101
|
Hwangbo S, Lee JY, Han G, Chun MY, Jang H, Seo SW, Na DL, Won S, Kim HJ, Lim DH. Dementia incidence and population-attributable fraction for dementia risk factors in Republic of Korea: a 12-year longitudinal follow-up study of a national cohort. Front Aging Neurosci 2023; 15:1126587. [PMID: 37520131 PMCID: PMC10373584 DOI: 10.3389/fnagi.2023.1126587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
Background We aimed to investigate the incidence of dementia by age and year as well as the population-attributable fractions (PAFs) for known dementia risk factors in Republic of Korea. Methods A 12-year, nationwide, population-based, retrospective cohort study was conducted. We used customized health information from the National Health Insurance Service (NHIS) data from 2002 to 2017. We analyzed age- and sex-adjusted incidence rates and PAF of dementia for each risk factor such as depression, diabetes, hemorrhagic stroke, ischemic stroke, hypertension, osteoporosis and physical inactivity using Levin's formula. Results Of the 794,448 subjects in the dementia-free cohort, 49,524 (6.2%) developed dementia. Dementia incidence showed annual growth from 1.56 per 1,000 person-years in 2006 to 6.94 per 1,000 person-years in 2017. Of all dementia cases, 34,544 subjects (69.8%) were female and 2,479 subjects (5.0%) were early onset dementia. AD dementia accounted for 66.5% of the total dementia incidence. Considering relative risk and prevalence, physical inactivity attributed the greatest to dementia (PAF, 8.1%), followed by diabetes (PAF, 4.2%), and hypertension (PAF, 2.9%). Altogether, the significant risk factors increased the risk of dementia by 18.0% (overall PAF). Conclusion We provided the incidence of dementia and PAFs for dementia risk factors in Republic of Korea using a 12-year, nationwide cohort. Encouraging lifestyle modifications and more aggressive control of risk factors may effectively prevent dementia.
Collapse
Affiliation(s)
- Song Hwangbo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Jin Young Lee
- Department of Statistics, Chung-Ang University, Seoul, Republic of Korea
| | - Gyule Han
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Min Young Chun
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin-si, Republic of Korea
| | - Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Duk L. Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Sungho Won
- Department of Public Health Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Dong Hui Lim
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
102
|
Ulaganathan S, Pitchaimani A. Spontaneous and familial models of Alzheimer's disease: Challenges and advances in preclinical research. Life Sci 2023:121918. [PMID: 37422070 DOI: 10.1016/j.lfs.2023.121918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder that is progressive and irreversible in nature. Even after decades of dedicated research and paradigm-shifting hypotheses of AD etiology, very few well-founded credible improvements have been foreseen in understanding the actual underlying mechanisms involved in the development of the disorder. As for any disease to be well-comprehended, AD also requires optimal modelling strategies, which will then pave way for effective therapeutic interventions. Most of the clinical trials and research towards better treatment of AD fail in translation, due to the inefficacy of explored animal models to mimic the actual AD pathology, precisely. The majority of the existing AD models are developed based on the mutations found in the familial form of AD (fAD) which accounts for less than 5 % of the incidence of AD. Further, the investigations also face more challenges due to the additional complexities and lacunae found in etiology of sporadic form of AD (sAD), which accounts for 95 % of total AD. This review illustrates the gaps found in different models of AD, both sporadic and familial variants with additional focus on recent avenues for accurate simulation of AD pathology using in vitro and chimeric AD models.
Collapse
Affiliation(s)
- Suryapriya Ulaganathan
- Precision Nanomedicine and Microfluidic Lab, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, TN, India; School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, TN, India
| | - Arunkumar Pitchaimani
- Precision Nanomedicine and Microfluidic Lab, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, TN, India; School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, TN, India.
| |
Collapse
|
103
|
Kumari K, Kumar S, Sinha RK, Toppo MS. Comparative Study of the Effect of Liraglutide and Donepezil on Learning and Memory in Diazepam-Induced Amnesic Albino Rats. Cureus 2023; 15:e41495. [PMID: 37551235 PMCID: PMC10404348 DOI: 10.7759/cureus.41495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 08/09/2023] Open
Abstract
Background Dementia is an age-related gradual loss of memory that is progressive in nature. Presently, the most common cause of dementia is Alzheimer's disease (AD), which is treated with donepezil, an anticholinesterase. But it only provides short-term symptomatic improvement. Liraglutide, which is an anti-diabetic drug, stimulates the anti-apoptotic pathway of nerve damage, which helps in regenerating nerve cells; so, it may help in dementia cases. Therefore, this study aimed to explore the effect of liraglutide on learning and memory and to compare its effect with donepezil in diazepam-induced amnesic albino rats. Methodology Twenty healthy male Albino rats weighing 150-200 grams were taken and divided into four groups: A, B, C, and D. Group A rats were normal rats, whereas the rats in groups B, C, and D were made amnesic by the intraperitoneal (i.p.) administration of 0.1 mg per kg of diazepam. Immediately after producing amnesia, group B rats received normal saline, group C received liraglutide, and group D received donepezil through the intraperitoneal route as test drugs. Group A rats received only normal saline. The amnesic effect was measured by the escape latency period, which was measured by using a Morris Water Maize (MWM) instrument. Escape latency is the time (in seconds) to locate the platform from the starting point. The amnesic effect is shown by an increase in escape latency and the anti-amnesic effect by a decrease in escape latency. Escape latency was recorded at 0 hr, 1 hr, 2 hr, 3 hr, and 4 hr after test drug administration. Results Group B rats showed an increase in escape latency, which shows the amnesic effect of diazepam. When group C and group D amnesic rats were treated with liraglutide and donepezil, respectively, a one-hour after-treatment increase in escape latency was seen but after two hours, both groups showed a decrease in escape latency, which indicates the anti-amnesic effect of both drugs. When groups C and D were compared, and the post-hoc highly significant difference (HSD) test was used, there was no significant difference between the two drugs, although the liraglutide-treated group (C) showed a lower anti-amnesic effect. However, group C showed a significant effect as compared to group B rats (p-value <0.05), which indicates the anti-amnesic property of liraglutide as compared to normal saline. Conclusion Liraglutide shows an anti-amnesic property. Since it works by a mechanism different from donepezil, it can be used as add-on therapy with donepezil in dementia patients.
Collapse
Affiliation(s)
- Kusum Kumari
- Pharmacology, Rajendra Institute of Medical Sciences, Ranchi, IND
| | - Sonu Kumar
- Pharmacology and Therapeutics, Rajendra Institute of Medical Sciences, Ranchi, IND
| | - Ritesh K Sinha
- Pharmacology, Rajendra Institute of Medical Sciences, Ranchi, IND
| | | |
Collapse
|
104
|
Jeyaraman M, Rajendran RL, Muthu S, Jeyaraman N, Sharma S, Jha SK, Muthukanagaraj P, Hong CM, Furtado da Fonseca L, Santos Duarte Lana JF, Ahn BC, Gangadaran P. An update on stem cell and stem cell-derived extracellular vesicle-based therapy in the management of Alzheimer's disease. Heliyon 2023; 9:e17808. [PMID: 37449130 PMCID: PMC10336689 DOI: 10.1016/j.heliyon.2023.e17808] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 05/10/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Globally, neurological diseases pose a major burden to healthcare professionals in terms of the management and prevention of the disorder. Among neurological diseases, Alzheimer's disease (AD) accounts for 50%-70% of dementia and is the fifth leading cause of mortality worldwide. AD is a progressive, degenerative neurological disease, with the loss of neurons and synapses in the cerebral cortex and subcortical regions. The management of AD remains a debate among physicians as no standard and specific "disease-modifying" modality is available. The concept of 'Regenerative Medicine' is aimed at regenerating the degenerated neural tissues to reverse the pathology in AD. Genetically modified engineered stem cells modify the course of AD after transplantation into the brain. Extracellular vesicles (EVs) are an emerging new approach in cell communication that involves the transfer of cellular materials from parental cells to recipient cells, resulting in changes at the molecular and signaling levels in the recipient cells. EVs are a type of vesicle that can be transported between cells. Many have proposed that EVs produced from mesenchymal stem cells (MSCs) may have therapeutic promise in the treatment of AD. The biology of AD, as well as the potential applications of stem cells and their derived EVs-based therapy, were explored in this paper.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu, 600056, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Orthopedics, Government Dindigul Medical College and Hospital, Dindigul, Tamil Nadu, 624001, India
| | - Naveen Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Orthopedics, Shri Sathya Sai Medical College and Research Institute, Sri Balaji Vidyapeeth, Chengalpet, Tamil Nadu, 603108, India
| | - Shilpa Sharma
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Purushothaman Muthukanagaraj
- Department of Internal Medicine & Psychiatry, SUNY-Upstate Binghamton Clinical Campus, Binghamton, NY, 13904, USA
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Lucas Furtado da Fonseca
- Department of Orthopedics, The Federal University of São Paulo, São Paulo, 04023-062, SP, Brazil
| | | | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| |
Collapse
|
105
|
Noda K, Lim Y, Sengoku S, Kodama K. Global biomarker trends in Alzheimer's research: a bibliometric analysis. Drug Discov Today 2023:103677. [PMID: 37390962 DOI: 10.1016/j.drudis.2023.103677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/25/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023]
Abstract
Alzheimer's disease (AD) has no effective treatment, although antibody drugs targeting beta-amyloid, mainly aducanumab, have produced useful clinical results. Biomarkers can be used to determine drug regimens effectively and to monitor the effects of drugs. A concept in which biomarkers reflect disease states is emerging. Although several AD biomarker studies have been reported, measurement methods and target molecules are still being validated, and various biomarkers are being explored. This study analyzed trends in research on AD biomarkers using bibliometric methods, revealing an exponential increase in research reports in this field, with the US most active in research. Analysis of the 'Burst' biomarkers using CiteSpace revealed that networks centered on authors, rather than networks among countries, drive new research trends in this area.
Collapse
Affiliation(s)
- Kenta Noda
- Graduate School of Design and Architecture, Nagoya City University, Nagoya 464-0083, Japan
| | | | - Shintaro Sengoku
- School of Environment and Society, Tokyo Institute of Technology, Tokyo 108-0023, Japan
| | - Kota Kodama
- Graduate School of Design and Architecture, Nagoya City University, Nagoya 464-0083, Japan; Ritsumeikan University, Osaka 567-8570, Japan; School of Data Science, Nagoya City University, Nagoya 467-8501, Japan; Center for Research and Education on Drug Discovery, The Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| |
Collapse
|
106
|
Tian Z, Lu XT, Jiang X, Tian J. Bryostatin-1: a promising compound for neurological disorders. Front Pharmacol 2023; 14:1187411. [PMID: 37351510 PMCID: PMC10282138 DOI: 10.3389/fphar.2023.1187411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023] Open
Abstract
The central nervous system (CNS) is the most complex system in human body, and there is often a lack of effective treatment strategies for the disorders related with CNS. Natural compounds with multiple pharmacological activities may offer better options because they have broad cellular targets and potentially produce synergic and integrative effects. Bryostatin-1 is one of such promising compounds, a macrolide separated from marine invertebrates. Bryostatin-1 has been shown to produce various biological activities through binding with protein kinase C (PKC). In this review, we mainly summarize the pharmacological effects of bryostatin-1 in the treatment of multiple neurological diseases in preclinical studies and clinical trials. Bryostatin-1 is shown to have great therapeutic potential for Alzheimer's disease, multiple sclerosis, fragile X syndrome, stroke, traumatic brain injury, and depression. It exhibits significant rescuing effects on the deficits of spatial learning, cognitive function, memory and other neurological functions caused by diseases, producing good neuroprotective effects. The promising neuropharmacological activities of bryostatin-1 suggest that it is a potential candidate for the treatment of related neurological disorders although there are still some issues needed to be addressed before its application in clinic.
Collapse
Affiliation(s)
- Zhen Tian
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xin-Tong Lu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xun Jiang
- Department of Pediatrics, Tangdu Hospital of Fourth Military Medical University, Xi’an, China
| | - Jiao Tian
- Department of Infection, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, The First Batch of Key Disciplines on Public Health in Chongqing, Chongqing, China
| |
Collapse
|
107
|
Vendruscolo M. Thermodynamic and kinetic approaches for drug discovery to target protein misfolding and aggregation. Expert Opin Drug Discov 2023:1-11. [PMID: 37276120 DOI: 10.1080/17460441.2023.2221024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Protein misfolding diseases, including Alzheimer's and Parkinson's diseases, are characterized by the aberrant aggregation of proteins. These conditions are still largely untreatable, despite having a major impact on our healthcare systems and societies. AREAS COVERED We describe drug discovery strategies to target protein misfolding and aggregation. We compare thermodynamic approaches, which are based on the stabilization of the native states of proteins, with kinetic approaches, which are based on the slowing down of the aggregation process. This comparison is carried out in terms of the current knowledge of the process of protein misfolding and aggregation, the mechanisms of disease and the therapeutic targets. EXPERT OPINION There is an unmet need for disease-modifying treatments that target protein misfolding and aggregation for the over 50 human disorders known to be associated with this phenomenon. With the approval of the first drugs that can prevent misfolding or inhibit aggregation, future efforts will be focused on the discovery of effective compounds with these mechanisms of action for a wide range of conditions.
