101
|
Wang J, Wang H, Wang Y, Liu Z, Li Z, Li J, Chen Q, Meng Q, Shu WW, Wu J, Xiao C, Han F, Li B. Endothelialized microvessels fabricated by microfluidics facilitate osteogenic differentiation and promote bone repair. Acta Biomater 2022; 142:85-98. [PMID: 35114373 DOI: 10.1016/j.actbio.2022.01.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/08/2023]
Abstract
In bone tissue engineering, vascularization is one of the critical factors that limit the effect of biomaterials for bone repair. While various approaches have been tried to build vascular networks in bone grafts, lack of endothelialization still constitutes a major technical hurdle. In this study, we have developed a facile technique to fabricate endothelialized biomimetic microvessels (BMVs) from alginate-collagen composite hydrogels within a single step using microfluidic technology. BMVs with different sizes could be readily prepared by adjusting the flow rate of microfluids. All BMVs supported perfusion and outward penetration of substances in the tube. Endothelial cells could adhere and proliferate on the inner wall of tubes. It was also found that the expression of CD31 and secretion of BMP-2 and PDGF-BB were higher in the rat umbilical vein endothelial cells (RUVECs) in BMVs than those cultured on hydrogel. When co-cultured with bone marrow mesenchymal stem cells (BMSCs), endothelialized BMVs promoted the osteogenic differentiation of BMSCs compared to those in acellular BMV group. In vivo, markedly enhanced new bone formation was achieved by endothelialized BMVs in a rat critical-sized calvarial defect model compared to those with non-endothelialized BMVs or without BMVs. Together, findings from both in vitro and in vivo studies have proven that endothelialized BMVs function to facilitate osteogenesis and promote bone regeneration, and therefore might present an effective strategy in bone tissue engineering. STATEMENT OF SIGNIFICANCE: In bone tissue engineering, limited vascularization is one of the critical factors that limit the effect of biomaterials for bone repair. In this study, we developed a facile technique to fabricate endothelialized biomimetic microvessels (BMVs) from alginate-collagen composite hydrogels within a single step using microfluidic technology. Both in vitro and in vivo studies have proven that endothelialized BMVs function to facilitate osteogenesis and promote bone regeneration, and therefore might present an effective strategy in bone tissue engineering.
Collapse
|
102
|
Hixon KR, Miller AN. Animal models of impaired long bone healing and tissue engineering- and cell-based in vivo interventions. J Orthop Res 2022; 40:767-778. [PMID: 35072292 DOI: 10.1002/jor.25277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/05/2021] [Accepted: 01/16/2022] [Indexed: 02/04/2023]
Abstract
Bone healing after injury typically follows a systematic process and occurs spontaneously under appropriate physiological conditions. However, impaired long bone healing is still quite common and may require surgical intervention. Various complications can result in different forms of impaired bone healing including nonunion, critical-size defects, or stress fractures. While a nonunion may occur due to impaired biological signaling and/or mechanical instability, a critical-size defect exhibits extensive bone loss that will not spontaneously heal. Comparatively, a stress fracture occurs from repetitive forces and results in a non-healing crack or break in the bone. Clinical standards of treatment vary between these bone defects due to their pathological differences. The use of appropriate animal models for modeling healing defects is critical to improve current treatment methods and develop novel rescue therapies. This review provides an overview of these clinical bone healing impairments and current animal models available to study the defects in vivo. The techniques used to create these models are compared, along with the outcomes, to clarify limitations and future objectives. Finally, rescue techniques focused on tissue engineering and cell-based therapies currently applied in animal models are specifically discussed to analyze their ability to initiate healing at the defect site, providing information regarding potential future therapies. In summary, this review focuses on the current animal models of nonunion, critical-size defects, and stress fractures, as well as interventions that have been tested in vivo to provide an overview of the clinical potential and future directions for improving bone healing.
