101
|
Xu H, Shen J, Xiao J, Chen F, Wang M. Neuroprotective effect of cajaninstilbene acid against cerebral ischemia and reperfusion damages by activating AMPK/Nrf2 pathway. J Adv Res 2020; 34:199-210. [PMID: 35024191 PMCID: PMC8655138 DOI: 10.1016/j.jare.2020.07.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 02/05/2023] Open
Abstract
Introduction Ischemic stroke is one of the leading causes of death worldwide. Recently, neuroprotection is regarded as an important preventative and therapeutic strategy for ischemic stroke. Cajaninstilbene acid (CSA), a unique stilbenoid with a styryl group, is a potential neuroprotective agent. Objectives Hence, this study aimed to evaluate the neuroprotective effect and molecular mechanism of CSA against cerebral ischemia/reperfusion (I/R) damages. Methods Cerebral ischemia was modeled by oxygen and glucose deprivation (OGD) in SH-SY5Y cells or transient intraluminal suture middle cerebral artery occlusion (MCAO) in rats, and tert-butyl hydroperoxide (t-BHP) was used to induce oxidative stress in SH-SY5Y cells. CSA (2.5, 5 mg/kg) was intraperitoneally given upon reperfusion after 2 h of MCAO. The signaling pathways were analyzed by Western blotting and inhibitor blocking. Results CSA possessed significant neuroprotective activity, as evidenced by the reduced cell death in OGD/R or t-BHP injured SH-SY5Y cells, and decreased infarct volume and neurological deficits in MCAO/R rats. Further studies indicated that the protective effect was achieved via the antioxidant activity of CSA, which decreased the oxidative stress and its related mitochondrial dysfunction in SH-SY5Y cells. Notably, Nrf2 was activated in SH-SY5Y cells and MCAO/R rats by CSA, and the inhibition of Nrf2 by brusatol weakened CSA-mediated neuroprotection. Furthermore, after applying a series of kinase inhibitors, CSA-induced Nrf2 activation was markedly inhibited by BML-275 (an AMPK inhibitor), implying that AMPK was the dominant kinase to regulate the Nrf2 pathway for CSA’s neuroprotective effects with enhanced AMPK phosphorylation observed both in vivo and in vitro. Conclusion CSA exerted neuroprotection via activating the AMPK/Nrf2 pathway to reduce I/R-induced cellular oxidative stress and mitochondrial disfunction. CSA could be a potential neuroprotective drug candidate for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Hui Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.,School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Feng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.,School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
102
|
Shen L, Lin D, Li X, Wu H, Lenahan C, Pan Y, Xu W, Chen Y, Shao A, Zhang J. Ferroptosis in Acute Central Nervous System Injuries: The Future Direction? Front Cell Dev Biol 2020; 8:594. [PMID: 32760721 PMCID: PMC7373735 DOI: 10.3389/fcell.2020.00594] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
Acute central nervous system (CNS) injuries, such as stroke, traumatic brain injury (TBI), and spinal cord injury (SCI) present a grave health care challenge worldwide due to high morbidity and mortality, as well as limited clinical therapeutic strategies. Established literature has shown that oxidative stress (OS), inflammation, excitotoxicity, and apoptosis play important roles in the pathophysiological processes of acute CNS injuries. Recently, there have been many studies on the topic of ferroptosis, a form of regulated cell death characterized by the accumulation of iron-dependent lipid peroxidation. Some studies have revealed an emerging connection between acute CNS injuries and ferroptosis. Ferroptosis, induced by the abnormal metabolism of lipids, glutathione (GSH), and iron, can accelerate acute CNS injuries. However, pharmaceutical agents, such as iron chelators, ferrostatin-1 (Fer-1), and liproxstatin-1 (Lip-1), can inhibit ferroptosis and may have neuroprotective effects after acute CNS injuries. However, the specific mechanisms underlying this connection has not yet been clearly elucidated. In this paper, we discuss the general mechanisms of ferroptosis and its role in stroke, TBI, and SCI. We also summarize ferroptosis-related drugs and highlight the potential therapeutic strategies in treating various acute CNS injuries. Additionally, this paper suggests a testable hypothesis that ferroptosis may be a novel direction for further research of acute CNS injuries by providing corresponding evidence.
Collapse
Affiliation(s)
- Lesang Shen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danfeng Lin
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyi Li
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, United States.,Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Yuanbo Pan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, United States.,Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Weilin Xu
- Burrell College of Osteopathic Medicine, Las Cruces, NM, United States.,Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Yiding Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
103
|
Agresti C, Mechelli R, Olla S, Veroni C, Eleuteri C, Ristori G, Salvetti M. Oxidative Status in Multiple Sclerosis and Off-Targets of Antioxidants: The Case of Edaravone. Curr Med Chem 2020; 27:2095-2105. [PMID: 30678613 DOI: 10.2174/0929867326666190124122752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND MS is a chronic inflammatory disease of the CNS leading to demyelination and neurodegeneration, with a complex and still to be clarified aetiology. Several data, coming from patients' samples and from animal models, show that Oxidative Status (OS) plays an important role in MS pathogenesis. Overproduction of reactive oxidative species by macrophages/microglia can bring about cellular injury and ensuing cell death by oxidizing cardinal cellular components. Oxidized molecules are present in active MS lesions and are associated with neurodegeneration. METHODS We undertook a structured search of bibliographic databases for peer-reviewed research literature focusing on OS in MS. The contents of the selected papers were described in the context of a conceptual framework. A special emphasis was given to the results of our study in the field. RESULTS The results of our three recent studies were put in the context and discussed taking into account the literature on the topic. Oxidative damage underpinned an imbalance shared by MS and neurodegenerative diseases such as Alzheimer and Parkinson diseases. In people with clinically isolated syndrome (an early phase of MS) oxidative stress proved to contribute to disease pathophysiology and to provide biomarkers that may help predict disease evolution. A drug screening platform based on multiple assays to test the remyelinating potential of library of approved compounds showed two anti-oxidants, edaravone and 5-methyl-7- methoxyisoflavone, as active drugs. Moreover, an analysis of 'structure activity relationship' showed off-targets sites of these compounds that accounted for their remyelinating activity, irrespective of their antioxidant action. CONCLUSION Overall, edaravone emerges as a candidate to treat complex disease such as MS, where inflammation, oxidative stress and neurodegeneration contribute to disease progression, together or individually, in different phases and disease types. Furthermore, approaches based on drug repositioning seem to maintain the promise of helping discover novel treatment for complex diseases, where molecular targets are largely unknown.
