101
|
Duncan GW, Firbank MJ, O'Brien JT, Burn DJ. Magnetic resonance imaging: a biomarker for cognitive impairment in Parkinson's disease? Mov Disord 2013; 28:425-38. [PMID: 23450518 DOI: 10.1002/mds.25352] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/04/2012] [Accepted: 12/16/2012] [Indexed: 11/10/2022] Open
Abstract
Dementia is a frequent and disabling complication of Parkinson's disease (PD). Clinicians and researchers lack a biomarker capable of tracking the structural and functional changes that underlie the evolution of cognitive dysfunction in PD. Magnetic resonance imaging (MRI) has been adopted as a biomarker in natural history and interventional studies of Alzheimer's disease (AD) and amnestic mild cognitive impairment (MCI), but its utility as a biomarker for PD and Parkinson's disease dementia (PDD) is unclear. In this review, the authors summarize the studies that have used MRI to investigate cognitive decline in PD, outline limitations of those studies, and suggest directions for future research. PD dementia is associated with extensive cortical atrophy, which may be quantified with structural MRI. More promisingly, patterns of atrophy may be present in those who have PD with MCI (PD-MCI). Subcortical white matter tract degeneration is detectable early in the disease with diffusion tensor imaging and may precede changes observed on conventional structural MRI. Although less well studied, other MR techniques, such as functional MRI, MR perfusion imaging with arterial spin labeling, and MR spectroscopy, have demonstrated differences in activation and metabolism between PD and PDD. In this review, the ability to compare studies was limited by the heterogeneity of study populations, cognitive testing methods, and imaging protocols. Future work should adopt agreed scan protocols, should be adequately powered, and should use carefully phenotyped patients to fully maximize the contribution of MRI as a biomarker for PDD.
Collapse
Affiliation(s)
- Gordon W Duncan
- Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | | | | | | |
Collapse
|
102
|
Zheng Z, Shemmassian S, Wijekoon C, Kim W, Bookheimer SY, Pouratian N. DTI correlates of distinct cognitive impairments in Parkinson's disease. Hum Brain Mapp 2013; 35:1325-33. [PMID: 23417856 DOI: 10.1002/hbm.22256] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/06/2012] [Accepted: 12/12/2012] [Indexed: 11/10/2022] Open
Abstract
The spectrum of cognitive symptoms in Parkinson's disease (PD) can span various domains, including executive function, language, attention, memory, and visuospatial skills. These symptoms may be attributable to the degradation of projection fibers associated with the underlying neurodegenerative process. The primary purpose of this study is to find microstructural correlates of impairments across these cognitive domains in PD using diffusion tensor imaging (DTI). Sixteen patients with PD with comprehensive neuropsychological evaluation and DTI data were retrospectively studied. Fractional anisotropy (FA) and mean diffusivity (MD) were assessed using regions-of-interest (ROI) analysis and confirmed with a voxel-based approach. Executive function directly correlated with FA and inversely correlated with MD in mostly frontal white matter tracts, especially the anterior limb of the internal capsule and genu of the corpus callosum. Likewise, language and attentional performance demonstrated correlations with DTI parameters in the frontal regions, but the attention domain additionally recruited regions widespread throughout the brain, with the most significant correlation identified in cingulate gyrus (cingulum). Lastly, memory impairment mainly involved MD alterations within the fornix. No significant correlations were found between visuospatial skills and DTI measures. Despite some overlap, unique patterns of white matter diffusivity underlie impairments in distinct cognitive domains in patients with PD. DTI combined with neurocognitive tests may be a valuable biomarker for identifying cognitive impairments in PD.
Collapse
Affiliation(s)
- Zhong Zheng
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | | | | | | | | | | |
Collapse
|
103
|
Agosta F, Kostic VS, Davidovic K, Kresojević N, Sarro L, Svetel M, Stanković I, Comi G, Klein C, Filippi M. White matter abnormalities in Parkinson's disease patients with glucocerebrosidase gene mutations. Mov Disord 2013; 28:772-8. [PMID: 23418083 DOI: 10.1002/mds.25397] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/27/2012] [Accepted: 01/10/2013] [Indexed: 11/08/2022] Open
Abstract
Glucocerebrosidase gene mutations represent a genetic risk factor for the development of Parkinson's disease. This study investigated brain alterations in Parkinson's disease patients carrying heterozygous glucocerebrosidase gene mutations using structural and diffusion tensor magnetic resonance imaging. Among 360 Parkinson's disease patients screened for glucocerebrosidase gene mutations, 19 heterozygous mutation carriers (5.3%) were identified. Of these, 15 patients underwent a neuropsychological evaluation and a magnetic resonance imaging scan. Sixteen age- and sex-matched healthy controls and 14 idiopathic Parkinson's disease patients without glucocerebrosidase gene mutations were also studied. Tract-based spatial statistics was used to perform a white matter voxel-wise analysis of diffusion tensor magnetic resonance imaging metrics. Mean fractional anisotropy values were obtained from white matter tracts of interest. Voxel-based morphometry was used to assess gray-matter atrophy. Cognitive deficits were found in 9 mutation carrier patients (60%). Compared with controls, Parkinson's disease patients carrying glucocerebrosidase gene mutations showed decreased fractional anisotropy in the olfactory tracts, corpus callosum, and anterior limb of the internal capsule bilaterally, as well as in the right anterior external capsule, and left cingulum, parahippocampal tract, parietal portion of the superior longitudinal fasciculus, and occipital white matter. Mutation carrier patients also had decreased fractional anisotropy of the majority of white matter tracts compared with Parkinson's disease patients with no mutations. No white matter abnormalities were found in Parkinson's disease patients without glucocerebrosidase gene mutations. No gray matter difference was found between patients and controls. In Parkinson's disease patients, verbal fluency scores correlated with white matter abnormalities. Parkinson's disease patients carrying glucocerebrosidase gene mutations experience a distributed pattern of white matter abnormalities involving the interhemispheric, frontal corticocortical, and parahippocampal tracts. White matter pathology in these patients may have an impact on the clinical manifestations of the disease, including cognitive impairment.
Collapse
Affiliation(s)
- Federica Agosta
- Neuroimaging Research Unit, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Reduced early visual emotion discrimination as an index of diminished emotion processing in Parkinson’s disease? – Evidence from event-related brain potentials. Cortex 2012; 48:1207-17. [DOI: 10.1016/j.cortex.2011.06.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 05/03/2011] [Accepted: 06/03/2011] [Indexed: 11/17/2022]
|
105
|
Marumoto K, Koyama T, Hosomi M, Kodama N, Miyake H, Domen K. Diffusion tensor imaging in elderly patients with idiopathic normal pressure hydrocephalus or Parkinson's disease: diagnosis of gait abnormalities. Fluids Barriers CNS 2012; 9:20. [PMID: 22989298 PMCID: PMC3515361 DOI: 10.1186/2045-8118-9-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/20/2012] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUND Gait abnormalities in the elderly, characterized by short steps and frozen gait, can be caused by several diseases, including idiopathic normal pressure hydrocephalus (INPH), and Parkinson's disease (PD). We analyzed the relationship between these two conditions and their association with gait abnormalities using laboratory test data and findings from diffusion tensor imaging (DTI). METHODS The study involved 10 patients with INPH, 18 with PD, and 10 healthy individuals (control group). Fractional anisotropy (FA) of five brain areas was measured and compared among the three groups. In addition, the association of INPH and PD with gait capability, frontal lobe function, and FA of each brain area was evaluated. RESULTS The INPH group had significantly lower FA for anterior thalamic radiation (ATR) and forceps minor (Fmin) as compared to the PD group. The gait capability correlated with ATR FA in the INPH and PD groups. We found that adding DTI to the diagnosis assisted the differential diagnosis of INPH from PD, beyond what could be inferred from ventricular size alone. CONCLUSIONS We expect that DTI will provide a useful tool to support the differential diagnosis of INPH and PD and their respective severities.