Collapse
Affiliation(s)
- Katherine R Hixon
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA.,Thayer School of Engineering, Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Anna N Miller
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
103
|
Zheng X, Gan S, Su C, Zheng Z, Liao Y, Shao J, Zhu Z, Chen W. Screening and preliminary identification of long non-coding RNAs critical for osteogenic differentiation of human umbilical cord mesenchymal stem cells. Bioengineered 2022; 13:6880-6894. [PMID: 35249446 PMCID: PMC8973756 DOI: 10.1080/21655979.2022.2044274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Human umbilical cord mesenchymal stem cells (hUCMSCs) are attractive therapeutic cells for tissue engineering to treat bone defects. However, how the cells can differentiate into bone remains unclear. Long non-coding RNAs (lncRNAs) are non-coding RNAs that participate in many biological processes, including stem cell differentiation. In this study, we investigated the profiles and functions of lncRNAs in the osteogenic differentiation of hUCMSCs. We identified 343 lncRNAs differentially expressed during osteogenic differentiation, of which 115 were upregulated and 228 were downregulated. We further analyzed these lncRNAs using bioinformatic analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. GO and KEGG pathway analysis showed that ‘intracellular part’ and ‘Phosphatidylinositol signaling system’ were the most correlated molecular function and pathway, respectively. We selected the top 10 upregulated lncRNAs to construct six competing endogenous RNA networks. We validated the impact of the lncRNA H19 on osteogenic differentiation by overexpressing it in hUCMSCs. Overall, our results pave the way to detailed studies of the molecular mechanisms of hUCMSC osteogenic differentiation, and they provide a new theoretical basis to guide the therapeutic application of hUCMSCs.
Collapse
Affiliation(s)
- Xiao Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, Guangdong, China
| | - Shuaiqi Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Su
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yihan Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jingjing Shao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhimin Zhu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
104
|
Norouzi-Barough L, Shirian S, Gorji A, Sadeghi M. Therapeutic potential of mesenchymal stem cell-derived exosomes as a cell-free therapy approach for the treatment of skin, bone, and cartilage defects. Connect Tissue Res 2022; 63:83-96. [PMID: 33563070 DOI: 10.1080/03008207.2021.1887855] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The aim of this study was to collect the articles concerning mesenchymal stem cell (MSC)-derived exosomes for regeneration of bone, cartilage and skin defects. METHOD Scopus, PubMed, EMBASE, and Web of Science were searched for keywords "Exosome, MSC, Skin, Bone and Cartilage defects, Regenerative medicine, and extracellular vesicles. RESULTS MSC-derived exosomes can emulate the biological activity of MSCs by horizontal transfer of multiple functional molecules including mRNAs, miRNAs, proteins, and lipids to the local microenvironment and recipient cells, and subsequently mediate restoring homeostasis and tissue regeneration through various mechanisms. Compared to MSCs, MSC-derived exosomes reveal many advantages such as non-immunogenicity, easy access, easy preservation, and extreme stability under various conditions. CONCLUSION Hence, exosomes could be considered as an alternative strategy for cell-based therapies in regenerative medicine. In this paper, after describing the characteristics of exosomes, we will review the recent literature on the therapeutic potentials of MSC-derived exosomes in skin, bone, and cartilage repair.