Collapse
Affiliation(s)
- Cristina Agresti
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Rosella Mechelli
- Department of Human Science and Promotion of Quality of Life, San Raffaele Roma Open University, Rome, Italy.,Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University, Rome, Italy
| | - Stefania Olla
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Italy
| | - Caterina Veroni
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Cecilia Eleuteri
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Ristori
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University, Rome, Italy
| | - Marco Salvetti
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University, Rome, Italy.,IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
104
|
Alzoubi KH, Aburashed ZO, Mayyas F. Edaravone protects from memory impairment induced by chronic L-methionine administration. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:1221-1228. [PMID: 31989235 DOI: 10.1007/s00210-020-01827-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 01/17/2020] [Indexed: 02/06/2023]
Abstract
Hyperhomocysteinemia is a well-known cause of cognitive impairment and neurodegeneration. Increased oxidative stress in the brain has a major possible role in hyperhomocysteinemia-induced pathogenesis. Edaravone is a potent free radical scavenger that has a neuroprotective effect against memory impairment in several experimental models. The current study investigated the possible protective effect of edaravone in L-methionine-induced vascular dementia in a rat model. L-methionine was given (1.7 mg/kg/day) through oral gavage, while edaravone was given (6 mg/kg/day) intraperitoneally. The administration of methionine and edaravone started concomitantly and continued for a total of 9 weeks. Spatial learning and memory were assessed using the radial arm water maze (RAWM). Changes in the oxidative stress-related biomarkers in the hippocampus were assessed using enzymatic assays. Chronic L-methionine administration resulted in short-term and long-term memory impairment, whereas edaravone prevented such effect. Furthermore, edaravone ameliorated L-methionine induced decrease in the activity of the antioxidant enzymes catalase and glutathione peroxidase as well as the ratio of reduced glutathione to oxidized glutathione (GSH/GSSG ratio). Edaravone also prevented increase in the oxidized glutathione (GSSG) secondary to chronic L-methionine administration. In conclusion, the current study suggests that memory impairment and oxidative stress secondary to chronic L-methionine administration can be prevented by edaravone, probably via enhancing antioxidant mechanisms in the hippocampus.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Zainah O Aburashed
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Fadia Mayyas
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
105
|
Queiroz AN, Martins CC, Santos KLB, Carvalho ES, Owiti AO, Oliveira KRM, Herculano AM, da Silva ABF, Borges RS. Experimental and theoretical study on structure-tautomerism among edaravone, isoxazolone, and their heterocycles derivatives as antioxidants. Saudi Pharm J 2020; 28:819-827. [PMID: 32647483 PMCID: PMC7335820 DOI: 10.1016/j.jsps.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/03/2020] [Indexed: 01/07/2023] Open
Abstract
Edaravone is a heterocyclic pyrazolone compound. It has pronounced effect against free radicals, however renal and hepatic disorders have been reported. Isoxazolones are considered bioisosteric analogues of pyrazolones and may have comparable properties. Thus, we investigated the structural and electronic influences for edaravone, isoxazolone, and their tautomers on antioxidant process. Structure and tautomerism study among edaravone, isoxazolone and their heterocycles derivatives were related to antioxidant mechanisms by using the hybrid DFT method B3LYP with the basis sets 6-31++G(2d,2p). The C—H tautomer was the most stable and energetically favored among them. Intramolecular N—H—N hydrogen bonds and polar medium were responsible for the low energy differences among all possible tautomers. N—H tautomers in both systems proved to be better antioxidant by SET (single electron transfer), while O—H tautomers were better antioxidant on HAT (homolytic hydrogen atom transfer) mechanism. Theoretical calculation showed that edaravone is more potent than phenylisoxazolone, however, both has similar antioxidant scavenging on experimental DPPH. The carbonyliminic system played a very important role in the antioxidant activity for both studied classes.
Collapse
Affiliation(s)
- Auriekson N Queiroz
- Pharmaceutical Chemistry Laboratory, College of Pharmacy, Health Science Institute, Federal University of Pará, 66075-110 Belém, PA, Brazil
| | - Camila C Martins
- Pharmaceutical Chemistry Laboratory, College of Pharmacy, Health Science Institute, Federal University of Pará, 66075-110 Belém, PA, Brazil
| | - Kelton L B Santos
- Pharmaceutical Chemistry Laboratory, College of Pharmacy, Health Science Institute, Federal University of Pará, 66075-110 Belém, PA, Brazil.,Faculdade de Química, Campus Santana, Universidade Federal do Amapá, Santana, AP, Brazil
| | - Ederson S Carvalho
- Pharmaceutical Chemistry Laboratory, College of Pharmacy, Health Science Institute, Federal University of Pará, 66075-110 Belém, PA, Brazil
| | - Alex O Owiti
- California University of Science and Medicine, San Bernardino, CA, United States
| | - Karen R M Oliveira
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Biological Sciences Institute, Federal University of Pará, 66075-110 Belém, PA, Brazil
| | - Anderson M Herculano
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Biological Sciences Institute, Federal University of Pará, 66075-110 Belém, PA, Brazil
| | - Albérico B F da Silva
- Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense, 400, São Carlos, SP, Brazil
| | - Rosivaldo S Borges
- Pharmaceutical Chemistry Laboratory, College of Pharmacy, Health Science Institute, Federal University of Pará, 66075-110 Belém, PA, Brazil
| |
Collapse
|
106
|
Bailly C, Hecquet PE, Kouach M, Thuru X, Goossens JF. Chemical reactivity and uses of 1-phenyl-3-methyl-5-pyrazolone (PMP), also known as edaravone. Bioorg Med Chem 2020; 28:115463. [DOI: 10.1016/j.bmc.2020.115463] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/16/2022]
|
107
|
Rashidipour N, Karami-Mohajeri S, Mandegary A, Mohammadinejad R, Wong A, Mohit M, Salehi J, Ashrafizadeh M, Najafi A, Abiri A. Where ferroptosis inhibitors and paraquat detoxification mechanisms intersect, exploring possible treatment strategies. Toxicology 2020; 433-434:152407. [PMID: 32061663 DOI: 10.1016/j.tox.2020.152407] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Paraquat (PQ) is a fast-acting and effective herbicide that is used throughout the world to eliminate weeds. Over the past years, PQ was considered one of the most popular poisoning substances for suicide, and PQ poisoning accounts for about one-third of suicides around the world. Poisoning with PQ may cause multiorgan failure, pulmonary fibrosis, and ultimately death. Exposure to PQ results in the accumulation of PQ in the lungs, causing severe damage and, eventually, fibrosis. Until now, no effective antidote has been found to treat poisoning with PQ. In general, the toxicity of PQ is due to the formation of high energy oxygen free radicals and the peroxidation of unsaturated lipids in the cell. Ferroptosis is the result of the loss of glutathione peroxidase 4 (GPX4) activity that transforms iron-dependent lipid hydroperoxides to lipid alcohols, which are inert in the biological environment. Impaired iron metabolism and lipid peroxidation are increasingly known as the driving agents of ferroptosis. The contribution of ferroptosis to the development of cell death during poisoning with PQ has not yet been addressed. There is growing evidence about the relationship between PQ poisoning and ferroptosis. This raises the possibility of using ferroptosis inhibitors for the treatment of PQ poisoning. In this hypothesis-driven review article, we elaborated how ferroptosis inhibitors might circumvent the toxicity induced by PQ and may be potentially useful for the treatment of PQ toxicity.
Collapse
Affiliation(s)
- Niloofar Rashidipour
- Department of Anesthesiology, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran; Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Somayyeh Karami-Mohajeri
- Department of Toxicology and Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Mandegary
- Department of Toxicology and Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran; Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Anselm Wong
- Victorian Poisons Information Centre, Emergency Department and Austin Toxicology Unit, Austin Health, Victoria, Australia; Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Victoria, Australia; Centre for Integrated Critical Care, Department of Medicine and Radiology, Melbourne Medical School, University of Melbourne, Victoria, Australia
| | - Melika Mohit
- Department of Laboratory Sciences, Sirjan Faculty of Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Jafar Salehi
- Department of Anesthesiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Amir Najafi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
108
|
Huang S, Dong R, Xu G, Liu J, Gao X, Yu S, Qie P, Gou G, Hu M, Wang Y, Peng J, Guang B, Xu Y, Yang T. Synthesis, Characterization, and In Vivo Evaluation of Desmethyl Anethole Trithione Phosphate Prodrug for Ameliorating Cerebral Ischemia-Reperfusion Injury in Rats. ACS OMEGA 2020; 5:4595-4602. [PMID: 32175506 PMCID: PMC7066653 DOI: 10.1021/acsomega.9b04129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Anethol trithione (ATT) has a wide range of physiological activities, but its use is limited due to its poor water solubility. To improve the solubility of ATT, we synthesized and characterized a novel phosphate prodrug (ATXP) relying on the availability of the hydroxy group in 5-(4-hydroxyphenyl)-3H-1,2-dithiole3-thione (ATX), which was transformed from ATT rapidly and extensively in vivo. Our results showed that ATXP significantly improved drug solubility. ATXP was rapidly converted to ATX and reached a maximum plasma concentration with a T max of approximately 5 min after intravenous (iv) administration. Furthermore, after the oral administration of ATXP, the C max was 3326.30 ± 566.50 ng/mL, which was approximately 5-fold greater than that of the parent drug form, indicating that ATXP has greater absorption than that of ATT. Additionally, the oral phosphate prodrug ATXP increased the ATX in the area under the plasma concentration vs time curves (AUC0-t = 3927.40 ± 321.50 and AUC0-∞ = 4579.0 ± 756.30), making its use in practical applications more meaningful. Finally, compared to the vehicle, ATXP was confirmed to maintain the bioactivity of the parent drug for a significant reduction in infarct volume 24 h after reperfusion. Based on these findings, the phosphate prodrug ATXP is a potentially useful water-soluble prodrug with improved pharmacokinetic properties.