Collapse
Affiliation(s)
- Kohei Marumoto
- Department of Physical Medicine and Rehabilitation, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan.
| | | | | | | | | | | |
Collapse
|
106
|
Ferrer I, López-Gonzalez I, Carmona M, Dalfó E, Pujol A, Martínez A. Neurochemistry and the non-motor aspects of PD. Neurobiol Dis 2012; 46:508-26. [PMID: 22737710 DOI: 10.1016/j.nbd.2011.10.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
Parkinson disease (PD) is a systemic disease with variegated non-motor deficits and neurological symptoms, including impaired olfaction, autonomic failure, cognitive impairment and psychiatric symptoms, in addition to the classical motor symptoms. Many non-motor symptoms appear before or in parallel with motor deficits and then worsen with disease progression. Although there is a relationship, albeit not causal, between motor symptoms and the presence of Lewy bodies (LBs) and neurites filled with abnormal α-synuclein, other neurological alterations are independent of the amount of α-synuclein inclusions in neurons and neurites, thereby indicating that different mechanisms probably converge in the degenerative process. This may apply to complex alterations interfering with olfactory and autonomic nervous systemfunctions, emotions, sleep regulation, and behavioral, cognitive and mental performance. Involvement of the cerebral cortex leading to impaired behavior and cognition is related to several convergent altered factors including: a. dopaminergic, noradrenergic, serotoninergic and cholinergic cortical innervation; b. synapses; c. cortical metabolism; d. mitochondrial function and energy production; e. oxidative damage; f. transcription; g. protein expression; h. lipid composition; and i. ubiquitin–proteasome system and autophagy, among others. This complex situation indicates that multiple subcellular failure in selected cell populations is difficult to reconcilewith a reductionistic scenario of a single causative cascade of events leading to non-motor symptoms in PD. Furthermore, these alterationsmay appear at early stages of the disease and may precede the appearance of substantial irreversible cell loss by years. These observations have important implications in the design of therapeutic approaches geared to prevention and treatment of PD.
Collapse
Affiliation(s)
- I Ferrer
- Institute of Neuropathology, Service of Pathology, University Hospital of Bellvitge, Spain.
| | | | | | | | | | | |
Collapse
|
107
|
Rae CL, Correia MM, Altena E, Hughes LE, Barker RA, Rowe JB. White matter pathology in Parkinson's disease: the effect of imaging protocol differences and relevance to executive function. Neuroimage 2012; 62:1675-84. [PMID: 22713671 PMCID: PMC3413883 DOI: 10.1016/j.neuroimage.2012.06.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/18/2012] [Accepted: 06/08/2012] [Indexed: 02/02/2023] Open
Abstract
Diffusion magnetic resonance imaging is increasingly used as a non-invasive method to investigate white matter structure in neurological and neuropsychiatric disease. However, many options are available for the acquisition sequence and analysis method. Here we used Parkinson's disease as a model neurodegenerative disorder to compare imaging protocols and analysis options. We investigated fractional anisotropy and mean diffusivity of white matter in patients and age-matched controls, comparing two datasets acquired with different imaging protocols. One protocol prioritised the number of b value acquisitions, whilst the other prioritised the number of gradient directions. The dataset with more gradient directions was more sensitive to reductions in fractional anisotropy in Parkinson's disease, whilst the dataset with more b values was more sensitive to increases in mean diffusivity. Moreover, the areas of reduced fractional anisotropy were highly similar to areas of increased mean diffusivity in PD patients. Next, we compared two widely used analysis methods: tract-based spatial statistics identified reduced fractional anisotropy and increased mean diffusivity in Parkinson's disease in many of the major white matter tracts in the frontal and parietal lobes. Voxel-based analyses were less sensitive, with similar patterns of white matter pathology observed only at liberal statistical thresholds. We also used tract-based spatial statistics to identify correlations between a test of executive function (phonemic fluency), fractional anisotropy and mean diffusivity in prefrontal white matter in both Parkinson's disease patients and controls. These findings suggest that in Parkinson's disease there is widespread pathology of cerebral white matter, and furthermore, pathological white matter in the frontal lobe may be associated with executive dysfunction. Diffusion imaging protocols that prioritised the number of directions versus the number of b values were differentially sensitive to alternative markers of white matter pathology, such as fractional anisotropy and mean diffusivity.
Collapse
Key Words
- dti, diffusion tensor imaging
- fa, fractional anisotropy
- fwe, family-wise error
- h&y, hoehn and yahr
- md, mean diffusivity
- mmse, mini-mental state examination
- mr, magnetic resonance
- pd, parkinson's disease
- tbss, tract-based spatial statistics
- tfce, threshold-free cluster enhancement
- updrs, unified parkinson's disease rating scale
- dti
- tbss
- vbm
- parkinson's disease
- executive function
Collapse
Affiliation(s)
- Charlotte L. Rae
- MRC Cognition and Brain Sciences Unit, Cambridge, CB2 7EF, UK,Corresponding author at: MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge, CB2 7EF, UK. Fax: + 44 1223 359062.
| | | | - Ellemarije Altena
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - Laura E. Hughes
- MRC Cognition and Brain Sciences Unit, Cambridge, CB2 7EF, UK,Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - Roger A. Barker
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 2QQ, UK,Cambridge Centre for Brain Repair, University of Cambridge, CB2 0PY, UK
| | - James B. Rowe
- MRC Cognition and Brain Sciences Unit, Cambridge, CB2 7EF, UK,Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 2QQ, UK,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| |
Collapse
|
108
|
Watson R, Blamire AM, Colloby SJ, Wood JS, Barber R, He J, O'Brien JT. Characterizing dementia with Lewy bodies by means of diffusion tensor imaging. Neurology 2012; 79:906-14. [PMID: 22895591 DOI: 10.1212/wnl.0b013e318266fc51] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate patterns of in vivo white matter tract change using diffusion tensor imaging (DTI), we conducted a cross-sectional study of dementia with Lewy bodies (DLB) in comparison with Alzheimer disease (AD) and normal aging. METHODS The study included 106 subjects (35 with DLB, 36 with AD, and 35 elderly controls) who underwent clinical and neuropsychological assessment and diffusion tensor MRI. We used tract-based spatial statistics to investigate patterns of reduced fractional anisotropy (FA) and increased mean diffusivity (MD) across the entire white matter tract skeleton and also investigated correlations with clinical features. RESULTS Areas of reduced FA in subjects with DLB vs controls were found primarily in parieto-occipital white matter tracts; in AD, the changes were much more diffuse. DLB was also associated with reduced FA in the pons and left thalamus, in comparison with AD. The pattern of MD increase was diffuse in AD and DLB. We found an association between DTI parameters and impaired episodic memory, letter fluency, and severity of motor parkinsonism in DLB. CONCLUSIONS Despite a similar level of dementia severity, patterns of DTI changes in AD and DLB differed significantly. The selective involvement of the visual association areas and subcortical structures and the significant clinical correlations highlight the potential importance of white matter tract change in the pathogenesis of DLB. DTI may be a useful technique to investigate early and possible preclinical changes in DLB and warrants further investigation.
Collapse
Affiliation(s)
- Rosie Watson
- Institute for Ageing and Health, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK.
| | | | | | | | | | | | | |
Collapse
|
109
|
Baggio H, Segura B, Ibarretxe-Bilbao N, Valldeoriola F, Marti M, Compta Y, Tolosa E, Junqué C. Structural correlates of facial emotion recognition deficits in Parkinson's disease patients. Neuropsychologia 2012; 50:2121-8. [DOI: 10.1016/j.neuropsychologia.2012.05.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 05/16/2012] [Accepted: 05/20/2012] [Indexed: 10/28/2022]
|
110
|
Haller S, Badoud S, Nguyen D, Garibotto V, Lovblad KO, Burkhard PR. Individual detection of patients with Parkinson disease using support vector machine analysis of diffusion tensor imaging data: initial results. AJNR Am J Neuroradiol 2012; 33:2123-8. [PMID: 22653326 DOI: 10.3174/ajnr.a3126] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Brain MR imaging is routinely performed in the work-up of suspected PD, yet its role is essentially limited to the exclusion of other pathologies. We performed a pattern-recognition analysis based on DTI data to detect subjects with PD at the individual level. MATERIALS AND METHODS We included 40 consecutive patients with Parkinsonism suggestive of PD who had DTI at 3T, brain (123)I ioflupane SPECT (DaTSCAN), and extensive neurologic testing including follow-up (17 PD: age range, 67.8 ± 6.7 years; 9 women; 23 Other: consisting of atypical forms of Parkinsonism; age range, 67.2 ± 9.7 years; 7 women). Data analysis included group-level TBSS and individual-level SVM classification. RESULTS At the group level, patients with PD versus Other had spatially consistent increase in FA and decrease in RD and MD in a bilateral network, predominantly in the right frontal white matter. At the individual level, SVM correctly classified patients with PD at the individual level with accuracies up to 97%. CONCLUSIONS Support vector machine-based pattern recognition of DTI data provides highly accurate detection of patients with PD among those with suspected PD at an individual level, which is potentially clinically applicable. Because most suspected subjects with PD undergo brain MR imaging, already existing MR imaging data may be reused; this practice is very cost-efficient.