Collapse
Affiliation(s)
- Leyla Norouzi-Barough
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.,Shiraz Molecular Pathology Research Center, Dr Daneshbod Pathol Lab, Shiraz, Iran.,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.,Epilepsy Research Center, Department of Neurosurgery, Westfälische Wilhelms-Universitat Münster, Munster, Germany
| | - Mohammadreza Sadeghi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine Faculty Advance Medicine of Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
105
|
Yi J, Liu Q, Zhang Q, Chew TG, Ouyang H. Modular protein engineering-based biomaterials for skeletal tissue engineering. Biomaterials 2022; 282:121414. [DOI: 10.1016/j.biomaterials.2022.121414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/27/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022]
|
106
|
Liu Y, Ruan X, Li J, Wang B, Chen J, Wang X, Wang P, Tu X. The Osteocyte Stimulated by Wnt Agonist SKL2001 Is a Safe Osteogenic Niche Improving Bioactivities in a Polycaprolactone and Cell Integrated 3D Module. Cells 2022; 11:cells11050831. [PMID: 35269452 PMCID: PMC8909416 DOI: 10.3390/cells11050831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Finding and constructing an osteogenic microenvironment similar to natural bone tissue has always been a frontier topic in orthopedics. We found that osteocytes are targeting cells controlling bone anabolism produced by PTH (JBMR 2017, PMID: 27704638), and osteocytes with activated Wnt signaling orchestrate bone formation and resorption (PNAS 2015, PMID: 25605937). However, methods for taking advantage of the leading role of osteocytes in bone regeneration remain unexplored. Herein, we found that the osteocytes with SKL2001-activated Wnt signaling could be an osteogenic microenvironment (SOOME) which upregulates the expression of bone transcription factor Runx2 and Bglap and promotes the differentiation of bone marrow stromal cell ST2 into osteoblasts. Interestingly, 60 μM SKL2001 treatment of osteocytic MLO-Y4 for 24 h maintained Wnt signaling activation for three days after removal, which was sufficient to induce osteoblast differentiation. Triptonide, a Wnt inhibitor, could eliminate this differentiation. Moreover, on day 5, the Wnt signaling naturally decreased to the level of the control group, indicating that this method of Wnt-signaling induction is safe to use. We quickly verified in vivo function of SOOME to a good proximation in 3D bioprinted modules composed of reciprocally printed polycaprolactone bundles (for support) and cell bundles (for bioactivity). In the cell bundles, SOOME stably supported the growth and development of ST2 cells, the 7-day survival rate was as high as 91.6%, and proliferation ability increased linearly. Similarly, SOOME greatly promoted ST2 differentiation and mineralization for 28 days. In addition, SOOME upregulated the expression of angiopoietin 1, promoted endothelial cell migration and angiogenesis, and increased node number and total length of tubes and branches. Finally, we found that the function of SOOME could be realized through the paracrine pathway. This study reveals that osteocytes with Wnt signaling activated by SKL2001 are a safe osteogenic microenvironment. Both SOOME itself and its cell-free culture supernatant can improve bioactivity for osteoblast differentiation, with composite scaffolds especially bearing application value.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaolin Tu
- Correspondence: ; Tel.: +86-185-2382-0685
| |
Collapse
|
107
|
Chan YH, Ho KN, Lee YC, Chou MJ, Lew WZ, Huang HM, Lai PC, Feng SW. Melatonin enhances osteogenic differentiation of dental pulp mesenchymal stem cells by regulating MAPK pathways and promotes the efficiency of bone regeneration in calvarial bone defects. Stem Cell Res Ther 2022; 13:73. [PMID: 35183254 PMCID: PMC8858457 DOI: 10.1186/s13287-022-02744-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022] Open
Abstract
Background Mesenchymal stem cell (MSC)-based tissue engineering plays a major role in regenerative medicine. However, the efficiency of MSC transplantation and survival of engrafted stem cells remain challenging. Melatonin can regulate MSC biology. However, its function in the osteogenic differentiation of dental pulp-derived MSCs (DPSCs) remains unclear. We investigated the effects and mechanisms of melatonin on the osteogenic differentiation and bone regeneration capacities of DPSCs. Methods The biological effects and signaling mechanisms of melatonin with different concentrations on DPSCs were evaluated using a proliferation assay, the quantitative alkaline phosphatase (ALP) activity, Alizarin red staining, a real-time polymerase chain reaction, and a western blot in vitro cell culture model. The in vivo bone regeneration capacities were assessed among empty control, MBCP, MBCP + DPSCs, and MBCP + DPSCs + melatonin preconditioning in four-created calvarial bone defects by using micro-computed tomographic, histological, histomorphometric, and