Collapse
Affiliation(s)
- Sheng Huang
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
| | - Renhan Dong
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
- Chengdu
Beinuokecheng Biotechnology Co., Ltd., No. 88, Keyuan South Road, New and High-Tech Zone, Chengdu 610094, Sichuan, China
| | - Gaojie Xu
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
| | - Jin Liu
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
| | - Xiaofang Gao
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
| | - Siqi Yu
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
| | - Pengfan Qie
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
| | - Gang Gou
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
| | - Min Hu
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
| | - Yu Wang
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
| | - Jian Peng
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
| | - Bing Guang
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
- Chengdu
Beinuokecheng Biotechnology Co., Ltd., No. 88, Keyuan South Road, New and High-Tech Zone, Chengdu 610094, Sichuan, China
| | - Ying Xu
- The
First Affiliated Hospital, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Tai Yang
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
| |
Collapse
|
109
|
Echocardiography-guided aortic cannulation by the Seldinger technique for type A dissection with cerebral malperfusion. J Thorac Cardiovasc Surg 2020; 159:784-793. [DOI: 10.1016/j.jtcvs.2019.02.097] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 02/06/2019] [Accepted: 02/18/2019] [Indexed: 11/19/2022]
|
110
|
Barna L, Walter FR, Harazin A, Bocsik A, Kincses A, Tubak V, Jósvay K, Zvara Á, Campos-Bedolla P, Deli MA. Simvastatin, edaravone and dexamethasone protect against kainate-induced brain endothelial cell damage. Fluids Barriers CNS 2020; 17:5. [PMID: 32036791 PMCID: PMC7008534 DOI: 10.1186/s12987-019-0166-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/27/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Excitotoxicity is a central pathological pathway in many neurological diseases with blood-brain barrier (BBB) dysfunction. Kainate, an exogenous excitotoxin, induces epilepsy and BBB damage in animal models, but the direct effect of kainate on brain endothelial cells has not been studied in detail. Our aim was to examine the direct effects of kainate on cultured cells of the BBB and to test three anti-inflammatory and antioxidant drugs used in clinical practice, simvastatin, edaravone and dexamethasone, to protect against kainate-induced changes. METHODS Primary rat brain endothelial cell, pericyte and astroglia cultures were used to study cell viability by impedance measurement. BBB permeability was measured on a model made from the co-culture of the three cell types. The production of nitrogen monoxide and reactive oxygen species was followed by fluorescent probes. The mRNA expression of kainate receptors and nitric oxide synthases were studied by PCR. RESULTS Kainate damaged brain endothelial cells and made the immunostaining of junctional proteins claudin-5 and zonula occludens-1 discontinuous at the cell border indicating the opening of the barrier. The permeability of the BBB model for marker molecules fluorescein and albumin and the production of nitric oxide in brain endothelial cells were increased by kainate. Simvastatin, edaravone and dexamethasone protected against the reduced cell viability, increased permeability and the morphological changes in cellular junctions caused by kainate. Dexamethasone attenuated the elevated nitric oxide production and decreased the inducible nitric oxide synthase (NOS2/iNOS) mRNA expression increased by kainate treatment. CONCLUSION Kainate directly damaged cultured brain endothelial cells. Simvastatin, edaravone and dexamethasone protected the BBB model against kainate-induced changes. Our results confirmed the potential clinical usefulness of these drugs to attenuate BBB damage.
Collapse
Affiliation(s)
- Lilla Barna
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary.,Doctoral School in Biology, University of Szeged, Somogyi u. 4, Szeged, 6720, Hungary
| | - Fruzsina R Walter
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - András Harazin
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Alexandra Bocsik
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - András Kincses
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Vilmos Tubak
- Creative Laboratory Ltd., Temesvári krt. 62, Szeged, 6726, Hungary
| | - Katalin Jósvay
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Ágnes Zvara
- Institute of Genetics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Patricia Campos-Bedolla
- Unidad de Investigacion Medica en Enfermedades Neurologicas, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, 06720, Ciudad de México, DF, México
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary. .,Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary.
| |
Collapse
|
111
|
Chen X, Sun Z, Wang J, Liang W, Zhao X, Wang Y, Wang Y. Predicting the Pharmacokinetic Characteristics of Edaravone Intravenous Injection and Sublingual Tablet Through Modeling and Simulation. Clin Ther 2020; 42:428-438. [PMID: 32037096 DOI: 10.1016/j.clinthera.2020.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE Edaravone is a free-radical scavenger with relatively favorable properties of brain penetration. It has been approved for the indications of acute ischemic stroke and amyotrophic lateral sclerosis (ALS). This study aimed to establish a pharmacokinetic (PK) model to fit the PK profile of edaravone after a single sublingual (SL) dose of a novel edaravone tablet and single IV infusion of injectable edaravone in healthy Chinese volunteers participating in a bioavailability study. The model is expected to be useful for predicting the concentration-time profiles of edaravone following different dosing regimens in a healthy Chinese population. The purposes were to identify an optimal dose and dosing regimen for the new SL formulation and to support future clinical exploration of this tablet product in its approved indications and other therapeutic fields being developed. METHODS The PK profiles after a single SL dose or IV infusion of edaravone 30 mg can be well described by a 3-compartment linear disposition model, on which a first-order absorption model with a lag time and a parameter for bioavailability was incorporated to fit the absorption phase of the SL dose. Performance of these PK models was evaluated for goodness of fit, residual trends, visual predictive checks, as well as precision of model predictions against external data. The validated models were employed for simulating the PK profiles of edaravone after a single SL dose of 60 mg and IV infusion of 60 mg for 60 min. FINDINGS The resultant estimates support the possibility and feasibility of demonstrating bioequivalence between an SL administration of edaravone 60 mg and the currently approved dosing regimen for ALS (ie, 60 mg IV over 60 min) once per day. The calculation of sample size suggested that the requirement for subject number was acceptable considering the general capacity of a Phase I study center, and so were the procedures defined in the protocol. IMPLICATION The models can be further applied to simulate favorable concentration-time profiles in diseases with different underlying courses of oxidative stress, and hence facilitate the optimization of current dosing regimens.
Collapse
Affiliation(s)
- Xia Chen
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China; Phase I Unit, Beijing Tiantan Hoapital, Capital Medical University, Beijing, PR China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, PR China.
| | - Zhuo Sun
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China; Phase I Unit, Beijing Tiantan Hoapital, Capital Medical University, Beijing, PR China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, PR China
| | - Jiaqing Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, PR China
| | - Wu Liang
- Changsha VALS Technology Co Ltd, Hunan, PR China
| | - Xingquan Zhao
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China; Phase I Unit, Beijing Tiantan Hoapital, Capital Medical University, Beijing, PR China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, PR China
| | - Yilong Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China; Phase I Unit, Beijing Tiantan Hoapital, Capital Medical University, Beijing, PR China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, PR China
| | - Yongjun Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China; Phase I Unit, Beijing Tiantan Hoapital, Capital Medical University, Beijing, PR China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, PR China
| |
Collapse
|
112
|
Carrera-Juliá S, Moreno ML, Barrios C, de la Rubia Ortí JE, Drehmer E. Antioxidant Alternatives in the Treatment of Amyotrophic Lateral Sclerosis: A Comprehensive Review. Front Physiol 2020; 11:63. [PMID: 32116773 PMCID: PMC7016185 DOI: 10.3389/fphys.2020.00063] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that produces a selective loss of the motor neurons of the spinal cord, brain stem and motor cortex. Oxidative stress (OS) associated with mitochondrial dysfunction and the deterioration of the electron transport chain has been shown to be a factor that contributes to neurodegeneration and plays a potential role in the pathogenesis of ALS. The regions of the central nervous system affected have high levels of reactive oxygen species (ROS) and reduced antioxidant defenses. Scientific studies propose treatment with antioxidants to combat the characteristic OS and the regeneration of nicotinamide adenine dinucleotide (NAD+) levels by the use of precursors. This review examines the possible roles of nicotinamide riboside and pterostilbene as therapeutic strategies in ALS.
