of the insect's world.
Collapse
Affiliation(s)
- Mark Stopfer
- NIH-NICHD, Building 35, 35 Lincoln Drive, Rm 3E-623, msc 3715, Bethesda, MD 20892 USA,
| |
Collapse
|
140
|
Abstract
New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying Drosophila learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive and aversive reinforcers: (1) Which neurons within the olfactory nervous system mediate the acquisition of memory? (2) What is the complete neural circuitry extending from the site(s) of acquisition to the site(s) controlling memory expression? (3) How is information processed across this circuit to consolidate early-forming, disruptable memories to stable, late memories? Much progress has been made and a few strong conclusions have emerged: (1) Acquisition occurs at multiple sites within the olfactory nervous system but is mediated predominantly by the γ mushroom body neurons. (2) The expression of long-term memory is completely dependent on the synaptic output of α/β mushroom body neurons. (3) Consolidation occurs, in part, through circuit interactions between mushroom body and dorsal paired medial neurons. Despite this progress, a complete and unified model that details the pathway from acquisition to memory expression remains elusive.
Collapse
|
141
|
Gorostiza EA, Depetris-Chauvin A, Frenkel L, Pírez N, Ceriani MF. Circadian pacemaker neurons change synaptic contacts across the day. Curr Biol 2014; 24:2161-2167. [PMID: 25155512 DOI: 10.1016/j.cub.2014.07.063] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 06/14/2014] [Accepted: 07/23/2014] [Indexed: 12/19/2022]
Abstract
Daily cycles of rest and activity are a common example of circadian control of physiology. In Drosophila, rhythmic locomotor cycles rely on the activity of 150-200 neurons grouped in seven clusters [1, 2]. Work from many laboratories points to the small ventral lateral neurons (sLNvs) as essential for circadian control of locomotor rhythmicity [3-7]. sLNv neurons undergo circadian remodeling of their axonal projections, opening the possibility for a circadian control of connectivity of these relevant circadian pacemakers [8]. Here we show that circadian plasticity of the sLNv axonal projections has further implications than mere structural changes. First, we found that the degree of daily structural plasticity exceeds that originally described [8], underscoring that changes in the degree of fasciculation as well as extension or pruning of axonal terminals could be involved. Interestingly, the quantity of active zones changes along the day, lending support to the attractive hypothesis that new synapses are formed while others are dismantled between late night and the following morning. More remarkably, taking full advantage of the GFP reconstitution across synaptic partners (GRASP) technique [9], we showed that, in addition to new synapses being added or removed, sLNv neurons contact different synaptic partners at different times along the day. These results lead us to propose that the circadian network, and in particular the sLNv neurons, orchestrates some of the physiological and behavioral differences between day and night by changing the path through which information travels.
Collapse
Affiliation(s)
- E Axel Gorostiza
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), Avenida Patricias Argentinas 435, 1405-BWE Buenos Aires, Argentina
| | - Ana Depetris-Chauvin
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), Avenida Patricias Argentinas 435, 1405-BWE Buenos Aires, Argentina
| | - Lia Frenkel
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), Avenida Patricias Argentinas 435, 1405-BWE Buenos Aires, Argentina
| | - Nicolás Pírez
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), Avenida Patricias Argentinas 435, 1405-BWE Buenos Aires, Argentina
| | - María Fernanda Ceriani
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), Avenida Patricias Argentinas 435, 1405-BWE Buenos Aires, Argentina.