immunohistochemical analyses after 4 and 8 weeks of healing. Results In vitro experiments revealed that melatonin (1, 10, and 100 μM) significantly and concentration-dependently promoted proliferation, surface marker expression (CD 146), ALP activity and extracellular calcium deposition, and osteogenic gene expression of DPSCs (p < 0.05). Melatonin activated the protein expression of ALP, OCN, and RUNX-2 and inhibited COX-2/NF-κB expression. Furthermore, the phosphorylation of mitogen-activated protein kinase (MAPK) p38/ERK signaling was significantly increased in DPSCs treated with 100 μM melatonin, and their inhibitors significantly decreased osteogenic differentiation. In vivo experiments demonstrated that bone defects implanted with MBCP bone-grafting materials and melatonin-preconditioned DPSCs exhibited significantly greater bone volume fraction, trabecular bone structural modeling, new bone formation, and osteogenesis-related protein expression than the other three groups at 4 and 8 weeks postoperatively (p < 0.05). Conclusions These results suggest that melatonin promotes the proliferation and osteogenic differentiation of DPSCs by regulating COX-2/NF-κB and p38/ERK MAPK signaling pathways. Preconditioning DPSCs with melatonin before transplantation can efficiently enhance MSCs function and regenerative capacities.
Collapse
|
108
|
Bioengineered Living Bone Grafts-A Concise Review on Bioreactors and Production Techniques In Vitro. Int J Mol Sci 2022; 23:ijms23031765. [PMID: 35163687 PMCID: PMC8836415 DOI: 10.3390/ijms23031765] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 12/26/2022] Open
Abstract
It has been observed that bone fractures carry a risk of high mortality and morbidity. The deployment of a proper bone healing method is essential to achieve the desired success. Over the years, bone tissue engineering (BTE) has appeared to be a very promising approach aimed at restoring bone defects. The main role of the BTE is to apply new, efficient, and functional bone regeneration therapy via a combination of bone scaffolds with cells and/or healing promotive factors (e.g., growth factors and bioactive agents). The modern approach involves also the production of living bone grafts in vitro by long-term culture of cell-seeded biomaterials, often with the use of bioreactors. This review presents the most recent findings concerning biomaterials, cells, and techniques used for the production of living bone grafts under in vitro conditions. Particular attention has been given to features of known bioreactor systems currently used in BTE: perfusion bioreactors, rotating bioreactors, and spinner flask bioreactors. Although bioreactor systems are still characterized by some limitations, they are excellent platforms to form bioengineered living bone grafts in vitro for bone fracture regeneration. Moreover, the review article also describes the types of biomaterials and sources of cells that can be used in BTE as well as the role of three-dimensional bioprinting and pulsed electromagnetic fields in both bone healing and BTE.
Collapse
|
109
|
Øvrebø Ø, Perale G, Wojciechowski JP, Echalier C, Jeffers JRT, Stevens MM, Haugen HJ, Rossi F. Design and clinical application of injectable hydrogels for musculoskeletal therapy. Bioeng Transl Med 2022; 7:e10295. [PMID: 35600661 PMCID: PMC9115710 DOI: 10.1002/btm2.10295] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/25/2022] Open
Abstract
Musculoskeletal defects are an enormous healthcare burden and source of pain and disability for individuals. With an aging population, the proportion of individuals living with these medical indications will increase. Simultaneously, there is pressure on healthcare providers to source efficient solutions, which are cheaper and less invasive than conventional technology. This has led to an increased research focus on hydrogels as highly biocompatible biomaterials that can be delivered through minimally invasive procedures. This review will discuss how hydrogels can be designed for clinical translation, particularly in the context of the new European Medical Device Regulation (MDR). We will then do a deep dive into the clinically used hydrogel solutions that have been commercially approved or have undergone clinical trials in Europe or the United States. We will discuss the therapeutic mechanism and limitations of these products. Due to the vast application areas of hydrogels, this work focuses only on treatments of cartilage, bone, and the nucleus pulposus. Lastly, the main steps toward clinical translation of hydrogels as medical devices are outlined. We suggest a framework for how academics can assist small and medium MedTech enterprises conducting the initial clinical investigation and post‐market clinical follow‐up required in the MDR. It is evident that the successful translation of hydrogels is governed by acquiring high‐quality pre‐clinical and clinical data confirming the device mechanism of action and safety.