Collapse
Affiliation(s)
- S Haller
- Service Neuro-Diagnostique et Neuro-Interventionnel, Département de l'Imagerie et Science de l'Information Médical, University Hospitals of Geneva, Geneva, Switzerland.
| | | | | | | | | | | |
Collapse
|
111
|
Lehéricy S, Sharman MA, Dos Santos CL, Paquin R, Gallea C. Magnetic resonance imaging of the substantia nigra in Parkinson's disease. Mov Disord 2012; 27:822-30. [PMID: 22649063 DOI: 10.1002/mds.25015] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 03/15/2012] [Accepted: 03/26/2012] [Indexed: 12/30/2022] Open
Abstract
Until recently, conventional magnetic resonance imaging (MRI) was most often negative in Parkinson's disease or showed nonspecific findings. Recent developments in structural MRI, including relaxometry, magnetization transfer, and neuromelanin imaging, have demonstrated improved contrast and enabled more accurate visualization of deep brain nuclei, in particular, the substantia nigra. Meanwhile, diffusion imaging has provided useful biomarkers of substantia nigra degeneration, showing reduced anisotropy and anatomical connectivity with the striatum and thalamus. These advances in structural imaging are complemented by findings of magnetic resonance spectroscopy on brain metabolism and resting-state functional MRI on functional connectivity. This article presents an overview of these new structural, metabolic, and resting-state functional MRI techniques and their implications for Parkinson's disease. The techniques are reviewed in the context of their potential for better understanding the disease in terms of diagnosis and pathophysiology and as biomarkers of its progression.
Collapse
Affiliation(s)
- Stéphane Lehéricy
- Centre de NeuroImagerie de Recherche-CENIR, Groupe Hospitalier Pitie-Salpetriere, Paris, France.
| | | | | | | | | |
Collapse
|
112
|
Agosta F, Canu E, Stojković T, Pievani M, Tomić A, Sarro L, Dragašević N, Copetti M, Comi G, Kostić VS, Filippi M. The topography of brain damage at different stages of Parkinson's disease. Hum Brain Mapp 2012; 34:2798-807. [PMID: 22528144 DOI: 10.1002/hbm.22101] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 03/12/2012] [Accepted: 03/19/2012] [Indexed: 11/09/2022] Open
Abstract
This study investigated gray matter (GM) and white matter (WM) damage in 89 patients at different clinical stages of Parkinson's disease (PD) (17 early, 46 mild, 14 moderate, and 12 severe) to differentiate the trajectories of tissue injury in this condition. PD patients had a very little GM atrophy even at the more advanced stages of the disease. Microstructural damage to the WM occurs with increasing PD severity and involves the brainstem, thalamocortical pathways, olfactory tracts, as well as the major interhemispheric, limbic, and extramotor association tracts. The most marked WM damage was found in moderate vs. mild cases. WM damage correlated with the degree of global cognitive deficits. WM abnormalities beyond the nigrostriatal system accumulate with increasing PD severity. WM damage is likely to contribute to the more severe motor and nonmotor dysfunctions occurring in patients at the later stages.
Collapse
Affiliation(s)
- Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Kamagata K, Motoi Y, Abe O, Shimoji K, Hori M, Nakanishi A, Sano T, Kuwatsuru R, Aoki S, Hattori N. White matter alteration of the cingulum in Parkinson disease with and without dementia: evaluation by diffusion tensor tract-specific analysis. AJNR Am J Neuroradiol 2012; 33:890-5. [PMID: 22241380 DOI: 10.3174/ajnr.a2860] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE In PD, the neurodegenerative process begins in the brain stem and extends to the limbic system and finally into the cerebral cortex. We used diffusion tensor tractography to investigate the FA of the cingulate fiber tracts in patients with PD with and without dementia. MATERIALS AND METHODS Fifteen patients with PD, 15 patients with PDD, and 15 age-matched healthy controls underwent diffusion tensor imaging with a 3T MR imager. Diffusion tensor tractography images of the anterior and posterior cingulate fiber tracts were generated. Mean diffusivity and FA were measured along the tractography of the anterior and posterior cingulate fiber tracts. One-way ANOVA with the Scheffé post hoc test was used to compare results among the groups. RESULTS FA was significantly lower in patients with PDD than in healthy controls in both the anterior and the posterior cingulate fiber tracts (P = .003, P = .015) and significantly lower in patients with PD than in healthy controls (P = .003) in the anterior cingulate fiber tract. There were no significant mean diffusivity differences among the groups. MMSE and FA values of the anterior cingulate fiber tracts in patients with PDD were significantly correlated (r = 0.633, P < .05). CONCLUSIONS The reduced FA in patients with PD and PDD might reflect neuropathologic changes such as Lewy body pathology in the cingulate fibers. This abnormality might contribute to the dementing process in PD.
Collapse
Affiliation(s)
- K Kamagata
- Department of Radiology, Juntendo University School of Medicine, 2-1-1, Hongo Bunkyo-ku Tokyo 113-8421 Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
|
115
|
Abstract
Advances in imaging have made it possible to detect functional and, increasingly, structural changes in Parkinson's disease. Although imaging is not yet routinely used for diagnosis, such an application is becoming increasingly feasible. Of potentially greater interest, however, is the use of imaging as a biomarker to detect premotor disease and disease progression. Imaging also provides insights into complications of Parkinson's disease and its long-term treatment, and the role of dopamine in the normal brain. Furthermore, these techniques can be applied to animal models, to help validate these models and allow their use in the study of potential disease-modifying therapies.
Collapse
Affiliation(s)
- A Jon Stoessl
- Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | |
Collapse
|
116
|
Morgen K, Sammer G, Weber L, Aslan B, Müller C, Bachmann GF, Sandmann D, Oechsner M, Vaitl D, Kaps M, Reuter I. Structural brain abnormalities in patients with Parkinson disease: a comparative voxel-based analysis using T1-weighted MR imaging and magnetization transfer imaging. AJNR Am J Neuroradiol 2011; 32:2080-6. [PMID: 22081675 DOI: 10.3174/ajnr.a2837] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE In PD, tissue damage occurs in specific cortical and subcortical regions. Conventional MR images have only limited capacity to depict these structural changes. The purpose of the current study was to investigate whether voxel-based MT imaging could indicate structural abnormalities beyond atrophy measurable with T1-weighted MR imaging. MATERIALS AND METHODS Thirty-six patients with PD without dementia (9 in H&Y stage 1, thirteen in H&Y 2, eleven in H&Y 3, three in H&Y 4) and 23 age-matched control subjects were studied with T1-weighted MR imaging and MT imaging. Voxel-based analyses of T1-weighted MR imaging was performed to investigate brain atrophy, while MT imaging was used to study abnormalities within existing tissue. Modulated GM and WM probability maps, sensitive to volume, and nonmodulated maps, indicative of tissue density, were obtained from T1-weighted MR imaging. Effects seen on MTR images, but absent on density maps, were attributed to damage of existing tissue. RESULTS Contrary to T1-weighted MR imaging, MT imaging was sensitive to the progression of brain pathology of the neocortex and paraventricular WM. MTR images and T1-based volume images, but not density images, showed a progression of disease in the olfactory cortex, indicating the occurrence of atrophy as well as damage to existing tissue in this region. MTR images revealed bilateral damage to the SN, while T1-weighted MR imaging only showed left-sided abnormalities. CONCLUSIONS The findings suggest that voxel-based MT imaging permits a whole-brain unbiased investigation of CNS structural integrity in PD and may be a valuable tool for identifying structural damage occurring without or before measurable atrophy.