Collapse
Affiliation(s)
- Sandra Carrera-Juliá
- Doctoral Degree’s School, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
- Department of Nutrition and Dietetics, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| | - Mari Luz Moreno
- Department of Basic Sciences, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| | - Carlos Barrios
- Institute for Research on Musculoskeletal Disorders, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| | | | - Eraci Drehmer
- Department of Basic Sciences, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| |
Collapse
|
113
|
Kim BW, Jeong YE, Wong M, Martin LJ. DNA damage accumulates and responses are engaged in human ALS brain and spinal motor neurons and DNA repair is activatable in iPSC-derived motor neurons with SOD1 mutations. Acta Neuropathol Commun 2020; 8:7. [PMID: 32005289 PMCID: PMC6995159 DOI: 10.1186/s40478-019-0874-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
DNA damage is implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). However, relationships between DNA damage accumulation, DNA damage response (DDR), and upper and lower motor neuron vulnerability in human ALS are unclear; furthermore, it is unknown whether epigenetic silencing of DNA repair pathways contributes to ALS pathogenesis. We tested the hypotheses that DNA damage accumulates in ALS motor neurons along with diminished DDR, and that DNA repair genes undergo hypermethylation. Human postmortem CNS tissue was obtained from ALS cases (N = 34) and age-matched controls without neurologic disease (N = 15). Compared to age-matched controls, abasic sites accumulated in genomic DNA of ALS motor cortex and laser capture microdissection-acquired spinal motor neurons but not in motor neuron mitochondrial DNA. By immunohistochemistry, DNA damage accumulated significantly in upper and lower motor neurons in ALS cases as single-stranded DNA and 8-hydroxy-deoxyguanosine (OHdG) compared to age-matched controls. Significant DDR was engaged in ALS motor neurons as evidenced by accumulation of c-Abl, nuclear BRCA1, and ATM activation. DNA damage and DDR were present in motor neurons at pre-attritional stages and throughout the somatodendritic attritional stages of neurodegeneration. Motor neurons with DNA damage were also positive for activated p53 and cleaved caspase-3. Gene-specific promoter DNA methylation pyrosequencing identified the DNA repair genes Ogg1, Apex1, Pnkp and Aptx as hypomethylated in ALS. In human induced-pluripotent stem cell (iPSC)-derived motor neurons with familial ALS SOD1 mutations, DNA repair capacity was similar to isogenic control motor neurons. Our results show that vulnerable neurons in human ALS accumulate DNA damage, and contrary to our hypothesis, strongly activate and mobilize response effectors and DNA repair genes. This DDR in ALS motor neurons involves recruitment of c-Abl and BRCA1 to the nucleus in vivo, and repair of DNA double-strand breaks in human ALS motor neurons with SOD1 mutations in cell culture.
Collapse
Affiliation(s)
- Byung Woo Kim
- Department of Pathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD, 21205-2196, USA
- Division of Neuropathology, the Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ye Eun Jeong
- Division of Neuropathology, the Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Margaret Wong
- Department of Pathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD, 21205-2196, USA
| | - Lee J Martin
- Department of Pathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD, 21205-2196, USA.
- Division of Neuropathology, the Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
114
|
Potential use of edaravone to reduce specific side effects of chemo-, radio- and immuno-therapy of cancers. Int Immunopharmacol 2019; 77:105967. [DOI: 10.1016/j.intimp.2019.105967] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023]
|
115
|
Suh LYK, Babu D, Tonoyan L, Reiz B, Whittal R, Tabatabaei-Dakhili SA, Morgan AG, Velázquez-Martínez CA, Siraki AG. Myeloperoxidase-mediated oxidation of edaravone produces an apparent non-toxic free radical metabolite and modulates hydrogen peroxide-mediated cytotoxicity in HL-60 cells. Free Radic Biol Med 2019; 143:422-432. [PMID: 31445206 DOI: 10.1016/j.freeradbiomed.2019.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 01/15/2023]
Abstract
Edaravone is considered to be a potent antioxidant drug known to scavenge free radical species and prevent free radical-induced lipid peroxidation. In this study, we investigated the effect of edaravone on the myeloperoxidase (MPO) activity, an enzyme responsible for the production of an array of neutrophil-derived oxidants that can cause cellular damage. The addition of edaravone to the reaction of MPO and hydrogen peroxide (H2O2) significantly enhanced the reduction of MPO Compound II back to native MPO. Interestingly, the MPO-mediated production of toxic hypochlorous acid exhibited a concentration-dependent biphasic effect, with the apparent optimal edaravone concentration at 10 μM. Oxidation of edaravone by MPO was examined by various analytical methods. An MPO-catalyzed product(s) of edaravone was identified at 350 nm by kinetic analysis of UV-Vis spectroscopy. Several MPO-catalyzed metabolites of edaravone were proposed from the LC-MS analyses, including oxidized dimers from edaravone radicals. Electron spin resonance (ESR) spin trapping detected a carbon-centred radical metabolite of edaravone. NMR studies revealed that there are two exchangeable hydrogens, one of which is on the α-carbon, justifying the carbon-centred edaravone radical produced from MPO. Despite the formation of an edaravone carbon-radical metabolite, it did not appear to effectively oxidize GSH (in comparison with phenoxyl radicals). Viability (ATP) and cytotoxicity (LDH release) assays showed a concentration-dependent effect of edaravone on HL-60 cells treated with either a bolus concentration of 30 μM H2O2 or a flux of H2O2 generated by 5 mM glucose and 10 mU/mL glucose oxidase. The H2O2-induced toxicity was ameliorated at high edaravone concentrations (100-200 μM). In contrast, low concentrations of edaravone (1-10 μM) exacerbated the H2O2-induced toxicity. However, the effect of edaravone at low concentration (0-10 μM) appeared more prominent with the LDH assay only. The cellular findings correlated with the biochemical studies with respect to hypochlorous acid formation. These findings provide interesting perspectives regarding the duality of edaravone as an antioxidant drug.