| |
Collapse
|
142
|
Vogt K, Schnaitmann C, Dylla KV, Knapek S, Aso Y, Rubin GM, Tanimoto H. Shared mushroom body circuits underlie visual and olfactory memories in Drosophila. eLife 2014; 3:e02395. [PMID: 25139953 PMCID: PMC4135349 DOI: 10.7554/elife.02395] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In nature, animals form memories associating reward or punishment with stimuli from different sensory modalities, such as smells and colors. It is unclear, however, how distinct sensory memories are processed in the brain. We established appetitive and aversive visual learning assays for Drosophila that are comparable to the widely used olfactory learning assays. These assays share critical features, such as reinforcing stimuli (sugar reward and electric shock punishment), and allow direct comparison of the cellular requirements for visual and olfactory memories. We found that the same subsets of dopamine neurons drive formation of both sensory memories. Furthermore, distinct yet partially overlapping subsets of mushroom body intrinsic neurons are required for visual and olfactory memories. Thus, our results suggest that distinct sensory memories are processed in a common brain center. Such centralization of related brain functions is an economical design that avoids the repetition of similar circuit motifs. DOI:http://dx.doi.org/10.7554/eLife.02395.001 Animals tend to associate good and bad things with certain visual scenes, smells and other kinds of sensory information. If we get food poisoning after eating a new food, for example, we tend to associate the taste and smell of the new food with feelings of illness. This is an example of a negative ‘associative memory’, and it can persist for months, even when we know that our sickness was not caused by the new food itself but by some foreign body that should not have been in the food. The same is true for positive associative memories. It is known that many associative memories contain information from more than one of the senses. Our memory of a favorite food, for instance, includes its scent, color and texture, as well as its taste. However, little is known about the ways in which information from the different senses is processed in the brain. Does each sense have its own dedicated memory circuit, or do multiple senses converge to the same memory circuit? A number of studies have used olfactory (smell) and visual stimuli to study the basic neuroscience that underpins associative memories in fruit flies. The olfactory experiments traditionally use sugar and electric shocks to induce positive and negative associations with various scents. However, the visual experiments use other methods to induce associations with colors. This means that it is difficult to combine and compare the results of olfactory and visual experiments. Now, Vogt, Schnaitmann et al. have developed a transparent grid that can be used to administer electric shocks in visual experiments. This allows direct comparisons to be made between the neuronal processing of visual associative memories and the neural processing of olfactory associative memories. Vogt, Schnaitmann et al. showed that both visual and olfactory stimuli are modulated in the same subset of dopamine neurons for positive associative memories. Similarly, another subset of dopamine neurons was found to drive negative memories of both the visual and olfactory stimuli. The work of Vogt, Schnaitmann et al. shows that associative memories are processed by a centralized circuit that receives both visual and olfactory inputs, thus reducing the number of memory circuits needed for such memories. DOI:http://dx.doi.org/10.7554/eLife.02395.002
Collapse
Affiliation(s)
- Katrin Vogt
- Max-Planck-Institute of Neurobiology, Martinsried, Germany
| | | | | | - Stephan Knapek
- Max-Planck-Institute of Neurobiology, Martinsried, Germany
| | - Yoshinori Aso
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gerald M Rubin
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Hiromu Tanimoto
- Max-Planck-Institute of Neurobiology, Martinsried, Germany Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
143
|
Levy P, Larsen C. Odd-skipped labels a group of distinct neurons associated with the mushroom body and optic lobe in the adult Drosophila brain. J Comp Neurol 2014; 521:3716-40. [PMID: 23749685 PMCID: PMC3957007 DOI: 10.1002/cne.23375] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 01/22/2013] [Accepted: 05/23/2013] [Indexed: 01/22/2023]
Abstract
Olfactory processing has been intensively studied in Drosophila melanogaster. However, we still know little about the descending neural pathways from the higher order processing centers and how these connect with other neural circuits. Here we describe, in detail, the adult projections patterns that arise from a cluster of 78 neurons, defined by the expression of the Odd-skipped transcription factor. We term these neurons Odd neurons. By using expression of genetically encoded axonal and dendritic markers, we show that a subset of the Odd neurons projects dendrites into the calyx of the mushroom body (MB) and axons into the inferior protocerebrum. We exclude the possibility that the Odd neurons are part of the well-known Kenyon cells whose projections form the MB and conclude that the Odd neurons belong to a previously not described class of extrinsic MB neurons. In addition, three of the Odd neurons project into the lobula plate of the optic lobe, and two of these cells extend axons ipsi- and contralaterally in the brain. Anatomically, these cells do not resemble any previously described lobula plate tangential cells (LPTCs) in Drosophila. We show that the Odd neurons are predominantly cholinergic but also include a small number of γ-aminobutyric acid (GABA)ergic neurons. Finally, we provide evidence that the Odd neurons are a hemilineage, suggesting they are born from a defined set of neuroblasts. Our anatomical analysis hints at the possibility that subgroups of Odd neurons could be involved in olfactory and visual processing.