Collapse
Affiliation(s)
- K Morgen
- Central Institute of Mental Health, Mannheim, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Agosta F, Filippi M. Unraveling neurological diseases: the contribution of neuroimaging. Expert Rev Neurother 2011; 11:1553-5. [PMID: 22014132 DOI: 10.1586/ern.11.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The 21st Meeting of the European Neurological Society (ENS) was held on 28-31 May 2011 in Lisbon, Portugal. Over 3400 participants attained the meeting. The ENS meeting is an international event, which offers an exclusive opportunity for excellent continuous education, as well as an update of cutting-edge research in all fields of neurology. Among the key themes of this year's conference, the contribution of magnetic resonance-based techniques to unravel the physiopathology of neurological diseases and improve our knowledge of the way they progress was highlighted in several sessions. This article summarizes the major neuroimaging findings of the 21st ENS Meeting.
Collapse
Affiliation(s)
- Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | |
Collapse
|
118
|
Pievani M, de Haan W, Wu T, Seeley WW, Frisoni GB. Functional network disruption in the degenerative dementias. Lancet Neurol 2011; 10:829-43. [PMID: 21778116 PMCID: PMC3219874 DOI: 10.1016/s1474-4422(11)70158-2] [Citation(s) in RCA: 341] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite advances towards understanding the molecular pathophysiology of the neurodegenerative dementias, the mechanisms linking molecular changes to neuropathology and neuropathological changes to clinical symptoms remain largely obscure. Connectivity is a distinctive feature of the brain and the integrity of functional network dynamics is crucial for normal functioning. A better understanding of network disruption in the neurodegenerative dementias might help bridge the gap between molecular changes, pathological changes, and symptoms. Recent findings on functional network disruption as assessed with resting-state or intrinsic connectivity functional MRI and electroencephalography and magnetoencephalography have shown distinct patterns of network disruption across the major neurodegenerative diseases. These network abnormalities are somewhat specific to the clinical syndromes and, in Alzheimer's disease and frontotemporal dementia, network disruption tracks the pattern of pathological changes. These findings might have practical implications for diagnostic accuracy, allowing earlier detection of neurodegenerative diseases even at the presymptomatic stage, and tracking of disease progression.
Collapse
Affiliation(s)
- Michela Pievani
- Laboratory of Epidemiology, Neuroimaging, and Telemedicine, IRCCS Centro San Giovanni di Dio, Fatebenefratelli, Brescia, Italy
| | | | | | | | | |
Collapse
|
119
|
Zhan W, Kang GA, Glass GA, Zhang Y, Shirley C, Millin R, Possin KL, Nezamzadeh M, Weiner MW, Marks WJ, Schuff N. Regional alterations of brain microstructure in Parkinson's disease using diffusion tensor imaging. Mov Disord 2011; 27:90-7. [PMID: 21850668 DOI: 10.1002/mds.23917] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 06/15/2011] [Accepted: 07/05/2011] [Indexed: 11/11/2022] Open
Abstract
This study tested the hypothesis that diffusion tensor imaging can detect alteration in microscopic integrity of white matter and basal ganglia regions known to be involved in Parkinson's disease (PD) pathology. It was also hypothesized that there is an association between diffusion abnormality and PD severity and subtype. Diffusion tensor imaging at 4 Tesla was obtained in 12 PD and 20 control subjects, and measures of fractional anisotropy and mean diffusivity were evaluated using both region-of-interest and voxel-based methods. Movement deficits and subtypes in PD subjects were assessed using the Motor Subscale (Part III) of the Unified Parkinson's Disease Rating Scale. Reduced fractional anisotropy (P < .05, corrected) was found in PD subjects in regions related to the precentral gyrus, substantia nigra, putamen, posterior striatum, frontal lobe, and the supplementary motor areas. Reduced fractional anisotropy in the substantia nigra correlated (P < .05, corrected) with the increased rating scale motor scores. Significant spatial correlations between fractional anisotropy alterations in the putamen and other PD-affected regions were also found in the context of PD subtypes index analysis. Our data suggest that microstructural alterations detected with diffusion tensor might serve as a potential biomarker for PD.
Collapse
Affiliation(s)
- Wang Zhan
- Department of Radiology and Medical Imaging, Center of Imaging for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Pan PL, Song W, Shang HF. Voxel-wise meta-analysis of gray matter abnormalities in idiopathic Parkinson's disease. Eur J Neurol 2011; 19:199-206. [PMID: 21762435 DOI: 10.1111/j.1468-1331.2011.03474.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Structural neuroimaging studies on idiopathic Parkinson's disease (IPD) with voxel-based morphometry (VBM) yielded variable and conflicting findings. A systematic review of VBM studies of patients with IPD and healthy control (HC) subjects published in PubMed, ISI Web of Science, Embase, and Medline databases from 1995 to 25 October 2010 was conducted. Coordinates were extracted from clusters of significant gray matter (GM) difference between patients with IPD and HC subjects. Meta-analysis was performed using signed differential mapping. A total of 17 VBM studies involving 498 patients with IPD and 375 HC subjects met the inclusion criteria. A significant regional GM volume decrease was detected in the left inferior frontal gyrus (BA47) extending to the left superior temporal gyrus (BA38) and the left insula (BA13) of patients with IPD compared with HC subjects. The findings of this study remain largely unchanged in quartile and jackknife sensitivity analyses and in subgroup analyses. Robust GM reductions in the inferior frontal/orbitofrontal gyrus (BA47) are implicated in IPD, and the reductions may be related to the mediation of the non-motor IPD symptoms, such as cognitive, emotional, and autonomic functions. Further studies must be conducted to determine whether the findings are specific to all IPD subtypes or different from the atypical Parkinsonism.
Collapse
Affiliation(s)
- P L Pan
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | | |
Collapse
|
121
|
Abstract
Although diagnosed by characteristic motor features, Parkinson's disease may be preceded, and is frequently accompanied by, a wide range of cognitive and neuropsychiatric features. In addition to the most commonly studied disorders of dementia, depression, and psychosis, other relatively common and clinically significant psychiatric complications include impulse control disorders, anxiety symptoms, disorders of sleep and wakefulness, and apathy. These problems may be underrecognized and are frequently undertreated. The emergent focus on nonmotor aspects of Parkinson's disease over the past quarter of a century is highlighted by a nonlinear increase in the number of articles published devoted to this topic. Although the development of newer antidepressants, atypical antipsychotics, and cholinesterase inhibitors in recent years has had a positive benefit on the management of these troublesome and distressing symptoms, responses are frequently suboptimal, and this remains an area of major unmet therapeutic need.
Collapse
Affiliation(s)
- Daniel Weintraub
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | | |
Collapse
|
122
|
White matter involvement in idiopathic normal pressure hydrocephalus: a voxel-based diffusion tensor imaging study. J Neurol 2011; 258:1949-57. [PMID: 21512742 DOI: 10.1007/s00415-011-6038-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 03/31/2011] [Accepted: 03/31/2011] [Indexed: 10/18/2022]
Abstract
The aim of this study was to characterise the white matter damage involved in idiopathic normal pressure hydrocephalus (INPH) using diffusion tensor imaging (DTI) and the relationship between this damage and clinical presentation. Twenty patients with INPH, 20 patients with Alzheimer's disease and 20 patients with idiopathic Parkinson's disease (as disease control groups) were enrolled in this study. Mean diffusivity (MD) and fractional anisotropy (FA) were determined using DTI, and these measures were analysed to compare the INPH group with the control groups and with certain clinical correlates. On average, the supratentorial white matter presented higher MD and lower FA in the INPH group than in the control groups. In the INPH group, the mean hemispheric FA correlated with some of the clinical measures, whereas the mean hemispheric MD did not. On a voxel-based statistical map, white matter involvement with high MD was localised to the periventricular regions, and white matter involvement with low FA was localised to the corpus callosum and the subcortical regions. The total scores on the Frontal Assessment Battery were correlated with the FA in the frontal and parietal subcortical white matter, and an index of gait disturbance was correlated with the FA in the anterior limb of the left internal capsule and under the left supplementary motor area. DTI revealed the presence of white matter involvement in INPH. Whereas white matter regions with high MD were not related to symptom manifestation, those with low FA were related to motor and cognitive dysfunction in INPH.