Collapse
Affiliation(s)
- Øystein Øvrebø
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoMilanoItaly
- Department of BiomaterialsInstitute of Clinical Dentistry, University of OsloOsloNorway
- Material Biomimetic ASOslo Science ParkOsloNorway
| | - Giuseppe Perale
- Industrie Biomediche Insubri SAMezzovico‐ViraSwitzerland
- Faculty of Biomedical SciencesUniversity of Southern SwitzerlandLuganoSwitzerland
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyViennaAustria
| | - Jonathan P. Wojciechowski
- Department of MaterialsImperial College LondonLondonUK
- Department of BioengineeringImperial College LondonLondonUK
- Institute of Biomedical EngineeringImperial College LondonLondonUK
| | - Cécile Echalier
- Department of MaterialsImperial College LondonLondonUK
- Department of BioengineeringImperial College LondonLondonUK
- Institute of Biomedical EngineeringImperial College LondonLondonUK
- Hybrid Technology Hub, Centre of ExcellenceInstitute of Basic Medical Science, University of OsloOsloNorway
| | | | - Molly M. Stevens
- Department of MaterialsImperial College LondonLondonUK
- Department of BioengineeringImperial College LondonLondonUK
- Institute of Biomedical EngineeringImperial College LondonLondonUK
| | - Håvard J. Haugen
- Department of BiomaterialsInstitute of Clinical Dentistry, University of OsloOsloNorway
- Material Biomimetic ASOslo Science ParkOsloNorway
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoMilanoItaly
| |
Collapse
|
110
|
Power RN, Cavanagh BL, Dixon JE, Curtin CM, O’Brien FJ. Development of a Gene-Activated Scaffold Incorporating Multifunctional Cell-Penetrating Peptides for pSDF-1α Delivery for Enhanced Angiogenesis in Tissue Engineering Applications. Int J Mol Sci 2022; 23:1460. [PMID: 35163379 PMCID: PMC8835777 DOI: 10.3390/ijms23031460] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/18/2022] Open
Abstract
Non-viral gene delivery has become a popular approach in tissue engineering, as it permits the transient delivery of a therapeutic gene, in order to stimulate tissue repair. However, the efficacy of non-viral delivery vectors remains an issue. Our lab has created gene-activated scaffolds by incorporating various non-viral delivery vectors, including the glycosaminoglycan-binding enhanced transduction (GET) peptide into collagen-based scaffolds with proven osteogenic potential. A modification to the GET peptide (FLR) by substitution of arginine residues with histidine (FLH) has been designed to enhance plasmid DNA (pDNA) delivery. In this study, we complexed pDNA with combinations of FLR and FLH peptides, termed GET* nanoparticles. We sought to enhance our gene-activated scaffold platform by incorporating GET* nanoparticles into collagen-nanohydroxyapatite scaffolds with proven osteogenic capacity. GET* N/P 8 was shown to be the most effective formulation for delivery to MSCs in 2D. Furthermore, GET* N/P 8 nanoparticles incorporated into collagen-nanohydroxyapatite (coll-nHA) scaffolds at a 1:1 ratio of collagen:nanohydroxyapatite was shown to be the optimal gene-activated scaffold. pDNA encoding stromal-derived factor 1α (pSDF-1α), an angiogenic chemokine which plays a role in BMP mediated differentiation of MSCs, was then delivered to MSCs using our optimised gene-activated scaffold platform, with the aim of significantly increasing angiogenesis as an important precursor to bone repair. The GET* N/P 8 coll-nHA scaffolds successfully delivered pSDF-1α to MSCs, resulting in a significant, sustained increase in SDF-1α protein production and an enhanced angiogenic effect, a key precursor in the early stages of bone repair.