Collapse
Affiliation(s)
- Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
108
|
Piovesan EC, Freitas BZD, Lemanski FCB, Carazzo CA. Alzheimer's disease: an epidemiological analysis over the number of hospitalizations and deaths in Brazil. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:577-584. [PMID: 37379869 DOI: 10.1055/s-0043-1767827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative condition characterized by impaired cognitive function. It results in high morbidity, including a large number of hospitalizations, and mortality, generating high costs to health systems. OBJECTIVE The present epidemiological analysis evaluated the number of hospitalizations and deaths by AD as the main diagnosis in Brazil between 2010 and 2020. This endeavor should contribute to a better understanding of the disease and its implications. METHODS The present analytical, observational, longitudinal, and retrospective study used data extracted from the Department of Informatics of the Brazilian Unified Health System (DATASUS, in the Portuguese acronym). The variables include the number of hospitalizations, the total cost spent, the average cost per hospitalization, the average length of hospital stay, the number of deaths during hospitalization, the mortality rate per hospitalization, sex, age group, region, and race. RESULTS From 2010 to 2020, there were 188,811 deaths and 13,882 hospitalizations for AD, with a total expenditure of BRL 25,953,019.40 in hospitalizations. The average length of hospital stay was 25 days. Over the considered period, mortality, the number of hospitalizations, and the total cost increased while the average length of stay decreased. CONCLUSION From 2010 to 2020, AD represented a large portion of hospital admissions, generating a significant cost to the health system and a large number of deaths. These data are important to undertake joint efforts to prevent hospitalizations of these patients in order to minimize impacts on the health system.
Collapse
Affiliation(s)
| | | | | | - Charles André Carazzo
- Universidade de Passo Fundo, Faculdade de Medicina, Passo Fundo RS, Brazil
- Instituto de Neurologia e Neurocirurgia de Passo Fundo, Passo Fundo RS, Brazil
| |
Collapse
|
109
|
Amiri P, Gholipour M, Hajesmaeel-Gohari S, Bahaadinbeigy K. A Mobile Application to Assist Alzheimer's Caregivers During COVID-19 Pandemic: Development and Evaluation. J Caring Sci 2023; 12:129-135. [PMID: 37469754 PMCID: PMC10352638 DOI: 10.34172/jcs.2023.30679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/05/2022] [Indexed: 07/21/2023] Open
Abstract
Introduction Access to healthcare services for patients with Alzheimer's disease (AD) was limited during the COVID-19 pandemic. A mobile application (app) can help overcome this limitation for patients and caregivers. Our study aims to develop and evaluate an app to help caregivers of patients with AD during COVID-19. Methods The study was performed in three steps. First, a questionnaire of features required for the app design was prepared based on the interviews with caregivers of AD patients and neurologists. Then, questionnaire was provided to neurologists, medical informatics, and health information management specialists to identify the final features. Second, the app was designed using the information obtained from the previous phase. Third, the quality of the app and the level of user satisfaction were evaluated using the mobile app rating scale (MARS) and the questionnaire for user interface satisfaction (QUIS), respectively. Results The number of 41 data elements in four groups (patient's profile, COVID-19 management and control, AD management and control, and program functions) were identified for designing the app. The quality evaluation of the app based on MARS and user satisfaction evaluation based on QUIS showed the app was good. Conclusion This is the first study that focused on developing and evaluating a mobile app for assisting Alzheimer's caregivers during the COVID-19 pandemic. As the app was designed based on users' needs and covered both information about AD and COVID-19, it can help caregivers perform their tasks more efficiently.
Collapse
Affiliation(s)
- Parastoo Amiri
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Gholipour
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Sadrieh Hajesmaeel-Gohari
- Medical Informatics Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Kambiz Bahaadinbeigy
- Digital Health Team, The Australian College of Rural and Remote Medicine, Brisbane, QLD, Australia
| |
Collapse
|
110
|
Avelar-Pereira B, Belloy ME, O'Hara R, Hosseini SMH. Decoding the heterogeneity of Alzheimer's disease diagnosis and progression using multilayer networks. Mol Psychiatry 2023; 28:2423-2432. [PMID: 36539525 PMCID: PMC10279806 DOI: 10.1038/s41380-022-01886-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/19/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial and heterogeneous disorder, which makes early detection a challenge. Studies have attempted to combine biomarkers to improve AD detection and predict progression. However, most of the existing work reports results in parallel or compares normalized findings but does not analyze data simultaneously. We tested a multi-dimensional network framework, applied to 490 subjects (cognitively normal [CN] = 147; mild cognitive impairment [MCI] = 287; AD = 56) from ADNI, to create a single model capable of capturing the heterogeneity and progression of AD. First, we constructed subject similarity networks for structural magnetic resonance imaging, amyloid-β positron emission tomography, cerebrospinal fluid, cognition, and genetics data and then applied multilayer community detection to find groups with shared similarities across modalities. Individuals were also followed-up longitudinally, with AD subjects having, on average, 4.5 years of follow-up. Our findings show that multilayer community detection allows for accurate identification of present and future AD (≈90%) and is also able to identify cases that were misdiagnosed clinically. From all MCI participants who developed AD or reverted to CN, the multilayer model correctly identified 90.8% and 88.5% of cases respectively. We observed similar subtypes across the full sample and when examining multimodal data from subjects with no AD pathology (i.e., amyloid negative). Finally, these results were also validated using an independent testing set. In summary, the multilayer framework is successful in detecting AD and provides unique insight into the heterogeneity of the disease by identifying subtypes that share similar multidisciplinary profiles of neurological, cognitive, pathological, and genetics information.
Collapse
Affiliation(s)
- Bárbara Avelar-Pereira
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, 94304, USA.
| | - Michael E Belloy
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, 94304, USA
| | - Ruth O'Hara
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, 94304, USA
| | - S M Hadi Hosseini
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, 94304, USA.
| |
Collapse
|
111
|
Amontree M, Deasy S, Turner RS, Conant K. Matrix disequilibrium in Alzheimer's disease and conditions that increase Alzheimer's disease risk. Front Neurosci 2023; 17:1188065. [PMID: 37304012 PMCID: PMC10250680 DOI: 10.3389/fnins.2023.1188065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/20/2023] [Indexed: 06/13/2023] Open
Abstract
Alzheimer's Disease (AD) and related dementias are a leading cause of death globally and are predicted to increase in prevalence. Despite this expected increase in the prevalence of AD, we have yet to elucidate the causality of the neurodegeneration observed in AD and we lack effective therapeutics to combat the progressive neuronal loss. Throughout the past 30 years, several non-mutually exclusive hypotheses have arisen to explain the causative pathologies in AD: amyloid cascade, hyper-phosphorylated tau accumulation, cholinergic loss, chronic neuroinflammation, oxidative stress, and mitochondrial and cerebrovascular dysfunction. Published studies in this field have also focused on changes in neuronal extracellular matrix (ECM), which is critical to synaptic formation, function, and stability. Two of the greatest non-modifiable risk factors for development of AD (aside from autosomal dominant familial AD gene mutations) are aging and APOE status, and two of the greatest modifiable risk factors for AD and related dementias are untreated major depressive disorder (MDD) and obesity. Indeed, the risk of developing AD doubles for every 5 years after ≥ 65, and the APOE4 allele increases AD risk with the greatest risk in homozygous APOE4 carriers. In this review, we will describe mechanisms by which excess ECM accumulation may contribute to AD pathology and discuss pathological ECM alterations that occur in AD as well as conditions that increase the AD risk. We will discuss the relationship of AD risk factors to chronic central nervous system and peripheral inflammation and detail ECM changes that may follow. In addition, we will discuss recent data our lab has obtained on ECM components and effectors in APOE4/4 and APOE3/3 expressing murine brain lysates, as well as human cerebrospinal fluid (CSF) samples from APOE3 and APOE4 expressing AD individuals. We will describe the principal molecules that function in ECM turnover as well as abnormalities in these molecular systems that have been observed in AD. Finally, we will communicate therapeutic interventions that have the potential to modulate ECM deposition and turnover in vivo.
Collapse
Affiliation(s)
- Matthew Amontree
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Samantha Deasy
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - R. Scott Turner
- Department of Neurology, Georgetown University Medical Center, Washington, DC, United States
| | - Katherine Conant
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
112
|
Cukier HN, Duarte CL, Laverde-Paz MJ, Simon SA, Van Booven DJ, Miyares AT, Whitehead PL, Hamilton-Nelson KL, Adams LD, Carney RM, Cuccaro ML, Vance JM, Pericak-Vance MA, Griswold AJ, Dykxhoorn DM. An Alzheimer's disease risk variant in TTC3 modifies the actin cytoskeleton organization and the PI3K-Akt signaling pathway in iPSC-derived forebrain neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542316. [PMID: 37292815 PMCID: PMC10246004 DOI: 10.1101/2023.05.25.542316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A missense variant in the tetratricopeptide repeat domain 3 ( TTC3 ) gene (rs377155188, p.S1038C, NM_003316.4:c.3113C>G) was found to segregate with disease in a multigenerational family with late onset Alzheimer's disease. This variant was introduced into induced pluripotent stem cells (iPSCs) derived from a cognitively intact individual using CRISPR genome editing and the resulting isogenic pair of iPSC lines were differentiated into cortical neurons. Transcriptome analysis showed an enrichment for genes involved in axon guidance, regulation of actin cytoskeleton, and GABAergic synapse. Functional analysis showed that the TTC3 p.S1038C iPSC-derived neuronal progenitor cells had altered 3D morphology and increased migration, while the corresponding neurons had longer neurites, increased branch points, and altered expression levels of synaptic proteins. Pharmacological treatment with small molecules that target the actin cytoskeleton could revert many of these cellular phenotypes, suggesting a central role for actin in mediating the cellular phenotypes associated with the TTC3 p.S1038C variant. Highlights The AD risk variant TTC3 p.S1038C reduces the expression levels of TTC3 The variant modifies the expression of AD specific genes BACE1 , INPP5F , and UNC5C Neurons with the variant are enriched for genes in the PI3K-Akt pathwayiPSC-derived neurons with the alteration have increased neurite length and branchingThe variant interferes with actin cytoskeleton and is ameliorated by Cytochalasin D.
Collapse
|
113
|
Waiker DK, Verma A, A GT, Singh N, Roy A, Dilnashin H, Tiwari V, Trigun SK, Singh SP, Krishnamurthy S, Lama P, Davisson VJ, Shrivastava SK. Design, Synthesis, and Biological Evaluation of Piperazine and N-Benzylpiperidine Hybrids of 5-Phenyl-1,3,4-oxadiazol-2-thiol as Potential Multitargeted Ligands for Alzheimer's Disease Therapy. ACS Chem Neurosci 2023. [PMID: 37216500 DOI: 10.1021/acschemneuro.3c00245] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Our present work demonstrates the successful design and synthesis of a new class of compounds based upon a multitargeted directed ligand design approach to discover new agents for use in Alzheimer's disease (AD). All the compounds were tested for their in vitro inhibitory potential against human acetylcholinesterase (hAChE), human butylcholinesterase (hBChE), β-secretase-1 (hBACE-1), and amyloid β (Aβ) aggregation. Compounds 5d and 5f have shown hAChE and hBACE-1 inhibition comparable to donepezil, while hBChE inhibition was comparable to rivastigmine. Compounds 5d and 5f also demonstrated a significant reduction in the formation of Aβ aggregates through the thioflavin T assay and confocal, atomic force, and scanning electron microscopy studies and significantly displaced the total propidium iodide, that is, 54 and 51% at 50 μM concentrations, respectively. Compounds 5d and 5f were devoid of neurotoxic liabilities against RA/BDNF (RA = retinoic acid; BDNF = brain-derived neurotrophic factor)-differentiated SH-SY5Y neuroblastoma cell lines at 10-80 μM concentrations. In both the scopolamine- and Aβ-induced mouse models for AD, compounds 5d and 5f demonstrated significant restoration of learning and memory behaviors. A series of ex vivo studies of hippocampal and cortex brain homogenates showed that 5d and 5f elicit decreases in AChE, malondialdehyde, and nitric oxide levels, an increase in glutathione level, and reduced levels of pro-inflammatory cytokines, tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) mRNA. The histopathological examination of mice revealed normal neuronal appearance in the hippocampal and cortex regions of the brain. Western blot analysis of the same tissue indicated a reduction in Aβ, amyloid precursor protein (APP)/Aβ, BACE-1, and tau protein levels, which were non-significant compared to the sham group. The immunohistochemical analysis also showed significantly lower expression of BACE-1 and Aβ levels, which was comparable to donepezil-treated group. Compounds 5d and 5f represent new lead candidates for developing AD therapeutics.
Collapse
Affiliation(s)
- Digambar Kumar Waiker
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Akash Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Gajendra T A
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Namrata Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anima Roy
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Surendra Kumar Trigun
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Surya P Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Prem Lama
- CSIR - Indian Institute of Petroleum, Tech. Block, Mohkampur, Dehradun 248005, Uttarakhand, India
| | - Vincent Jo Davisson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 479047, United States
| | - Sushant Kumar Shrivastava
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
114
|
Mehdi SF, Pusapati S, Anwar MS, Lohana D, Kumar P, Nandula SA, Nawaz FK, Tracey K, Yang H, LeRoith D, Brownstein MJ, Roth J. Glucagon-like peptide-1: a multi-faceted anti-inflammatory agent. Front Immunol 2023; 14:1148209. [PMID: 37266425 PMCID: PMC10230051 DOI: 10.3389/fimmu.2023.1148209] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Inflammation contributes to many chronic conditions. It is often associated with circulating pro-inflammatory cytokines and immune cells. GLP-1 levels correlate with disease severity. They are often elevated and can serve as markers of inflammation. Previous studies have shown that oxytocin, hCG, ghrelin, alpha-MSH and ACTH have receptor-mediated anti-inflammatory properties that can rescue cells from damage and death. These peptides have been studied well in the past century. In contrast, GLP-1 and its anti-inflammatory properties have been recognized only recently. GLP-1 has been proven to be a useful adjuvant therapy in type-2 diabetes mellitus, metabolic syndrome, and hyperglycemia. It also lowers HbA1C and protects cells of the cardiovascular and nervous systems by reducing inflammation and apoptosis. In this review we have explored the link between GLP-1, inflammation, and sepsis.