Collapse
|
123
|
Soria G, Aguilar E, Tudela R, Mullol J, Planas AM, Marin C. In vivo magnetic resonance imaging characterization of bilateral structural changes in experimental Parkinson’s disease: a T2 relaxometry study combined with longitudinal diffusion tensor imaging and manganese-enhanced magnetic resonance imaging in the 6-. Eur J Neurosci 2011; 33:1551-60. [DOI: 10.1111/j.1460-9568.2011.07639.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
124
|
Jubault T, Gagnon JF, Karama S, Ptito A, Lafontaine AL, Evans AC, Monchi O. Patterns of cortical thickness and surface area in early Parkinson's disease. Neuroimage 2011; 55:462-7. [DOI: 10.1016/j.neuroimage.2010.12.043] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 11/30/2010] [Accepted: 12/14/2010] [Indexed: 11/16/2022] Open
|
125
|
Abstract
Pure vascular parkinsonism without evidence of nigral Lewy body pathology may occur as a distinct clinicopathological entity, but a much more frequent occurrence is the comorbid presence of age-associated white matter lesions (WMLs) in idiopathic Parkinson disease (PD). WMLs are associated with motor and cognitive symptoms in otherwise normal elderly individuals. Comorbid WMLs are, therefore, expected to contribute to clinical symptoms in PD. Studies of WMLs in PD differ with regard to methods of assessment of WML burden and the patient populations selected for analysis, but converging evidence suggests that postural stability and gait motor functions are predominantly affected. WMLs are described to contribute to dementia in Alzheimer disease, and emerging but inconclusive evidence indicates similar effects in PD. In this article, we review the literature addressing the occurrence and impact of WMLs in PD, and suggest that WMLs may exacerbate or contribute to some motor and cognitive deficits associated with PD. We review existing and emerging methods for studying white matter pathology in vivo, and propose future research directions.
Collapse
|
126
|
Lee SH, Kim SS, Tae WS, Lee SY, Choi JW, Koh SB, Kwon DY. Regional volume analysis of the Parkinson disease brain in early disease stage: gray matter, white matter, striatum, and thalamus. AJNR Am J Neuroradiol 2011; 32:682-7. [PMID: 21330396 DOI: 10.3174/ajnr.a2372] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Loss of dopaminergic neurons in the nigrostriatal pathway is well-documented in PD, whereas neuronal changes beyond the nigrostriatal pathway are uncertain. The purpose of our study was to estimate volume changes in the striatum and thalamus, which are areas of the basal ganglia, as well as in GM and WM located beyond the nigrostriatal pathway, in early-stage PD. MATERIALS AND METHODS We enrolled 30 participants (15 healthy controls and 15 patients with PDND with H & Y stage I or II). Cognitive function was assessed by using the MMSE. ICV and the volumes of the caudate nucleus, putamen, thalamus, GM, and WM were calculated via 3D volume analysis by using MR imaging. RESULTS A comparison of the PD group with the control group revealed an absence of significant differences between them regarding age and MMSE scores. Comparison of the volumes of regional brain structures of patients with PD with those of controls revealed the presence of significant differences in the caudate nucleus, thalamus, and WM (P<.05) between the groups. However, there were no significant differences in the volumes of the putamen and GM or in ICV between patients with PD and controls. The results of ANCOVA by using the covariates of age and ICV showed a significant difference in the caudate nucleus, thalamus, and WM between patients with PD and controls (P<.05). CONCLUSIONS We suggest that loss of WM volume may occur in early disease stages and that variation of the volumes of the caudate nucleus and thalamus may be an early phenomenon of disease progression.
Collapse
Affiliation(s)
- S H Lee
- Department of Neurology, Kangwon National University College of Medicine, Chuncheon, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
127
|
Ferrer I. Neuropathology and neurochemistry of nonmotor symptoms in Parkinson's disease. PARKINSON'S DISEASE 2011; 2011:708404. [PMID: 21403906 PMCID: PMC3043318 DOI: 10.4061/2011/708404] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 12/16/2010] [Indexed: 02/02/2023]
Abstract
Parkinson disease (PD) is no longer considered a complex motor disorder characterized by Parkinsonism but rather a systemic disease with variegated non-motor deficits and neurological symptoms, including impaired olfaction, autonomic failure, cognitive impairment, and psychiatric symptoms. Many of these alterations appear before or in parallel with motor deficits and then worsen with disease progression. Although there is a close relation between motor symptoms and the presence of Lewy bodies (LBs) and neurites filled with abnormal α-synuclein, other neurological alterations are independent of the amount of α-synuclein inclusions in neurons and neurites, thereby indicating that different mechanisms probably converge in the degenerative process. Involvement of the cerebral cortex that may lead to altered behaviour and cognition are related to several convergent factors such as (a) abnormal α-synuclein and other proteins at the synapses, rather than LBs and neurites, (b) impaired dopaminergic, noradrenergic, cholinergic and serotoninergic cortical innervation, and (c) altered neuronal function resulting from reduced energy production and increased energy demands. These alterations appear at early stages of the disease and may precede by years the appearance of cell loss and cortical atrophy.
Collapse
Affiliation(s)
- Isidro Ferrer
- Institut de Neuropatologia, Servei Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, carrer Feixa LLarga sn, CIBERNED, 08907 Hospitalet de LLobregat, Spain
| |
Collapse
|
128
|
Correlation of findings in advanced MRI techniques with global severity scales in patients with Parkinson disease. Acad Radiol 2011; 18:235-41. [PMID: 21232687 DOI: 10.1016/j.acra.2010.09.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 09/28/2010] [Accepted: 09/30/2010] [Indexed: 11/20/2022]
Abstract
RATIONALE AND OBJECTIVES This work is aimed at determining whether magnetic resonance spectroscopy (MRS) and diffusion tensor imaging (DTI) may correlate with disease severity in a series of Parkinson disease (PD) patients. MATERIALS AND METHODS We recruited a consecutive sample of 39 PD patients in several stages of the disease according to Hoehn and Yahr scale. There were 22 men, and the mean age was 74.5 years (SD 7.5). Disease severity was measured with the Unified Parkinson Disease Rating Scale (UPDRS). All of them underwent ¹H MRS in basal ganglia and the anterior cingulate area, as well as DTI in bilateral substantia nigra. Correlation was made between radiological findings and UPDRS. RESULTS We found significant negative correlation between UPDRS scores and the Glx (glutamate+glutamine) levels in the right (r = -0.35; P = .03) and the left (r = -0.44; P = .006) lentiform nucleus; as well as with glutamate (r = -0.43; P = .008), the Glx/Cr ratio in the right (r = -0.41; P = .01), and in the left lentiform nucleus (r = -0.36; P = .02). We also found positive correlation between UPDRS scores and DTI in right rostral substantia nigra (r = 0.36; P = .02). Glx was increased in lentiform nucleus and fractional anisotropy was reduced in the rostral SN of subjects with PD in early stages. CONCLUSIONS The results are consistent with the view that more than half the dopaminergic neurons in the nigrostriatal projection are lost before the onset of PD.