Collapse
Affiliation(s)
- Rachael N. Power
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI), D02 YN77 Dublin, Ireland; (R.N.P.); (C.M.C.)
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI, D02 YN77 Dublin, Ireland
| | | | - James E. Dixon
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Caroline M. Curtin
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI), D02 YN77 Dublin, Ireland; (R.N.P.); (C.M.C.)
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI, D02 YN77 Dublin, Ireland
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI), D02 YN77 Dublin, Ireland; (R.N.P.); (C.M.C.)
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI, D02 YN77 Dublin, Ireland
| |
Collapse
|
111
|
Khosravipour A, Amini A, Farahani RM, Mostafavinia A, Asgari M, Rezaei F, Abrahamse H, Chien S, Bayat M. Evaluation of the effects of preconditioned human stem cells plus a scaffold and photobiomodulation administration on stereological parameters and gene expression levels in a critical size bone defect in rats. Lasers Med Sci 2022; 37:2457-2470. [PMID: 35067818 DOI: 10.1007/s10103-022-03509-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/14/2022] [Indexed: 10/19/2022]
Abstract
We assessed the impact of photobiomodulation (PBM) plus adipose-derived stem cells (ASCs) during the anabolic and catabolic stages of bone healing in a rat model of a critical size femoral defect (CSFD) that was filled with a decellularized bone matrix (DBM). Stereological analysis and gene expression levels of bone morphogenetic protein 4 (BMP4), Runt-related transcription factor 2 (RUNX2), and stromal cell-derived factor 1 (SDF1) were determined. There were six groups of rats. Group 1 was the untreated control or DBM. Study groups 2-6 were treated as follows: ASC (ASC transplanted into DBM, then implanted in the CSFD); PBM (CSFD treated with PBM); irradiated ASC (iASC) (ASCs preconditioned with PBM, then transplanted into DBM, and implanted in the CSFD); ASC + PBM (ASCs transplanted into DBM, then implanted in the CSFD, followed by PBM administration); and iASC + PBM (the same as iASC, except CSFDs were exposed to PBM). At the anabolic step, all treatment groups had significantly increased trabecular bone volume (TBV) (24.22%) and osteoblasts (83.2%) compared to the control group (all, p = .000). However, TBV in group iASC + PBM groups were superior to the other groups (97.48% for osteoblast and 58.8% for trabecular bone volume) (all, p = .000). The numbers of osteocytes in ASC (78.2%) and iASC + PBM (30%) groups were remarkably higher compared to group control (both, p = .000). There were significantly higher SDF (1.5-fold), RUNX2 (1.3-fold), and BMP4 (1.9-fold) mRNA levels in the iASC + PBM group compared to the control and some of the treatment groups. At the catabolic step of bone healing, TBV increased significantly in PBM (30.77%), ASC + PBM (32.27%), and iASC + PBM (35.93%) groups compared to the control group (all, p = .000). There were significantly more osteoblasts and osteocytes in ASC (71.7%, 62.02%) (p = .002, p = .000); PBM (82.54%, 156%), iASC (179%, 23%), and ASC + PBM (108%, 110%) (all, p = .000), and iASC + PBM (79%, 100.6%) (p = .001, p = .000) groups compared to control group. ASC preconditioned with PBM in vitro plus PBM in vivo significantly increased stereological parameters and SDF1, RUNX2, and BMP4 mRNA expressions during bone healing in a CSFD model in rats.