Collapse
Affiliation(s)
- Syed Faizan Mehdi
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Suma Pusapati
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Muhammad Saad Anwar
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Durga Lohana
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Parkash Kumar
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | | | - Fatima Kausar Nawaz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Kevin Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Huan Yang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Derek LeRoith
- Division of Endocrinology, Diabetes & Bone Disease, Icahn School of Medicine at Mt. Sinai, New York, NY, United States
| | | | - Jesse Roth
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| |
Collapse
|
115
|
Tapia-Monsalves C, Olesen MA, Villavicencio-Tejo F, Quintanilla RA. Cyclosporine A (CsA) prevents synaptic impairment caused by truncated tau by caspase-3. Mol Cell Neurosci 2023; 125:103861. [PMID: 37182572 DOI: 10.1016/j.mcn.2023.103861] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023] Open
Abstract
During Alzheimer's (AD), tau protein suffers from abnormal post-translational modifications, including cleaving by caspase-3. These tau forms affect synaptic plasticity contributing to the cognitive decline observed in the early stages of AD. In addition, caspase-3 cleaved tau (TauC3) impairs mitochondrial dynamics and organelles transport, which are both relevant processes for synapse. We recently showed that the absence of tau expression reverts age-associated cognitive and mitochondrial failure by blocking the mitochondrial permeability transition pore (mPTP). mPTP is a mitochondrial complex involved in calcium regulation and apoptosis. Therefore, we studied the effects of TauC3 against the dendritic spine and synaptic vesicle formation and the possible role of mPTP in these alterations. We used mature hippocampal mice neurons to express a reporter protein (GFP, mCherry), coupled to full-length human tau protein (GFP-T4, mCherry-T4), and coupled to human tau protein cleaved at D421 by caspase-3 (GFP-T4C3, mCherry-T4C3) and synaptic elements were evaluated. Treatment with cyclosporine A (CsA), an immunosuppressive drug with inhibitory activity on mPTP, prevented ROS increase and mitochondrial depolarization induced by TauC3 in hippocampal neurons. These results were corroborated with immortalized cortical neurons in which ROS increase and ATP loss induced by this tau form were prevented by CsA. Interestingly, TauC3 expression significantly reduced dendritic spine density (filopodia type) and synaptic vesicle number in hippocampal neurons. Also, neurons transfected with TauC3 showed a significant accumulation of synaptophysin protein in their soma. More importantly, all these synaptic alterations were prevented by CsA, suggesting an mPTP role in these negative changes derived from TauC3 expression.
Collapse
Affiliation(s)
- Carola Tapia-Monsalves
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomedicas, Universidad Autonoma de Chile, Santiago, Chile
| | - Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomedicas, Universidad Autonoma de Chile, Santiago, Chile
| | - Francisca Villavicencio-Tejo
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomedicas, Universidad Autonoma de Chile, Santiago, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomedicas, Universidad Autonoma de Chile, Santiago, Chile.
| |
Collapse
|
116
|
Tripathi SM, Majrashi NA, Alyami AS, Ageeli WA, Refaee TA. A Systematic Review of PET Contrasted with MRI for Detecting Crossed Cerebellar Diaschisis in Patients with Neurodegenerative Diseases. Diagnostics (Basel) 2023; 13:diagnostics13101674. [PMID: 37238158 DOI: 10.3390/diagnostics13101674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
There has not been extensive research into crossed cerebellar diaschisis (CCD) in neurodegenerative disorders. CCD is frequently detected using positron emission tomography (PET). However, advanced MRI techniques have come forth for the detection of CCD. The correct diagnosis of CCD is crucial for the care of neurological patients and those with neurodegenerative conditions. The purpose of this study is to determine whether PET can offer extra value over MRI or an advanced technique in MRI for detecting CCD in neurological conditions. We searched three main electronic databases from 1980 until the present and included only English and peer-reviewed journal articles. Eight articles involving 1246 participants met the inclusion criteria, six of which used PET imaging while the other two used MRI and hybrid imaging. The findings in PET studies showed decreased cerebral metabolism in the frontal, parietal, temporal, and occipital cortices, as on the opposite side of the cerebellar cortex. However, the findings in MRI studies showed decreased cerebellar volumes. This study concludes that PET is a common, accurate, and sensitive technique for detecting both crossed cerebellar and uncrossed basal ganglia as well as thalamic diaschisis in neurodegenerative diseases, while MRI is better for measuring brain volume. This study suggests that PET has a higher diagnostic value for diagnosing CCD compared to MRI, and that PET is a more valuable technique for predicting CCD.
Collapse
Affiliation(s)
| | - Naif Ali Majrashi
- Diagnostic Radiography Technology (DRT) Department, Faculty of Applied Medical Sciences, Jazan University, Jazan 85145, Saudi Arabia
| | - Ali S Alyami
- Diagnostic Radiography Technology (DRT) Department, Faculty of Applied Medical Sciences, Jazan University, Jazan 85145, Saudi Arabia
| | - Wael A Ageeli
- Diagnostic Radiography Technology (DRT) Department, Faculty of Applied Medical Sciences, Jazan University, Jazan 85145, Saudi Arabia
| | - Turkey A Refaee
- Diagnostic Radiography Technology (DRT) Department, Faculty of Applied Medical Sciences, Jazan University, Jazan 85145, Saudi Arabia
| |
Collapse
|
117
|
Yuan C, Palka JM, Rohatgi A, Joshi P, Berry J, Khera A, Brown ES. The Relationship Between Coronary Artery Calcification and Carotid Intima Media Thickness and Hippocampal Volume: An Analysis From the Dallas Heart Study. J Acad Consult Liaison Psychiatry 2023; 64:218-225. [PMID: 36681150 PMCID: PMC10200733 DOI: 10.1016/j.jaclp.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023]
Abstract
BACKGROUND Higher rates of dementia are reported in people with a history of coronary artery disease. Smaller hippocampal volume (HV) is a risk factor for the development of dementia. OBJECTIVE This study assessed whether coronary artery calcification (CAC) and carotid intima media thickness (CIMT) are associated with HV in participants from the Dallas Heart Study, a community-based study of Dallas County, Texas, residents. METHODS Data from a total of n = 1821 participants in the Dallas Heart Study with brain magnetic resonance imaging, CAC, and CIMT information were included in the present study, after excluding those with a history of myocardial infarction or stroke. To evaluate the effect of CAC and CIMT on total HV, 4 linear regression analyses were conducted in which the primary predictor was (1) CAC as a continuous metric; (2) CAC as a binary metric (CAC = 0 vs. CAC ≥ 1); (3) CAC as a continuous metric but only for those with CAC >0; and (4) CIMT as a continuous metric. Demographic and cardiovascular disease risk factors, as well as intracranial volume, were entered into the model as covariates. RESULTS Participants were largely women (58.2%) with a mean age of 49.7 ± 10.3 years. Forty-six percent of the sample reported being Black, and approximately 14% reported being Hispanic. All 3 variations of the CAC effect were nonsignificant predictors of total HV (β = -0.013, P = 0.602; β = -0.011, P = 0.650; β = 0.036, P = 0.354, respectively), as was the effect of CIMT (β = 0.009, P = 0.686). CONCLUSIONS Current findings suggest nonsignificant relationships between both CAC and CIMT and between CAC and total HV, while controlling for other related factors in a large, diverse, community-based sample of people without a history of myocardial infarction or stroke. In the context of existing evidence that both coronary artery disease and smaller HV are associated with the development of dementia, the present findings suggest that neither marker of the cardiovascular disease examined here is associated with a reduction in HV in the population studied. Longitudinal studies are needed to assess relationships between CAC and CIMT and between CAC and HV over time.
Collapse
Affiliation(s)
- Christine Yuan
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Jayme M Palka
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Anand Rohatgi
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Parag Joshi
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Jarett Berry
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Amit Khera
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - E Sherwood Brown
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX; The Altshuler Center for Education & Research, Metrocare Services, Dallas, TX.
| |
Collapse
|
118
|
Singh A, Ansari VA, Ansari TM, Hasan SM, Ahsan F, Singh K, Wasim R, Maheshwari S, Ahmad A. Consequence of Dementia and Cognitive Impairment by Primary Nucleation Pathway. Horm Metab Res 2023; 55:304-314. [PMID: 37130536 DOI: 10.1055/a-2052-8462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
An acquired loss of cognition in several cognitive domains that is severe enough to interfere with social or professional functioning is called dementia. As well as a moderately in-depth mental status examination by a clinician to identify impairments in memory, language, attention, visuospatial cognition, such as spatial orientation, executive function, and mood, the diagnosis of dementia requires a history evaluating for cognitive decline and impairment in daily activities, with confirmation from a close friend or family member. The start and organization of the cognitive assessment can be helped by short screening tests for cognitive impairment. Clinical presentations show that neurodegenerative diseases are often incurable because patients permanently lose some types of neurons. It has been determined through an assessment that, at best, our understanding of the underlying processes is still rudimentary, which presents exciting new targets for further study as well as the development of diagnostics and drugs. A growing body of research suggests that they also advance our knowledge of the processes that are probably crucial for maintaining the health and functionality of the brain. We concentrate on a number of the animal models of memory problems that have been mentioned in this review article because dementia has numerous etiologies. Serious neurological impairment and neuronal death are the main features of neurodegenerative illnesses, which are also extremely crippling ailments. The most prevalent neurodegenerative disorders are followed by those primary nucleation pathways responsible for cognitive impairment and dementia.
Collapse
Affiliation(s)
- Aditya Singh
- Faculty of Pharmacy, Integral University, Lucknow, India
| | | | | | | | - Farogh Ahsan
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Kuldeep Singh
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Rufaida Wasim
- Faculty of Pharmacy, Integral University, Lucknow, India
| | | | - Asad Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
119
|
Zhang Y, Kiryu H. Identification of oxidative stress-related genes differentially expressed in Alzheimer's disease and construction of a hub gene-based diagnostic model. Sci Rep 2023; 13:6817. [PMID: 37100862 PMCID: PMC10133299 DOI: 10.1038/s41598-023-34021-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/22/2023] [Indexed: 04/28/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent dementia disorder globally, and there are still no effective interventions for slowing or stopping the underlying pathogenic mechanisms. There is strong evidence implicating neural oxidative stress (OS) and ensuing neuroinflammation in the progressive neurodegeneration observed in the AD brain both during and prior to symptom emergence. Thus, OS-related biomarkers may be valuable for prognosis and provide clues to therapeutic targets during the early presymptomatic phase. In the current study, we gathered brain RNA-seq data of AD patients and matched controls from the Gene Expression Omnibus (GEO) to identify differentially expressed OS-related genes (OSRGs). These OSRGs were analyzed for cellular functions using the Gene Ontology (GO) database and used to construct a weighted gene co-expression network (WGCN) and protein-protein interaction (PPI) network. Receiver operating characteristic (ROC) curves were then constructed to identify network hub genes. A diagnostic model was established based on these hub genes using Least Absolute Shrinkage and Selection Operator (LASSO) and ROC analyses. Immune-related functions were examined by assessing correlations between hub gene expression and immune cell brain infiltration scores. Further, target drugs were predicted using the Drug-Gene Interaction database, while regulatory miRNAs and transcription factors were predicted using miRNet. In total, 156 candidate genes were identified among 11046 differentially expressed genes, 7098 genes in WGCN modules, and 446 OSRGs, and 5 hub genes (MAPK9, FOXO1, BCL2, ETS1, and SP1) were identified by ROC curve analyses. These hub genes were enriched in GO annotations "Alzheimer's disease pathway," "Parkinson's Disease," "Ribosome," and "Chronic myeloid leukemia." In addition, 78 drugs were predicted to target FOXO1, SP1, MAPK9, and BCL2, including fluorouracil, cyclophosphamide, and epirubicin. A hub gene-miRNA regulatory network with 43 miRNAs and hub gene-transcription factor (TF) network with 36 TFs were also generated. These hub genes may serve as biomarkers for AD diagnosis and provide clues to novel potential treatment targets.
Collapse
Affiliation(s)
- Yanting Zhang
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Hisanori Kiryu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
120
|
Lin HC, Chung CH, Chen LC, Wang JY, Chen CC, Huang KY, Tsai MH, Chien WC, Lin HA. Pioglitazone use increases risk of Alzheimer's disease in patients with type 2 diabetes receiving insulin. Sci Rep 2023; 13:6625. [PMID: 37095270 PMCID: PMC10126143 DOI: 10.1038/s41598-023-33674-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023] Open
Abstract
Pioglitazone is an insulin resistance inhibitor widely used as monotherapy or combined with metformin or insulin in treating type 2 diabetes mellitus (T2DM). This study further investigated the relationship between pioglitazone use and the risk of developing Alzheimer's disease (AD) in patients newly diagnosed with T2DM, and examined the potential impact of insulin use on this association. Data were extracted from the National Health Insurance Research Database (NHIRD) of Taiwan. Our data exhibited that the risk of developing AD in the pioglitazone group was 1.584-fold (aHR = 1.584, 95% CI 1.203-1.967, p < 0.05) higher than that in the non-pioglitazone controls. Compared to patients without both insulin and pioglitazone, higher cumulative risk of developing AD was found in patients receiving both insulin and pioglitazone (aHR = 2.004, 95% CI = 1.702-2.498), pioglitazone alone (aHR = 1.596, 95% CI = 1.398-1.803), and insulin alone (aHR = 1.365, 95% CI = 1.125-1.572), respectively (all p < 0.05). A similar observation also found in the evaluation the use of diabetic drugs with a cumulative defined daily dose (cDDD). No interaction between pioglitazone and major risk factors (comorbidities) of AD was observed. In conclusion, alternative drug therapies may be an effective strategy for reducing risk of developing AD in T2DM patients.
