101
|
Popescu-Pelin G, Ristoscu C, Duta L, Pasuk I, Stan GE, Stan MS, Popa M, Chifiriuc MC, Hapenciuc C, Oktar FN, Nicarel A, Mihailescu IN. Fish Bone Derived Bi-Phasic Calcium Phosphate Coatings Fabricated by Pulsed Laser Deposition for Biomedical Applications. Mar Drugs 2020; 18:md18120623. [PMID: 33297346 PMCID: PMC7762251 DOI: 10.3390/md18120623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
We report on new biomaterials with promising bone and cartilage regeneration potential, from sustainable, cheap resources of fish origin. Thin films were fabricated from fish bone-derived bi-phasic calcium phosphate targets via pulsed laser deposition with a KrF * excimer laser source (λ = 248 nm, τFWHM ≤ 25 ns). Targets and deposited nanostructures were characterized by SEM and XRD, as well as by Energy Dispersive X-ray (EDX) and FTIR spectroscopy. Films were next assessed in vitro by dedicated cytocompatibility and antimicrobial assays. Films were Ca-deficient and contained a significant fraction of β-tricalcium phosphate apart from hydroxyapatite, which could contribute to an increased solubility and an improved biocompatibility for bone regeneration applications. The deposited structures were biocompatible as confirmed by the lack of cytotoxicity on human gingival fibroblast cells, making them promising for fast osseointegration implants. Pulsed laser deposition (PLD) coatings inhibited the microbial adhesion and/or the subsequent biofilm development. A persistent protection against bacterial colonization (Escherichia coli) was demonstrated for at least 72 h, probably due to the release of the native trace elements (i.e., Na, Mg, Si, and/or S) from fish bones. Progress is therefore expected in the realm of multifunctional thin film biomaterials, combining antimicrobial, anti-inflammatory, and regenerative properties for advanced implant coatings and nosocomial infections prevention applications.
Collapse
Affiliation(s)
- Gianina Popescu-Pelin
- National Institute for Lasers, Plasma and Radiation Physics, RO-077125 Magurele, Romania; (G.P.-P.); (C.R.); (L.D.); (C.H.)
| | - Carmen Ristoscu
- National Institute for Lasers, Plasma and Radiation Physics, RO-077125 Magurele, Romania; (G.P.-P.); (C.R.); (L.D.); (C.H.)
| | - Liviu Duta
- National Institute for Lasers, Plasma and Radiation Physics, RO-077125 Magurele, Romania; (G.P.-P.); (C.R.); (L.D.); (C.H.)
| | - Iuliana Pasuk
- National Institute of Materials Physics, RO-077125 Magurele, Romania; (I.P.); (G.E.S.)
| | - George E. Stan
- National Institute of Materials Physics, RO-077125 Magurele, Romania; (I.P.); (G.E.S.)
| | - Miruna Silvia Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, RO-050095 Bucharest, Romania;
| | - Marcela Popa
- Microbiology Department, Faculty of Biology, University of Bucharest, RO-060101 Bucharest, Romania; (M.P.); (M.C.C.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, RO-050095 Bucharest, Romania
| | - Mariana C. Chifiriuc
- Microbiology Department, Faculty of Biology, University of Bucharest, RO-060101 Bucharest, Romania; (M.P.); (M.C.C.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, RO-050095 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street no. 3, RO-050711 Bucharest, Romania
| | - Claudiu Hapenciuc
- National Institute for Lasers, Plasma and Radiation Physics, RO-077125 Magurele, Romania; (G.P.-P.); (C.R.); (L.D.); (C.H.)
| | - Faik N. Oktar
- Department of Bioengineering, Faculty of Engineering, Goztepe Campus, University of Marmara, Kadikoy, 34722 Istanbul, Turkey;
- Center for Nanotechnology & Biomaterials Research, Goztepe Campus, University of Marmara, Kadikoy, 34722 Istanbul, Turkey
| | - Anca Nicarel
- Physics Department, University of Bucharest, RO-077125 Magurele, Romania;
| | - Ion N. Mihailescu
- National Institute for Lasers, Plasma and Radiation Physics, RO-077125 Magurele, Romania; (G.P.-P.); (C.R.); (L.D.); (C.H.)
- Correspondence: ; Tel.: +40-214-574-491
| |
Collapse
|
102
|
Wang K, Albert K, Mosser G, Haye B, Percot A, Paris C, Peccate C, Trichet L, Coradin T. Self-assembly/condensation interplay in nano-to-microfibrillar silicified fibrin hydrogels. Int J Biol Macromol 2020; 164:1422-1431. [DOI: 10.1016/j.ijbiomac.2020.07.220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/10/2020] [Accepted: 07/25/2020] [Indexed: 12/15/2022]
|
103
|
Wang X, Xue J, Ma B, Wu J, Chang J, Gelinsky M, Wu C. Black Bioceramics: Combining Regeneration with Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2005140. [PMID: 33094493 DOI: 10.1002/adma.202005140] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/21/2020] [Indexed: 05/23/2023]
Abstract
Bioceramics have been developed from bioinert to bioactive or biodegradable materials in the past few decades. However, at present, traditional bioceramics are still mainly used in bone tissue regeneration and dental restoration. In this work, a new generation of "black bioceramics," extending the applications from tissue regeneration to disease therapy, is presented. Black bioceramics, through magnesium thermal reduction of traditional white ceramics, including silicate-based (e.g., CaSiO3 , MgSiO3 ) and phosphate-based (e.g., Ca3 (PO4 )2 , Ca5 (PO4 )3 (OH)), are successfully synthesized. Due to the presence of oxygen vacancies and structural defects, the black bioceramics possess photothermal functionality while maintaining their initial high bioactivity and regenerative capacity. These black bioceramics show excellent photothermal antitumor effects for both skin and bone tumors. At the same time, they have significantly improved bioactivity for skin/bone tissue repair in vitro and in vivo. These fascinating properties award the black bioceramics with profound applications in both tumor therapy and tissue regeneration, which should greatly promote the scientific relevance and clinical application of bioceramics, representing a promising new direction of cell-instructive biomaterials.
Collapse
Affiliation(s)
- Xiaocheng Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Jianmin Xue
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Bing Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - JinFu Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, Dresden, 01307, Germany
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
104
|
Huang X, Xie J, Lan Y, Sun Z, Zhang M, Guo L. The effects of 45S5 bioactive glass and Er:YAG Laser on the microtensile bond strength of fluorosed teeth. Microsc Res Tech 2020; 83:1558-1565. [PMID: 33220004 DOI: 10.1002/jemt.23550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/08/2020] [Accepted: 06/30/2020] [Indexed: 11/07/2022]
Abstract
This vitro study aimed to evaluate the effects of 45S5 bioactive glass (BAG) and Er:YAG laser as desensitization treatments on the microtensile bond strength (MTBS) of fluorosed teeth. The 120 noncarious fluorosis were to obtain superficial dentin, being classified into four groups according to the Thylstrup and Fejerskov Index (TFI). Specimens from each group were randomly divided into five subgroups. After fluorosed teeth hypersensitivity models were established, the following pretreatments were applied on dentine surface: Subgroup 1: deionized water (Control); Subgroup 2: BAG; Subgroup 3: Er:YAG laser; Subgroup 4: BAG + Er:YAG laser, and Subgroup 5: Er:YAG laser + BAG. One sample was randomly selected from each subgroup for scanning electron microscope (SEM). The remaining samples were bonded with composite resin by Adper Single Bond 2 adhesive. Then water bath at 37°C for 24 hr. After 5,000 thermocycling, MTBS was tested and fracture mode was analyzed. The difference of MTBS between BAG group and Control group was found statistically significant (p < .05) in fluorosis. The Er:YAG laser + BAG group showed lowest MTBS values in fluorosis. In conclusion, the pretreatment of BAG might be beneficial to the adhesive of fluorosed teeth. Er:YAG laser desensitization alone or using BAG first and then Er:YAG laser desensitization might not affect the adhesive of fluorosed teeth, while Er:YAG laser desensitization followed by the pretreatment of BAG would be not conducive to the adhesive of fluorosed teeth.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Xie
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Yuyan Lan
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Zhengfan Sun
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Meifeng Zhang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Ling Guo
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
105
|
Yan L, Li H, Xia W. Bioglass could increase cell membrane fluidity with ion products to develop its bioactivity. Cell Prolif 2020; 53:e12906. [PMID: 33043500 PMCID: PMC7653244 DOI: 10.1111/cpr.12906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Silicate bioactive glass (BG) has been widely demonstrated to stimulate both of the hard and soft tissue regeneration, in which ion products released from BG play important roles. However, the mechanism by which ion products act on cells on cells is unclear. MATERIALS AND METHODS Human umbilical vein endothelial cells and human bone marrow stromal cells were used in this study. Fluorescence recovery after photobleaching and generalized polarization was used to characterize changes in cell membrane fluidity. Migration, differentiation and apoptosis experiments were carried out. RNA and protein chip were detected. The signal cascade is simulated to evaluate the effect of increased cell membrane fluidity on signal transduction. RESULTS We have demonstrated that ion products released from BG could effectively enhance cell membrane fluidity in a direct and physical way, and Si ions may play a major role. Bioactivities of BG ion products on cells, such as migration and differentiation, were regulated by membrane fluidity. Furthermore, we have proved that BG ion products could promote apoptosis of injured cells based on our conclusion that BG ion products increased membrane fluidity. CONCLUSIONS This study proved that BG ion products could develop its bioactivity on cells by directly enhancing cell membrane fluidity and subsequently affected cell behaviours, which may provide an explanation for the general bioactivities of silicate material.
Collapse
Affiliation(s)
- Longxin Yan
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyan Li
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Weiliang Xia
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
106
|
Contemporary restorative ion-releasing materials: current status, interfacial properties and operative approaches. Br Dent J 2020; 229:450-458. [PMID: 33037365 DOI: 10.1038/s41415-020-2169-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023]
Abstract
Minimally invasive (MI) concepts in restorative dentistry in the year 2020 request from the practitioner not only a scientifically supported rationale for carious tissue removal/excavation and defect-oriented, biological cavity preparation, but also a deep understanding of how to ensure a biomechanically stable and durable restoration in different clinical situations by applying different restorative options. Bio-interactive materials play an increasingly relevant role, as they not only replace diseased or lost tissue, but also optimise tissue mineral recovery (among other properties) when used in restorative and preventive dentistry. Indeed, this is of certain interest in MI restorative dentistry, especially in those cases where gap formation jeopardises the integrity of the margins along resin composite restorations, causing penetration of bacteria and eventually promoting the formation of secondary caries. Recently, the interest in whether ion-releasing materials may reduce such biofilm penetration into margin gaps and reduce such a risk for development and propagation of secondary caries is growing significantly among clinicians and scientists. The aim of this article was to explore mechanisms involved in the process that allow mineral deposition at the interface between such materials and dentine, and to describe how conventional 'bioactive' restorative materials currently available on the market may benefit treatments in MI dentistry.
Collapse
|
107
|
Moonesi Rad R, Alshemary AZ, Evis Z, Keskin D, Tezcaner A. Cellulose acetate-gelatin-coated boron-bioactive glass biocomposite scaffolds for bone tissue engineering. ACTA ACUST UNITED AC 2020; 15:065009. [PMID: 32340000 DOI: 10.1088/1748-605x/ab8d47] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this study, we aimed to prepare and characterize porous scaffolds composed of pure and boron oxide (B2O3)-doped bioactive glass (BG) that were infiltrated by cellulose acetate-gelatin (CA-GE) polymer solution for bone tissue engineering applications. Composite scaffolds were cross-linked with glutaraldehyde after polymer coating to protect the structural integrity of the polymeric-coated scaffolds. The impact of B2O3 incorporation into BG-polymer porous scaffolds on the cross-sectional morphology, porosity, mechanical properties, degradation and bioactivity of the scaffolds was investigated. Human dental pulp stem cells (hDPSCs) were enzymatically isolated and used for cell culture studies. According to scanning electron microscope analysis, the porous structure of the scaffolds was preserved after polymer coating. After polymer infiltration, the porosity of the scaffolds decreased from 64.2% to 59.35% for pure BG scaffolds and from 67.3% to 58.9% for B2O3-doped scaffolds. Meanwhile, their compressive strengths increased from 0.13 to 0.57 MPa and from 0.20 to 0.82 MPa, respectively. After polymer infiltration, 7% B2O3-incorporated BG scaffolds had higher weight loss and Ca-P layer deposition than pure BG scaffolds, after 14 d of incubation in simulated body fluid at 37 °C. Higher attachment and proliferation of hDPSCs were observed on 7% B2O3-BG-CA/GE scaffolds. In addition, the alkaline phosphatase activity of the cells was about 1.25-fold higher in this group than that observed on BG-CA/GE scaffolds after 14 d of incubation in osteogenic medium, while their intracellular calcium amounts were 1.7-fold higher than observed on BG-CA/GE after 7 d of incubation in osteogenic medium. Our results suggested that porous cellulose acetate-gelatin-coated boron-BG scaffolds hold promise for bone tissue engineering applications.