Collapse
Affiliation(s)
- Armin Khosravipour
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Masteri Farahani
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atarodalsadat Mostafavinia
- Department of Anatomy, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Asgari
- Department of Anatomy and Cell Biology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemehalsadat Rezaei
- College of Pharmacy 789 South Limestone Lexington, University of Kentucky, Lexington, KY, 40536, USA
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC, Louisville, KY, USA
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Price Institute of Surgical Research, University of Louisville, and Noveratech LLC, Louisville, KY, USA.
| |
Collapse
|
112
|
Anandhapadman A, Venkateswaran A, Jayaraman H, Ghone NV. Advances in 3D printing of composite scaffolds for the repairment of bone tissue associated defects. Biotechnol Prog 2022; 38:e3234. [PMID: 35037419 DOI: 10.1002/btpr.3234] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/11/2021] [Accepted: 01/07/2022] [Indexed: 11/09/2022]
Abstract
The conventional methods of using autografts and allografts for repairing defects in bone, the osteochondral bone and the cartilage tissue have many disadvantages, like donor site morbidity and shortage of donors. Moreover, only 30% of the implanted grafts are shown to be successful in treating the defects. Hence, exploring alternative techniques such as tissue engineering to treat bone tissue associated defects is promising as it eliminates the above-mentioned limitations. To enhance the mechanical and biological properties of the tissue engineered product, it is essential to fabricate the scaffold used in tissue engineering by the combination of various biomaterials. Three-dimensional (3D) printing, with its ability to print composite materials and with complex geometry seems to have a huge potential in scaffold fabrication technique for engineering bone associated tissues.This review summarizes the recent applications and future perspectives of 3D printing technologies in the fabrication of composite scaffolds used in bone, osteochondral and cartilage tissue engineering. Key developments in the field of 3D printing technologies involves the incorporation of various biomaterials and cells in printing composite scaffolds mimicking physiologically relevant complex geometry & gradient porosity. Much recently, the emerging trend of printing smart scaffolds which can respond to external stimulus such as temperature, pH and magnetic field, known as 4D printing is gaining immense popularity and can be considered as the future of 3D printing applications in the field of tissue engineering. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ashwin Anandhapadman
- Department of Biotechnology, Sri Venkateswara College of Engineering, Post Bag No.1, Pennalur - 602117, Sriperumbudur, Kancheepuram, Tamil Nadu, India
| | - Ajay Venkateswaran
- Department of Biotechnology, Sri Venkateswara College of Engineering, Post Bag No.1, Pennalur - 602117, Sriperumbudur, Kancheepuram, Tamil Nadu, India
| | - Hariharan Jayaraman
- Department of Biotechnology, Sri Venkateswara College of Engineering, Post Bag No.1, Pennalur - 602117, Sriperumbudur, Kancheepuram, Tamil Nadu, India
| | - Nalinkanth Veerabadran Ghone
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Rajiv Gandhi Salai (OMR), Kalavakkam, Tamil Nadu, India
| |
Collapse
|
113
|
Wu Y, Zhang X, Tan B, Shan Y, Zhao X, Liao J. Near-infrared light control of GelMA/PMMA/PDA hydrogel with mild photothermal therapy for skull regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112641. [PMID: 35034819 DOI: 10.1016/j.msec.2022.112641] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 01/02/2022] [Indexed: 02/05/2023]
Abstract
The development of bone tissue engineering indicates some new paths for bone defect repair. Mild photothermal therapy (PTT) is flourishing as an exciting potential method for bone regeneration. Polydopamine nanoparticles exhibit good absorption at infrared wavelengths and can be used as a viable option for the application of mild PTT to bone defects. Herein, a gelatin-methacryloyl/poly(methyl methacrylate)/polydopamine (GelMA/PMMA/PDA) hydrogel was formulated and assessed in terms of mechanical and biological features. We observed that the addition of methacryloyl groups into gelatin and the introduction of PMMA improved the mechanical properties of the hydrogel and ensure the biosecurity. The GelMA/PMMA/PDA hydrogel demonstrated favorable photothermal ability, biocompatibility, and osteogenic effect. In the rat skull defect model, the GelMA/PMMA/PDA hydrogel with mild PTT possesses better bone repair compared with hydrogel-only and control groups. Thus, this mild photothermal hydrogel platform has a beneficial osteogenic ability and provides a novel approach to treat bone defects.