Collapse
Affiliation(s)
- Lindsey Y K Suh
- Faculty of Pharmacy & Pharmaceutical Sciences, Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Dinesh Babu
- Faculty of Pharmacy & Pharmaceutical Sciences, Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Lusine Tonoyan
- Faculty of Pharmacy & Pharmaceutical Sciences, Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Béla Reiz
- Department of Chemistry, 11227 Saskatchewan Drive, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Randy Whittal
- Department of Chemistry, 11227 Saskatchewan Drive, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - S Amirhossein Tabatabaei-Dakhili
- Faculty of Pharmacy & Pharmaceutical Sciences, Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Andrew G Morgan
- Faculty of Pharmacy & Pharmaceutical Sciences, Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Carlos A Velázquez-Martínez
- Faculty of Pharmacy & Pharmaceutical Sciences, Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
| | - Arno G Siraki
- Faculty of Pharmacy & Pharmaceutical Sciences, Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
| |
Collapse
|
116
|
Wang C, Chen Y, Li J, Zhou L, Wang B, Xiao Y, Guo H. Phosphine-Catalyzed Asymmetric Cycloaddition Reaction of Diazenes: Enantioselective Synthesis of Chiral Dihydropyrazoles. Org Lett 2019; 21:7519-7523. [DOI: 10.1021/acs.orglett.9b02800] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Chang Wang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Yuehua Chen
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Jingyu Li
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Leijie Zhou
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Bo Wang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Yumei Xiao
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Hongchao Guo
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
117
|
Homma T, Kobayashi S, Sato H, Fujii J. Edaravone, a free radical scavenger, protects against ferroptotic cell death in vitro. Exp Cell Res 2019; 384:111592. [PMID: 31479686 DOI: 10.1016/j.yexcr.2019.111592] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 01/20/2023]
Abstract
Ferroptosis is characterized by an iron-dependent cell death with increased lipid peroxidation and is typically induced by either a decrease in glutathione (GSH) levels due to an insufficient supply of cysteine (Cys) or the inhibition of phospholipid hydroperoxide glutathione peroxidase (Gpx4). While lipid peroxides are the direct trigger for ferroptosis, the issue of how radical species involve in the cytocidal process remains unclear. To gain insights into this issue, we employed edaravone, a free radical scavenger that is clinically approved for the treatment of acute ischemic strokes and amyotrophic lateral sclerosis (ALS), against ferroptotic cell death caused by various situations, notably under cystine deprivation. We initially investigated the effects of edaravone on ferroptosis in mouse hepatoma Hepa 1-6 cells cultivated in cystine-free medium and found that edaravone largely suppressed ferroptosis. Ferroptosis that was induced in the cells by the use of inhibitors for xCT or Gpx4 was also suppressed by edaravone. Moreover, edaravone also suppressed ferroptosis in xCT-knockout mouse-derived embryonic fibroblasts, which usually die in normal cultivating conditions due to the depletion of intracellular Cys and GSH. Although the edaravone treatment had no effects on the intracellular levels of Cys and GSH, both of which remained low in Hepa 1-6 cells under conditions of cystine deprivation, the causative factors for ferroptosis, including ferrous iron and lipid peroxide levels, were significantly suppressed. Collectively, these results indicate that radical species produced at the initial stage of the cytocidal process under Cys-deprived conditions trigger ferroptosis and scavenging these radicals by edaravone represents a promising treatment.
Collapse
Affiliation(s)
- Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata City, Yamagata, 990-9585, Japan.
| | - Sho Kobayashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata City, Yamagata, 990-9585, Japan
| | - Hideyo Sato
- Department of Medical Technology, Faculty of Medicine, Niigata University, Niigata, 951-8518, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata City, Yamagata, 990-9585, Japan
| |
Collapse
|
118
|
Synthesis, Characterization and Antioxidant Properties of a New Lipophilic Derivative of Edaravone. Antioxidants (Basel) 2019; 8:antiox8080258. [PMID: 31370225 PMCID: PMC6720979 DOI: 10.3390/antiox8080258] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023] Open
Abstract
As part of a program aimed to obtain antioxidants able to interact with cell membrane, edaravone (EdV, 3-methyl-1-phenyl-2-pyrazolin-5-one), a well-known free radical scavenger, has been modified by alkylation at its allylic position (4) with a C-18 hydrocarbon chain, and the increased lipophilicity has been determined towards the interaction with liposomes. The obtained derivative has been studied by means of density functional theory (DFT) methods in order to characterize its lowest energy conformers and predict its antioxidant properties with respect to the parent compound EdV. The in vitro antioxidant activity of C18-edaravone was studied by means of the α,α-diphenyl-β-picrylhydrazyl (DPPH) assay and in lipid peroxidation experiments performed on artificial lipid membranes using water-soluble as well as lipid-soluble radical initiators. Moreover, since oxidative stress is involved in numerous retinal degenerative diseases, the ability of C18-edaravone to contrast 2,2-azobis (2-amidinopropane hydrochloride) (AAPH)-induced cell death was assessed in adult retinal pigmented epithelium (ARPE-19) cells. Overall, the results demonstrated that the newly synthesized molecule has a high affinity for lipid membrane, increasing the efficacy of the unmodified edaravone under stress conditions.
Collapse
|
119
|
Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA. Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation 2019; 16:142. [PMID: 31291966 PMCID: PMC6617684 DOI: 10.1186/s12974-019-1516-2] [Citation(s) in RCA: 819] [Impact Index Per Article: 163.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022] Open
Abstract
Stroke, the third leading cause of death and disability worldwide, is undergoing a change in perspective with the emergence of new ideas on neurodegeneration. The concept that stroke is a disorder solely of blood vessels has been expanded to include the effects of a detrimental interaction between glia, neurons, vascular cells, and matrix components, which is collectively referred to as the neurovascular unit. Following the acute stroke, the majority of which are ischemic, there is secondary neuroinflammation that both promotes further injury, resulting in cell death, but conversely plays a beneficial role, by promoting recovery. The proinflammatory signals from immune mediators rapidly activate resident cells and influence infiltration of a wide range of inflammatory cells (neutrophils, monocytes/macrophages, different subtypes of T cells, and other inflammatory cells) into the ischemic region exacerbating brain damage. In this review, we discuss how neuroinflammation has both beneficial as well as detrimental roles and recent therapeutic strategies to combat pathological responses. Here, we also focus on time-dependent entry of immune cells to the ischemic area and the impact of other pathological mediators, including oxidative stress, excitotoxicity, matrix metalloproteinases (MMPs), high-mobility group box 1 (HMGB1), arachidonic acid metabolites, mitogen-activated protein kinase (MAPK), and post-translational modifications that could potentially perpetuate ischemic brain damage after the acute injury. Understanding the time-dependent role of inflammatory factors could help in developing new diagnostic, prognostic, and therapeutic neuroprotective strategies for post-stroke inflammation.
Collapse
Affiliation(s)
- Richard L. Jayaraj
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Fakhreya Y. Jalal
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Gary A. Rosenberg
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
| |
Collapse
|
120
|
Ban J, Sámano C, Mladinic M, Munitic I. Glia in amyotrophic lateral sclerosis and spinal cord injury: common therapeutic targets. Croat Med J 2019. [PMID: 31044582 PMCID: PMC6509626 DOI: 10.3325/cmj.2019.60.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The toolkit for repairing damaged neurons in amyotrophic lateral sclerosis (ALS) and spinal cord injury (SCI) is extremely limited. Here, we reviewed the in vitro and in vivo studies and clinical trials on nonneuronal cells in the neurodegenerative processes common to both these conditions. Special focus was directed to microglia and astrocytes, because their activation and proliferation, also known as neuroinflammation, is a key driver of neurodegeneration. Neuroinflammation is a multifaceted process that evolves during the disease course, and can be either beneficial or toxic to neurons. Given the fundamental regulatory functions of glia, pathogenic mechanisms in neuroinflammation represent promising therapeutic targets. We also discussed neuroprotective, immunosuppressive, and stem-cell based approaches applicable to both ALS and SCI.