Collapse
Affiliation(s)
- Reza Moonesi Rad
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey
| | | | | | | | | |
Collapse
|
108
|
Zheng X, Liu Y, Liu Y, Pan Y, Yao Q. Novel three-dimensional bioglass functionalized gelatin nanofibrous scaffolds for bone regeneration. J Biomed Mater Res B Appl Biomater 2020; 109:517-526. [PMID: 32864862 DOI: 10.1002/jbm.b.34720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/17/2022]
Abstract
The clinical use of FDA-approved bone morphogenetic proteins (BMPs) are impeded by high costs, super-high dosage requirement, short half-life, and other undesirable side effects. Therefore, designing a biomaterial that can promote new bone formation without using exogenous BMPs is highly desirable in clinical applications. In the present work, a new kind of nanofibrous scaffold composed of gelatin and 45S5 bioglass (GF/45S5 BG) was prepared through thermally induced phase separation method together with the particle leach technique (TIPS&P). In addition to the significantly higher mechanical strength, the composite scaffolds (GF/45S5 BG) significantly increased osteogenic differentiation of human mesenchymal stem cells (hMSCs) in vitro compared with the neat scaffold (GF) without adding other biological agents, for example, BMPs or hormones. Most importantly, our in vivo studies also indicated that GF/45S5 BG scaffolds could directly promote ectopic bone regeneration in SD rats without exogenous BMP2. In summary, both in vitro and in vivo results indicated that the novel 45S5 bioglass functionalized GF nanofibrous scaffold is a promising alternative for bone tissue engineering.
Collapse
Affiliation(s)
- Xiao Zheng
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Institute of Advanced Materials for Nano-Bio Applications, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu Liu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Institute of Advanced Materials for Nano-Bio Applications, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yangxi Liu
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Evanston, Illinois, USA.,Department of Surgery, Feinberg School of Medicine, Northwestern University, Evanston, Illinois, USA
| | - Yining Pan
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Institute of Advanced Materials for Nano-Bio Applications, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingqing Yao
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Institute of Advanced Materials for Nano-Bio Applications, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
109
|
Berkmann JC, Herrera Martin AX, Pontremoli C, Zheng K, Bucher CH, Ellinghaus A, Boccaccini AR, Fiorilli S, Vitale Brovarone C, Duda GN, Schmidt-Bleek K. In Vivo Validation of Spray-Dried Mesoporous Bioactive Glass Microspheres Acting as Prolonged Local Release Systems for BMP-2 to Support Bone Regeneration. Pharmaceutics 2020; 12:pharmaceutics12090823. [PMID: 32872353 PMCID: PMC7559713 DOI: 10.3390/pharmaceutics12090823] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/30/2022] Open
Abstract
Bone morphogenetic protein-2 (BMP-2) is a known key mediator of physiological bone regeneration and is clinically approved for selected musculoskeletal interventions. Yet, broad usage of this growth factor is impeded due to side effects that are majorly evoked by high dosages and burst release kinetics. In this study, mesoporous bioactive glass microspheres (MBGs), produced by an aerosol-assisted spray-drying scalable process, were loaded with BMP-2 resulting in prolonged, low-dose BMP-2 release without affecting the material characteristics. In vitro, MBGs were found to be cytocompatible and to induce a pro-osteogenic response in primary human mesenchymal stromal cells (MSCs). In a pre-clinical rodent model, BMP-2 loaded MBGs significantly enhanced bone formation and influenced the microarchitecture of newly formed bone. The MBG carriers alone performed equal to the untreated (empty) control in most parameters tested, while additionally exerting mild pro-angiogenic effects. Using MBGs as a biocompatible, pro-regenerative carrier for local and sustained low dose BMP-2 release could limit side effects, thus enabling a safer usage of BMP-2 as a potent pro-osteogenic growth factor.
Collapse
Affiliation(s)
- Julia C. Berkmann
- Julius-Wolff-Institut, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, 13353 Berlin, Germany; (J.C.B.); (A.X.H.M.); (C.H.B.); (G.N.D.)
- Berlin-Brandenburg School for Regenerative Therapies, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Aaron X. Herrera Martin
- Julius-Wolff-Institut, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, 13353 Berlin, Germany; (J.C.B.); (A.X.H.M.); (C.H.B.); (G.N.D.)
- Berlin-Brandenburg School for Regenerative Therapies, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Carlotta Pontremoli
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (C.P.); (S.F.); (C.V.B.)
| | - Kai Zheng
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (K.Z.); (A.R.B.)
| | - Christian H. Bucher
- Julius-Wolff-Institut, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, 13353 Berlin, Germany; (J.C.B.); (A.X.H.M.); (C.H.B.); (G.N.D.)
- Berlin-Brandenburg School for Regenerative Therapies, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- BIH Center for Regenerative Therapies, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, 13353 Berlin, Germany;
| | - Agnes Ellinghaus
- BIH Center for Regenerative Therapies, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, 13353 Berlin, Germany;
| | - Aldo R. Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (K.Z.); (A.R.B.)
| | - Sonia Fiorilli
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (C.P.); (S.F.); (C.V.B.)
| | - Chiara Vitale Brovarone
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (C.P.); (S.F.); (C.V.B.)
| | - Georg N. Duda
- Julius-Wolff-Institut, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, 13353 Berlin, Germany; (J.C.B.); (A.X.H.M.); (C.H.B.); (G.N.D.)
- BIH Center for Regenerative Therapies, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, 13353 Berlin, Germany;
| | - Katharina Schmidt-Bleek
- Julius-Wolff-Institut, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, 13353 Berlin, Germany; (J.C.B.); (A.X.H.M.); (C.H.B.); (G.N.D.)
- BIH Center for Regenerative Therapies, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, 13353 Berlin, Germany;
- Correspondence: ; Tel.: +49-(0)30-450659209
| |
Collapse
|
110
|
Matter MT, Probst S, Läuchli S, Herrmann IK. Uniting Drug and Delivery: Metal Oxide Hybrid Nanotherapeutics for Skin Wound Care. Pharmaceutics 2020; 12:E780. [PMID: 32824470 PMCID: PMC7465174 DOI: 10.3390/pharmaceutics12080780] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
Wound care and soft tissue repair have been a major human concern for millennia. Despite considerable advancements in standards of living and medical abilities, difficult-to-heal wounds remain a major burden for patients, clinicians and the healthcare system alike. Due to an aging population, the rise in chronic diseases such as vascular disease and diabetes, and the increased incidence of antibiotic resistance, the problem is set to worsen. The global wound care market is constantly evolving and expanding, and has yielded a plethora of potential solutions to treat poorly healing wounds. In ancient times, before such a market existed, metals and their ions were frequently used in wound care. In combination with plant extracts, they were used to accelerate the healing of burns, cuts and combat wounds. With the rise of organic chemistry and small molecule drugs and ointments, researchers lost their interest in inorganic materials. Only recently, the advent of nano-engineering has given us a toolbox to develop inorganic materials on a length-scale that is relevant to wound healing processes. The robustness of synthesis, as well as the stability and versatility of inorganic nanotherapeutics gives them potential advantages over small molecule drugs. Both bottom-up and top-down approaches have yielded functional inorganic nanomaterials, some of which unite the wound healing properties of two or more materials. Furthermore, these nanomaterials do not only serve as the active agent, but also as the delivery vehicle, and sometimes as a scaffold. This review article provides an overview of inorganic hybrid nanotherapeutics with promising properties for the wound care field. These therapeutics include combinations of different metals, metal oxides and metal ions. Their production, mechanism of action and applicability will be discussed in comparison to conventional wound healing products.
Collapse
Affiliation(s)
- Martin T. Matter
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland;
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Sebastian Probst
- School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, Avenue de Champel 47, 1206 Geneva, Switzerland;
| | - Severin Läuchli
- Department of Dermatology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland;
| | - Inge K. Herrmann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland;
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
111
|
Kaur D, Reddy MS, Pandey OP. In-vitro bioactivity of silicate-phosphate glasses using agriculture biomass silica. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:65. [PMID: 32696287 DOI: 10.1007/s10856-020-06402-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
In the present work, silica extracted from the agricultural waste material; rice husk (RH) was utilized for the synthesis of biocompatible glass of general composition SiO2-P2O5-CaO-MgO-MoO3. In the synthesized glasses P2O5 (5%) and CaO (25%) was kept constant whereas MgO and MoO3 was varied from 10% to 20% and 0% to 5% respectively. The structural, morphological, elemental and functional properties of silica as well as the derived glasses were analyzed by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive X-ray spectroscopy (EDX) and Fourier Transform Infrared (FTIR) spectroscopy techniques. The effect of MoO3 on the structural and thermal properties of silicate phosphate glasses has been studied in details. The bioactivity of as-synthesized glass samples were further evaluated after immersion in Simulated Body Fluid (SBF) solution which shows bioactive properties thus enabling them to be used as scaffolds in implant materials.
Collapse
Affiliation(s)
- Damandeep Kaur
- School of Physics and Materials Science, Thapar Institute of Engineering and Technology, Patiala, 147004, India
| | - M S Reddy
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, India
| | - O P Pandey
- School of Physics and Materials Science, Thapar Institute of Engineering and Technology, Patiala, 147004, India.
| |
Collapse
|
112
|
Zhao H, Liang G, Liang W, Li Q, Huang B, Li A, Qiu D, Jin D. In vitro and in vivo evaluation of the pH-neutral bioactive glass as high performance bone grafts. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111249. [PMID: 32806287 DOI: 10.1016/j.msec.2020.111249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 11/18/2022]
Abstract
Osteogenic and angiogenic properties are two most valued factors for bone grafting materials. Biomedical materials with synergistic promotion effects on these two properties would be highly desirable. In this study, we showed that a recently developed pH-neutral bioactive glass (PSC) possessed such characteristics. Compared to two classical biomaterials, 45S5 bioactive glass and beta-tricalcium phosphate (β-TCP), PSC markedly improved BMSCs' proliferation, migration and mineralization as well as their osteogenic and angiogenic differentiation. In vivo, PSC showed better performance on inducing bone regeneration than both 45S5 and β-TCP, as featured by elevated bone mineral density (BMD) and new bone areas. PSC also significantly promoted new blood vessels formation compared with those in control groups. Furthermore, we revealed that PSC induced osteogenic and angiogenic differentiation of BMSCs through the PI3K/Akt/HIF-1α pathway, which had not been reported before. This synergistic effect of the PI3K/Akt/HIF-1α pathway on osteogenesis and angiogenic differentiation of BMSCs suggested that biomedical materials may promote new bone formation through multiple signal pathways, thus shedding light on the future development of materials with better performance.