Collapse
|
129
|
Abstract
The prevalence of cognitive impairment and dementia in Parkinson's disease (PD) is high and can potentially occur as the result of multiple differing pathologies. Neuroimaging has provided evidence of decreased cortical volume, increased white matter diffusion changes, and decreased resting metabolic activity that appears to begin prior to the onset of dementia in PD patients. Cognitive impairment has been found to be associated with multiple neurotransmitter transmission deficiencies, including dopamine and acetylcholine, indicating a widespread neurotransmitter dysfunction in PD-related dementia. Findings of increased Pittsburgh Compound B (PiB) binding in subjects with Lewy Body Disease (LBD) compared with Parkinson's disease and dementia (PDD) may explain phenotype differences in the spectrum of Dementia with Lewy Bodies (DLB), and show promise in guiding future therapeutic trials aimed at this disease. Advances in neuroimaging now allow for the detection of volumetric, pharmacologic, and pathological changes that may assist in the diagnosis and prediction of cognitive impairment in Parkinson's patients so that better evaluation of disease progression and treatment can be obtained.
Collapse
Affiliation(s)
- Lisa C Silbert
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA.
| | | |
Collapse
|
130
|
Bodini B, Battaglini M, De Stefano N, Khaleeli Z, Barkhof F, Chard D, Filippi M, Montalban X, Polman C, Rovaris M, Rovira A, Samson R, Miller D, Thompson A, Ciccarelli O. T2 lesion location really matters: a 10 year follow-up study in primary progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 2011; 82:72-7. [PMID: 20627965 PMCID: PMC3002838 DOI: 10.1136/jnnp.2009.201574] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Prediction of long term clinical outcome in patients with primary progressive multiple sclerosis (PPMS) using imaging has important clinical implications, but remains challenging. We aimed to determine whether spatial location of T2 and T1 brain lesions predicts clinical progression during a 10-year follow-up in PPMS. METHODS Lesion probability maps of the T2 and T1 brain lesions were generated using the baseline scans of 80 patients with PPMS who were clinically assessed at baseline and then after 1, 2, 5 and 10 years. For each patient, the time (in years) taken before bilateral support was required to walk (time to event (TTE)) was used as a measure of progression rate. The probability of each voxel being 'lesional' was correlated with TTE, adjusting for age, gender, disease duration, centre and spinal cord cross sectional area, using a multiple linear regression model. To identify the best, independent predictor of progression, a Cox regression model was used. RESULTS A significant correlation between a shorter TTE and a higher probability of a voxel being lesional on T2 scans was found in the bilateral corticospinal tract and superior longitudinal fasciculus, and in the right inferior fronto-occipital fasciculus (p<0.05). The best predictor of progression rate was the T2 lesion load measured along the right inferior fronto-occipital fasciculus (p=0.016, hazard ratio 1.00652, 95% CI 1.00121 to 1.01186). CONCLUSION Our results suggest that the location of T2 brain lesions in the motor and associative tracts is an important contributor to the progression of disability in PPMS, and is independent of spinal cord involvement.
Collapse
Affiliation(s)
- B Bodini
- Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Lemaire JJ, Frew AJ, McArthur D, Gorgulho AA, Alger JR, Salomon N, Chen C, Behnke EJ, De Salles AAF. White matter connectivity of human hypothalamus. Brain Res 2011; 1371:43-64. [PMID: 21122799 DOI: 10.1016/j.brainres.2010.11.072] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 11/02/2010] [Accepted: 11/19/2010] [Indexed: 11/28/2022]
Affiliation(s)
- Jean-Jacques Lemaire
- Univ Clermont 1, UFR Médecine, EA3295, Equipe de Recherche en signal et Imagerie Médicale, Clermont-Ferrand, F-63001, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Idiopathic Parkinson disease effect of levodopa on apparent diffusion coefficient value of the brain. Acad Radiol 2011; 18:70-3. [PMID: 21145029 DOI: 10.1016/j.acra.2010.08.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 08/17/2010] [Accepted: 08/22/2010] [Indexed: 10/18/2022]
Abstract
PURPOSE To evaluate the effect of levodopa on apparent diffusion coefficient (ADC) value of the brain parenchyma in patients with idiopathic Parkinson disease (PD). MATERIAL AND METHODS Prospective study was conducted on native PD without treatment (n = 25) and patients receiving levodopa (L-Dopa) (n = 25). Diffusion magnetic resonance-weighted imaging was done using a single-shot spin echo type of echo planar imaging. The apparent diffusion coefficient (ADC) value at different regions of the brain on both sides was calculated. RESULTS The ADC value of the putamen in patients with native PD was 0.732 ± 0.15 × 10-3 mm2/seconds and in patients receiving levodopa was 0.789 ± 0.24 × 10-3 mm2/second. There was a statistically significant difference in the ADC value at the putamen (P = .001) between patients with native PD and patients receiving levodopa. When ADC value of the putamen at 0.745 × 10-3 mm2/second was used as a threshold value for differentiating native PD patients and patients receiving L-Dopa, the best results were obtained with an accuracy of 82%, sensitivity of 92%, specificity of 72%, positive predictive value of 77%, negative predictive value of 90%, and area under the curve of 0.955. CONCLUSION ADC value of the putamen is a promising parameter for predication of effect of levodopa on brain parenchyma in patients with PD.
Collapse
|
133
|
Stepens A, Stagg CJ, Platkājis A, Boudrias MH, Johansen-Berg H, Donaghy M. White matter abnormalities in methcathinone abusers with an extrapyramidal syndrome. Brain 2010; 133:3676-84. [PMID: 21036949 PMCID: PMC3677802 DOI: 10.1093/brain/awq281] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We examined white matter abnormalities in patients with a distinctive extrapyramidal syndrome due to intravenous methcathinone (ephedrone) abuse. We performed diffusion tensor imaging in 10 patients and 15 age-matched controls to assess white matter structure across the whole brain. Diffuse significant decreases in white matter fractional anisotropy, a diffusion tensor imaging metric reflecting microstructural integrity, occurred in patients compared with controls. In addition, we identified two foci of severe white matter abnormality underlying the right ventral premotor cortex and the medial frontal cortex, two cortical regions involved in higher-level executive control of motor function. Paths connecting different cortical regions with the globus pallidus, the nucleus previously shown to be abnormal on structural imaging in these patients, were generated using probabilistic tractography. The fractional anisotropy within all these tracts was lower in the patient group than in controls. Finally, we tested for a relationship between white matter integrity and clinical outcome. We identified a region within the left corticospinal tract in which lower fractional anisotropy was associated with greater functional deficit, but this region did not show reduced fractional anisotropy in the overall patient group compared to controls. These patients have widespread white matter damage with greatest severity of damage underlying executive motor areas.
Collapse
Affiliation(s)
- Ainārs Stepens
- Department of Neurology, Riga Stradins University, Latvia
| | - Charlotte Jane Stagg
- Department of Clinical Neurology, University of Oxford, Oxford UK
- Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, Oxford, UK
| | | | - Marie-Hélène Boudrias
- Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, Oxford, UK
| | - Heidi Johansen-Berg
- Department of Clinical Neurology, University of Oxford, Oxford UK
- Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, Oxford, UK
| | - Michael Donaghy
- Department of Clinical Neurology, University of Oxford, Oxford UK
| |
Collapse
|
134
|
Li W, Liu J, Skidmore F, Liu Y, Tian J, Li K. White matter microstructure changes in the thalamus in Parkinson disease with depression: A diffusion tensor MR imaging study. AJNR Am J Neuroradiol 2010; 31:1861-6. [PMID: 20705702 DOI: 10.3174/ajnr.a2195] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Depression occurs frequently in PD; however the neural basis of depression in PD remains unclear. The aim of this study was to characterize possible depression-related white matter microstructural changes in the thalamus of patients with DPD compared with those with NDPD. MATERIALS AND METHODS FA and MD maps from DTI were obtained in 14 patients with DPD and 18 patients with NDPD. Region-of-interest-guided VBA was conducted on the FA maps to detect possible microstructural differences in the thalamus between these 2 patient groups. Moreover, mean FA and MD in regions with a detected difference were compared between DPD and NDPD groups, and correlations between diffusion quantities and the severity of depression were analyzed. RESULTS White matter microstructure differences were found between the patients with DPD and NDPD in the bilateral mediodorsal thalamic regions. In these regions, patients with DPD showed significantly decreased FA values (P < .005) compared with patients with NDPD, and the mean values of FA were negatively correlated with the scores of depression severity (P < .05) for patients with PD. No significant differences of MD were found in the mediodorsal thalamus between these 2 groups. CONCLUSIONS Our results provide preliminary evidence that the mediodorsal thalamus may play an important role in depression in PD and suggest a relationship between FA in the mediodorsal thalamus and the presence of depressive symptoms in patients with DPD. These findings may be helpful for further understanding the potential mechanisms of depression in PD.