Collapse
Affiliation(s)
- Hsin-Chung Lin
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 11490, Taiwan
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City, 11490, Taiwan
| | - Chi-Hsiang Chung
- School of Public Health, National Defense Medical Center, Taipei City, 11490, Taiwan
- Taiwanese Injury Prevention and Safety Promotion Association, Taipei City, 11490, Taiwan
| | - Lih-Chyang Chen
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan
| | - Jui-Yang Wang
- Department of Family Medicine, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei City, 10581, Taiwan
| | - Chien-Chou Chen
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei City, 10581, Taiwan
| | - Kuo-Yang Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City, 11490, Taiwan
| | - Ming-Hang Tsai
- Department of Medicine, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei City, 10581, Taiwan
| | - Wu-Chien Chien
- School of Public Health, National Defense Medical Center, Taipei City, 11490, Taiwan.
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490, Taiwan.
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei City, 11490, Taiwan.
| | - Hsin-An Lin
- Division of Infection, Department of Medicine, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, No. 131, Jiankang Rd., Songshan District, Taipei City, 10581, Taiwan.
| |
Collapse
|
121
|
Sullivan M, Fernandez-Aranda F, Camacho-Barcia L, Harkin A, Macrì S, Mora-Maltas B, Jiménez-Murcia S, O'Leary A, Ottomana AM, Presta M, Slattery D, Scholtz S, Glennon JC. Insulin and Disorders of Behavioural Flexibility. Neurosci Biobehav Rev 2023; 150:105169. [PMID: 37059405 DOI: 10.1016/j.neubiorev.2023.105169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023]
Abstract
Behavioural inflexibility is a symptom of neuropsychiatric and neurodegenerative disorders such as Obsessive-Compulsive Disorder, Autism Spectrum Disorder and Alzheimer's Disease, encompassing the maintenance of a behaviour even when no longer appropriate. Recent evidence suggests that insulin signalling has roles apart from its regulation of peripheral metabolism and mediates behaviourally-relevant central nervous system (CNS) functions including behavioural flexibility. Indeed, insulin resistance is reported to generate anxious, perseverative phenotypes in animal models, with the Type 2 diabetes medication metformin proving to be beneficial for disorders including Alzheimer's Disease. Structural and functional neuroimaging studies of Type 2 diabetes patients have highlighted aberrant connectivity in regions governing salience detection, attention, inhibition and memory. As currently available therapeutic strategies feature high rates of resistance, there is an urgent need to better understand the complex aetiology of behaviour and develop improved therapeutics. In this review, we explore the circuitry underlying behavioural flexibility, changes in Type 2 diabetes, the role of insulin in CNS outcomes and mechanisms of insulin involvement across disorders of behavioural inflexibility.
Collapse
Affiliation(s)
- Mairéad Sullivan
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Fernando Fernandez-Aranda
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Lucía Camacho-Barcia
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain
| | - Andrew Harkin
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Bernat Mora-Maltas
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Susana Jiménez-Murcia
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Aet O'Leary
- University Hospital Frankfurt, Frankfurt, Germany
| | - Angela Maria Ottomana
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Neuroscience Unit, Department of Medicine, University of Parma, 43100 Parma, Italy
| | - Martina Presta
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | | | | | - Jeffrey C Glennon
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
122
|
Han F, Liu X, Yang Y, Liu X. Sex-specific age-related changes in glymphatic function assessed by resting-state functional magnetic resonance imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.02.535258. [PMID: 37034667 PMCID: PMC10081329 DOI: 10.1101/2023.04.02.535258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
The glymphatic system that clears out brain wastes, such as amyloid-β (Aβ) and tau, through cerebrospinal fluid (CSF) flow may play an important role in aging and dementias. However, a lack of non-invasive tools to assess the glymphatic function in humans hindered the understanding of the glymphatic changes in healthy aging. The global infra-slow (<0.1 Hz) brain activity measured by the global mean resting-state fMRI signal (gBOLD) was recently found to be coupled by large CSF movements. This coupling has been used to measure the glymphatic process and found to correlate with various pathologies of Alzheimer's disease (AD), including Aβ pathology. Using resting-state fMRI data from a large group of 719 healthy aging participants, we examined the sex-specific changes of the gBOLD-CSF coupling, as a measure of glymphatic function, over a wide age range between 36-100 years old. We found that this coupling index remains stable before around age 55 and then starts to decline afterward, particularly in females. Menopause may contribute to the accelerated decline in females.
Collapse
Affiliation(s)
- Feng Han
- Department of Biomedical Engineering, The Pennsylvania State University, PA, USA
| | - Xufu Liu
- Department of Biomedical Engineering, The Pennsylvania State University, PA, USA
| | - Yifan Yang
- Department of Biomedical Engineering, The Pennsylvania State University, PA, USA
| | - Xiao Liu
- Department of Biomedical Engineering, The Pennsylvania State University, PA, USA
- Institute for Computational and Data Sciences, The Pennsylvania State University, PA, USA
| |
Collapse
|
123
|
Twarowski B, Herbet M. Inflammatory Processes in Alzheimer's Disease-Pathomechanism, Diagnosis and Treatment: A Review. Int J Mol Sci 2023; 24:6518. [PMID: 37047492 PMCID: PMC10095343 DOI: 10.3390/ijms24076518] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Alzheimer's disease is one of the most commonly diagnosed cases of senile dementia in the world. It is an incurable process, most often leading to death. This disease is multifactorial, and one factor of this is inflammation. Numerous mediators secreted by inflammatory cells can cause neuronal degeneration. Neuritis may coexist with other mechanisms of Alzheimer's disease, contributing to disease progression, and may also directly underlie AD. Although much has been established about the inflammatory processes in the pathogenesis of AD, many aspects remain unexplained. The work is devoted in particular to the pathomechanism of inflammation and its role in diagnosis and treatment. An in-depth and detailed understanding of the pathomechanism of neuroinflammation in Alzheimer's disease may help in the development of diagnostic methods for early diagnosis and may contribute to the development of new therapeutic strategies for the disease.
Collapse
Affiliation(s)
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland
| |
Collapse
|
124
|
Chou CC, Vest R, Prado MA, Wilson-Grady J, Paulo JA, Shibuya Y, Moran-Losada P, Lee TT, Luo J, Gygi SP, Kelly JW, Finley D, Wernig M, Wyss-Coray T, Frydman J. Proteostasis and lysosomal quality control deficits in Alzheimer's disease neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534444. [PMID: 37034684 PMCID: PMC10081252 DOI: 10.1101/2023.03.27.534444] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The role of proteostasis and organelle homeostasis dysfunction in human aging and Alzheimer's disease (AD) remains unclear. Analyzing proteome-wide changes in human donor fibroblasts and their corresponding transdifferentiated neurons (tNeurons), we find aging and AD synergistically impair multiple proteostasis pathways, most notably lysosomal quality control (LQC). In particular, we show that ESCRT-mediated lysosomal repair defects are associated with both sporadic and PSEN1 familial AD. Aging- and AD-linked defects are detected in fibroblasts but highly exacerbated in tNeurons, leading to enhanced neuronal vulnerability, unrepaired lysosomal damage, inflammatory factor secretion and cytotoxicity. Surprisingly, tNeurons from aged and AD donors spontaneously develop amyloid-β inclusions co-localizing with LQC markers, LAMP1/2-positive lysosomes and proteostasis factors; we observe similar inclusions in brain tissue from AD patients and APP-transgenic mice. Importantly, compounds enhancing lysosomal function broadly ameliorate these AD-associated pathologies. Our findings establish cell-autonomous LQC dysfunction in neurons as a central vulnerability in aging and AD pathogenesis.
Collapse
|
125
|
Li Y, Dai J, Kametani F, Yazaki M, Ishigami A, Mori M, Miyahara H, Higuchi K. Renal function in aged C57BL/6J mice is impaired by deposition of age-related apolipoprotein A-II amyloid independent of kidney aging. THE AMERICAN JOURNAL OF PATHOLOGY 2023:S0002-9440(23)00112-8. [PMID: 36965775 DOI: 10.1016/j.ajpath.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/27/2023]
Abstract
Spontaneous and age-related amyloidosis has been reported in C57BL/6J mice; however, the biochemical characteristics of age-related amyloidosis remain unclear. Therefore, we herein investigated the age-related prevalence of amyloidosis, the types of amyloid fibril proteins, and the effects of amyloid deposition on renal function in C57BL/6J mice. The results obtained revealed a high incidence of amyloidosis in C57BL/6J mice originating from the Jackson laboratory as well as the deposition of large amounts of amyloid in the glomeruli of aged mice. We identified the amyloid fibril protein in C57BL/6J mice as wild-type apolipoprotein A-II. We induced renal amyloid deposition in 40-week-old mice, equivalent to that of spontaneous development in 80-week-old mice, to rule out the effects of aging, and revealed subsequent damage to kidney function by amyloid deposits. Furthermore, amyloid deposition in the mesangial region decreased podocyte density, compromised foot processes, and led to the accumulation of fibroblast growth factor 2 (FGF2) in glomeruli. Collectively, these results suggest that AApoAII deposition is a general pathology in aged C57BL/6J mice and is dependent on supplier colonies. Therefore, the effects of age-related amyloid deposition need to be considered in research on aging in mice.
Collapse
Affiliation(s)
- Ying Li
- Department of Aging Biology, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Jian Dai
- Department of Neuro-health Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan
| | - Fuyuki Kametani
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, 156-8506 Tokyo, Japan
| | - Masahide Yazaki
- Department of Neuro-health Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Masayuki Mori
- Department of Aging Biology, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto 390-8621, Japan; Department of Neuro-health Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan
| | - Hiroki Miyahara
- Department of Aging Biology, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto 390-8621, Japan; Department of Neuro-health Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan.
| | - Keiichi Higuchi
- Department of Neuro-health Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan; Community Health Care Research Centre, Nagano University Health and Medicine, Nagano 381-2227, Japan
| |
Collapse
|
126
|
Amoroso R, Maccallini C, Bellezza I. Activators of Nrf2 to Counteract Neurodegenerative Diseases. Antioxidants (Basel) 2023; 12:antiox12030778. [PMID: 36979026 PMCID: PMC10045503 DOI: 10.3390/antiox12030778] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Neurodegenerative diseases are incurable and debilitating conditions that result in progressive degeneration and loss of nerve cells. Oxidative stress has been proposed as one factor that plays a potential role in the pathogenesis of neurodegenerative disorders since neuron cells are particularly vulnerable to oxidative damage. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is strictly related to anti-inflammatory and antioxidative cell response; therefore, its activation and the consequent enhancement of the related cellular pathways have been proposed as a potential therapeutic approach. Several Nrf2 activators with different mechanisms and diverse structures have been reported, but those applied for neurodisorders are still limited. However, in the very last few years, interesting progress has been made, particularly in enhancing the blood-brain barrier penetration, to make Nrf2 activators effective drugs, and in designing Nrf2-based multitarget-directed ligands to affect multiple pathways involved in the pathology of neurodegenerative diseases. The present review gives an overview of the most representative findings in this research area.
Collapse
Affiliation(s)
- Rosa Amoroso
- Department of Pharmacy, University "G.d'Annunzio" of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Cristina Maccallini
- Department of Pharmacy, University "G.d'Annunzio" of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Ilaria Bellezza
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, P.e Lucio Severi 1, 06132 Perugia, Italy
| |
Collapse
|
127
|
Light, Water, and Melatonin: The Synergistic Regulation of Phase Separation in Dementia. Int J Mol Sci 2023; 24:ijms24065835. [PMID: 36982909 PMCID: PMC10054283 DOI: 10.3390/ijms24065835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
The swift rise in acceptance of molecular principles defining phase separation by a broad array of scientific disciplines is shadowed by increasing discoveries linking phase separation to pathological aggregations associated with numerous neurodegenerative disorders, including Alzheimer’s disease, that contribute to dementia. Phase separation is powered by multivalent macromolecular interactions. Importantly, the release of water molecules from protein hydration shells into bulk creates entropic gains that promote phase separation and the subsequent generation of insoluble cytotoxic aggregates that drive healthy brain cells into diseased states. Higher viscosity in interfacial waters and limited hydration in interiors of biomolecular condensates facilitate phase separation. Light, water, and melatonin constitute an ancient synergy that ensures adequate protein hydration to prevent aberrant phase separation. The 670 nm visible red wavelength found in sunlight and employed in photobiomodulation reduces interfacial and mitochondrial matrix viscosity to enhance ATP production via increasing ATP synthase motor efficiency. Melatonin is a potent antioxidant that lowers viscosity to increase ATP by scavenging excess reactive oxygen species and free radicals. Reduced viscosity by light and melatonin elevates the availability of free water molecules that allow melatonin to adopt favorable conformations that enhance intrinsic features, including binding interactions with adenosine that reinforces the adenosine moiety effect of ATP responsible for preventing water removal that causes hydrophobic collapse and aggregation in phase separation. Precise recalibration of interspecies melatonin dosages that account for differences in metabolic rates and bioavailability will ensure the efficacious reinstatement of the once-powerful ancient synergy between light, water, and melatonin in a modern world.