Collapse
Affiliation(s)
- Huiyu Zhao
- Academy of Orthopedics, Guangdong Province, Orthopaedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, People's Republic of China
| | - Guojun Liang
- Academy of Orthopedics, Guangdong Province, Orthopaedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, People's Republic of China
| | - Wenquan Liang
- Academy of Orthopedics, Guangdong Province, Orthopaedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, People's Republic of China
| | - Qingchu Li
- Academy of Orthopedics, Guangdong Province, Orthopaedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, People's Republic of China
| | - Bin Huang
- Academy of Orthopedics, Guangdong Province, Orthopaedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, People's Republic of China
| | - Ailing Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
| | - Dadi Jin
- Academy of Orthopedics, Guangdong Province, Orthopaedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, People's Republic of China.
| |
Collapse
|
113
|
Distler T, Fournier N, Grünewald A, Polley C, Seitz H, Detsch R, Boccaccini AR. Polymer-Bioactive Glass Composite Filaments for 3D Scaffold Manufacturing by Fused Deposition Modeling: Fabrication and Characterization. Front Bioeng Biotechnol 2020; 8:552. [PMID: 32671025 PMCID: PMC7326953 DOI: 10.3389/fbioe.2020.00552] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/07/2020] [Indexed: 01/03/2023] Open
Abstract
Critical size bone defects are regularly treated by auto- and allograft transplantation. However, such treatments require to harvest bone from patient donor sites, with often limited tissue availability or risk of donor site morbidity. Not requiring bone donation, three-dimensionally (3D) printed implants and biomaterial-based tissue engineering (TE) strategies promise to be the next generation therapies for bone regeneration. We present here polylactic acid (PLA)-bioactive glass (BG) composite scaffolds manufactured by fused deposition modeling (FDM), involving the fabrication of PLA-BG composite filaments which are used to 3D print controlled open-porous and osteoinductive scaffolds. We demonstrated the printability of PLA-BG filaments as well as the bioactivity and cytocompatibility of PLA-BG scaffolds using pre-osteoblast MC3T3E1 cells. Gene expression analyses indicated the beneficial impact of BG inclusions in FDM scaffolds regarding osteoinduction, as BG inclusions lead to increased osteogenic differentiation of human adipose-derived stem cells in comparison to pristine PLA. Our findings confirm that FDM is a convenient additive manufacturing technology to develop PLA-BG composite scaffolds suitable for bone tissue engineering.
Collapse
Affiliation(s)
- Thomas Distler
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Niklas Fournier
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Alina Grünewald
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Christian Polley
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany
| | - Hermann Seitz
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany
| | - Rainer Detsch
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
114
|
Ranmuthu CDS, Ranmuthu CKI, Russell JC, Singhania D, Khan WS. Evaluating the Effect of Non-cellular Bioactive Glass-Containing Scaffolds on Osteogenesis and Angiogenesis in in vivo Animal Bone Defect Models. Front Bioeng Biotechnol 2020; 8:430. [PMID: 32478053 PMCID: PMC7240009 DOI: 10.3389/fbioe.2020.00430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
The use of bone scaffolds to replace injured or diseased bone has many advantages over the currently used autologous and allogeneic options in clinical practice. This systematic review evaluates the current evidence for non-cellular scaffolds containing bioactive glass on osteogenesis and angiogenesis in animal bone defect models. Studies that reported results of osteogenesis via micro-CT and results of angiogenesis via Microfil perfusion or immunohistochemistry were included in the review. A literature search of PubMed, EMBASE and Scopus was carried out in November 2019 from which nine studies met the inclusion and exclusion criteria. Despite the significant heterogeneity in the composition of the scaffolds used in each study, it could be concluded that scaffolds containing bioactive glass improve bone regeneration in these models, both by osteogenic and angiogenic measures. Incorporation of additional elements into the glass network, using additives, and using biochemical factors generally had a beneficial effect. Comparing the different compositions of non-cellular bioactive glass containing scaffolds is however difficult due to the heterogeneity in bioactive glass compositions, fabrication methods and biochemical additives used.
Collapse
Affiliation(s)
| | | | - Jodie C. Russell
- Cambridge Clinical School, University of Cambridge, Cambridge, United Kingdom
| | - Disha Singhania
- Cambridge Clinical School, University of Cambridge, Cambridge, United Kingdom
| | - Wasim S. Khan
- Division of Trauma and Orthopaedics, Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
115
|
Lopes JH, Souza LP, Domingues JA, Ferreira FV, Alencar Hausen M, Camilli JA, Martin RA, Rezende Duek EA, Mazali IO, Bertran CA. In vitro and in vivo osteogenic potential of niobium‐doped 45S5 bioactive glass: A comparative study. J Biomed Mater Res B Appl Biomater 2020; 108:1372-1387. [DOI: 10.1002/jbm.b.34486] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/22/2019] [Accepted: 08/29/2019] [Indexed: 01/03/2023]
Affiliation(s)
- João H. Lopes
- Department of Chemistry, Division of Fundamental Sciences (IEF)Aeronautics Institute of Technology (ITA) Sao Jose dos Campos Brazil
| | - Lucas P. Souza
- Department of Structural and Functional BiologyInstitute of Biology, University of Campinas – UNICAMP Campinas Brazil
| | - Juliana A. Domingues
- Department of Structural and Functional BiologyInstitute of Biology, University of Campinas – UNICAMP Campinas Brazil
| | - Filipe V. Ferreira
- School of Chemical EngineeringUniversity of Campinas – UNICAMP Campinas Brazil
| | - Moema Alencar Hausen
- Department of Physiological Sciences, Biomaterials LaboratoryPontifical Catholic University of São Paulo Sorocaba Brazil
| | - José A. Camilli
- Department of Structural and Functional BiologyInstitute of Biology, University of Campinas – UNICAMP Campinas Brazil
| | - Richard A. Martin
- School of Engineering & Aston Research Centre for Healthy AgeingAston University Birmingham UK
| | - Eliana A. Rezende Duek
- Department of Physiological Sciences, Biomaterials LaboratoryPontifical Catholic University of São Paulo Sorocaba Brazil
| | - Italo O. Mazali
- Department of Inorganic ChemistryInstitute of Chemistry, University of Campinas – UNICAMP Campinas Brazil
| | - Celso A. Bertran
- Department of Physical ChemistryInstitute of Chemistry, University of Campinas – UNICAMP Campinas Brazil
| |
Collapse
|
116
|
Ma Q, Chen J, Xu X, Wang T. Impact of transparent tray-based application of bioactive glasses desensitizer on the permeability of enamel and dentin to hydrogen peroxide: an in vitro study. BMC Oral Health 2020; 20:103. [PMID: 32276623 PMCID: PMC7146963 DOI: 10.1186/s12903-020-01096-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/29/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To investigate the effect of transparent tray-based application of bioactive glasses (BGs) desensitizer on the permeability of enamel and dentin to hydrogen peroxide (H2O2). METHODS Freshly extracted human first premolars were divided into 6 groups (n = 8). Group A and B: without pretreatments; Group C and E: treated with BGs desensitizer only; Group D and F: treated with BGs desensitizer dispensed with a transparent tray. After roots and pulp tissues of the treated tooth specimens were thoroughly removed, acetate buffer was added into pulp chambers and the treated specimens were immersed in distilled water (Groups A, E, and F) or 30% H2O2 (Groups B, C, and D) for 30 min at 37 °C. The amount of H2O2 in the pulp chamber of each group was measured using ultraviolet-visible spectrophotometry. RESULTS In control groups (Group A, E, and F), H2O2 was not detected. The amount of pulpal H2O2 in Group B, C, and D were 21.149 ± 0.489 μg, 9.813 ± 0.426 μg, and 4.065 ± 0.268 μg respectively. One-way ANOVA analysis indicated that significant differences existed in these groups (F = 459.748, p < 0.05). CONCLUSIONS The effect of BGs desensitizer in reducing the permeability of enamel and dentin to H2O2 could be enhanced when dispensed with a transparent tray.
Collapse
Affiliation(s)
- Qian Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University; Department of General Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jingwen Chen
- Stomatological College of Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xiao Xu
- Stomatological College of Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Tianda Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University; Department of General Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
117
|
Oosthuysen W, Venter R, Tanwar Y, Ferreira N. Bioactive glass as dead space management following debridement of type 3 chronic osteomyelitis. INTERNATIONAL ORTHOPAEDICS 2020; 44:421-428. [PMID: 31701158 DOI: 10.1007/s00264-019-04442-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/21/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND Chronic osteomyelitis is a challenging condition to treat and although no exact treatment guidelines exist, the surgical management strategy includes wide resection of necrotic and infected bone followed by dead space management. This study evaluates the use of bioactive glass as a single-stage procedure for dead space management following surgical debridement. METHODS A consecutive series of 24 patients with Cierny-Mader type 3 osteomyelitis, treated between March 2016 and June 2018, were identified and evaluated retrospectively. Patients were managed with bioactive glass as dead space management following surgical debridement. RESULTS Of the patients who completed more than 12 months follow-up, all fourteen (100%) showed complete resolution of symptoms. Of the remaining ten patients with less than 12 months follow-up, eight had complete resolution of symptoms. Therefore, a preliminary result of 22 out of 24 patients (91.65%) had resolution of symptoms following debridement and dead space management with bioactive glass. One patient experienced a complication related to the use of bioactive glass. This manifested as prolonged serous wound drainage that resolved with local wound care. CONCLUSION The use of bioactive glass appears to be effective for dead space management following debridement of anatomical type 3 chronic osteomyelitis of the appendicular skeleton.
Collapse
Affiliation(s)
- Willem Oosthuysen
- Division of Orthopaedics, Department of Surgical Sciences, Faculty of Medicine and Health Sciences, Tygerberg Hospital, Stellenbosch University, Cape Town, 7505, South Africa
| | - Rudolph Venter
- Division of Orthopaedics, Department of Surgical Sciences, Faculty of Medicine and Health Sciences, Tygerberg Hospital, Stellenbosch University, Cape Town, 7505, South Africa
| | - Yashwant Tanwar
- Division of Orthopaedics, Department of Surgical Sciences, Faculty of Medicine and Health Sciences, Tygerberg Hospital, Stellenbosch University, Cape Town, 7505, South Africa
| | - Nando Ferreira
- Division of Orthopaedics, Department of Surgical Sciences, Faculty of Medicine and Health Sciences, Tygerberg Hospital, Stellenbosch University, Cape Town, 7505, South Africa.
| |
Collapse
|
118
|
Westhauser F, Hohenbild F, Arango-Ospina M, Schmitz SI, Wilkesmann S, Hupa L, Moghaddam A, Boccaccini AR. Bioactive Glass (BG) ICIE16 Shows Promising Osteogenic Properties Compared to Crystallized 45S5-BG. Int J Mol Sci 2020; 21:ijms21051639. [PMID: 32121249 PMCID: PMC7084569 DOI: 10.3390/ijms21051639] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/17/2022] Open
Abstract
The ICIE16-bioactive glass (BG) (48.0 SiO2, 6.6 Na2O, 32.9 CaO, 2.5 P2O5, 10.0 K2O (wt %)) has been developed as an alternative to 45S5-BG, the original BG composition (45.0 SiO2, 24.5 Na2O, 24.5 CaO, 6.0 P2O5 (wt %)), with the intention of broadening the BG sintering window while maintaining bioactivity. Because there is a lack of reports on ICIE16-BG biological properties, the influence of ICIE16-BG on viability, proliferation, and osteogenic differentiation of human mesenchymal stromal cells (MSCs) was evaluated in direct comparison to 45S5-BG in this study. The BGs underwent heat treatment similar to that which is required in order to fabricate scaffolds by sintering, which resulted in crystallization of 45S5-BG (45S5-CBG) while ICIE16 remained amorphous. Granules based on both BGs were biocompatible, but ICIE16-BG was less harmful to cell viability, most likely due to a more pronounced pH alkalization in the 45S5-CBG group. ICIE16-BG outperformed 45S5-CBG in terms of osteogenic differentiation at the cellular level, as determined by the increased activity of alkaline phosphatase. However, granules from both BGs were comparable regarding the stimulation of expression levels of genes encoding for osseous extracellular matrix (ECM) proteins. The addition of therapeutically active ions to ICIE16-BG might further improve its ability to stimulate ECM production and should be investigated in upcoming studies.
Collapse
Affiliation(s)
- Fabian Westhauser
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (F.H.); (S.I.S.); (S.W.); (A.M.)