Collapse
Affiliation(s)
- W Li
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
135
|
Olfactory impairment in Parkinson's disease and white matter abnormalities in central olfactory areas: A voxel-based diffusion tensor imaging study. Mov Disord 2010; 25:1888-94. [DOI: 10.1002/mds.23208] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
136
|
Abe K, Uchida Y, Notani M. Camptocormia in Parkinson's disease. PARKINSONS DISEASE 2010; 2010. [PMID: 20948888 PMCID: PMC2951140 DOI: 10.4061/2010/267640] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 02/12/2010] [Accepted: 06/02/2010] [Indexed: 12/05/2022]
Abstract
Objectives. Abnormalities of posture represent one of the main features of Parkinson's disease (PD). Among them, camptocormia has been considered as rare in PD. We investigated frequency and clinical features of camptocormia in PD patients. Methods. 153 PD patients (mean 68.5 ± 10.7 years old, duration 5.9 ± 2.4 years) outpatiently recruited. After neurologic examination, patients were rated on the Unified PD Rating Scale motor scale (UPDRS Part III), minimental state examination (MMSE). Also we evaluated patients with camptocormia by MRI. Of the 153 PD patients, 27 had camptocormia (mean age, 67.9 ± 7.9 years old; disease duration, 6.1 ± 3.9 years). For further evaluation, we recruited age- and sex-matched 27 PD patients without camptocormia (11 men and 16 women; mean age ± SD, 69.2 ± 10.1 years, duration 6.0 ± 2.7 years) These selected 54 patients completed several self-assessments. Lumbar and thoracic paraspinal muscles were studied by EMG. Results. There were no significant differences in age, duration, severity, and drug dose between patients with and without camptocormia. Analysis of NMSS subitems indicated that PD patients tended to show lower scores for sleep/fatigue, attention/memory, and miscellaneous items. Conclusions. We found significant differences concerning nonmotor signs and symptoms evaluated by FAB, PDQ-8, FSQ, VAS-F, and NMSS between patients with and without camptocormia. Our findings indicate that camptocormia is a relatively common sign in PD and that patients with camptocormia scores on the PDQ-8 compared with PD patients without camptocormia. This suggests that improvements in camptocormia of PD patients may improve their QOL.
Collapse
Affiliation(s)
- Kazuo Abe
- Department of Nursing and Rehabilitation, Konan Women's University, Kobe 657-0001, Japan
| | | | | |
Collapse
|
137
|
Cronin-Golomb A. Parkinson's disease as a disconnection syndrome. Neuropsychol Rev 2010; 20:191-208. [PMID: 20383586 DOI: 10.1007/s11065-010-9128-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 03/18/2010] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is a major neurodegenerative disorder that is usually considered in terms of midbrain and basal ganglia dysfunction. Regarding PD instead as a disconnection syndrome may prove beneficial to understanding aspects of cognition, perception, and other neuropsychological domains in the disease. PD is usually of unilateral onset, providing evidence of intrahemispheric dissociations and an imbalance in the usual relative strengths of the right and left hemispheres. Hence, in order to appreciate the neuropsychology of PD, it is important to apply to this disease our understanding of hemispheric lateralization effects and within-hemisphere circuitry from brainstem to higher-order association cortex. The focus of this review is on the relevance of PD-related disconnections among subcortical and cortical structures to cognition, perception, emotion, and associated brainstem-based domains such as sleep and mood disturbance. Besides providing information on disease characteristics, regarding PD as a disconnection syndrome allows us to more completely understand normal brain-behavior relations in general.
Collapse
Affiliation(s)
- Alice Cronin-Golomb
- Department of Psychology, Boston University, 648 Beacon Street, Boston, MA 02215, USA.
| |
Collapse
|
138
|
|
139
|
Brain Magnetic Resonance Imaging Techniques in the Diagnosis of Parkinsonian Syndromes. Neuroimaging Clin N Am 2010; 20:29-55. [DOI: 10.1016/j.nic.2009.08.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
140
|
Romero MJ, Asensio S, Palau C, Sanchez A, Romero FJ. Cocaine addiction: diffusion tensor imaging study of the inferior frontal and anterior cingulate white matter. Psychiatry Res 2010; 181:57-63. [PMID: 19959341 DOI: 10.1016/j.pscychresns.2009.07.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 07/03/2009] [Accepted: 07/05/2009] [Indexed: 11/16/2022]
Abstract
Inferior frontal and anterior cingulate white matter integrity in 32 cocaine-dependent subjects was compared with that in 33 age-matched healthy control subjects. Diffusion tensor imaging data were acquired with a 1.5-T magnetic resonance imaging system. Cocaine-dependent subjects presented significantly lower fractional anisotropy values in inferior frontal white matter at the anterior-posterior commissure plane and higher anterior cingulate white matter values than control subjects. White matter integrity was also associated with impulsivity and motivation to change (Readiness to Change Questionnaire). These findings support the hypothesis that cocaine dependence involves a disruption of orbitofrontal connectivity and suggest that the anterior cingulate brain area might play a role in the motivation to change.
Collapse
Affiliation(s)
- Maria J Romero
- Instituto sobre Drogas y Conductas Adictivas (IDYCA), Universidad CEU Cardenal Herrera, Valencia, Spain.
| | | | | | | | | |
Collapse
|
141
|
Martin WRW, Wieler M, Gee M, Camicioli R. Temporal lobe changes in early, untreated Parkinson's disease. Mov Disord 2010; 24:1949-54. [PMID: 19606493 DOI: 10.1002/mds.22680] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The purpose of this study was to determine if focal cortical abnormalities may occur in early Parkinson's disease (PD). We studied 26 untreated patients with early PD and 14 healthy control subjects, with cognitive screening and magnetic resonance imaging (MRI). Voxel-based morphometry was used to assess for the presence of localized cortical grey matter (GM) and/or subcortical white matter (WM) changes. Patient and control groups showed no differences in age or gender distribution. Females had a greater GM% than males (P = 0.001). Comparison of patients and controls revealed no difference in local GM volumes. In PD, however, there was decreased WM volume in the anterior right fusiform gyrus and superior temporal gyrus. There were no correlations between the California Verbal Learning Test long delay free recall, Judgment of Line Orientation, Trail Making A or B and either the GM or WM localized volumes. These results suggest that right anterior temporal lobe changes occur in untreated patients with PD. The earliest changes may occur in subcortical white matter rather than temporal cortex.
Collapse
Affiliation(s)
- W R Wayne Martin
- Division of Neurology, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | |
Collapse
|
142
|
Zhang K, Yu C, Zhang Y, Wu X, Zhu C, Chan P, Li K. Voxel-based analysis of diffusion tensor indices in the brain in patients with Parkinson's disease. Eur J Radiol 2009; 77:269-73. [PMID: 19692193 DOI: 10.1016/j.ejrad.2009.07.032] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 07/22/2009] [Accepted: 07/27/2009] [Indexed: 12/31/2022]
Abstract
PURPOSE To investigate the abnormal diffusion in cerebral white matter and its relationship with the olfactory dysfunction in patients with Parkinson's disease (PD) through diffusion tensor imaging (DTI). MATERIALS AND METHODS Diffusion tensor imaging of the cerebrum was performed in 25 patients with Parkinson's disease and 25 control subjects matched for age and sex. Differences in fractional anisotropy (FA) and mean diffusivity (MD) between these two groups were studied by voxel-based analysis of the DTI data. Correlations between diffusion indices and the olfactory function in PD patients were evaluated using the multiple regression model after controlling for the duration of the disease, Unified Parkinson's Disease Rating Sale (UPDRS), and age. RESULTS The damaged white and gray matter showed decreased FA or increased MD, localized bilaterally in the cerebellar and orbitofrontal cortex. In addition, in PD patients there was a positive correlation between FA values in the white matter of the left cerebellum and the thresholds of olfactory identification (TOI) and a negative correlation between MD values in the white matter of right cerebellum and the TOI. CONCLUSION In patients with PD, there was disruption in the cerebellar white matter which may play an important role in the olfactory dysfunction in patients with Parkinson's disease.