Collapse
|
128
|
Landolfo E, Cutuli D, Decandia D, Balsamo F, Petrosini L, Gelfo F. Environmental Enrichment Protects against Neurotoxic Effects of Lipopolysaccharide: A Comprehensive Overview. Int J Mol Sci 2023; 24:ijms24065404. [PMID: 36982478 PMCID: PMC10049264 DOI: 10.3390/ijms24065404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Neuroinflammation is a pathophysiological condition associated with damage to the nervous system. Maternal immune activation and early immune activation have adverse effects on the development of the nervous system and cognitive functions. Neuroinflammation during adulthood leads to neurodegenerative diseases. Lipopolysaccharide (LPS) is used in preclinical research to mimic neurotoxic effects leading to systemic inflammation. Environmental enrichment (EE) has been reported to cause a wide range of beneficial changes in the brain. Based on the above, the purpose of the present review is to describe the effects of exposure to EE paradigms in counteracting LPS-induced neuroinflammation throughout the lifespan. Up to October 2022, a methodical search of studies in the literature, using the PubMed and Scopus databases, was performed, focusing on exposure to LPS, as an inflammatory mediator, and to EE paradigms in preclinical murine models. On the basis of the inclusion criteria, 22 articles were considered and analyzed in the present review. EE exerts sex- and age-dependent neuroprotective and therapeutic effects in animals exposed to the neurotoxic action of LPS. EE’s beneficial effects are present throughout the various ages of life. A healthy lifestyle and stimulating environments are essential to counteract the damages induced by neurotoxic exposure to LPS.
Collapse
Affiliation(s)
- Eugenia Landolfo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Debora Cutuli
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Davide Decandia
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Francesca Balsamo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, 00193 Rome, Italy
| | - Laura Petrosini
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Francesca Gelfo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, 00193 Rome, Italy
- Correspondence:
| |
Collapse
|
129
|
Man S, Chen B, Zhang Y, Xu H, Liu Y, Gao Y, Chen Y, Chen Q, Zhang M. The Associations Between Cataracts and Alzheimer's Disease: A Bidirectional Two-Sample Mendelian Randomization Study. J Alzheimers Dis 2023; 92:1451-1458. [PMID: 36911941 DOI: 10.3233/jad-221137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
BACKGROUND The relationship between cataracts and Alzheimer's disease (AD) has been reported in recent observational studies. However, it is still unclear whether a causal effect of cataracts on AD or reverse causation exists. OBJECTIVE To explore the association between cataracts and AD genetically, we performed a bidirectional two-sample Mendelian randomization study. METHODS We obtained genetic instrumental variables related to cataracts and AD from recently published genome-wide association studies (GWASs). SNP-outcome associations for AD were obtained from a GWAS with 111,326 cases and 677,663 controls. SNP-outcome associations for cataracts were drawn from two sources: a GWAS with 67,844 cases and 517,399 controls and the FinnGen consortium (42,843 cases and 262,698 controls). Inverse variance weighted (IVW) was used as the primary method for Mendelian randomization (MR) analyses. RESULTS No genetic evidence suggested that cataracts were associated with the risk of AD (IVW odds ratio =1.04, 95% confidence interval: 0.98-1.10, p=0.199). In contrast, an effect of genetically determined AD on a decreased risk of cataract was observed with suggestive evidence (IVW odds ratio =0.96, 95% confidence interval: 0.93-0.99, p=0.004). However, this result might be distorted by survival bias. CONCLUSION Genetically determined cataracts were not related to AD, as demonstrated by our study. In contrast, there was suggestive evidence that AD might prevent cataract development, but there might be potential survival bias. To define the exact association between the two diseases, more prospective research and studies on the pathogenesis are needed.
Collapse
Affiliation(s)
- Shulei Man
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Boran Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yifan Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Hanyue Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuzhu Gao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
130
|
Bukhbinder AS, Hinojosa M, Harris K, Li X, Farrell CM, Shyer M, Goodwin N, Anjum S, Hasan O, Cooper S, Sciba L, Vargas A, Hunter DH, Ortiz GJ, Chung K, Cui L, Zhang GQ, Fisher-Hoch SP, McCormick JB, Schulz PE. Population-Based Mini-Mental State Examination Norms in Adults of Mexican Heritage in the Cameron County Hispanic Cohort. J Alzheimers Dis 2023; 92:1323-1339. [PMID: 36872776 DOI: 10.3233/jad-220934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
BACKGROUND Accurately identifying cognitive changes in Mexican American (MA) adults using the Mini-Mental State Examination (MMSE) requires knowledge of population-based norms for the MMSE, a scale which has widespread use in research settings. OBJECTIVE To describe the distribution of MMSE scores in a large cohort of MA adults, assess the impact of MMSE requirements on their clinical trial eligibility, and explore which factors are most strongly associated with their MMSE scores. METHODS Visits between 2004-2021 in the Cameron County Hispanic Cohort were analyzed. Eligible participants were ≥18 years old and of Mexican descent. MMSE distributions before and after stratification by age and years of education (YOE) were assessed, as was the proportion of trial-aged (50-85- year-old) participants with MMSE <24, a minimum MMSE cutoff most frequently used in Alzheimer's disease (AD) clinical trials. As a secondary analysis, random forest models were constructed to estimate the relative association of the MMSE with potentially relevant variables. RESULTS The mean age of the sample set (n = 3,404) was 44.4 (SD, 16.0) years old and 64.5% female. Median MMSE was 28 (IQR, 28-29). The percentage of trial-aged participants (n = 1,267) with MMSE <24 was 18.6%; 54.3% among the subset with 0-4 YOE (n = 230). The five variables most associated with the MMSE in the study sample were education, age, exercise, C-reactive protein, and anxiety. CONCLUSION The minimum MMSE cutoffs in most phase III prodromal-to-mild AD trials would exclude a significant proportion of trial-aged participants in this MA cohort, including over half of those with 0-4 YOE.
Collapse
Affiliation(s)
- Avram S Bukhbinder
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.,Division of Pediatric Neurology, Massachusetts General Hospital, Boston, MA
| | - Miriam Hinojosa
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kristofer Harris
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiaojin Li
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christine M Farrell
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Madison Shyer
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nathan Goodwin
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sahar Anjum
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Omar Hasan
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Susan Cooper
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lois Sciba
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Amanda Vargas
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David H Hunter
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Guadalupe J Ortiz
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Karen Chung
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Licong Cui
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Guo-Qiang Zhang
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.,School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Susan P Fisher-Hoch
- Department of Epidemiology, Human Genetics & Environmental Sciences, UTHealth School of Public Health, Brownsville, TX, USA
| | - Joseph B McCormick
- Department of Epidemiology, Human Genetics & Environmental Sciences, UTHealth School of Public Health, Brownsville, TX, USA
| | - Paul E Schulz
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
131
|
Kurkinen M, Fułek M, Fułek K, Beszłej JA, Kurpas D, Leszek J. The Amyloid Cascade Hypothesis in Alzheimer’s Disease: Should We Change Our Thinking? Biomolecules 2023; 13:biom13030453. [PMID: 36979388 PMCID: PMC10046826 DOI: 10.3390/biom13030453] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 03/05/2023] Open
Abstract
Old age increases the risk of Alzheimer’s disease (AD), the most common neurodegenerative disease, a devastating disorder of the human mind and the leading cause of dementia. Worldwide, 50 million people have the disease, and it is estimated that there will be 150 million by 2050. Today, healthcare for AD patients consumes 1% of the global economy. According to the amyloid cascade hypothesis, AD begins in the brain by accumulating and aggregating Aβ peptides and forming β-amyloid fibrils (Aβ42). However, in clinical trials, reducing Aβ peptide production and amyloid formation in the brain did not slow cognitive decline or improve daily life in AD patients. Prevention studies in cognitively unimpaired people at high risk or genetically destined to develop AD also have not slowed cognitive decline. These observations argue against the amyloid hypothesis of AD etiology, its development, and disease mechanisms. Here, we look at other avenues in the research of AD, such as the presenilin hypothesis, synaptic glutamate signaling, and the role of astrocytes and the glutamate transporter EAAT2 in the development of AD.
Collapse
Affiliation(s)
| | - Michał Fułek
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Katarzyna Fułek
- Department and Clinic of Otolaryngology, Head and Neck Surgery, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Correspondence: (K.F.); (J.L.)
| | | | - Donata Kurpas
- Department of Family Medicine, Wroclaw Medical University, 51-141 Wroclaw, Poland
| | - Jerzy Leszek
- Department and Clinic of Psychiatry, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Correspondence: (K.F.); (J.L.)
| |
Collapse
|
132
|
Karim N, Khan I, Khan I, Halim SA, Khalid A, Abdalla AN, Rehman NU, Khan A, Al-Harrasi A. Antiamnesic Effects of Novel Phthalimide Derivatives in Scopolamine-Induced Memory Impairment in Mice: A Useful Therapy for Alzheimer's Disease. ACS OMEGA 2023; 8:8052-8065. [PMID: 36872974 PMCID: PMC9979339 DOI: 10.1021/acsomega.2c07951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Phthalimides have diverse bioactivities and are attractive molecules for drug discovery and development. Here, we explored new synthesized phthalimide derivatives (compounds 1-3) in improving memory impairment associated with Alzheimer's disease (AD), using in vitro and ex vivo acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition and in vivo models, including Y-maze test and novel object recognition test (NORT). Compounds 1-3 exhibited significant AChE activity with IC50 values of 10, 140, and 18 μM and BuChE with IC50 values of 80, 50, and 11 μM, respectively. All compounds 1-3 showed excellent antioxidant potential in DPPH and ABTS assays with IC50 values in the range of 105-340 and 205-350 μM, respectively. In ex vivo studies, compounds 1-3 also significantly inhibited both enzymes in a concentration-dependent manner along with significant antioxidant activities. In in vivo studies, compounds 1-3 reversed scopolamine-induced amnesia as indicated by a significant increase in the spontaneous alternation in the Y-maze test and an increase in the discrimination index in the NORT. Molecular docking was also conducted for compounds 1-3 against AChE and BuChE, which showed that compounds 1 and 3 have excellent binding with AChE and BuChE as compared to 2. These findings suggest that compounds 1-3 possess significant antiamnesic potential and may serve as useful leads to develop novel therapeutics for the symptomatic management and treatment of AD.
Collapse
Affiliation(s)
- Nasiara Karim
- Department
of Pharmacy, University of Peshawar, Peshawar 25120, KPK, Pakistan
| | - Inbisat Khan
- Department
of Pharmacy, University of Peshawar, Peshawar 25120, KPK, Pakistan
| | - Imran Khan
- Department
of Pharmacy, University of Swabi, Swabi 23430, KPK, Pakistan
| | - Sobia Ahsan Halim
- Natural
and Medical Sciences Research Center, University
of Nizwa, Birkat Al Mauz 616, Nizwa 616, Oman
| | - Asaad Khalid
- Substance
Abuse and Toxicology Research Center, Jazan
University, P.O. Box 114, Jazan 45142, Saudi Arabia
- Medicinal
and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P.O. Box 2404, Khartoum 11115, Sudan
| | - Ashraf N. Abdalla
- Department
of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Najeeb Ur Rehman
- Natural
and Medical Sciences Research Center, University
of Nizwa, Birkat Al Mauz 616, Nizwa 616, Oman
| | - Ajmal Khan
- Natural
and Medical Sciences Research Center, University
of Nizwa, Birkat Al Mauz 616, Nizwa 616, Oman
| | - Ahmed Al-Harrasi
- Natural
and Medical Sciences Research Center, University
of Nizwa, Birkat Al Mauz 616, Nizwa 616, Oman
| |
Collapse
|
133
|
Tan KP, Ang JK, Koh EBY, Pang NTP, Mat Saher Z. Relationship of Psychological Flexibility and Mindfulness to Caregiver Burden, and Depressive and Anxiety Symptoms in Caregivers of People with Dementia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4232. [PMID: 36901243 PMCID: PMC10002240 DOI: 10.3390/ijerph20054232] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Caregivers of People with dementia (PwD) commonly experience burdens and other mental health issues, e.g., depression and anxiety. At present, there are limited studies that examine the relationships between caregiver psychological factors and caregiver burden, and depressive and anxiety symptoms. Therefore, this study's objectives were to examine the relationships between psychological flexibility and mindfulness in caregivers of PwD, and to determine the predictors of these three outcomes. This was a cross-sectional study conducted in the geriatric psychiatry clinic of Kuala Lumpur Hospital, Malaysia, and the sample (n = 82) was recruited via a universal sampling method over three months. The participants completed a questionnaire that consisted of the sociodemographics of the PwD and caregivers, illness characteristics of the PwD, Acceptance and Action Questionnaire-II (AAQ-II), Mindful Attention Awareness Scale (MAAS), Zarit Burden Interview Scale (ZBI), Patient Health Questionnaire-9 (PHQ-9) and Generalized Anxiety Disorder-7 (GAD-7). The results show that despite significant relationships between psychological flexibility and mindfulness and lower levels of caregiver burden, and depressive and anxiety symptoms (p < 0.01), only psychological inflexibility (p < 0.01) remained as a significant predictor of the three outcomes. Therefore, in conclusion, intervention programs that target the awareness of the caregiver's psychological inflexibility should be implemented to alleviate these adverse outcomes in dementia caregivers.