Collapse
Affiliation(s)
| | | | | | - Ivana Munitic
- Ivana Munitic, Department of Biotechnology, University of Rijeka, R. Matejčić 2, 51000 Rijeka, Croatia,
| |
Collapse
|
121
|
Edaravone in the treatment of amyotrophic lateral sclerosis. Neurol Neurochir Pol 2019; 52:124-128. [PMID: 29571701 DOI: 10.1016/j.pjnns.2018.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/09/2018] [Indexed: 11/21/2022]
|
122
|
Pribis JP, García-Villada L, Zhai Y, Lewin-Epstein O, Wang AZ, Liu J, Xia J, Mei Q, Fitzgerald DM, Bos J, Austin RH, Herman C, Bates D, Hadany L, Hastings PJ, Rosenberg SM. Gamblers: An Antibiotic-Induced Evolvable Cell Subpopulation Differentiated by Reactive-Oxygen-Induced General Stress Response. Mol Cell 2019; 74:785-800.e7. [PMID: 30948267 PMCID: PMC6553487 DOI: 10.1016/j.molcel.2019.02.037] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/17/2019] [Accepted: 02/26/2019] [Indexed: 11/23/2022]
Abstract
Antibiotics can induce mutations that cause antibiotic resistance. Yet, despite their importance, mechanisms of antibiotic-promoted mutagenesis remain elusive. We report that the fluoroquinolone antibiotic ciprofloxacin (cipro) induces mutations by triggering transient differentiation of a mutant-generating cell subpopulation, using reactive oxygen species (ROS). Cipro-induced DNA breaks activate the Escherichia coli SOS DNA-damage response and error-prone DNA polymerases in all cells. However, mutagenesis is limited to a cell subpopulation in which electron transfer together with SOS induce ROS, which activate the sigma-S (σS) general-stress response, which allows mutagenic DNA-break repair. When sorted, this small σS-response-"on" subpopulation produces most antibiotic cross-resistant mutants. A U.S. Food and Drug Administration (FDA)-approved drug prevents σS induction, specifically inhibiting antibiotic-promoted mutagenesis. Further, SOS-inhibited cell division, which causes multi-chromosome cells, promotes mutagenesis. The data support a model in which within-cell chromosome cooperation together with development of a "gambler" cell subpopulation promote resistance evolution without risking most cells.
Collapse
Affiliation(s)
- John P Pribis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Libertad García-Villada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yin Zhai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ohad Lewin-Epstein
- Department of Molecular Biology and Ecology of Plants, Tel-Aviv University, Tel-Aviv, Israel
| | - Anthony Z Wang
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77030, USA
| | - Jingjing Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jun Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qian Mei
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77030, USA
| | - Devon M Fitzgerald
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Julia Bos
- Department of Physics, Princeton University, Princeton, NJ 08544-0708, USA; Lewis Sigler Institute, Princeton University, Princeton, NJ 08544-0708, USA
| | - Robert H Austin
- Lewis Sigler Institute, Princeton University, Princeton, NJ 08544-0708, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Bates
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lilach Hadany
- Department of Molecular Biology and Ecology of Plants, Tel-Aviv University, Tel-Aviv, Israel
| | - P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77030, USA; Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77030, USA.
| |
Collapse
|
123
|
Koike N, Sasaki A, Murakami T, Suzuki K. Effect of edaravone against cisplatin-induced chronic renal injury. Drug Chem Toxicol 2019; 44:437-446. [PMID: 31064223 DOI: 10.1080/01480545.2019.1604740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cisplatin has been widely used as an anticancer agent for a wide range of tumors, but it had nephrotoxicity that was mainly caused by oxidative stress. Edaravone, a free radical scavenger, has reportedly been validated to have a protective effect against renal injury induced by reactive oxygen species. However, most of these reports are against AKI, and few studies have examined the effect of chronic renal injury. In this study, we investigate the effect of edaravone on cisplatin nephropathy in the chronic phase. Twenty-five male Wistar rats were divided into five groups: control, cisplatin, cisplatin + edaravone 1 mg kg-1, cisplatin + edaravone 10 mg kg-1, and cisplatin + edaravone 100 mg kg-1. Edaravone was administrated intraperitoneally every other day for 5 weeks, starting 1 week before cisplatin administration (6 mg kg-1, i.p.). As a result, proximal tubule injury, interstitial fibrosis, and mononuclear cell infiltration were ameliorated histologically in the group of rats treated with high edaravone dose. In the cisplatin group, the number of α-SMA-, CD68-, and CD3-positive cells increased markedly compared with the Control group, but these numbers were significantly decreased by higher doses of co-administered edaravone. While there was no clear mRNA expression variation in antioxidant enzymes, the apoptosis-promoting factors, caspase8, were markedly reduced in the high-dose edaravone co-administration group compared with the cisplatin group. In conclusion, our results suggested that cisplatin-induced renal injury in the chronic phase was ameliorated by edaravone.
Collapse
Affiliation(s)
- Natsumi Koike
- Laboratory of Veterinary Toxicology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ayaka Sasaki
- Laboratory of Veterinary Toxicology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tomoaki Murakami
- Laboratory of Veterinary Toxicology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kazuhiko Suzuki
- Laboratory of Veterinary Toxicology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
124
|
Ban J, Sámano C, Mladinic M, Munitic I. Glia in amyotrophic lateral sclerosis and spinal cord injury: common therapeutic targets. Croat Med J 2019; 60:109-120. [PMID: 31044582 PMCID: PMC6509626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/28/2019] [Indexed: 07/17/2024] Open
Abstract
The toolkit for repairing damaged neurons in amyotrophic lateral sclerosis (ALS) and spinal cord injury (SCI) is extremely limited. Here, we reviewed the in vitro and in vivo studies and clinical trials on nonneuronal cells in the neurodegenerative processes common to both these conditions. Special focus was directed to microglia and astrocytes, because their activation and proliferation, also known as neuroinflammation, is a key driver of neurodegeneration. Neuroinflammation is a multifaceted process that evolves during the disease course, and can be either beneficial or toxic to neurons. Given the fundamental regulatory functions of glia, pathogenic mechanisms in neuroinflammation represent promising therapeutic targets. We also discussed neuroprotective, immunosuppressive, and stem-cell based approaches applicable to both ALS and SCI.
Collapse
Affiliation(s)
| | | | | | - Ivana Munitic
- Ivana Munitic, Department of Biotechnology, University of Rijeka, R. Matejčić 2, 51000 Rijeka, Croatia,
| |
Collapse
|
125
|
Lathuilière A, Mareschal J, Graf CE. How to Prevent Loss of Muscle Mass and Strength among Older People in Neuro-Rehabilitation? Nutrients 2019; 11:E881. [PMID: 31010176 PMCID: PMC6521136 DOI: 10.3390/nu11040881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
Abstract
Stroke is the second leading cause of death worldwide but also of disability. Stroke induces certain alterations of muscle metabolism associated with gross muscle atrophy and a decrease in muscle function, leading to sarcopenia. The vast majority of stroke cases occur in adults over 65 years of age, and the prevalence is expected to massively increase in the coming years in this population. Sarcopenia is associated with higher mortality and functional decline. Therefore, the identification of interventions that prevent muscle alterations after stroke is of great interest. The purpose of this review is to carry out a systematic literature review to identify evidence for nutritional and pharmacological interventions, which may prevent loss of muscle mass in the elderly after stroke. The search was performed on Medline in December 2018. Randomized controlled studies, observational studies and case reports conducted in the last 20 years on post-stroke patients aged 65 or older were included. In total, 684 studies were screened, and eight randomized control trials and two cohort studies were finally included and examined. This review reveals that interventions such as amino acid supplementation or anabolic steroid administration are efficient to prevent muscle mass. Little evidence is reported on nutritional aspects specifically in sarcopenia prevention after stroke. It pinpoints the need for future studies in this particular population.