- Correspondence: (F.W.); (A.R.B.); Tel.: +49-6221-56-25000 (F.W.); +49-9131-85-28600 (A.R.B.)
| | - Frederike Hohenbild
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (F.H.); (S.I.S.); (S.W.); (A.M.)
| | - Marcela Arango-Ospina
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany;
| | - Sarah I. Schmitz
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (F.H.); (S.I.S.); (S.W.); (A.M.)
| | - Sebastian Wilkesmann
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (F.H.); (S.I.S.); (S.W.); (A.M.)
| | - Leena Hupa
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, 20500 Turku, Finland;
| | - Arash Moghaddam
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (F.H.); (S.I.S.); (S.W.); (A.M.)
- ATORG - Aschaffenburg Trauma and Orthopedic Research Group, Center for Trauma Surgery, Orthopedics, and Sports Medicine, Klinikum Aschaffenburg-Alzenau, Am Hasenkopf 1, 63739 Aschaffenburg, Germany
| | - Aldo R. Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany;
- Correspondence: (F.W.); (A.R.B.); Tel.: +49-6221-56-25000 (F.W.); +49-9131-85-28600 (A.R.B.)
| |
Collapse
|
119
|
Grazziotin-Soares R, Dourado LG, Gonçalves BLL, Ardenghi DM, Ferreira MC, Bauer J, Carvalho CN. Dentin Microhardness and Sealer Bond Strength to Root Dentin are Affected by Using Bioactive Glasses as Intracanal Medication. MATERIALS 2020; 13:ma13030721. [PMID: 32033430 PMCID: PMC7040687 DOI: 10.3390/ma13030721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 01/29/2023]
Abstract
This study investigated the human dentin microhardness (MH) and the MTA Fillapex® (Fillapex) and AH Plus®(AH) bond strength (BS) to dentin after using calcium hydroxide (Ca(OH)2) and bioactive glasses (45S5 and an experimental niobium phosphate bioactive glass (NbG)) as intracanal medications. For the MH test dentin slices were filled with medications and were submitted to Knoop MH (KHN) test (at day-0 (baseline data/without medication) and at day-15 (after using medication)). For the BS test, after medications had remained for 15 days in the roots, dentin slices were obtained and filled with the sealers. Seven days later, sealer BS to dentin was measured by push-out test (MPa). Data were statistically analyzed. Failure mode was visually assessed. The use of NbG, 45S5 for 15 days, increased the dentin MH and reduced the BS between AH sealer and dentin, but did not interfere with the Fillapex BS.
Collapse
Affiliation(s)
- Renata Grazziotin-Soares
- Department of Restorative Dental Sciences, College of Dentistry, University of Florida, Gainesville, FL 32610, USA (D.M.A.)
| | - Letícia Gomes Dourado
- School of Dentistry, CEUMA University, São Luís, 65065-470, Brazil; (L.G.D.); (B.L.L.G.); (M.C.F.)
| | | | - Diego Machado Ardenghi
- Department of Restorative Dental Sciences, College of Dentistry, University of Florida, Gainesville, FL 32610, USA (D.M.A.)
| | - Meire Coelho Ferreira
- School of Dentistry, CEUMA University, São Luís, 65065-470, Brazil; (L.G.D.); (B.L.L.G.); (M.C.F.)
| | - José Bauer
- Discipline of Dental Materials, School of Dentistry, University Federal of Maranhão (UFMA), São Luis 5085-582, Brazil
- Correspondence: (C.N.C.); (J.B.); Tel.: +55-98-98117-0078 (C.N.C.)
| | - Ceci Nunes Carvalho
- School of Dentistry, CEUMA University, São Luís, 65065-470, Brazil; (L.G.D.); (B.L.L.G.); (M.C.F.)
- Correspondence: (C.N.C.); (J.B.); Tel.: +55-98-98117-0078 (C.N.C.)
| |
Collapse
|
120
|
Bargavi P, Ramya R, Chitra S, Vijayakumari S, Riju Chandran R, Durgalakshmi D, Rajashree P, Balakumar S. Bioactive, degradable and multi-functional three-dimensional membranous scaffolds of bioglass and alginate composites for tissue regenerative applications. Biomater Sci 2020; 8:4003-4025. [DOI: 10.1039/d0bm00714e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multifunctional bioactive hydrogel ECM like membrane for 3D dynamic tissue/disease modelling.
Collapse
Affiliation(s)
- P. Bargavi
- National Centre for Nanoscience and Nanotechnology
- University of Madras
- Chennai – 600 025
- India
| | - R. Ramya
- SRM Dental College
- SRMIST
- Chennai – 600089
- India
| | - S. Chitra
- National Centre for Nanoscience and Nanotechnology
- University of Madras
- Chennai – 600 025
- India
| | - S. Vijayakumari
- National Centre for Nanoscience and Nanotechnology
- University of Madras
- Chennai – 600 025
- India
| | - R. Riju Chandran
- National Centre for Nanoscience and Nanotechnology
- University of Madras
- Chennai – 600 025
- India
| | - D. Durgalakshmi
- Department of Medical Physics
- Anna University
- Chennai – 600 025
- India
| | - P. Rajashree
- CAS in Crystallography & Biophysics
- University of Madras
- Chennai – 600 025
- India
| | - S. Balakumar
- National Centre for Nanoscience and Nanotechnology
- University of Madras
- Chennai – 600 025
- India
| |
Collapse
|
121
|
Moghanian A, Portillo-Lara R, Shirzaei Sani E, Konisky H, Bassir SH, Annabi N. Synthesis and characterization of osteoinductive visible light-activated adhesive composites with antimicrobial properties. J Tissue Eng Regen Med 2020; 14:66-81. [PMID: 31850689 PMCID: PMC6992487 DOI: 10.1002/term.2964] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/03/2019] [Accepted: 09/11/2019] [Indexed: 11/07/2022]
Abstract
Orthopedic surgical procedures based on the use of conventional biological graft tissues are often associated with serious post-operative complications such as immune rejection, bacterial infection, and poor osseointegration. Bioresorbable bone graft substitutes have emerged as attractive alternatives to conventional strategies because they can mimic the composition and mechanical properties of the native bone. Among these, bioactive glasses (BGs) hold great potential to be used as biomaterials for bone tissue engineering owing to their biomimetic composition and high biocompatibility and osteoinductivity. Here, we report the development of a novel composite biomaterial for bone tissue engineering based on the incorporation of a modified strontium- and lithium-doped 58S BG (i.e., BG-5/5) into gelatin methacryloyl (GelMA) hydrogels. We characterized the physicochemical properties of the BG formulation via different analytical techniques. Composite hydrogels were then prepared by directly adding BG-5/5 to the GelMA hydrogel precursor, followed by photocrosslinking of the polymeric network via visible light. We characterized the physical, mechanical, and adhesive properties of GelMA/BG-5/5 composites, as well as their in vitro cytocompatibility and osteoinductivity. In addition, we evaluated the antimicrobial properties of these composites in vitro, using a strain of methicillin-resistant Staphylococcus Aureus. GelMA/BG-5/5 composites combined the functional characteristics of the inorganic BG component, with the biocompatibility, biodegradability, and biomimetic composition of the hydrogel network. This novel biomaterial could be used for developing osteoinductive scaffolds or implant surface coatings with intrinsic antimicrobial properties and higher therapeutic efficacy.
Collapse
Affiliation(s)
- Amirhossein Moghanian
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Engineering, Imam Khomeini International University, Qazvin, Iran
| | - Roberto Portillo-Lara
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Zapopan, Mexico
| | - Ehsan Shirzaei Sani
- Chemical and Biomolecular Engineering Department, University of California-Los Angeles, Los Angeles, CA, USA
| | - Hailey Konisky
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Seyed Hossein Bassir
- Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Nasim Annabi
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Chemical and Biomolecular Engineering Department, University of California-Los Angeles, Los Angeles, CA, USA
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
122
|
Yutaka Y, Hamaji M, Toyota N, Kawabe Y, Sato T, Nakamura T, Date H. Improved Healing by Adjuvant Osteoconductive Therapy Using a Novel Cotton-Like Hydroxyapatite Sheet After Median Sternotomy. Semin Thorac Cardiovasc Surg 2020; 32:244-252. [DOI: 10.1053/j.semtcvs.2019.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 11/11/2022]
|
123
|
Manz AS, Attin T, Sener B, Sahrmann P. Dentin tubule obturation of a bioglass-based dentin desensitizer under repeated exposure to lactid acid and brushing. BMC Oral Health 2019; 19:274. [PMID: 31805922 PMCID: PMC6896668 DOI: 10.1186/s12903-019-0962-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/19/2019] [Indexed: 01/22/2023] Open
Abstract
Background Dentin hypersensitivity is a frequent finding especially in periodontitis patients. Conventional treatment aims for obstruction of dentin tubules by disabling liquid and osmotic fluctuation to and from the pulpal chamber. A novel bioglass-based desensitizer was shown to obstruct tubules and to resist periodic exposure to lactic acid. Whether this obstruction is resistant to brushing had not been tested so far. Accordingly, the present study aimed to assess dentin tubule obstruction after repeated acid exposure and brushing. Methods Sixty dentin discs were cleaned with 17% EDTA, mounted into a pulp fluid simulator and randomly divided into 3 groups: No surface treatment in Group A, Seal&Protect® in group B and DentinoCer in group C. Discs were exposed to 0.1 M non-saturated lactic acid thrice and standardized brushing twice a day for 12 days. At baseline and after 2, 4 and 12 d samples were removed from the setting and prepared for top-view SEM analysis to assess tubule obstruction using the Olley score. Discs were then vertically cut and the section surface morphologically assessed using backscatter imaging. For both vertical and sectional surfaces EDX analysis was used to characterize the surface composition in the tubular and inter-tubular area. Results Group A showed clean tubular lumina at all time points. From day 2 onwards dentin showed exposed collagen fibers. Group 2 initially showed a complete surface coverage that flattened out during treatment without ever exposing tubules. At baseline, samples of Group C displayed a complete homogeneous coverage. From day 2 on tubules entrances with obstructed lumen became visible. While on day 4 and 12 the dentin surface exposed collagen fibers the lumina remained closed. EDX analysis of the vertical and horizontal views showed that P and Ca were predominant elements in both the inter- and tubular dentin while Si peaks were found in the tubule plugs. Conclusion While group B displayed a packed layer on the surface during the whole investigation time group C samples lost their superficial layer within 48 h. Tubule plugs containing considerable Si proportions indicated previous presence of DentinoCer, while high Ca and P proportions suggest obturation by dentin-like material.
Collapse
Affiliation(s)
- Andrea S Manz
- Clinic of Conservative and Preventive Dentistry Periodontology and Cariology Center of Dental Medicine, University of Zuric, Plattenstr, 11 8032, Zurich, Switzerland
| | - Thomas Attin
- Clinic of Conservative and Preventive Dentistry Periodontology and Cariology Center of Dental Medicine, University of Zuric, Plattenstr, 11 8032, Zurich, Switzerland
| | - Beatrice Sener
- Clinic of Conservative and Preventive Dentistry Periodontology and Cariology Center of Dental Medicine, University of Zuric, Plattenstr, 11 8032, Zurich, Switzerland
| | - Philipp Sahrmann
- Clinic of Conservative and Preventive Dentistry Periodontology and Cariology Center of Dental Medicine, University of Zuric, Plattenstr, 11 8032, Zurich, Switzerland.
| |
Collapse
|
124
|
Curcumin-Containing Orthopedic Implant Coatings Deposited on Poly-Ether-Ether-Ketone/Bioactive Glass/Hexagonal Boron Nitride Layers by Electrophoretic Deposition. COATINGS 2019. [DOI: 10.3390/coatings9090572] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Electrophoretic deposition (EPD) was used to produce a multilayer coatings system based on chitosan/curcumin coatings on poly-ether-ether-ketone (PEEK)/bioactive glass (BG)/hexagonal boron nitride (h-BN) layers (previously deposited by EPD on 316L stainless steel) to yield bioactive and antibacterial coatings intended for orthopedic implants. Initially, PEEK/BG/h-BN coatings developed on 316L stainless steel (SS) substrates were analyzed for wear studies. Then, the EPD of chitosan/curcumin was optimized on 316L SS for suspension stability, thickness, and homogeneity of the coatings. Subsequently, the optimized EPD parameters were applied to produce chitosan/curcumin coatings on the PEEK/BG/h-BN layers. The multilayered coatings produced by EPD were characterized in terms of composition, microstructure, drug release kinetics, antibacterial activity, and in vitro bioactivity. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) confirmed the deposition of chitosan/curcumin on the multilayer coating system. The release of curcumin upon immersion of multilayer coatings in phosphate-buffered saline (PBS) was confirmed by ultraviolet/visible (UV/VIS) spectroscopic analysis. The antibacterial effect of chitosan/curcumin as the top coating was determined by turbidity tests (optical density measurements). Moreover, the multilayer coating system formed an apatite-like layer upon immersion in simulated body fluid (SBF), which is similar in composition to the hydroxyapatite component of bone, confirming the possibility of achieving close bonding between bone and the coating surface.