Collapse
Affiliation(s)
- Khai Pin Tan
- Department of Psychiatry and Mental Health, Hospital Tengku Ampuan Afzan, Kuantan 25100, Pahang, Malaysia
| | - Jin Kiat Ang
- Department of Psychiatry, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Eugene Boon Yau Koh
- Department of Psychiatry, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nicholas Tze Ping Pang
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Zanariah Mat Saher
- Department of Psychiatry and Mental Health, Kuala Lumpur General Hospital, Kuala Lumpur 50586, Federal Territory of Kuala Lumpur, Malaysia
| |
Collapse
|
134
|
Dabiri S, Ramírez Ruiz MI, Jean-Louis G, Ntekim OE, Obisesan TO, Campbell AL, Mwendwa DT. The Mediating Role of Inflammation in the Relationship Between α-Synuclein and Cognitive Functioning. J Gerontol A Biol Sci Med Sci 2023; 78:206-212. [PMID: 36269624 PMCID: PMC10215981 DOI: 10.1093/gerona/glac217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence suggests that α-synuclein plays a role in the pathophysiology of Alzheimer's disease (AD). This study examined whether α-synuclein level in cerebrospinal fluid (CSF) was associated with cognitive functioning among older adults. We also explored whether this relationship was mediated by proinflammatory cytokines TNF-α and IL-6, along with sIL-6R and vascular endothelial growth factor (VEGF). Using a cross-sectional Alzheimer's Disease Neuroimaging Initiative (ADNI; N = 148) sample, we examined the relationship between α-synuclein and participants' performance on Mini-Mental State Examination (MMSE) and Alzheimer's Disease Assessment Scale Cognitive Subscale (ADAS-Cog 13) at baseline. Mediation analyses were utilized, adjusting for age, education, APOEe4, and Geriatric Depression Scale scores. All biological markers were measured in CSF. Participants in the current sample were 58.3% males, 41.7% females, and Caucasian (95.5%); their average education and age were 15.5 (standard deviation [SD] = 2.97) and 74.4 (SD = 7.51) years, respectively. Higher accumulation of α-synuclein was associated with poorer MMSE scores (β = -0.41, standard error [SE] = 1.54, p < .001). This relationship appeared to be mediated by VEGF (β = 0.27, SE = 2.15, p = .025) and IL-6r (β = 0.22, SE = 1.66, p < .026). In addition, α-synuclein was associated with poorer performance on the ADAS-Cog 13 (β = 0.34, p = .005) and mediated by VEGF (β = -0.19, SE = 4.13, p = .025) after adjusting for age, education, APOEe4, and depressive symptoms. α-Synuclein may serve as an additional biomarker for determining poor cognitive functioning. VEGF and IL-6 soluble receptors were significant mediators of the relationship between α-synuclein and cognitive functioning. If confirmed in prospective analyses, these findings can further inform the pathologic cascade and early diagnosis of AD.
Collapse
Affiliation(s)
- Sanaz Dabiri
- Department of Psychology, Howard University, Washington, District of Columbia, Washington, DC, USA
| | - Mara I Ramírez Ruiz
- Department of Psychology, Howard University, Washington, District of Columbia, Washington, DC, USA
| | - Girardin Jean-Louis
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Oyonumo E Ntekim
- Department of Graduate Nutritional Sciences, Howard University, Washington, District of Columbia, Washington, DC, USA
| | - Thomas O Obisesan
- Division of Geriatrics, Department of Medicine, Howard University Hospital, Washington, District of Columbia, Washington, DC, USA
| | - Alfonso L Campbell
- Department of Psychology, Howard University, Washington, District of Columbia, Washington, DC, USA
| | - Denée T Mwendwa
- Department of Psychology, Howard University, Washington, District of Columbia, Washington, DC, USA
| | | |
Collapse
|
135
|
Khan A, Nayeem SM. Stability of the Aβ42 Peptide in Mixed Solutions of Denaturants and Proline. J Phys Chem B 2023; 127:1572-1585. [PMID: 36786778 DOI: 10.1021/acs.jpcb.2c08505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Amyloid β-peptide (Aβ) is responsible for the neuronal damage and death of a patient with Alzheimer's disease (AD). Aβ42 oligomeric forms are dominant neurotoxins and are related to neurodegeneration. Their different forms are related to various pathological conditions in the brain. We investigated Aβ42 peptides in different environments of proline, urea, and GdmCl solutions (in pure and mixed binary forms) through atomistic molecular dynamics simulations. Preferential exclusion from the protein surface and facile formation of a large number of weak molecular interactions are the driving forces for the osmolyte's action. We have focused on these interactions between peptide monomers and pure/mixed osmolytes and denaturants. Urea, as usual, denatures the peptide strongly compared to the GdmCl by accumulation around the peptide. GdmCl shows lesser build-up around protein in contrast to urea but is involved in destabilizing the salt bridge formation of Asp23 and Lys28. Proline as an osmolyte protects the peptide from aggregation when mixed with urea and GdmCl solutions. In mixed solutions of two denaturants and osmolyte plus denaturant, the peptide shows enhanced stability as compared to pure denaturant urea solution. The enhanced stability of peptides in proline may be attributed to its exclusion from the peptide surface and favoring salt bridge formation.
Collapse
Affiliation(s)
- Ashma Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Shahid M Nayeem
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, UP, India
| |
Collapse
|
136
|
Chakraborty R, Kobayashi LC, Jock J, Wing C, Chen X, Phillips M, Berkman L, Kahn K, Kabudula CW, Rosenberg M. Child Support Grant expansion and cognitive function among women in rural South Africa: findings from a natural experiment in HAALSI cohort. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.18.23286130. [PMID: 36824712 PMCID: PMC9949209 DOI: 10.1101/2023.02.18.23286130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Cash transfers are a promising but understudied intervention that may protect cognitive function in adults by promoting their cognitive reserve. South Africa has a rapidly ageing population, however, less is known about the nature of association between cash transfers and cognitive function in this setting. We leveraged natural experiments from Child Support Grant (CSG) age-eligibility expansions to investigate the association between duration of CSG eligibility and cognitive function among biological mothers of child beneficiaries in South Africa. We analysed 2014/2015 baseline data from 944 women, aged 40 - 59 years with at least one CSG-eligible child, enrolled in the HAALSI cohort in Agincourt, South Africa. Duration of CSG eligibility for each mother was calculated based on the birth dates of all their children and the CSG age eligibility expansion years. Cognitive function was measured using a cognitive battery administered to the mothers at baseline interview. Linear regression was used to estimate the association between duration of CSG eligibility, dichotomized as low (≤10 years) and high (>10 years) eligibility, and cognitive function z-scores of the mothers. Our study finds that high duration of CSG eligibility, compared to low, was associated with higher cognitive function z-scores in the full sample [β: 0.15 SD; 95% CI: 0.04, 0.26; p-value = 0.01]. In mothers with one to four lifetime children, but not five or more, high duration of CSG eligibility, compared to low, was associated with higher cognitive function z-scores [β: 0.19 SD; 95% CI: 0.05, 0.34, p-value = 0.02]. Government cash transfers given to support raising children may confer substantial protective effect on cognitive function of mothers in their mid-life. Further studies are needed to understand how parity may influence this relationship. Our findings bring evidence to policymakers for designing income supplementation programmes to promote healthy cognitive ageing in low-income settings.
Collapse
Affiliation(s)
- Rishika Chakraborty
- Department of Environmental and Occupational Health, Indiana University School of Public Health-Bloomington, Bloomington, Indiana, United States of America
| | - Lindsay C. Kobayashi
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America
| | - Janet Jock
- O’Neill School of Public and Environmental Affairs, Indiana University-Bloomington, Bloomington, Indiana, United States of America
| | - Coady Wing
- O’Neill School of Public and Environmental Affairs, Indiana University-Bloomington, Bloomington, Indiana, United States of America
| | - Xiwei Chen
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, Indiana, United States of America
| | - Meredith Phillips
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, Indiana, United States of America
| | - Lisa Berkman
- Harvard Center for Population and Development Studies, Cambridge, Massachusetts, United States of America
| | - Kathleen Kahn
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- INDEPTH Network, Accra, Ghana
| | - Chodziwadziwa Whiteson Kabudula
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Molly Rosenberg
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, Indiana, United States of America
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
137
|
Ruiz-Uribe NE, Bracko O, Swallow M, Omurzakov A, Dash S, Uchida H, Xiang D, Haft-Javaherian M, Falkenhain K, Lamont ME, Ali M, Njiru BN, Chang HY, Tan AY, Xiang JZ, Iadecola C, Park L, Sanchez T, Nishimura N, Schaffer CB. Vascular oxidative stress causes neutrophil arrest in brain capillaries, leading to decreased cerebral blood flow and contributing to memory impairment in a mouse model of Alzheimer’s disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528710. [PMID: 36824768 PMCID: PMC9949082 DOI: 10.1101/2023.02.15.528710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
INTRODUCTION In this study, we explore the role of oxidative stress produced by NOX2-containing NADPH oxidase as a molecular mechanism causing capillary stalling and cerebral blood flow deficits in the APP/PS1 mouse model of AD. METHODS We inhibited NOX2 in APP/PS1 mice by administering a 10 mg/kg dose of the peptide inhibitor gp91-ds-tat i.p., for two weeks. We used in vivo two-photon imaging to measure capillary stalling, penetrating arteriole flow, and vascular inflammation. We also characterized short-term memory function and gene expression changes in cerebral microvessels. RESULTS We found that after NOX2 inhibition capillary stalling, as well as parenchymal and vascular inflammation, were significantly reduced. In addition, we found a significant increase in penetrating arteriole flow, followed by an improvement in short-term memory, and downregulation of inflammatory gene expression pathways. DISCUSSION Oxidative stress is a major mechanism leading to microvascular dysfunction in AD, and represents an important therapeutic target.
Collapse
|
138
|
Wen Y, Zhang L, Li N, Tong A, Zhao C. Nutritional assessment models for Alzheimer's disease: Advances and perspectives. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Affiliation(s)
- Yuxi Wen
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry Faculty of Sciences Ourense Spain
| | - Lizhu Zhang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Na Li
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Aijun Tong
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Chao Zhao
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology Fujian Agriculture and Forestry University Fuzhou China
| |
Collapse
|
139
|
Zhao TT, Zhang Y, Zhang CQ, Chang YF, Cui MR, Sun Y, Hao WQ, Yan YM, Gu S, Xie Y, Wei BB. Combined with UPLC-Triple-TOF/MS-based plasma lipidomics and molecular pharmacology reveals the mechanisms of schisandrin against Alzheimer's disease. Chin Med 2023; 18:11. [PMID: 36747236 PMCID: PMC9903588 DOI: 10.1186/s13020-023-00714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD), a type of neurodegeneration disease, is characterized by Aβ deposition and tangles of nerve fibers. Schisandrin is one of the main components of Fructus Schisandrae Chinensis. Researches showed that schisandrin can improve the cognitive impairment and memory of AD mice, but the specific mechanism has not been fully elucidated. PURPOSE The purpose of this study is to investigate the possible mechanism of schisandrin in improving AD pathology. METHODS The Morris water maze test was executed to detect spatial learning and memory. Ultra performance liquid chromatography-Triple time of flight mass spectrometry (UPLC-Triple-TOF/MS)-based plasma lipidomics was used to study the changes of plasma lipids. Moreover, we measured the levels of protein and mRNA expression of APOE and ABCA1 in the rat brains and in BV2 microglia. RESULTS Our study found that schisandrin could improve learning and memory, and reduce Aβ deposition in AD rats. Furthermore, we found that schisandrin can improve plasma lipid metabolism disorders. Therefore, we hypothesized schisandrin might act via LXR and the docking results showed that schisandrin interacts with LXRβ. Further, we found schisandrin increased the protein and mRNA expression of LXR target genes APOE and ABCA1 in the brain of AD rats and in BV2 microglia. CONCLUSION Our study reveals the neuroprotective effect and mechanism of schisandrin improves AD pathology by activating LXR to produce APOE and ABCA1.
Collapse
Affiliation(s)
- Tian-tian Zhao
- grid.412449.e0000 0000 9678 1884Central Laboratory, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122 People’s Republic of China
| | - Ying Zhang
- grid.412449.e0000 0000 9678 1884Central Laboratory, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122 People’s Republic of China
| | - Cheng-qin Zhang
- grid.412449.e0000 0000 9678 1884Central Laboratory, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122 People’s Republic of China
| | - Ya-fei Chang
- grid.412449.e0000 0000 9678 1884Central Laboratory, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122 People’s Republic of China
| | - Mei-rong Cui
- grid.412449.e0000 0000 9678 1884Central Laboratory, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122 People’s Republic of China
| | - Yue Sun
- grid.412449.e0000 0000 9678 1884Central Laboratory, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122 People’s Republic of China
| | - Wen-qian Hao
- grid.412449.e0000 0000 9678 1884Central Laboratory, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122 People’s Republic of China
| | - Yu-meng Yan
- grid.412449.e0000 0000 9678 1884Central Laboratory, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122 People’s Republic of China
| | - Shuo Gu
- grid.412449.e0000 0000 9678 1884Central Laboratory, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122 People’s Republic of China
| | - Yao Xie
- Hubei Three Gorges Polytechnic, No.31 Stadium Road, Yichang, 443000, People's Republic of China.
| | - Bin-bin Wei
- grid.412449.e0000 0000 9678 1884Central Laboratory, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122 People’s Republic of China
| |
Collapse
|
140
|
Chatterjee S, Deshpande AA, Shen H. Recent advances in the in vitro and in vivo methods to assess impact of P-glycoprotein and breast cancer resistance protein transporters in central nervous system drug disposition. Biopharm Drug Dispos 2023; 44:7-25. [PMID: 36692150 DOI: 10.1002/bdd.2345] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 01/25/2023]
Abstract
One challenge in central nervous system (CNS) drug discovery has been ensuring the blood-brain barrier (BBB) penetration of compounds at an efficacious concentration that provides suitable safety margins for clinical investigation. Research providing for the accurate prediction of brain penetration of compounds during preclinical discovery is important to a CNS program. In the BBB, P-glycoprotein (P-gp) (ABCB1) and breast cancer resistance protein (BCRP) (ABCG2) transporters have been demonstrated to play a major role in the active efflux of endogenous compounds and xenobiotics out of the brain microvessel cells and back to the systemic circulation. In the past 10 years, there has been significant technological improvement in the sensitivity of quantitative proteomics methods, in vivo imaging, in vitro methods of organoid and microphysiological systems, as well as in silico quantitative physiological based pharmacokinetic and systems pharmacology models. Scientists continually leverage these advancements to interrogate the distribution of compounds in the CNS which may also show signals of substrate specificity of P-gp and/or BCRP. These methods have shown promise toward predicting and quantifying the unbound concentration(s) within the brain relevant for efficacy or safety. In this review, the authors have summarized the in vivo, in vitro, and proteomics advancements toward understanding the contribution of P-gp and/or BCRP in restricting the entry of compounds to the CNS of either healthy or special populations. Special emphasis has been provided on recent investigations on the application of a proteomics-informed approach to predict steady-state drug concentrations in the brain. Moreover, future perspectives regarding the role of these transporters in newer modalities are discussed.