Collapse
Affiliation(s)
- Peter Levy
- Medical Research Council Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | | |
Collapse
|
144
|
Vasmer D, Pooryasin A, Riemensperger T, Fiala A. Induction of aversive learning through thermogenetic activation of Kenyon cell ensembles in Drosophila. Front Behav Neurosci 2014; 8:174. [PMID: 24860455 PMCID: PMC4030157 DOI: 10.3389/fnbeh.2014.00174] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/24/2014] [Indexed: 01/28/2023] Open
Abstract
Drosophila represents a model organism to analyze neuronal mechanisms underlying learning and memory. Kenyon cells of the Drosophila mushroom body are required for associative odor learning and memory retrieval. But is the mushroom body sufficient to acquire and retrieve an associative memory? To answer this question we have conceived an experimental approach to bypass olfactory sensory input and to thermogenetically activate sparse and random ensembles of Kenyon cells directly. We found that if the artifical activation of Kenyon cell ensembles coincides with a salient, aversive stimulus learning was induced. The animals adjusted their behavior in a subsequent test situation and actively avoided reactivation of these Kenyon cells. Our results show that Kenyon cell activity in coincidence with a salient aversive stimulus can suffice to form an associative memory. Memory retrieval is characterized by a closed feedback loop between a behavioral action and the reactivation of sparse ensembles of Kenyon cells.
Collapse
Affiliation(s)
- David Vasmer
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Georg-August-Universität Göttingen Göttingen, Germany
| | - Atefeh Pooryasin
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Georg-August-Universität Göttingen Göttingen, Germany
| | - Thomas Riemensperger
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Georg-August-Universität Göttingen Göttingen, Germany
| | - André Fiala
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Georg-August-Universität Göttingen Göttingen, Germany
| |
Collapse
|
145
|
Menzel R. The insect mushroom body, an experience-dependent recoding device. ACTA ACUST UNITED AC 2014; 108:84-95. [DOI: 10.1016/j.jphysparis.2014.07.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 07/21/2014] [Accepted: 07/21/2014] [Indexed: 10/25/2022]
|
146
|
Drosophila mbm is a nucleolar myc and casein kinase 2 target required for ribosome biogenesis and cell growth of central brain neuroblasts. Mol Cell Biol 2014; 34:1878-91. [PMID: 24615015 DOI: 10.1128/mcb.00658-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proper cell growth is a prerequisite for maintaining repeated cell divisions. Cells need to translate information about intracellular nutrient availability and growth cues from energy-sensing organs into growth-promoting processes, such as sufficient supply with ribosomes for protein synthesis. Mutations in the mushroom body miniature (mbm) gene impair proliferation of neural progenitor cells (neuroblasts) in the central brain of Drosophila melanogaster. Yet the molecular function of Mbm has so far been unknown. Here we show that mbm does not affect the molecular machinery controlling asymmetric cell division of neuroblasts but instead decreases their cell size. Mbm is a nucleolar protein required for small ribosomal subunit biogenesis in neuroblasts. Accordingly, levels of protein synthesis are reduced in mbm neuroblasts. Mbm expression is transcriptionally regulated by Myc, which, among other functions, relays information from nutrient-dependent signaling pathways to ribosomal gene expression. At the posttranslational level, Mbm becomes phosphorylated by casein kinase 2 (CK2), which has an impact on localization of the protein. We conclude that Mbm is a new part of the Myc target network involved in ribosome biogenesis, which, together with CK2-mediated signals, enables neuroblasts to synthesize sufficient amounts of proteins required for proper cell growth.
Collapse
|
147
|
Masson A, Pedrazzani M, Benrezzak S, Tchenio P, Preat T, Nutarelli D. Micromirror structured illumination microscope for high-speed in vivo drosophila brain imaging. OPTICS EXPRESS 2014; 22:1243-1256. [PMID: 24515130 DOI: 10.1364/oe.22.001243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Genetic tools and especially genetically encoded fluorescent reporters have given a special place to optical microscopy in drosophila neurobiology research. In order to monitor neural networks activity, high speed and sensitive techniques, with high spatial resolution are required. Structured illumination microscopies are wide-field approaches with optical sectioning ability. Despite the large progress made with the introduction of the HiLo principle, they did not meet the criteria of speed and/or spatial resolution for drosophila brain imaging. We report on a new implementation that took advantage of micromirror matrix technology to structure the illumination. Thus, we showed that the developed instrument exhibits a spatial resolution close to that of confocal microscopy but it can record physiological responses with a speed improved by more than an order a magnitude.