Collapse
|
125
|
Conoscenti G, Carfì Pavia F, Ongaro A, Brucato V, Goegele C, Schwarz S, Boccaccini AR, Stoelzel K, La Carrubba V, Schulze-Tanzil G. Human nasoseptal chondrocytes maintain their differentiated phenotype on PLLA scaffolds produced by thermally induced phase separation and supplemented with bioactive glass 1393. Connect Tissue Res 2019; 60:344-357. [PMID: 30348015 DOI: 10.1080/03008207.2018.1539083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Damage of hyaline cartilage such as nasoseptal cartilage requires proper reconstruction, which remains challenging due to its low intrinsic repair capacity. Implantation of autologous chondrocytes in combination with a biomimetic biomaterial represents a promising strategy to support cartilage repair. Despite so far mostly tested for bone tissue engineering, bioactive glass (BG) could exert stimulatory effects on chondrogenesis. The aim of this work was to produce and characterize composite porous poly(L-lactide) (PLLA)/1393BG scaffolds via thermally induced phase separation (TIPS) technique and assess their effects on chondrogenesis of nasoseptal chondrocytes. The PLLA scaffolds without or with 1, 2.5, 5% BG1393 were prepared via TIPS technique starting from a ternary solution (polymer/solvent/non-solvent) in a single step. Scaffolds were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and differential scanning calorimetric analysis (DSC). Human nasoseptal chondrocytes were seeded on the scaffolds with 1 and 2.5% BG for 7 and 14 days and cell survival, attachment, morphology and expression of SOX9 and cartilage-specific extracellular cartilage matrix (ECM) components were monitored. The majority of chondrocytes survived on all PLLA scaffolds functionalized with BG for the whole culture period. Also inner parts of the scaffold were colonized by chondrocytes synthesizing an ECM which contained glycosaminoglycans. Type II collagen and aggrecan gene expression increased significantly in 1% BG scaffolds during the culture. Chondrocyte protein expression for cartilage ECM proteins indicated that the chondrocytes maintained their differentiated phenotype in the scaffolds. BG could serve as a cytocompatible basis for future scaffold composites for osteochondral cartilage defect repair. Abbreviations: AB: alcian blue ACAN: gene coding for aggrecan; BG: Bioactive glass; 2D: two-dimensional; 3D: three-dimensional; COL2A1: gene coding for type II collagen; DAPI: 4',6-diamidino-2-phenylindole; DMEM: Dulbecco's Modified Eagle's Medium; DMMB: dimethylmethylene blue; DSC: Differential scanning calorimetric analysis; ECM: extracellular matrix; EDTA: ethylenediaminetetraacetic acid; EtBr: ethidium bromide; FCS: fetal calf serum; FDA: fluorescein diacetate; GAG: glycosaminoglycans; HDPE: high density polyethylene; HE: hematoxylin and eosin staining; HCA: hydoxylapatite; PBE: phosphate buffered EDTA100 mM Na2HPO4 and 5 mM EDTA, pH8; PBS: phosphate buffered saline; PFA: paraformaldehyde; PG: proteoglycans; PI: propidium iodide; PLLA: Poly-L-Lactic Acid Scaffold; RT: room temperature; SD: standard deviation; SEM: scanning electron microscopy; sGAG: sulfated glycosaminoglycans; SOX9/Sox9: SRY (sex-determining region Y)-box 9 protein; TBS: TRIS buffered saline; TIPS: Thermally Induced Phase Separation; XRD: X-ray diffraction analysis.
Collapse
Affiliation(s)
- Gioacchino Conoscenti
- a Department of Civil, Environmental, Aerospace, Materials Engineering , Universita' di Palermo , Palermo , Italy
| | - Francesco Carfì Pavia
- a Department of Civil, Environmental, Aerospace, Materials Engineering , Universita' di Palermo , Palermo , Italy
| | - Alfred Ongaro
- a Department of Civil, Environmental, Aerospace, Materials Engineering , Universita' di Palermo , Palermo , Italy
| | - Valerio Brucato
- a Department of Civil, Environmental, Aerospace, Materials Engineering , Universita' di Palermo , Palermo , Italy
| | - Clemens Goegele
- b Institute of Anatomy , Paracelsus Medical University , Nuremberg , Germany
| | - Silke Schwarz
- b Institute of Anatomy , Paracelsus Medical University , Nuremberg , Germany
| | - Aldo R Boccaccini
- c Institute of Biomaterials, Department of Materials Science and Engineering , University of Erlangen-Nuremberg , Erlangen , Germany
| | - Katharina Stoelzel
- d Department of Otorhinolaryngology, Head and Neck Surgery , Charité-Universitätsmedizin Berlin , Berlin , Germany
| | - Vincenzo La Carrubba
- a Department of Civil, Environmental, Aerospace, Materials Engineering , Universita' di Palermo , Palermo , Italy
| | | |
Collapse
|
126
|
Barrey C, Broussolle T. Clinical and radiographic evaluation of bioactive glass in posterior cervical and lumbar spinal fusion. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2019; 29:1623-1629. [PMID: 31236682 DOI: 10.1007/s00590-019-02477-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/17/2019] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Spinal surgery of degenerative painful segments is a valuable treatment option in the management of chronic cervical and low back pain. The surgery consists in stabilizing and fusing painful vertebral segment(s). The objective of the study was to report our experience with 45S5 bioactive glass (BAG) to obtain inter-vertebral fusion in the context of posterior spine surgery. MATERIAL AND METHOD In this retrospective study, 30 patients with a wide range of degenerative and traumatic conditions of the cervical or lumbar spine underwent spinal fusion utilizing a synthetic bone graft substitute of BAG (GlassBone™, Noraker, Lyon-Villeurbanne, France). The pain was evaluated by VAS score, and graft consolidation was assessed on according radiographic images at 1-year post-op. RESULTS All patients underwent posterior spinal fusion either in the cervical or the thoraco-lumbar spine. Multi-level fusions represented the majority of the cohort (43% of patients with more than seven levels treated). Radiographic imaging demonstrated excellent fusion rates (93%) at final follow-up, equivalent to the outcomes reported in the literature for autogenous bone, with excellent bone bridging and no spinal implant loosening. Only two cases of non-union were encountered. Additionally, 90% of the patients demonstrated recovery at 1 year after surgery with a pain reduction of 60%. CONCLUSION The results of this retrospective study suggest that the 45S5 BAG may be an interesting alternative option to autologous graft, in terms of safety and bone fusion efficiency. LEVEL OF EVIDENCE IV Retrospective study.
Collapse
Affiliation(s)
- Cédric Barrey
- Department of Spine Surgery, P. Wertheimer University Hospital, Hospices Civils de Lyon, Claude Bernard University of Lyon 1, Lyon, France.
| | - Théo Broussolle
- Department of Spine Surgery, P. Wertheimer University Hospital, Hospices Civils de Lyon, Claude Bernard University of Lyon 1, Lyon, France
| |
Collapse
|
127
|
Cytokine Regulation from Human Peripheral Blood Leukocytes Cultured In Vitro with Silver Doped Bioactive Glasses Microparticles. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3210530. [PMID: 31309105 PMCID: PMC6594341 DOI: 10.1155/2019/3210530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/12/2019] [Accepted: 04/21/2019] [Indexed: 12/27/2022]
Abstract
Bioactive glasses (BG) applications include tissue engineering for bone regeneration, coating for implants, and scaffolds for wound healing. BG can be conjugated to ions like silver, which might add some antimicrobial properties to this biomaterial. The immunomodulatory activity of ion-doped bioactive glasses particles was not investigated before. The aim of this work was to evaluate the cytotoxic and immunomodulatory effect of BG and silver-doped bioactive glass (BGAg) in human peripheral blood cells. BG and BGAg samples belonging to the system 58SiO2•(36-x)CaO·6P2O5·xAg2O, where x = 0 and 1 mol%, respectively, were synthesized via sol–gel method and characterized. Cytotoxicity, modulation of cytokine production (TNF-α, IL-1β, IL-6, IL-4, and IL-10), and oxidative stress response were investigated in human polymorphonuclear cells (PMNs) and peripheral blood mononuclear cells (PBMCs) cultures. Cell viability in the presence of BG or BGAg was concentration-dependent. In addition, BGAg presented higher PBMCs toxicity (LC50 = 0.005%) when compared to BG (LC50 = 0.106%). Interestingly, interleukin4 was produced by PBMCs in response to BG and BGAg in absence of phytohemagglutinin (PHA) and did not modulate PHA-induced cytokine levels. Subtoxic concentrations (0.031% for BG and 0.0008% for BGAg) did not change other cytokines in PBMCs nor reactive oxygen species (ROS) production by PMN. However, BG and BGAg particles decreased zymosan-induced ROS levels in PMN. Although ion incorporation increased BG cytotoxicity, the bioactive glass particles demonstrated a in vitro anti-inflammatory potencial. Future studies are needed to clarify the scavenger potential of the BG/BGAg particles/scaffolds as well as elucidate the effect of the anti-inflammatory potential in modulating tissue growth in vivo.
Collapse
|
128
|
Granel H, Bossard C, Nucke L, Wauquier F, Rochefort GY, Guicheux J, Jallot E, Lao J, Wittrant Y. Optimized Bioactive Glass: the Quest for the Bony Graft. Adv Healthc Mater 2019; 8:e1801542. [PMID: 30941912 DOI: 10.1002/adhm.201801542] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/25/2019] [Indexed: 12/21/2022]
Abstract
Technological advances have provided surgeons with a wide range of biomaterials. Yet improvements are still to be made, especially for large bone defect treatment. Biomaterial scaffolds represent a promising alternative to autologous bone grafts but in spite of the numerous studies carried out on this subject, no biomaterial scaffold is yet completely satisfying. Bioactive glass (BAG) presents many qualifying characteristics but they are brittle and their combination with a plastic polymer appears essential to overcome this drawback. Recent advances have allowed the synthesis of organic-inorganic hybrid scaffolds combining the osteogenic properties of BAG and the plastic characteristics of polymers. Such biomaterials can now be obtained at room temperature allowing organic doping of the glass/polymer network for a homogeneous delivery of the doping agent. Despite these new avenues, further studies are required to highlight the biological properties of these materials and particularly their behavior once implanted in vivo. This review focuses on BAG with a particular interest in their combination with polymers to form organic-inorganic hybrids for the design of innovative graft strategies.