Collapse
Affiliation(s)
- Aurélien Lathuilière
- Department of Rehabilitation and Geriatrics, Geneva University Hospital, 1205 Geneva, Switzerland.
| | - Julie Mareschal
- Clinical Nutrition, Geneva University Hospital, 1205 Geneva, Switzerland.
| | - Christophe E Graf
- Department of Rehabilitation and Geriatrics, Geneva University Hospital, 1205 Geneva, Switzerland.
| |
Collapse
|
126
|
Ai Q, Chen C, Chu S, Luo Y, Zhang Z, Zhang S, Yang P, Gao Y, Zhang X, Chen N. IMM-H004 Protects against Cerebral Ischemia Injury and Cardiopulmonary Complications via CKLF1 Mediated Inflammation Pathway in Adult and Aged Rats. Int J Mol Sci 2019; 20:E1661. [PMID: 30987181 PMCID: PMC6480569 DOI: 10.3390/ijms20071661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Chemokine-like factor 1 (CKLF1) is a chemokine with potential to be a target for stroke therapy. Compound IMM-H004 is a novel coumarin derivative screened from a CKLF1/C-C chemokine receptor type 4 (CCR4) system and has been reported to improve cerebral ischemia/reperfusion injury. This study aims to investigate the protective effects of IMM-H004 on cerebral ischemia injury and its infectious cardiopulmonary complications in adult and aged rats from the CKLF1 perspective. (2) Methods: The effects of IMM-H004 on the protection was determined by 2,3,5-triphenyltetrazolium chloride (TTC) staining, behavior tests, magnetic resonance imaging (MRI) scans, enzyme-linked immunosorbent assay (ELISA), Nissl staining, histo-pathological examination, and cardiopulmonary function detection. Immunohistological staining, immunofluorescence staining, quantitative real-time PCR (qPCR), and western blotting were used to elucidate the underlying mechanisms. (3) Results: IMM-H004 protects against cerebral ischemia induced brain injury and its cardiopulmonary complications, inhibiting injury, and inflammation through CKLF1-dependent anti-inflammation pathway in adult and aged rats. IMM-H004 downregulates the amount of CKLF1, suppressing the followed inflammatory response, and further protects the damaged organs from ischemic injury. (4) Conclusions: The present study suggested that the protective mechanism of IMM-H004 is dependent on CKLF1, which will lead to excessive inflammatory response in cerebral ischemia. IMM-H004 could also be a therapeutic agent in therapy for ischemic stroke and cardiopulmonary complications in the aged population.
Collapse
Affiliation(s)
- Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces & College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Chen Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Shuai Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Pengfei Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yan Gao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xiaoling Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces & College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
127
|
Seng LB, Yasuhiro Y, Rajagopal N, Mohammad AA, Takao T, Kyosuke M, Tsukasa K, Kato Y. Loss of Contralateral Upper Limb Motor Evoked Potential Due to Occlusion of the Internal Carotid Artery in Microsurgical Clipping of Basilar Tip Aneurysm. Asian J Neurosurg 2019; 14:295-299. [PMID: 30937059 PMCID: PMC6417339 DOI: 10.4103/ajns.ajns_157_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The motor evoked potential (MEP) monitoring is routinely used as an adjunct in the microsurgical clipping of anterior circulation. We describe a case of unruptured basilar tip aneurysm treated with microsurgical clipping developed loss in MEP recording of the left abductor pollicis brevis (APB) following clipping of basilar tip aneurysm. A 58-year-old man was referred to the Fujita Health University Banbuntane-Hotokukai Hospital, Nagoya, Aichi, Japan, with incidental finding of unruptured 6.5 mm basilar tip saccular aneurysm. He underwent right anterior temporal approach of basilar tip aneurysm clipping. The internal carotid artery (ICA) was mobilized laterally to allow direct visualization of the neck of the basilar tip aneurysm. Following the application of temporary clip and subsequently permanent clip at the neck of the aneurysm, the MEP signal was lost in the left APB. The temporary clip was immediately removed. Dual-image videoangiography (DIVA) showed a filling defect in the right ICA and a branch of middle cerebral artery (MCA). The MEP was absent for about 23 minutes and the amplitude improved to only 75% of the baseline recording at 38 minutes till the end of the surgery. A repeat DIVA showed good flow within the right ICA and MCA. Glasgow coma score was 15/15 on postoperative day 1 and there was no gross motor or sensory deficit except right oculomotor nerve palsy with complete recovery at 6 months follow-up. This is the first reported ICA occlusion due to its mobilization in microsurgical clipping of basilar tip aneurysm. The use of neuromonitoring especially MEP is essential even in the posterior circulation aneurysm surgery especially when excessive manipulation of the ICA is unavoidable. When performing intraoperative angiography for aneurysm surgery, it is prudent to detect any filling defect within the surrounding vessels.
Collapse
Affiliation(s)
- Liew Boon Seng
- Department of Neurosurgery, Hospital Sungai Buloh, Sungai Buloh, Selangor, Malaysia
| | - Yamada Yasuhiro
- Department of Neurosurgery, Banbuntane Hotokukai Hospital, Fujita Health University, Nagoya, Japan
| | - Niranjana Rajagopal
- Department of Neurosurgery, Sathya Sai Institute of Higher Medical Sciences, Bengaluru, Karnataka, India
| | | | - Teranishi Takao
- Department of Neurosurgery, Banbuntane Hotokukai Hospital, Fujita Health University, Nagoya, Japan
| | - Miyatani Kyosuke
- Department of Neurosurgery, Banbuntane Hotokukai Hospital, Fujita Health University, Nagoya, Japan
| | - Kawase Tsukasa
- Department of Neurosurgery, Banbuntane Hotokukai Hospital, Fujita Health University, Nagoya, Japan
| | - Yoko Kato
- Department of Neurosurgery, Banbuntane Hotokukai Hospital, Fujita Health University, Nagoya, Japan
| |
Collapse
|
128
|
Efficacy and safety of edaravone in treatment of amyotrophic lateral sclerosis—a systematic review and meta-analysis. Neurol Sci 2018; 40:235-241. [DOI: 10.1007/s10072-018-3653-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/16/2018] [Indexed: 12/13/2022]
|
129
|
McGown A, Stopford MJ. High-throughput drug screens for amyotrophic lateral sclerosis drug discovery. Expert Opin Drug Discov 2018; 13:1015-1025. [PMID: 30317895 DOI: 10.1080/17460441.2018.1533953] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a rapid adult-onset neurodegenerative disorder characterised by the progressive loss of upper and lower motor neurons. Current treatment options are limited for ALS, with very modest effects on survival. Therefore, there is a unmet need for novel therapeutics to treat ALS. Areas covered: This review highlights the many diverse high-throughput screening platforms that have been implemented in ALS drug discovery. The authors discuss cell free assays including in silico and protein interaction models. The review also covers classical in vitro cell studies and new cell technologies, such as patient derived cell lines. Finally, the review looks at novel in vivo models and their use in high-throughput ALS drug discovery Expert opinion: Greater use of patient-derived in vitro cell models and development of better animal models of ALS will improve translation of lead compounds into clinic. Furthermore, AI technology is being developed to digest and interpret obtained data and to make 'hidden knowledge' usable to researchers. As a result, AI will improve target selection for high-throughput drug screening (HTDS) and aid lead compound optimisation. Furthermore, with greater genetic characterisation of ALS patients recruited to clinical trials, AI may help identify responsive genetic subtypes of patients from clinical trials.