Collapse
|
148
|
Twick I, Lee JA, Ramaswami M. Olfactory habituation in Drosophila-odor encoding and its plasticity in the antennal lobe. PROGRESS IN BRAIN RESEARCH 2014; 208:3-38. [PMID: 24767477 DOI: 10.1016/b978-0-444-63350-7.00001-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
A ubiquitous feature of an animal's response to an odorant is that it declines when the odorant is frequently or continuously encountered. This decline in olfactory response, termed olfactory habituation, can have temporally or mechanistically different forms. The neural circuitry of the fruit fly Drosophila melanogaster's olfactory system is well defined in terms of component cells, which are readily accessible to functional studies and genetic manipulation. This makes it a particularly useful preparation for the investigation of olfactory habituation. In addition, the insect olfactory system shares many architectural and functional similarities with mammalian olfactory systems, suggesting that olfactory mechanisms in insects may be broadly relevant. In this chapter, we discuss the likely mechanisms of olfactory habituation in context of the participating cell types, their connectivity, and their roles in sensory processing. We overview the structure and function of key cell types, the mechanisms that stimulate them, and how they transduce and process odor signals. We then consider how each stage of olfactory processing could potentially contribute to behavioral habituation. After this, we overview a variety of recent mechanistic studies that point to an important role for potentiation of inhibitory synapses in the primary olfactory processing center, the antennal lobe, in driving the reduced response to familiar odorants. Following the discussion of mechanisms for short- and long-term olfactory habituation, we end by considering how these mechanisms may be regulated by neuromodulators, which likely play key roles in the induction, gating, or suppression of habituated behavior, and speculate on the relevance of these processes for other forms of learning and memory.
Collapse
Affiliation(s)
- Isabell Twick
- School of Genetics and Microbiology and School of Natural Sciences, Smurfit Institute of Genetics, Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland.
| | - John Anthony Lee
- School of Genetics and Microbiology and School of Natural Sciences, Smurfit Institute of Genetics, Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland.
| | - Mani Ramaswami
- School of Genetics and Microbiology and School of Natural Sciences, Smurfit Institute of Genetics, Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland; National Centre for Biological Science, Bangalore, India
| |
Collapse
|
149
|
Abstract
Failure to remember, or forgetting, is a phenomenon familiar to everyone and despite more than a century of scientific inquiry, why we forget what we once knew remains unclear. If the brain marshals significant resources to form and store memories, why is it that these memories become lost? In the last century, psychological studies have divided forgetting into decay theory, in which memory simply dissipates with time, and interference theory, in which additional learning or mental activity hinders memory by reducing its stability or retrieval (for review, Dewar et al., 2007; Wixted, 2004). Importantly, these psychological models of forgetting posit that forgetting is a passive property of the brain and thus a failure of the brain to retain memories. However, recent neuroscience research on olfactory memory in Drosophila has offered evidence for an alternative conclusion that forgetting is an "active" process, with specific, biologically regulated mechanisms that remove existing memories (Berry et al., 2012; Shuai et al., 2010). Similar to the bidirectional regulation of cell number by mitosis and apoptosis, protein concentration by translation and lysosomal or proteomal degradation, and protein phosphate modification by kinases and phosphatases, biologically regulated memory formation and removal would be yet another example in biological systems where distinct and separate pathways regulate the creation and destruction of biological substrates.
Collapse
Affiliation(s)
- Jacob A Berry
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL, USA
| | - Ronald L Davis
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL, USA.
| |
Collapse
|
150
|
Pfeiffer K, Homberg U. Organization and functional roles of the central complex in the insect brain. ANNUAL REVIEW OF ENTOMOLOGY 2014; 59:165-84. [PMID: 24160424 DOI: 10.1146/annurev-ento-011613-162031] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The central complex is a group of modular neuropils across the midline of the insect brain. Hallmarks of its anatomical organization are discrete layers, an organization into arrays of 16 slices along the right-left axis, and precise inter-hemispheric connections via chiasmata. The central complex is connected most prominently with the adjacent lateral complex and the superior protocerebrum. Its developmental appearance corresponds with the appearance of compound eyes and walking legs. Distinct dopaminergic neurons control various forms of arousal. Electrophysiological studies provide evidence for roles in polarized light vision, sky compass orientation, and integration of spatial information for locomotor control. Behavioral studies on mutant and transgenic flies indicate roles in spatial representation of visual cues, spatial visual memory, directional control of walking and flight, and place learning. The data suggest that spatial azimuthal directions (i.e., where) are represented in the slices, and cue information (i.e., what) are represented in different layers of the central complex.
Collapse
Affiliation(s)
- Keram Pfeiffer
- Faculty of Biology, Animal Physiology, University of Marburg, 35032 Marburg, Germany; ,
| | | |
Collapse
|