Collapse
Affiliation(s)
- Henri Granel
- INRA, UMR 1019, UNH, CRNH Auvergne F‐63009 Clermont‐Ferrand France
- Université d'Auvergne, Unité de Nutrition HumaineClermont Université BP 10448 F‐63000 Clermont‐Ferrand France
| | - Cédric Bossard
- CNRS/IN2P3, Laboratoire de Physique de ClermontUniversité Clermont Auvergne BP 10448 F‐63000 Clermont‐Ferrand France
| | - Lisa Nucke
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Ressource Ecology‐Bautzner Landstraße 400 01328 Dresden Germany
| | - Fabien Wauquier
- INRA, UMR 1019, UNH, CRNH Auvergne F‐63009 Clermont‐Ferrand France
- Université d'Auvergne, Unité de Nutrition HumaineClermont Université BP 10448 F‐63000 Clermont‐Ferrand France
| | - Gael Y. Rochefort
- Faculté de Chirurgie Dentaire, Paris Descartes, EA2496, Laboratoires PathologiesImagerie et Biothérapies orofaciales 1 rue Maurice Arnoux 92120 Montrouge France
| | - Jérôme Guicheux
- Inserm, UMR 1229, RMeSRegenerative Medicine and SkeletonUniversité de Nantes, Oniris Nantes, F‐44042 France
- UFR OdontologieUniversité de Nantes Nantes, F‐44042, France
- CHU Nantes, PHU4 OTONNNantes, F‐44093, France
| | - Edouard Jallot
- CNRS/IN2P3, Laboratoire de Physique de ClermontUniversité Clermont Auvergne BP 10448 F‐63000 Clermont‐Ferrand France
| | - Jonathan Lao
- CNRS/IN2P3, Laboratoire de Physique de ClermontUniversité Clermont Auvergne BP 10448 F‐63000 Clermont‐Ferrand France
| | - Yohann Wittrant
- INRA, UMR 1019, UNH, CRNH Auvergne F‐63009 Clermont‐Ferrand France
- Université d'Auvergne, Unité de Nutrition HumaineClermont Université BP 10448 F‐63000 Clermont‐Ferrand France
| |
Collapse
|
129
|
Westhauser F, Karadjian M, Essers C, Senger AS, Hagmann S, Schmidmaier G, Moghaddam A. Osteogenic differentiation of mesenchymal stem cells is enhanced in a 45S5-supplemented β-TCP composite scaffold: an in-vitro comparison of Vitoss and Vitoss BA. PLoS One 2019; 14:e0212799. [PMID: 30811492 PMCID: PMC6392320 DOI: 10.1371/journal.pone.0212799] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/07/2019] [Indexed: 11/19/2022] Open
Abstract
Since the amount of autologous bone for the treatment of bone defects is limited and harvesting might cause complications, synthetic bone substitutes such as the popular β-tricalcium phosphate (β-TCP) based Vitoss have been developed as an alternative grafting material. β-TCPs exhibit osteoconductive properties, however material-initiated stimulation of osteogenic differentiation is limited. These limitations might be overcome by addition of 45S5 bioactive glass (BG) particles. This study aims to analyze the influence of BG particles in Vitoss BA (20 wt% BG particles with a size of 90–150 μm) on osteogenic properties, cell vitality and cell proliferation in direct comparison to Vitoss by evaluation of the underlying cellular mechanisms. For that purpose, Vitoss and Vitoss BA scaffolds were seeded with human mesenchymal stem cells (MSC) and underwent osteogenic differentiation in-vitro for up to 42 days. Cell vitality, proliferation, and osteogenic differentiation were monitored by quantitative gene expression analysis, determination of alkaline phosphatase activity, PrestoBlue cell viability assay, dsDNA quantification, and a fluorescence-microscopy-based live/dead-assay. It was demonstrated that BG particles decrease cell proliferation but do not have a negative impact on cell vitality. Especially the early stages of osteogenic differentiation were significantly improved in the presence of BG particles, resulting in earlier maturation of the MSC towards osteoblasts. Since most of the stimulatory effects induced by BG particles took place initially, particles exhibiting another surface-area-to-volume ratio should be considered in order to provide long-lasting stimulation.
Collapse
Affiliation(s)
- Fabian Westhauser
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
- * E-mail:
| | - Maria Karadjian
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Christopher Essers
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Anne-Sophie Senger
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Sébastien Hagmann
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Gerhard Schmidmaier
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Arash Moghaddam
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
- ATORG—Aschaffenburg Trauma and Orthopedic Research Group, Center for Trauma Surgery, Orthopedics, and Sports Medicine, Klinikum Aschaffenburg-Alzenau, Aschaffenburg, Germany
| |
Collapse
|
130
|
Influence of proteins on the corrosion behavior of a chitosan-bioactive glass coated magnesium alloy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:706-714. [PMID: 30948108 DOI: 10.1016/j.msec.2019.02.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 01/30/2019] [Accepted: 02/10/2019] [Indexed: 12/14/2022]
Abstract
The current study explored the degradation behavior of a WE43 Mg alloy during immersion tests in Dulbecco's Modified Eagle's Medium (DMEM) for 3d and 7d, for a bare alloy surface as well as for samples with surface pre-treatment, and finally for samples coated with chitosan-bioactive glass. The immersion tests were conducted with and without addition of serum, to study the influence of proteins on the degradation process. Mass-loss was measured to determine the corrosion rate after 3d and 7d of immersion. The samples were analyzed by SEM with respect to their surface morphology and the chemical composition was screened by high-resolution XPS. The results demonstrate not only a significant, time-dependent influence of serum addition on the corrosion behavior of the materials studied, but noteworthy is that depending on the sample type, proteins in solution were observed to either accelerate or inhibit corrosion. These results are discussed in correlation to observed changes in surface chemistry taking place upon immersion in the absence and presence of proteins.
Collapse
|
131
|
Matter MT, Furer LA, Starsich FHL, Fortunato G, Pratsinis SE, Herrmann IK. Engineering the Bioactivity of Flame-Made Ceria and Ceria/Bioglass Hybrid Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2830-2839. [PMID: 30571079 DOI: 10.1021/acsami.8b18778] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Despite its use as a highly efficient and reusable catalyst in research and industrial settings, cerium oxide nanoparticles or nanoceria have yet to gain a foothold in the biomedical field. A variety of beneficial effects of nanoceria have been demonstrated, including its use as an inorganic nanoenzyme to mimic antioxidant enzymes, to protect mammalian cells, and to suppress microbial growth. While these properties are of high interest for wound-management applications, the literature offers contradicting reports on toxicity and enzymatic activity of nanoceria. These discrepancies can be attributed to differences between synthesis methods and insufficient physicochemical characterization, leading to incomparable studies. The activity of nanoceria is mostly governed by its Ce3+/Ce4+ ratio which needs to be controlled to compare different nanoceria systems. In this work, we demonstrate that liquid-feed flame spray pyrolysis offers excellent control over the oxidation state in a one-step synthesis of nanoceria. This control allows a comprehensive comparison of different types of ceria nanoparticles. We connect physicochemical characteristics to biomedically relevant properties such as superoxide dismutase and catalase mimicry, human monocyte and macrophage protection, and antimicrobial activity. Furthermore, we demonstrate how the synthesis method also allows tailoring the properties of ceria/bioglass hybrid nanoparticles, thus creating nanoparticles with manifold biomedical prospects.
Collapse
Affiliation(s)
- Martin T Matter
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life , Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
- Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering , ETH Zurich , Sonneggstrasse 3 , CH-8092 Zurich , Switzerland
| | - Lea A Furer
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life , Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| | - Fabian H L Starsich
- Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering , ETH Zurich , Sonneggstrasse 3 , CH-8092 Zurich , Switzerland
| | - Giuseppino Fortunato
- Laboratory for Biomimetic Membranes and Textiles, Department of Materials Meet Life , Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| | - Sotiris E Pratsinis
- Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering , ETH Zurich , Sonneggstrasse 3 , CH-8092 Zurich , Switzerland
| | - Inge K Herrmann
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life , Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| |
Collapse
|
132
|
Karadjian M, Essers C, Tsitlakidis S, Reible B, Moghaddam A, Boccaccini AR, Westhauser F. Biological Properties of Calcium Phosphate Bioactive Glass Composite Bone Substitutes: Current Experimental Evidence. Int J Mol Sci 2019; 20:ijms20020305. [PMID: 30646516 PMCID: PMC6359412 DOI: 10.3390/ijms20020305] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/19/2022] Open
Abstract
Standard treatment for bone defects is the biological reconstruction using autologous bone—a therapeutical approach that suffers from limitations such as the restricted amount of bone available for harvesting and the necessity for an additional intervention that is potentially followed by donor-site complications. Therefore, synthetic bone substitutes have been developed in order to reduce or even replace the usage of autologous bone as grafting material. This structured review focuses on the question whether calcium phosphates (CaPs) and bioactive glasses (BGs), both established bone substitute materials, show improved properties when combined in CaP/BG composites. It therefore summarizes the most recent experimental data in order to provide a better understanding of the biological properties in general and the osteogenic properties in particular of CaP/BG composite bone substitute materials. As a result, BGs seem to be beneficial for the osteogenic differentiation of precursor cell populations in-vitro when added to CaPs. Furthermore, the presence of BG supports integration of CaP/BG composites into bone in-vivo and enhances bone formation under certain circumstances.
Collapse
Affiliation(s)
- Maria Karadjian
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
| | - Christopher Essers
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
| | - Stefanos Tsitlakidis
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
| | - Bruno Reible
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
| | - Arash Moghaddam
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
- ATORG-Aschaffenburg Trauma and Orthopedics Research Group, Center for Trauma Surgery, Orthopedics, and Sports Medicine, Klinikum Aschaffenburg-Alzenau, Am Hasenkopf 1, 63739 Aschaffenburg, Germany.
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany.
| | - Fabian Westhauser
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
| |
Collapse
|
133
|
Raja FNS, Worthington T, Isaacs MA, Forto Chungong L, Burke B, Addison O, Martin RA. The Antimicrobial Efficacy of Hypoxia Mimicking Cobalt Oxide Doped Phosphate-Based Glasses against Clinically Relevant Gram Positive, Gram Negative Bacteria and a Fungal Strain. ACS Biomater Sci Eng 2019; 5:283-293. [PMID: 33405859 DOI: 10.1021/acsbiomaterials.8b01045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bioactive phosphate glasses are of considerable interest for a range of soft and hard tissue engineering applications. The glasses are degradable and can release biologically important ions in a controlled manner. The glasses can also potentially be used as an antimicrobial delivery system. In the given study, novel cobalt-doped phosphate-based glasses, (P2O5)50(Na2O)20(CaO)30-x(CoO)x where 0 ≤ x (mol %) ≤ 10, were manufactured and characterized. As the cobalt oxide concentration increased, the rate of dissolution was observed to decrease. The antimicrobial potential of the glasses was studied using direct and indirect contact methods against both Escherichia coli (NCTC 10538) Staphylococcus aureus (ATCC 6538) and Candida albicans (ATCC 76615). The results showed strong, time dependent, and strain specific antimicrobial activity of the glasses against microorganisms when in direct contact. Antimicrobial activity (R) ≥ 2 was observed within 2 h against Escherichia coli, whereas a similar effect was achieved in 6 h against Staphylococcus aureus and Candida albicans. However, when in indirect contact, the dissolution products from the bioactive glasses failed to show an antimicrobial effect. Following direct exposure to the glasses for 7 days, osteoblast-like SAOS-2 cells showed a 5-fold increase in VEGF mRNA while THP-1 monocytic cells showed a 4-fold increase in VEGF mRNA expression when exposed to 10% CoO-doped glass compared with the cobalt free control glass. Endothelial cells stimulated with conditioned medium taken from cell cultures of THP-1 monocytes exposed to 10% CoO doped glass showed clear tubelike structure (blood vessel) formation after 4 h.
Collapse
Affiliation(s)
- Farah N S Raja
- School of Life & Health Science and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham, B4 7ET, United Kingdom
| | - T Worthington
- School of Life & Health Science and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham, B4 7ET, United Kingdom
| | - Mark A Isaacs
- Department of Chemistry, University College London, 20 Gordon Street, Kings Cross, London, WC1H 0AJ, United Kingdom
| | - Louis Forto Chungong
- School of Engineering & Applied Science and Aston Institute of Materials Research. Aston University, Aston Triangle, Birmingham, B4 7ET, United Kingdom
| | - Bernard Burke
- School of Life Sciences, Coventry University, Coventry, CV1 2DS, United Kingdom.,Biomaterials Unit, University of Birmingham School of Dentistry, Birmingham, B5 7EG, United Kingdom
| | - Owen Addison
- Biomaterials Unit, University of Birmingham School of Dentistry, Birmingham, B5 7EG, United Kingdom.,University of Alberta, School of Dentistry, Edmonton, Alberta Canada, T6G 1C9
| | - Richard A Martin
- School of Engineering & Applied Science and Aston Institute of Materials Research. Aston University, Aston Triangle, Birmingham, B4 7ET, United Kingdom
| |
Collapse
|
134
|
Kyffin BA, Foroutan F, Raja FNS, Martin RA, Pickup DM, Taylor SE, Carta D. Antibacterial silver-doped phosphate-based glasses prepared by coacervation. J Mater Chem B 2019; 7:7744-7755. [DOI: 10.1039/c9tb02195g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein we report synthesis, characterization and antimicrobial activity of bioresorbable silver-doped polyphosphate glasses, produced via the coacervation method.