Collapse
Affiliation(s)
- Sagnik Chatterjee
- Drug Metabolism and Pharmacokinetics, Ferring Pharmaceuticals A/S, Kastrup, Denmark
| | - Anup Arunrao Deshpande
- Drug Metabolism and Pharmacokinetics, Biocon Bristol Myers Squibb R&D Centre (BBRC), Syngene International Ltd, Bangalore, India
| | - Hong Shen
- Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Company, Princeton, New Jersey, USA
| |
Collapse
|
141
|
Yang Y, Xiao M, Leng L, Jiang S, Feng L, Pan G, Li Z, Wang Y, Wang J, Wen Y, Wu D, Yang Y, Huang P. A systematic review and meta-analysis of the prevalence and correlation of mild cognitive impairment in sarcopenia. J Cachexia Sarcopenia Muscle 2023; 14:45-56. [PMID: 36529141 PMCID: PMC9891948 DOI: 10.1002/jcsm.13143] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/19/2022] [Accepted: 11/04/2022] [Indexed: 12/23/2022] Open
Abstract
Sarcopenia is a progressive skeletal muscle disorder involving the loss of muscle mass and function, associated with an increased risk of disability and frailty. Though its prevalence in dementia has been studied, its occurrence in mild cognitive impairment (MCI) has not been well established. As MCI is often a prelude to dementia, our study aims to investigate the prevalence of MCI among individuals with sarcopenia and to also ascertain whether sarcopenia is independently associated with MCI. The Cochrane Library, PubMed, Ovid, Embase and Web of Science were systematically searched for articles on MCI and/or sarcopenia published from inception to 1 February 2022. We reviewed the available literature on the number of individuals with MCI and/or sarcopenia and calculated odds ratios (ORs) of sarcopenia in MCI and MCI in sarcopenia, respectively. Statistical analyses were performed using the meta package in Stata, Version 12.0. A total of 13 studies and 27 428 patients were included in our analysis. The pooled prevalence of MCI in participants with sarcopenia was 20.5% (95% confidence interval [CI]: 0.140-0.269) in a total sample of 2923 cases with a high level of heterogeneity (P < 0.001; I2 = 95.4%). The overall prevalence of sarcopenia with MCI was 9.1% (95% CI: 0.047-0.134, P < 0.001; I2 = 93.0%). For overall ORs, there were 23 364 subjects with a mean age of 73 years; the overall adjusted OR between MCI and sarcopenia was 1.46 (95% CI: 1.31-1.62). Slight heterogeneity in both adjusted ORs (P = 0.46; I2 = 0%) was noted across the studies. The prevalence of MCI is relatively high in patients with sarcopenia, and sarcopenia may be a risk factor for MCI.
Collapse
Affiliation(s)
- Ying Yang
- Department of Neurology, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China.,Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Mengmeng Xiao
- College of Nursing, Wenzhou Medical University, Wenzhou, China.,Department of Medicine, Jinggangshan University, Ji'an, China
| | - Lin Leng
- Department of Nephrology, Chengdu Fifth People's Hospital, Chengdu, China
| | - Shixie Jiang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Lei Feng
- Department of Neurology, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Gaofeng Pan
- Department of Neurology, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Zheng Li
- Department of Neurology, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Yan Wang
- Department of Neurology, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Jiang Wang
- Department of Medicine, Jinggangshan University, Ji'an, China
| | - Yanting Wen
- Chongqing University of Posts and Telecommunications, Chongqing, China.,Department of Ultrasound Medicine, Chengdu Fifth People's Hospital, Chengdu, China
| | - Dan Wu
- Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yongxue Yang
- Department of Neurology, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Pan Huang
- College of Nursing, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
142
|
Mehta RI, Mehta RI. The Vascular-Immune Hypothesis of Alzheimer's Disease. Biomedicines 2023; 11:408. [PMID: 36830944 PMCID: PMC9953491 DOI: 10.3390/biomedicines11020408] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating and irreversible neurodegenerative disorder with unknown etiology. While its cause is unclear, a number of theories have been proposed to explain the pathogenesis of AD. In large part, these have centered around potential causes for intracerebral accumulation of beta-amyloid (βA) and tau aggregates. Yet, persons with AD dementia often exhibit autopsy evidence of mixed brain pathologies including a myriad of vascular changes, vascular brain injuries, complex brain inflammation, and mixed protein inclusions in addition to hallmark neuropathologic lesions of AD, namely insoluble βA plaques and neurofibrillary tangles (NFTs). Epidemiological data demonstrate that overlapping lesions diminish the βA plaque and NFT threshold necessary to precipitate clinical dementia. Moreover, a subset of persons who exhibit AD pathology remain resilient to disease while other persons with clinically-defined AD dementia do not exhibit AD-defining neuropathologic lesions. It is increasingly recognized that AD is a pathologically heterogeneous and biologically multifactorial disease with uncharacterized biologic phenomena involved in its genesis and progression. Here, we review the literature with regard to neuropathologic criteria and incipient AD changes, and discuss converging concepts regarding vascular and immune factors in AD.
Collapse
Affiliation(s)
- Rashi I. Mehta
- Department of Neuroradiology, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Rupal I. Mehta
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
143
|
Sadegh-Zadeh SA, Fakhri E, Bahrami M, Bagheri E, Khamsehashari R, Noroozian M, Hajiyavand AM. An Approach toward Artificial Intelligence Alzheimer's Disease Diagnosis Using Brain Signals. Diagnostics (Basel) 2023; 13:diagnostics13030477. [PMID: 36766582 PMCID: PMC9913919 DOI: 10.3390/diagnostics13030477] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Electroencephalography (EEG) signal analysis is a rapid, low-cost, and practical method for diagnosing the early stages of dementia, including mild cognitive impairment (MCI) and Alzheimer's disease (AD). The extraction of appropriate biomarkers to assess a subject's cognitive impairment has attracted a lot of attention in recent years. The aberrant progression of AD leads to cortical detachment. Due to the interaction of several brain areas, these disconnections may show up as abnormalities in functional connectivity and complicated behaviors. METHODS This work suggests a novel method for differentiating between AD, MCI, and HC in two-class and three-class classifications based on EEG signals. To solve the class imbalance, we employ EEG data augmentation techniques, such as repeating minority classes using variational autoencoders (VAEs), as well as traditional noise-addition methods and hybrid approaches. The power spectrum density (PSD) and temporal data employed in this study's feature extraction from EEG signals were combined, and a support vector machine (SVM) classifier was used to distinguish between three categories of problems. RESULTS Insufficient data and unbalanced datasets are two common problems in AD datasets. This study has shown that it is possible to generate comparable data using noise addition and VAE, train the model using these data, and, to some extent, overcome the aforementioned issues with an increase in classification accuracy of 2 to 7%. CONCLUSION In this work, using EEG data, we were able to successfully detect three classes: AD, MCI, and HC. In comparison to the pre-augmentation stage, the accuracy gained in the classification of the three classes increased by 3% when the VAE model added additional data. As a result, it is clear how useful EEG data augmentation methods are for classes with smaller sample numbers.
Collapse
Affiliation(s)
- Seyed-Ali Sadegh-Zadeh
- Department of Computing, School of Digital, Technologies and Arts, Staffordshire University, Stoke-on-Trent ST4 2DE, UK
- Correspondence: (S.-A.S.-Z.); (A.M.H.)
| | - Elham Fakhri
- Department of Computing, School of Digital, Technologies and Arts, Staffordshire University, Stoke-on-Trent ST4 2DE, UK
| | - Mahboobe Bahrami
- Behavioral Sciences Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174533871, Iran
| | - Elnaz Bagheri
- Department of Computing, School of Digital, Technologies and Arts, Staffordshire University, Stoke-on-Trent ST4 2DE, UK
| | | | - Maryam Noroozian
- Cognitive Neurology and Neuropsychiatry Division, Department of Psychiatry, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Amir M. Hajiyavand
- Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham B15 2SQ, UK
- Correspondence: (S.-A.S.-Z.); (A.M.H.)
| |
Collapse
|
144
|
Abstract
BackgroundWomen in many cohorts have a higher risk for Alzheimer's disease (AD), the most common form of dementia. Sex is a biological construct whereby differences in disease manifestation and prevalence are rooted in genetic differences between XX and XY combinations of chromosomes. This chapter focuses specifically on sex-driven differences in dementia, as opposed to differences driven by gender - a social construct referring to the societal norms that influence people's roles, relationships, and positional power throughout their lifetime.MethodsUsing a narrative review, this chapter explored the characteristics and risk factors for the dementias, alongside a discussion of sex differences including loss of sex steroid hormones in middle-aged women, differences in the prevalence of cardiovascular diseases and engagement in lifestyle protective factors for dementia.ResultsThe sex difference in AD prevalence may exist because of systematic and historic differences in risk and protective factors for dementia, including level of education obtained and socioeconomic status differences, which can impact on health and dementia risk.Levels of sex steroids decline significantly after menopause in women, whereas this is more gradual in men with age. Animal and cell culture studies show strong biological plausibility for sex steroids to protect the ageing brain against dementia. Sex steroid hormone replacement therapy has in some observational studies shown to protect against AD, but treatment studies in humans have mainly shown disappointing results. Cardiovascular disease (CVD) shares midlife medical risk (e.g. hypertension, hyperlipidaemia, obesity etc.) factors with AD and other forms of dementia, but also with related lifestyle risk - and protective factors (e.g. exercise, not smoking etc.). Men tend to die earlier of CVD, so fewer survive to develop AD at an older age. Those who do survive may have healthier lifestyles and fewer risk factors for both CVD and AD. An earlier age at menopause also confers great risk for both without hormone treatment.DiscussionIt could be the case that the decline in sex steroids around the menopause make women more susceptible to lifestyle-related risk factors associated with dementia and CVD, but this remains to be further investigated. Combining hormone treatment with lifestyle changes in midlife (e.g. exercise) could be an important preventative treatment for dementia and CVD in later life, but this also requires further research.
Collapse
|
145
|
Tseng PT, Chen YW, Zeng BY, Zeng BS, Hung CM, Sun CK, Cheng YS, Stubbs B, Carvalho AF, Brunoni AR, Su KP, Tu YK, Wu YC, Chen TY, Lin PY, Liang CS, Hsu CW, Chu CS, Suen MW, Li CT. The beneficial effect on cognition of noninvasive brain stimulation intervention in patients with dementia: a network meta-analysis of randomized controlled trials. Alzheimers Res Ther 2023; 15:20. [PMID: 36698219 PMCID: PMC9875424 DOI: 10.1186/s13195-023-01164-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 08/29/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Dementia [i.e., Alzheimer disease (AD)], the most common neurodegenerative disease, causes profound negative impacts on executive function and quality of life. Available pharmacological treatments often fail to achieve satisfactory outcomes. Noninvasive brain stimulation (NIBS) techniques, which focally modify cortical function and enhance synaptic long-term potentiation, are potentially beneficial for the cognition in patients with AD. The aim of the current network meta-analysis (NMA) was to evaluate the efficacy and safety of different NIBS interventions in patients with AD through NMA. METHODS Only randomized controlled trials (RCTs) examining NIBS interventions in patients with AD had been included. All NMA procedures were performed under the frequentist model. The primary and secondary outcomes were changes in cognitive function and quality of life, respectively. RESULTS Nineteen RCTs (639 participants) were included. The mean treatment and follow-up durations were 5.7 and 10.5 weeks, respectively. The combination of cathodal tDCS of the left dorsolateral prefrontal cortex and anodal tDCS over the right supraorbital region (c-tDCS-F3 + a-tDCS-Fp2) was associated with a significant beneficial effect on cognition compared with sham controls (standardized mean difference=2.43, 95% confidence interval=0.61-4.26, n=12 and 11). It was also associated with the greatest beneficial effect on cognition among all the investigated NIBS approaches. All the methods were well tolerated with regard to the safety profile, as reflected in the rates of adverse events or local discomfort, as well as acceptability, as indicated by dropout rate. CONCLUSIONS The present findings provide evidence of the benefits of NIBS, especially tDCS, for beneficial effect on cognition in patients with AD. However, because of few studies included, this effect was not replicated yet in the other studies. Therefore, future larger-scale and longer follow-up duration RCTs should be warranted. TRIAL REGISTRATION PROSPERO CRD42020209516. The current study had been approved by the Institutional Review Board of the Tri-Service General Hospital, National Defense Medical Center (TSGHIRB No. B-109-29).