Collapse
Affiliation(s)
- Alexander McGown
- a Sheffield Institute for Translational Neuroscience (SITraN) , University of Sheffield , Sheffield , United Kingdom
| | - Matthew John Stopford
- a Sheffield Institute for Translational Neuroscience (SITraN) , University of Sheffield , Sheffield , United Kingdom
| |
Collapse
|
130
|
Wang J, Chen X, Yuan B, Wang W, Xu C, Zhao W, Zhao P, Wang Y, Zhao X, Wang Y. Bioavailability of Edaravone Sublingual Tablet Versus Intravenous Infusion in Healthy Male Volunteers. Clin Ther 2018; 40:1683-1691. [PMID: 30241688 DOI: 10.1016/j.clinthera.2018.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/03/2018] [Accepted: 08/13/2018] [Indexed: 01/20/2023]
Abstract
PURPOSE Edaravone is a free-radical scavenger. Edaravone 30mg IV has been approved for use in the treatment of acute ischemic stroke in Japan and China, and for amyotrophic lateral sclerosis in Japan and the United States. Considering the inconvenience of IV infusion in clinical practice, an oral tablet formulation of edaravone was developed but failed in 2011 due to poor bioavailability. More recently, a sublingual (SL) tablet formulation of edaravone 30mg was developed by a Good Manufacturing Practices-compliant manufacturer in China. This study explored the bioavailability of the SL tablet of edaravone and aimed to provide evidence to support decision making in future clinical development. METHODS This 2-way crossover study was conducted in 10 healthy male volunteers. Eligible subjects were randomized, in a 1:1 ratio, to 1 of 2 dosing sequences: (1) SL edaravone 30mg, followed by edaravone 30mg IV infusion given over 30 minutes; or (2) edaravone 30mg IV infusion given over 30 minutes, followed by SL edaravone 30mg. The washout period between the 2 dosing periods was at least 24hours. Serial blood samples were collected in each dosing period. The bioavailability of the SL tablet was assessed using bioavailability analysis. Tolerability was evaluated throughout the study. FINDINGS The plasma concentration-time profile of the SL tablet was similar to that with the IV infusion. Amean (SD) Cmax of 2030.2 (517.2) ng/mL was reached within a median Tmax of 0.875hour, which was statistically significantly longer than the median Tmax with IV administration (0.5 hour). The Cmax with SL administration corresponded to 83.92% (90% CI, 73.22%-96.18%) of the Cmax with the start of IV infusion (2354.0 [336.6] ng/mL). The mean AUC0-t with SL dosing was 5420.07 (1429.75) h · ng/mL, which corresponded to 91.94% (90% CI, 86.81%-97.39%) of the AUC0-t with IV administration (5824.42 [1338.48] h · ng/mL). Two cases of adverse events were reported during the study; both were considered by the investigator to have been possibly not related to the study treatment. IMPLICATIONS The bioavailability of the SL tablet of edaravone was 91.94%. Compared with IV administration, Cmax with SL administration was ∼17% lower and Tmax was statistically significantly longer. The exposure differences can be addressed by modifying the strength of the SL tablet, and then conducting a second study to demonstrate the pharmacokinetic bioavailability of the sublingually administered new strength versus IV infusion of edaravone.
Collapse
Affiliation(s)
- Jiaqing Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China; College of Pharmaceutical Sciences, Capital Medical University, Beijing, People's Republic of China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People's Republic of China
| | - Xia Chen
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China; College of Pharmaceutical Sciences, Capital Medical University, Beijing, People's Republic of China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People's Republic of China.
| | - Baoshi Yuan
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China; College of Pharmaceutical Sciences, Capital Medical University, Beijing, People's Republic of China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People's Republic of China
| | - Weicong Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China; College of Pharmaceutical Sciences, Capital Medical University, Beijing, People's Republic of China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People's Republic of China
| | - Chunmin Xu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People's Republic of China
| | - Weiwei Zhao
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People's Republic of China
| | - Pengpeng Zhao
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People's Republic of China
| | - Yilong Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China; College of Pharmaceutical Sciences, Capital Medical University, Beijing, People's Republic of China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People's Republic of China
| | - Xingquan Zhao
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China; College of Pharmaceutical Sciences, Capital Medical University, Beijing, People's Republic of China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People's Republic of China
| | - Yongjun Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China; College of Pharmaceutical Sciences, Capital Medical University, Beijing, People's Republic of China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
131
|
Takase H, Lok J, Arai K. A radical scavenger edaravone and oligodendrocyte protection/regeneration. Neural Regen Res 2018; 13:1550-1551. [PMID: 30127114 PMCID: PMC6126124 DOI: 10.4103/1673-5374.237116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Hajime Takase
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
132
|
Parikh A, Kathawala K, Tan CC, Garg S, Zhou XF. Self-nanomicellizing solid dispersion of edaravone: part I - oral bioavailability improvement. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2051-2069. [PMID: 30013324 PMCID: PMC6038876 DOI: 10.2147/dddt.s161940] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Edaravone (EDR) is known for its free radical scavenging, antiapoptotic, antinecrotic, and anticytokine effects in neurological and non-neurological diseases. It is currently available clinically as Radicava® and Radicut®, intravenous medications, recently approved for the treatment of amyotrophic lateral sclerosis and cerebral infarction. However, the oral use of EDR is still restricted by its poor oral bioavailability (BA) due to poor aqueous solubility, stability, rapid metabolism, and low permeability. The present study reports the development of novel EDR formulation (NEF) using self-nanomicellizing solid dispersion (SNMSD) strategy with the aim to enable its oral use. Materials and methods The selection of a suitable carrier for the development of NEF was performed based on the miscibility study. The optimization of EDR-to-carrier ratio was conducted via kinetic solubility study after preparing SNMSDs using solvent evaporation technique. The drug–polymer carrier interaction and self-nanomicellizing properties of NEF were investigated with advanced characterization studies. In vitro permeation, metabolism, and dissolution study was carried out to examine the effect of the presence of a carrier on physico-chemical properties of EDR. Additionally, the dose-dependent pharmacokinetic study of NEF was conducted and compared with the EDR suspension. Results Soluplus® (SOL) as a carrier was selected based on the potential for improving aqueous solubility. The NEF containing EDR and SOL (1:5) resulted in the highest enhancement in aqueous solubility (17.53-fold) due to amorphization, hydrogen bonding interaction, and micellization. Moreover, the NEF demonstrated significant improvement in metabolism, permeability, and dissolution profile of EDR. Furthermore, the oral BA of NEF showed 10.2-, 16.1-, and 14.8-fold enhancement compared to EDR suspension at 46, 138, and 414 µmol/kg doses. Conclusion The results demonstrated that SNMSD strategy could serve as a promising way to enhance EDR oral BA and NEF could be a potential candidate for the treatment of diseases in which oxidative stress plays a key role in their pathogenesis.
Collapse
Affiliation(s)
- Ankit Parikh
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia, ;
| | - Krishna Kathawala
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia, ;
| | - Chun Chuan Tan
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia, ;
| | - Sanjay Garg
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia, ;
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia, ;
| |
Collapse
|
133
|
Tanaka M, Motomiya S, Fujisawa A, Yamamoto Y. Stabilizers of edaravone aqueous solution and their action mechanisms. 2. Glutathione. J Clin Biochem Nutr 2017; 61:164-168. [PMID: 29203956 PMCID: PMC5703789 DOI: 10.3164/jcbn.17-75] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/15/2017] [Indexed: 11/22/2022] Open
Abstract
Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) has garnered attention since its approval for amyotrophic lateral sclerosis in Japan (2015) and the United States (2017). Edaravone is administered intravenously, and as such, is distributed in the form of an aqueous solution. However, aqueous solutions of edaravone are very unstable because they present as edaravone anions, which become edaravone radicals when the anion donates an electron to free radicals including oxygen. In this study, glutathione (GSH) stabilized an aqueous edaravone solution during storage at 60°C for 4 weeks, and prevented the formation of potentially carcinogenic phenylhydrazine, while cysteine did not. One possible explanation is that GSH undergoes intermolecular hydrogen bonding with edaravone anions, while cysteine does not, as it favors intramolecular hydrogen boding. The combination of GSH and sodium bisulfite (NaHSO3) stabilized aqueous edaravone at room temperature for more than 1 year even under aerobic conditions. However, the U.S. Food and Drug Administration cautioned that NaHSO3 may cause allergic reactions. Therefore, we developed a stable edaravone aqueous solution without using NaHSO3, namely a combination of GSH with deoxygenation, which resulted in better stabilization of aqueous edaravone than the combination of GSH and NaHSO3.
Collapse
Affiliation(s)
- Masahiko Tanaka
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-cho, Hachioji, Tokyo 192-0982, Japan
| | - Satsuki Motomiya
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-cho, Hachioji, Tokyo 192-0982, Japan
| | - Akio Fujisawa
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-cho, Hachioji, Tokyo 192-0982, Japan
| | - Yorihiro Yamamoto
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-cho, Hachioji, Tokyo 192-0982, Japan
| |
Collapse
|