Collapse
Affiliation(s)
| | | | - Farah N. S. Raja
- School of Engineering & Applied Science and Aston Institute for Materials Research
- Aston University
- Aston Triangle
- Birmingham
- UK
| | - Richard A. Martin
- School of Engineering & Applied Science and Aston Institute for Materials Research
- Aston University
- Aston Triangle
- Birmingham
- UK
| | - David M. Pickup
- School of Physical Sciences
- Ingram Building
- University of Kent
- Kent
- UK
| | | | - Daniela Carta
- Department of Chemistry
- University of Surrey
- Guildford
- UK
| |
Collapse
|
135
|
Anand A, Lalzawmliana V, Kumar V, Das P, Devi KB, Maji AK, Kundu B, Roy M, Nandi SK. Preparation and in vivo biocompatibility studies of different mesoporous bioactive glasses. J Mech Behav Biomed Mater 2019; 89:89-98. [DOI: 10.1016/j.jmbbm.2018.09.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 01/13/2023]
|
136
|
Kandelousi PS, Rabiee SM, Jahanshahi M, Nasiri F. The effect of bioactive glass nanoparticles on polycaprolactone/chitosan scaffold: Melting enthalpy and cell viability. J BIOACT COMPAT POL 2018. [DOI: 10.1177/0883911518819109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Peyman Sheikholeslami Kandelousi
- Department of Materials Engineering, Babol Noshirvani University of Technology, Babol, Iran
- Nanobiotechnology Research Group, Nanotechnology Research Institute, Babol Noshirvani University of Technology, Babol, Iran
| | - Sayed Mahmood Rabiee
- Department of Materials Engineering, Babol Noshirvani University of Technology, Babol, Iran
- Nanobiotechnology Research Group, Nanotechnology Research Institute, Babol Noshirvani University of Technology, Babol, Iran
| | - Mohsen Jahanshahi
- Nanobiotechnology Research Group, Nanotechnology Research Institute, Babol Noshirvani University of Technology, Babol, Iran
- Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Fatemeh Nasiri
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
137
|
Fernandes HR, Gaddam A, Rebelo A, Brazete D, Stan GE, Ferreira JMF. Bioactive Glasses and Glass-Ceramics for Healthcare Applications in Bone Regeneration and Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E2530. [PMID: 30545136 PMCID: PMC6316906 DOI: 10.3390/ma11122530] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022]
Abstract
The discovery of bioactive glasses (BGs) in the late 1960s by Larry Hench et al. was driven by the need for implant materials with an ability to bond to living tissues, which were intended to replace inert metal and plastic implants that were not well tolerated by the body. Among a number of tested compositions, the one that later became designated by the well-known trademark of 45S5 Bioglass® excelled in its ability to bond to bone and soft tissues. Bonding to living tissues was mediated through the formation of an interfacial bone-like hydroxyapatite layer when the bioglass was put in contact with biological fluids in vivo. This feature represented a remarkable milestone, and has inspired many other investigations aiming at further exploring the in vitro and in vivo performances of this and other related BG compositions. This paradigmatic example of a target-oriented research is certainly one of the most valuable contributions that one can learn from Larry Hench. Such a goal-oriented approach needs to be continuously stimulated, aiming at finding out better performing materials to overcome the limitations of the existing ones, including the 45S5 Bioglass®. Its well-known that its main limitations include: (i) the high pH environment that is created by its high sodium content could turn it cytotoxic; (ii) and the poor sintering ability makes the fabrication of porous three-dimensional (3D) scaffolds difficult. All of these relevant features strongly depend on a number of interrelated factors that need to be well compromised. The selected chemical composition strongly determines the glass structure, the biocompatibility, the degradation rate, and the ease of processing (scaffolds fabrication and sintering). This manuscript presents a first general appraisal of the scientific output in the interrelated areas of bioactive glasses and glass-ceramics, scaffolds, implant coatings, and tissue engineering. Then, it gives an overview of the critical issues that need to be considered when developing bioactive glasses for healthcare applications. The aim is to provide knowledge-based tools towards guiding young researchers in the design of new bioactive glass compositions, taking into account the desired functional properties.
Collapse
Affiliation(s)
- Hugo R Fernandes
- Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Anuraag Gaddam
- Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Avito Rebelo
- Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Daniela Brazete
- Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - George E Stan
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
| | - José M F Ferreira
- Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
138
|
Lalzawmliana V, Anand A, Kumar V, Das P, Devi KB, Mukherjee J, Maji AK, Kundu B, Roy M, Nandi SK. Potential of growth factor incorporated mesoporous bioactive glass for in vivo bone regeneration. J Mech Behav Biomed Mater 2018; 91:182-192. [PMID: 30583264 DOI: 10.1016/j.jmbbm.2018.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 02/05/2023]
Abstract
Mesoporous bioactive glass (MBG) has drawn much attention due to its superior surface texture, porosity and bioactive characteristics. Aim of the present study is to synthesize MBG using different surfactants, viz., hexadecyltrimethylamonium(CTAB) (M1), poly-ethylene glycol (PEG) (M2) and pluronic P123 (M3); bioactivity study; and to understand their bone regeneration efficacy in combination with insulin-like growth factors (IGF-1) in animal bone defect model. SBF study revealed the formation of calcium carbonate (CaCO3) and hydroxyapatite (HAp) phase over 14 days. Formation of apatite layer was further confirmed by FTIR, FESEM and EDX analysis. M1 and M2 showed improved crystallinity, while M3 showed slightly decrease in crystalline peak of CaCO3 and enhanced HAp phase. More Ca-P layer formed in M1 and M2 supported the in vivo experiments subsequently. Degree of new bone formation for all MBGs were high, i.e., M1 (80.7 ± 2.9%), M2 (74.4 ± 2.4%) and M3 (70.1 ± 1.9%) compared to BG (66.9 ± 1.8%). In vivo results indicated that the materials were non-toxic, biodegradable, biocompatible, and is suitable as bone replacement materials. Thus, we concluded that growth factor loaded MBG is a promising candidate for bone tissue engineering application.
Collapse
Affiliation(s)
- V Lalzawmliana
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Akrity Anand
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, India
| | - Vinod Kumar
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Piyali Das
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - K Bavya Devi
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Jayanta Mukherjee
- Department of Animal Resources Development Department, Government of West Bengal, Kolkata, India
| | - Asit Kumar Maji
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Biswanath Kundu
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, India.
| | - Mangal Roy
- Department of Animal Resources Development Department, Government of West Bengal, Kolkata, India.
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India.
| |
Collapse
|
139
|
Soliman IES, Metawa AES, Aboelnasr MAH, Eraba KT. Surface treatment of sol-gel bioglass using dielectric barrier discharge plasma to enhance growth of hydroxyapatite. KOREAN J CHEM ENG 2018. [DOI: 10.1007/s11814-018-0131-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
140
|
Wu J, Miao G, Zheng Z, Li Z, Ren W, Wu C, Li Y, Huang Z, Yang L, Guo L. 3D printing mesoporous bioactive glass/sodium alginate/gelatin sustained release scaffolds for bone repair. J Biomater Appl 2018; 33:755-765. [DOI: 10.1177/0885328218810269] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Drug delivery and release are a major challenge fabricating bone tissue engineering. In this study, we fabricated new sustained release hydrogel scaffolds composited of mesoporous bioactive glass, sodium alginate and gelatin by a three-dimensional printing technique. Naringin and calcitonin gene-related peptide were used as drugs to prepare drug-loaded scaffolds by direct printing or surface absorption. The physicochemical properties of the scaffolds and the drug release profiles of the two drug-loading models were investigated. We also examined the biocompatibility of the scaffolds, as well as the effect of the released medium on the proliferation and osteogenic differentiation of human osteoblast-like MG-63 cell. The results showed that the scaffolds had a high porosity (approximately 80%) with an interconnected cubic pore structure, rough surface morphology, bioactivity and strong biocompatibility. Furthermore, the naringin or calcitonin gene-related peptide co-printed into the scaffold displayed a steady sustained release behaviour for up to 21 days without an initial burst release, while both naringin and calcitonin gene-related peptide absorbed onto the surface of the scaffold were completely released within two days. MG-63 cells cultured with the extraction containing released drugs displayed promoted cell proliferation and the expression of osteogenesis-related genes more effectively compared with the drug-free extractions. Therefore, these results demonstrate that the developed mesoporous bioactive glass/sodium alginate/gelatin sustained release scaffolds provide a potential application for bone tissue engineering.
Collapse
|
141
|
Qazi TH, Berkmann JC, Schoon J, Geißler S, Duda GN, Boccaccini AR, Lippens E. Dosage and composition of bioactive glasses differentially regulate angiogenic and osteogenic response of human MSCs. J Biomed Mater Res A 2018; 106:2827-2837. [PMID: 30281904 DOI: 10.1002/jbm.a.36470] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/03/2018] [Accepted: 05/24/2018] [Indexed: 12/14/2022]
Abstract
Vascularization of the fracture site and cell-mediated deposition of the mineralized matrix are crucial determinants for successful bone regeneration after injury. Ceramic biomaterials such as bioactive glasses (BAGs) that release bioactive ions have shown promising results in bone defect regeneration. However, it remains unclear how the dosage and composition of bioactive ions influence the angiogenic and osteogenic behavior of primary human mesenchymal stromal cells (MSCs). Here, we show that exposure to ionic dissolution products from 1393 and 45S5 BAGs can evoke distinct angiogenic and osteogenic responses from primary MSCs in a dose- and composition-dependent manner. Significantly higher concentrations of the pro-angiogenic factors VEGF, HGF, PIGF, angiopoietin, and angiogenin were detected in conditioned media (CM) from MSCs exposed to 45S5, but not 1393, BAGs. Application of this CM to human umbilical vein endothelial cells (HUVECs) resulted in robust 2D tube formation in vitro. Osteogenic differentiation of MSCs was assessed by gene expression analysis and mineralization assays. Low concentrations (0.1% w/v) of 1393 BAGs significantly enhanced the gene expression of RUNX2 and ALP and induced an earlier onset of matrix mineralization compared to all other groups. We further tested whether simultaneous exposure to both BAGs would improve both angiogenic secretion and osteogenic differentiation of MSCs, and did not find evidence to support this hypothesis. Our results provide evidence of BAG composition-dependent enhancement of primary human MSCs' regenerative function, besides also underlining the importance of an in vitro evaluation of the dose-response relationship to translate BAG based approaches into safe and effective clinical therapies. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2827-2837, 2018., 2018.