Collapse
Affiliation(s)
- Kaiyuan Zhang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China.
| | | | | | | | | | | | | |
Collapse
|
143
|
Gómez A, Ferrer I. Increased oxidation of certain glycolysis and energy metabolism enzymes in the frontal cortex in Lewy body diseases. J Neurosci Res 2009; 87:1002-13. [PMID: 18855937 DOI: 10.1002/jnr.21904] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lipoxidative damage of aldolase A, enolase 1, and glyceraldehyde dehydrogenase (GAPDH) was found in the frontal cortex in a percentage of aged controls by bidimensional gel electrophoresis, Western blot test, in-gel digestion, and mass spectrometry. Aldolase A and enolase 1 were altered in 12 of 19 cases, whereas oxidation of GAPDH was found in 6 of 19 controls. The three enzymes were oxidized in the frontal cortex in the majority of cases of incidental Parkinson's disease (iPD), PD, and dementia with Lewy bodies (DLB). Differences were statistically significant (chi(2) test) for GAPDH in PD and DLB. Densitometric studies have shown that the ratio of oxidized protein per spot is higher in iPD, PD, and DLB compared with controls. These findings show oxidation of three enzymes linked with glycolysis and energy metabolism in the adult human brain as well as increased oxidation of aldolase A, enolase 1, and GAPDH in the frontal cortex in Lewy body diseases. Modifications of these enzymes may result in decreased activity and may partly account for impaired metabolism and function of the frontal lobe in PD.
Collapse
Affiliation(s)
- Anna Gómez
- Institut Neuropatologia, Servei Anatomia Patològica, Idibell-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Spain
| | | |
Collapse
|
144
|
Gattellaro G, Minati L, Grisoli M, Mariani C, Carella F, Osio M, Ciceri E, Albanese A, Bruzzone MG. White matter involvement in idiopathic Parkinson disease: a diffusion tensor imaging study. AJNR Am J Neuroradiol 2009; 30:1222-6. [PMID: 19342541 DOI: 10.3174/ajnr.a1556] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Diffusion tensor imaging (DTI) offers a unique window on the connectivity changes, extending beyond the basal ganglia, which accompany the cognitive symptoms of Parkinson disease (PD). The primary purpose of this study was to assess the microstructural damage to cerebral white matter occurring in idiopathic PD. MATERIALS AND METHODS Our sample included patients with PD without dementia (n = 10; Hoehn and Yahr stages I and II; Unified Parkinson Disease Rating Scale, 20.5 +/- 8.3; and Mini-Mental State Examination, 28.3 +/- 1.5) and age-matched healthy control subjects (n = 10). DTI was performed on a 1.5T scanner, and mean diffusivity (MD) and fractional anisotropy (FA) maps were obtained. Regions of interest (ROIs) were drawn on the major fiber bundles as well as on gray matter nuclei. RESULTS In patients, the MD was increased at borderline significance in the substantia nigra but was unaltered in the thalamus, globus pallidus, putamen, and in the head of the caudate nucleus. The FA and MD were unaltered in the corticospinal tract in the midbrain and at the level of the internal capsule, and in the splenium of the corpus callosum. By contrast, the MD was increased and the FA was decreased in the genu of the corpus callosum and in the superior longitudinal fasciculus; in the cingulum, only the MD was altered. The observed changes were not significantly lateralized. CONCLUSIONS Widespread microstructural damage to frontal and parietal white matter occurs already in the early stages of PD.
Collapse
Affiliation(s)
- G Gattellaro
- Neuroradiology Unit, Fondazione IRCCS Istituto Nazionale Neurologico Carlo Besta, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
van der Vegt JPM, van Nuenen BFL, Bloem BR, Klein C, Siebner HR. Imaging the impact of genes on Parkinson's disease. Neuroscience 2009; 164:191-204. [PMID: 19409223 DOI: 10.1016/j.neuroscience.2009.01.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 01/25/2009] [Accepted: 01/28/2009] [Indexed: 11/24/2022]
Abstract
Although Parkinson's disease (PD) has traditionally been considered to be a non-genetic disorder, recent progress in the neurogenetics of PD provided converging evidence that genetic factors play a relevant role in the etiology of PD. The strongest case for a genetic contribution to PD was made by the discovery of mutations in single genes that can cause autosomal dominant (alpha-synuclein (SNCA)) and leucine rich repeat kinase 2 (LRRK2) gene) or recessive (Parkin, PTEN-induced putative kinase 1 (PINK1), DJ-1, and ATP13A2 gene) forms of PD. Here, we review how structural and functional neuroimaging of individuals carrying a mutation in one of the PD genes has offered a unique avenue of research into the pathogenesis of PD. In symptomatic mutation carriers (i.e. those with overt disease), brain mapping can help to link the molecular pathogenesis of PD more directly with functional and structural changes in the intact human brain. In addition, neuroimaging of presymptomatic (i.e. non-manifesting) mutation carriers has emerged as a valuable tool to identify mechanisms of adaptive motor reorganization at the preclinical stage that may prevent or delay clinical manifestation. In addition to mutations causing monogenic forms of PD, common polymorphisms in genes that influence mono-aminergic signaling or synaptic plasticity may have modifying effects on distinct aspects of PD. We also discuss how functional and structural neuroimaging can be used to better characterize these genotype-phenotype correlations.
Collapse
Affiliation(s)
- J P M van der Vegt
- Department of Neurology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | | | | | | | | |
Collapse
|
146
|
Zahr NM, Rohlfing T, Pfefferbaum A, Sullivan EV. Problem solving, working memory, and motor correlates of association and commissural fiber bundles in normal aging: a quantitative fiber tracking study. Neuroimage 2008; 44:1050-62. [PMID: 18977450 DOI: 10.1016/j.neuroimage.2008.09.046] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 08/27/2008] [Accepted: 09/23/2008] [Indexed: 01/08/2023] Open
Abstract
Normal aging is accompanied by decline in selective cognitive and motor functions. A concurrent decline in regional white matter integrity, detectable with diffusion tensor imaging (DTI), potentially contributes to waning function. DTI analysis of white matter loci indicates an anterior-to-posterior gradient distribution of declining fractional anisotropy (FA) and increasing diffusivity with age. Quantitative fiber tracking can be used to determine regional patterns of normal aging of fiber systems and test the functional ramifications of the DTI metrics. Here, we used quantitative fiber tracking to examine age effects on commissural (genu and splenium), bilateral association (cingulate, inferior longitudinal fasciculus and uncinate), and fornix fibers in 12 young and 12 elderly healthy men and women and tested functional correlates with concurrent assessment of a wide range of neuropsychological abilities. Principal component analysis of cognitive and motor tests on which the elderly achieved significantly lower scores than the young group was used for data reduction and yielded three factors: Problem Solving, Working Memory, and Motor. Age effects--lower FA or higher diffusivity--in the elderly were prominent in anterior tracts, specifically, genu, fornix, and uncinate fibers. Differential correlations between FA or diffusivity in fiber tracts and scores on Problem Solving, Working Memory, or Motor factors provide convergent validity to the biological meaningfulness of the integrity of the fibers tracked. The observed pattern of relations supports the possibility that regional degradation of white matter fiber integrity is a biological source of age-related functional compromise and may have the potential to limit accessibility to alternative neural systems to compensate for compromised function.
Collapse
Affiliation(s)
- Natalie M Zahr
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305-5723, USA
| | | | | | | |
Collapse
|