Collapse
Affiliation(s)
- Ping-Tao Tseng
- Prospect Clinic for Otorhinolaryngology & Neurology, Kaohsiung City, Taiwan ,grid.412036.20000 0004 0531 9758Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan ,grid.252470.60000 0000 9263 9645Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan ,grid.278247.c0000 0004 0604 5314Division of Community & Rehabilitation Psychiatry, Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei City, 11267 Taiwan ,grid.412036.20000 0004 0531 9758Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Yen-Wen Chen
- Prospect Clinic for Otorhinolaryngology & Neurology, Kaohsiung City, Taiwan
| | - Bing-Yan Zeng
- grid.411447.30000 0004 0637 1806Department of Internal Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Bing-Syuan Zeng
- grid.411447.30000 0004 0637 1806Department of Internal Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chao-Ming Hung
- grid.411447.30000 0004 0637 1806Division of General Surgery, Department of Surgery, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan ,grid.411447.30000 0004 0637 1806School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Cheuk-Kwan Sun
- grid.411447.30000 0004 0637 1806Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan ,grid.411447.30000 0004 0637 1806I-Shou University School of Medicine for International Students, Kaohsiung, Taiwan
| | - Yu-Shian Cheng
- Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung Jen-Ai’s Home, Kaohsiung, Taiwan
| | - Brendon Stubbs
- grid.13097.3c0000 0001 2322 6764Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK ,grid.37640.360000 0000 9439 0839Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, UK ,grid.5115.00000 0001 2299 5510Faculty of Health, Social Care Medicine and Education, Anglia Ruskin University, Chelmsford, UK
| | - Andre F. Carvalho
- grid.414257.10000 0004 0540 0062Innovation in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC Australia
| | - Andre R. Brunoni
- grid.11899.380000 0004 1937 0722Service of Interdisciplinary Neuromodulation, National Institute of Biomarkers in Psychiatry, Laboratory of Neurosciences (LIM-27), Departamento e Instituto de Psiquiatria, Faculdade de Medicina da USP, São Paulo, Brazil ,grid.11899.380000 0004 1937 0722Departamento de Ciências Médicas, Faculdade de Medicina da USP, São Paulo, Brazil
| | - Kuan-Pin Su
- Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung Jen-Ai’s Home, Kaohsiung, Taiwan ,grid.411508.90000 0004 0572 9415Mind-Body Interface Laboratory (MBI-Lab), China Medical University and Hospital, Taichung, Taiwan ,grid.254145.30000 0001 0083 6092An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Yu-Kang Tu
- grid.19188.390000 0004 0546 0241Institute of Epidemiology & Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan ,grid.412094.a0000 0004 0572 7815Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Cheng Wu
- grid.452620.7Department of Sports Medicine, Landseed International Hospital, Taoyuan, Taiwan
| | - Tien-Yu Chen
- grid.260565.20000 0004 0634 0356Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan ,grid.260539.b0000 0001 2059 7017Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan
| | - Pao-Yen Lin
- grid.145695.a0000 0004 1798 0922Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan ,grid.145695.a0000 0004 1798 0922Institute for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Sung Liang
- grid.260565.20000 0004 0634 0356Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan ,grid.260565.20000 0004 0634 0356Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Wei Hsu
- grid.145695.a0000 0004 1798 0922Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Che-Sheng Chu
- grid.415011.00000 0004 0572 9992Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan ,grid.415011.00000 0004 0572 9992Center for Geriatric and Gerontology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Mein-Woei Suen
- grid.252470.60000 0000 9263 9645Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan ,grid.252470.60000 0000 9263 9645Gender Equality Education and Research Center, Asia University, Taichung, Taiwan ,grid.252470.60000 0000 9263 9645Department of Medical Research, Asia University Hospital, Asia University, Taichung, Taiwan ,grid.254145.30000 0001 0083 6092Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Cheng-Ta Li
- grid.278247.c0000 0004 0604 5314Division of Community & Rehabilitation Psychiatry, Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei City, 11267 Taiwan ,grid.260539.b0000 0001 2059 7017Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.260539.b0000 0001 2059 7017Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan ,grid.260539.b0000 0001 2059 7017Institute of Brain Science and Brain Research Center, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan ,grid.278247.c0000 0004 0604 5314Functional Neuroimaging and Brain Stimulation Lab, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei City, 11267 Taiwan
| |
Collapse
|
146
|
Arjunan A, Sah DK, Woo M, Song J. Identification of the molecular mechanism of insulin-like growth factor-1 (IGF-1): a promising therapeutic target for neurodegenerative diseases associated with metabolic syndrome. Cell Biosci 2023; 13:16. [PMID: 36691085 PMCID: PMC9872444 DOI: 10.1186/s13578-023-00966-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Neurodegenerative disorders are accompanied by neuronal degeneration and glial dysfunction, resulting in cognitive, psychomotor, and behavioral impairment. Multiple factors including genetic, environmental, metabolic, and oxidant overload contribute to disease progression. Recent evidences suggest that metabolic syndrome is linked to various neurodegenerative diseases. Metabolic syndrome (MetS) is known to be accompanied by symptoms such as hyperglycemia, abdominal obesity, hypertriglyceridemia, and hypertension. Despite advances in knowledge about the pathogenesis of neurodegenerative disorders, effective treatments to combat neurodegenerative disorders caused by MetS have not been developed to date. Insulin growth factor-1 (IGF-1) deficiency has been associated with MetS-related pathologies both in-vivo and in-vitro. IGF-1 is essential for embryonic and adult neurogenesis, neuronal plasticity, neurotropism, angiogenesis, metabolic function, and protein clearance in the brain. Here, we review the evidence for the potential therapeutic effects of IGF-1 in the neurodegeneration related to metabolic syndrome. We elucidate how IGF-1 may be involved in molecular signaling defects that occurs in MetS-related neurodegenerative disorders and highlight the importance of IGF-1 as a potential therapeutic target in MetS-related neurological diseases.
Collapse
Affiliation(s)
- Archana Arjunan
- grid.14005.300000 0001 0356 9399Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-Do 58128 Republic of Korea
| | - Dhiraj Kumar Sah
- grid.14005.300000 0001 0356 9399Department of Biochemistry, Chonnam National University Medical School, Hwasun, 58128 Republic of Korea ,grid.14005.300000 0001 0356 9399BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 Seoyangro, Hwasun, 58128 Republic of Korea
| | - Minna Woo
- grid.17063.330000 0001 2157 2938Division of Endocrinology and Metabolism, University Health Network and and Banting and Best Diabetes Centre, University of Toronto, Toronto, ON Canada
| | - Juhyun Song
- grid.14005.300000 0001 0356 9399Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-Do 58128 Republic of Korea ,grid.14005.300000 0001 0356 9399BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 Seoyangro, Hwasun, 58128 Republic of Korea
| |
Collapse
|
147
|
Zagórska A, Czopek A, Fryc M, Jaromin A, Boyd BJ. Drug Discovery and Development Targeting Dementia. Pharmaceuticals (Basel) 2023; 16:151. [PMID: 37259302 PMCID: PMC9965722 DOI: 10.3390/ph16020151] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 08/04/2023] Open
Abstract
Dementia, most often associated with neurodegenerative diseases, affects millions of people worldwide, predominantly the elderly. Unfortunately, no treatment is still available. Therefore, there is an urgent need to address this situation. This review presents the state of the art of drug discovery and developments in targeting dementia. Several approaches are discussed, such as drug repurposing, the use of small molecules, and phosphodiesterase inhibitors. Furthermore, the review also provides insights into clinical trials of these molecules. Emphasis has been placed on small molecules and multi-target-directed ligands, as well as disease-modifying therapies. Finally, attention is drawn to the possibilities of applications of nanotechnology in managing dementia.
Collapse
Affiliation(s)
- Agnieszka Zagórska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Czopek
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Monika Fryc
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Ben J. Boyd
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
148
|
Kouter K, Nikolac Perkovic M, Nedic Erjavec G, Milos T, Tudor L, Uzun S, Mimica N, Pivac N, Videtic Paska A. Difference in Methylation and Expression of Brain-Derived Neurotrophic Factor in Alzheimer's Disease and Mild Cognitive Impairment. Biomedicines 2023; 11:235. [PMID: 36830773 PMCID: PMC9953261 DOI: 10.3390/biomedicines11020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Due to the increasing number of progressive dementias in the population, numerous studies are being conducted that seek to determine risk factors, biomarkers and pathological mechanisms that could help to differentiate between normal symptoms of aging, mild cognitive impairment (MCI) and dementia. The aim of this study was to investigate the possible association of levels of BDNF and COMT gene expression and methylation in peripheral blood cells with the development of Alzheimer's disease (AD). Our results revealed higher expression levels of BDNF (p < 0.001) in MCI subjects compared to individuals diagnosed with AD. However, no difference in COMT gene expression (p = 0.366) was detected. DNA methylation of the CpG islands and other sequences with potential effects on gene expression regulation revealed just one region (BDNF_9) in the BDNF gene (p = 0.078) with marginally lower levels of methylation in the AD compared to MCI subjects. Here, we show that the level of BDNF expression in the periphery is decreased in subjects with AD compared to individuals with MCI. The combined results from the gene expression analysis and DNA methylation analysis point to the potential of BDNF as a marker that could help distinguish between MCI and AD patients.
Collapse
Affiliation(s)
- Katarina Kouter
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Tina Milos
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Suzana Uzun
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapce, 10090 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ninoslav Mimica
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapce, 10090 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Alja Videtic Paska
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
149
|
Xiao QY, Ye TY, Wang XL, Qi DM, Cheng XR. Effects of Qi-Fu-Yin on aging of APP/PS1 transgenic mice by regulating the intestinal microbiome. Front Cell Infect Microbiol 2023; 12:1048513. [PMID: 36710967 PMCID: PMC9880330 DOI: 10.3389/fcimb.2022.1048513] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction Alzheimer's disease is the most common form of dementia and closely related to aging. Qi-Fu-Yin is widely used to treat dementia, but its anti-aging effects is unknown. Methods We used 11-month-old APP/PS1 transgenic mice for behavioral tests to observe the changes in cognitive function and age-related symptoms after Qi-Fu-Yin treatment. Fecal samples were collected for 16sRNA sequencing and metagenomic sequencing. Differences among the groups of intestinal microbiota and the associations with aging and intestinal microbiota were analyzed based on the results. Results Here we found that Qi-Fu-Yin improved the ability of motor coordination, raised survival rate and prolonged the survival days under cold stress stimulation in aged APP/ PS1 transgenic mice. Our data from 16sRNA and metagenomic sequencing showed that at the Family level, the intestinal microbiota was significantly different among wild-type mice, APP/PS1 transgenic mice and the Qi-Fu-Yin group by PCA analysis. Importantly, Qi-Fu-Yin improved the functional diversity of the major KEGG pathways, carbohydrate-active enzymes, and major virulence factors in the intestinal flora of APP/PS1 transgenic mice. Among them, the functions of eight carbohydrate-active enzymes (GT2_Glycos_transf_2, GT4, GT41, GH2, CE1, CE10, CE3, and GH24) and the functions of top three virulence factors (defensive virulence factors, offensive virulence factors and nonspecific virulence factors) were significantly and positively correlated with the level of grasping ability. We further indicated that the Qi-Fu-Yin significantly reduced the plasma levels of IL-6. Conclusion Our results indicated that the effects of Qi-Fu-Yin anti-aging of APP/PS1 transgenic mice might be through the regulation of intestinal flora diversity, species richness and the function of major active enzymes.
Collapse
Affiliation(s)
- Qiu-yue Xiao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tian-yuan Ye
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-long Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dong-mei Qi
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-rui Cheng
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
150
|
Sáiz-Vazquez O, Puente-Martínez A, Pacheco-Bonrostro J, Ubillos-Landa S. Blood pressure and Alzheimer's disease: A review of meta-analysis. Front Neurol 2023; 13:1065335. [PMID: 36712428 PMCID: PMC9874700 DOI: 10.3389/fneur.2022.1065335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Background Alzheimer's disease (AD) is a neurological disorder of unknown cause, resulting in the death of brain cells. Identifying some of the modifiable risk factors for AD could be crucial for primary prevention and could lead to a reduction in the incidence of AD. Objective This study aimed to perform a meta-meta-analysis of studies in order to assess the effect of blood pressure (BP) on the diagnosis of AD. Method The search was restricted to meta-analyses assessing high systolic BP (SBP) and diastolic BP (DBP) and AD. We applied the PRISMA guidelines. Results A total of 214 studies were identified from major databases. Finally, five meta-analyses (52 studies) were analyzed in this review. Results confirm that high SBP is associated with AD. The exploration of parameters (sex, age, study design, region, and BP measurements) shows that only region significantly moderates the relationship between BP and AD. Asian people are those whose SBP levels >140 mmHg are associated with AD. BP is associated with AD in both people aged ≤65 years and those aged ≥65 years and in cross-sectional and longitudinal studies. In the case of DBP, only women are at a higher risk of AD, particularly when its levels are >90. Conclusion SBP is associated with both cerebrovascular disease and AD. Therefore, future studies should use other uncontrolled factors, such as cardiovascular diseases, diabetes, and stroke, to explain the relationship between SBP and AD.
Collapse
Affiliation(s)
- Olalla Sáiz-Vazquez
- Department of Occupational Therapy, Faculty of Health Science, University of Burgos, Burgos, Spain
| | - Alicia Puente-Martínez
- Department of Social Psychology and Anthropology, Faculty of Social Sciences, University of Salamanca (USAL), Salamanca, Spain
| | - Joaquín Pacheco-Bonrostro
- Department of Applied Economy, Faculty of Economics and Business Sciences, University of Burgos, Burgos, Spain
| | - Silvia Ubillos-Landa
- Department of Social Psychology, Faculty of Health Science, University of Burgos, Burgos, Spain,*Correspondence: Silvia Ubillos-Landa ✉
| |
Collapse
|