Collapse
Affiliation(s)
- Taimoor H Qazi
- Julius Wolff Institute, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies & Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Julia C Berkmann
- Julius Wolff Institute, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies & Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Janosch Schoon
- Julius Wolff Institute, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies & Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sven Geißler
- Julius Wolff Institute, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies & Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies & Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058, Erlangen, Germany
| | - Evi Lippens
- Julius Wolff Institute, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies & Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
142
|
Ur Rehman MA, Bastan FE, Nawaz Q, Goldmann WH, Maqbool M, Virtanen S, Boccaccini AR. Electrophoretic deposition of lawsone loaded bioactive glass (BG)/chitosan composite on polyetheretherketone (PEEK)/BG layers as antibacterial and bioactive coating. J Biomed Mater Res A 2018; 106:3111-3122. [DOI: 10.1002/jbm.a.36506] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/24/2018] [Accepted: 07/12/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Muhammad Atiq Ur Rehman
- Department of Materials Science and Engineering; Institute of Biomaterials, University of Erlangen-Nuremberg; Cauerstr.6, 91058 Erlangen Germany
| | - Fatih Erdem Bastan
- Department of Materials Science and Engineering; Institute of Biomaterials, University of Erlangen-Nuremberg; Cauerstr.6, 91058 Erlangen Germany
- Engineering Faculty, Department of Metallurgy and Materials Engineering, Thermal Spray Research and Development Laboratory; Sakarya University; 54187, Esentepe, Sakarya Turkey
| | - Qaisar Nawaz
- Department of Materials Science and Engineering; Institute of Biomaterials, University of Erlangen-Nuremberg; Cauerstr.6, 91058 Erlangen Germany
| | - Wolfgang H. Goldmann
- Department of Biophysics; Friedrich-Alexander-University; Erlangen-Nuremberg, Henkstr.91, 91052 Erlangen Germany
| | - Muhammad Maqbool
- Department of Materials Science and Engineering; Institute of Biomaterials, University of Erlangen-Nuremberg; Cauerstr.6, 91058 Erlangen Germany
| | - Sannakaisa Virtanen
- Department of Materials Science and Engineering; Chair for Surface Science of Corrosion, University of Erlangen-Nuremberg; Martenstr. 5-7, 91058 Erlangen Germany
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering; Institute of Biomaterials, University of Erlangen-Nuremberg; Cauerstr.6, 91058 Erlangen Germany
| |
Collapse
|
143
|
Inflammatory-Driven Angiogenesis in Bone Augmentation with Bovine Hydroxyapatite, B-Tricalcium Phosphate, and Bioglasses: A Comparative Study. J Immunol Res 2018; 2018:9349207. [PMID: 30298138 PMCID: PMC6157209 DOI: 10.1155/2018/9349207] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/12/2018] [Accepted: 07/25/2018] [Indexed: 01/30/2023] Open
Abstract
Introduction The clinical use of bioactive materials for bone augmentation has remained a challenge because of predictability and effectiveness concerns, as well as increased costs. The purpose of this study was to analyse the ability to integrate bone substitutes by evaluating the immunohistochemical expression of the platelet endothelial cell adhesion molecules, vascular endothelial growth factor, collagen IV, laminin, and osteonectin, in the vicinity of bone grafts, enabling tissue revascularization and appearance of bone lamellae. There is a lack of in vivo studies of inflammatory-driven angiogenesis in bone engineering using various grafts. Methods The study was performed in animal experimental model on the standardized monocortical defects in the tibia of 20 New Zealand rabbits. The defects were augmented with three types of bone substituents. The used bone substituents were beta-tricalcium phosphate, bovine hydroxyapatite, and bioactive glasses. After a period of 6 months, bone fragments were harvested for histopathologic examination. Endothelial cell analysis was done by analysing vascularization with PECAM/CD31 and VEGF and fibrosis with collagen IV, laminin, and osteonectin stains. Statistical analysis was realized by descriptive analysis which was completed with the kurtosis and skewness as well as the Kruskal-Wallis and Mann-Whitney statistical tests. Results The discoveries show that the amount of bone that is formed around beta-tricalcium phosphate and bovine hydroxyapatite is clearly superior to the bioactive glasses. Both the lumen diameter and the number of vessels were slightly increased in favor of beta-tricalcium phosphate. Conclusion We can conclude that bone substitutes as bovine bone and beta-tricalcium phosphate have significant increased angiogenesis (and subsequent improved osteogenesis) compared to the bioactive glass. In our study, significant angiogenesis is linked with a greater tissue formation, indicating that in bone engineering with the allografts we used, inflammation has more benefic effects, the catabolic action being exceeded by the tissue formation.
Collapse
|
144
|
Souza L, Lopes JH, Encarnação D, Mazali IO, Martin RA, Camilli JA, Bertran CA. Comprehensive in vitro and in vivo studies of novel melt-derived Nb-substituted 45S5 bioglass reveal its enhanced bioactive properties for bone healing. Sci Rep 2018; 8:12808. [PMID: 30143690 PMCID: PMC6109119 DOI: 10.1038/s41598-018-31114-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/02/2018] [Indexed: 12/15/2022] Open
Abstract
The present work presents and discusses the results of a comprehensive study on the bioactive properties of Nb-substituted silicate glass derived from 45S5 bioglass. In vitro and in vivo experiments were performed. We undertook three different types of in vitro analyses: (i) investigation of the kinetics of chemical reactivity and the bioactivity of Nb-substituted glass in simulated body fluid (SBF) by 31P MASNMR spectroscopy, (ii) determination of ionic leaching profiles in buffered solution by inductively coupled plasma optical emission spectrometry (ICP-OES), and (iii) assessment of the compatibility and osteogenic differentiation of human embryonic stem cells (hESCs) treated with dissolution products of different compositions of Nb-substituted glass. The results revealed that Nb-substituted glass is not toxic to hESCs. Moreover, adding up to 1.3 mol% of Nb2O5 to 45S5 bioglass significantly enhanced its osteogenic capacity. For the in vivo experiments, trial glass rods were implanted into circular defects in rat tibia in order to evaluate their biocompatibility and bioactivity. Results showed all Nb-containing glass was biocompatible and that the addition of 1.3 mol% of Nb2O5, replacing phosphorous, increases the osteostimulation of bioglass. Therefore, these results support the assertion that Nb-substituted glass is suitable for biomedical applications.
Collapse
Affiliation(s)
- Lucas Souza
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, 13083-862, Campinas, SP, Brazil
| | - João Henrique Lopes
- Department of Physical Chemistry, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, 13083-970, Campinas, SP, Brazil.
| | - Davi Encarnação
- Department of Physical Chemistry, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, 13083-970, Campinas, SP, Brazil
| | - Italo Odone Mazali
- Laboratory of Functional Materials, Department of Inorganic Chemistry, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, 13083-970, Campinas, SP, Brazil
| | - Richard Alan Martin
- School of Engineering & Aston Research Centre for Healthy Ageing, Aston University, B47ET, Birmingham, United Kingdom
| | - José Angelo Camilli
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, 13083-862, Campinas, SP, Brazil
| | - Celso Aparecido Bertran
- Department of Physical Chemistry, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, 13083-970, Campinas, SP, Brazil
| |
Collapse
|
145
|
Midha S, Kumar S, Sharma A, Kaur K, Shi X, Naruphontjirakul P, Jones JR, Ghosh S. Silk fibroin-bioactive glass based advanced biomaterials: towards patient-specific bone grafts. Biomed Mater 2018; 13:055012. [DOI: 10.1088/1748-605x/aad2a9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
146
|
Hsu FY, Hsu HW, Chang YH, Yu JL, Rau LR, Tsai SW. Macroporous microbeads containing apatite-modified mesoporous bioactive glass nanofibres for bone tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:346-354. [DOI: 10.1016/j.msec.2018.04.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 03/20/2018] [Accepted: 04/12/2018] [Indexed: 10/17/2022]
|
147
|
Cao J, Lu Y, Chen H, Zhang L, Xiong C. Preparation, properties and in vitro cellular response of multi-walled carbon nanotubes/bioactive glass/poly(etheretherketone) biocomposite for bone tissue engineering. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1455679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Jianfei Cao
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Lu
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hechun Chen
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
| | - Lifang Zhang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
| | - Chengdong Xiong
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
148
|
Baino F, Hamzehlou S, Kargozar S. Bioactive Glasses: Where Are We and Where Are We Going? J Funct Biomater 2018; 9:E25. [PMID: 29562680 PMCID: PMC5872111 DOI: 10.3390/jfb9010025] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 03/11/2018] [Accepted: 03/16/2018] [Indexed: 12/31/2022] Open
Abstract
Bioactive glasses caused a revolution in healthcare and paved the way for modern biomaterial-driven regenerative medicine. The first 45S5 glass composition, invented by Larry Hench fifty years ago, was able to bond to living bone and to stimulate osteogenesis through the release of biologically-active ions. 45S5-based glass products have been successfully implanted in millions of patients worldwide, mainly to repair bone and dental defects and, over the years, many other bioactive glass compositions have been proposed for innovative biomedical applications, such as soft tissue repair and drug delivery. The full potential of bioactive glasses seems still yet to be fulfilled, and many of today's achievements were unthinkable when research began. As a result, the research involving bioactive glasses is highly stimulating and requires a cross-disciplinary collaboration among glass chemists, bioengineers, and clinicians. The present article provides a picture of the current clinical applications of bioactive glasses, and depicts six relevant challenges deserving to be tackled in the near future. We hope that this work can be useful to both early-stage researchers, who are moving with their first steps in the world of bioactive glasses, and experienced scientists, to stimulate discussion about future research and discover new applications for glass in medicine.
Collapse
Affiliation(s)
- Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Sepideh Hamzehlou
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, 14155-6447 Tehran, Iran.
- Medical Genetics Network (MeGeNe), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Saeid Kargozar
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, P.O. Box 917794-8564, Mashhad, Iran.
| |
Collapse
|
149
|
Fiume E, Barberi J, Verné E, Baino F. Bioactive Glasses: From Parent 45S5 Composition to Scaffold-Assisted Tissue-Healing Therapies. J Funct Biomater 2018; 9:E24. [PMID: 29547544 PMCID: PMC5872110 DOI: 10.3390/jfb9010024] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 12/16/2022] Open
Abstract
Nowadays, bioactive glasses (BGs) are mainly used to improve and support the healing process of osseous defects deriving from traumatic events, tumor removal, congenital pathologies, implant revisions, or infections. In the past, several approaches have been proposed in the replacement of extensive bone defects, each one with its own advantages and drawbacks. As a result, the need for synthetic bone grafts is still a remarkable clinical challenge since more than 1 million bone-graft surgical operations are annually performed worldwide. Moreover, recent studies show the effectiveness of BGs in the regeneration of soft tissues, too. Often, surgical criteria do not match the engineering ones and, thus, a compromise is required for getting closer to an ideal outcome in terms of good regeneration, mechanical support, and biocompatibility in contact with living tissues. The aim of the present review is providing a general overview of BGs, with particular reference to their use in clinics over the last decades and the latest synthesis/processing methods. Recent advances in the use of BGs in tissue engineering are outlined, where the use of porous scaffolds is gaining growing importance thanks to the new possibilities given by technological progress extended to both manufacturing processes and functionalization techniques.
Collapse
Affiliation(s)
- Elisa Fiume
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Jacopo Barberi
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Enrica Verné
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
150
|
Schumacher M, Reither L, Thomas J, Kampschulte M, Gbureck U, Lode A, Gelinsky M. Calcium phosphate bone cement/mesoporous bioactive glass composites for controlled growth factor delivery. Biomater Sci 2018; 5:578-588. [PMID: 28154869 DOI: 10.1039/c6bm00903d] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Calcium phosphate (CaP) bone cements are widely used for the treatment of bone defects and have been proposed to serve as a delivery platform for therapeutic drugs, proteins and growth factors into the defect region. However, they lack sufficient porosity to allow immediate bone ingrowth and thus foster rapid integration into the bone tissue. In this study we investigated a composite prepared from a hydroxyapatite forming bone cement and mesoporous bioactive glass (MBG) granules as a potential carrier for biologically active proteins. The mechanical properties of the composite were not compromised by up to 10 wt% MBG granule addition, which can be attributed to the strong interface between the cement matrix and MBG particles, however this modification induced a significant increase in porosity within 3 weeks ageing in an aqueous liquid. The release profiles of two proteins, lysozyme and the vascular endothelial growth factor (VEGF), could be controlled when they were loaded onto MBG granules that were subsequently embedded into the cement when compared to direct loading into the cement precursor. Both proteins were also demonstrated to maintain their biologic activity during embedding and release from the composite. These findings suggest the CaP bone cement/MBG composite developed in this study as a potential delivery platform for growth factors or other bioactive substances.
Collapse
Affiliation(s)
- M Schumacher
- Centre for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital, Technische Universität Dresden, Dresden, Germany.
| | - L Reither
- Centre for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital, Technische Universität Dresden, Dresden, Germany.
| | - J Thomas
- Leibniz Institute for Solid State and Materials Research (IFW), Dresden, Germany
| | - M Kampschulte
- Department of Diagnostic and Interventional Radiology, University Hospital Giessen, Germany and Laboratory of Experimental Radiology, Justus Liebig University Giessen, Germany
| | - U Gbureck
- Department of Functional Materials in Medicine and Dentistry, University of Würzburg, Germany
| | - A Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital, Technische Universität Dresden, Dresden, Germany.
| | - M Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|