Collapse
Affiliation(s)
- Yanting Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Bowen Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Yue Shan
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Xin Zhao
- West China School of Medicine, Sichuan University, Chengdu, PR China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
114
|
Yi H, Wang Y, Liang Q, Mao X. Preclinical and Clinical Amelioration of Bone Fractures with Mesenchymal Stromal Cells: a Systematic Review and Meta-Analysis. Cell Transplant 2022; 31:9636897211051743. [PMID: 35916286 PMCID: PMC9350497 DOI: 10.1177/09636897211051743] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Even though reunion of bone fracture confronts clinicians, mesenchymal stromal
cells (MSCs) are investigated to be curative in bone fracture. This study aimed
to explore the application potential of MSCs for healing bone fractures. By
inputting search terms and retrieving studies published up to March 2021,
multiple databases, including PubMed, EMBASE, Web of Science, and Cochrane
Library, were searched to identify eligible studies. The mean difference (MD)
and 95% confidence interval (95% CI) were calculated to analyze the main results
in the meta-analysis. Data analysis was performed using Engauge Digitizer 10.8
and R Software. Of the 31 articles, 26 were preclinical studies
(n = 913), and 5 were clinical trials (n =
335). Preclinically, MSCs therapy significantly augmented the progress of bone
regeneration [(bone volume over tissue volume (MD7.35, p <
0.01)], despite some non-significant effects (on the callus index, bone
strength, work to failure, and stiffness). Clinically, the MSC group had a
significantly reduced incidence of poor recovery (odds ratio (OR) 0.30,
p < 0.01); however, a significant decrease in healing
time was not observed in the MSC group (MD 2.47, p = 0.26). In
summary, our data suggest that patients with bone fractures benefited from MSC
administration and that MSCs are a potentially useful agent for bone
regeneration. Despite these satisfactory outcomes, larger randomised clinical
trials (RCTs) are necessary to confirm these findings.
Collapse
Affiliation(s)
- Hanxiao Yi
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yang Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Qunying Liang
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoqun Mao
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
115
|
Nowak N, Wiglusz RJ. A Study of Vanadate Group Substitution into Nanosized Hydroxyapatite Doped with Eu 3+ Ions as a Potential Tissue Replacement Material. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:77. [PMID: 35010026 PMCID: PMC8746586 DOI: 10.3390/nano12010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
In this study, nanosized vanadate-substituted hydroxyapatites doped with 1 mol% and 2 mol% Eu3+ ions were obtained via the precipitation method. To evaluate the structure and morphology of the obtained compounds, the XRPD (X-ray powder diffraction) technique, Rietveld refinement, SEM-EDS (scanning electron microscopy-energy-dispersive spectrometry) and TEM (transmission electron microscopy) techniques as well as FTIR (Fourier transform infrared) spectroscopy were performed. Moreover, the chemical formula was confirmed using the ICP-OES (Inductively coupled plasma optical emission spectroscopy spectroscopy). The calculated average grain size for powders was in the range of 25 to 90 nm. The luminescence properties of vanadium-substituted hydroxyapatite were evaluated by recording emission spectra and excitation spectra as well as luminescence kinetics. The crucial step of this research was the evaluation of the biocompatibility of the synthesized nanomaterials. Therefore, the obtained compounds were tested toward sheep red blood cells and normal human dermal fibroblast to confirm the nontoxicity and biocompatibility of new nanosized Eu3+ ion-doped vanadate-hydroxyapatite. Moreover, the final step of the research allowed us to determine the time dependent ion release to the simulated body fluid environment. The study confirmed cytocompatibility of vanadium hydroxyapatite doped with Eu3+ ions.
Collapse
Affiliation(s)
- Nicole Nowak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland
| | - Rafal Jakub Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland
| |
Collapse
|
116
|
Nweke CE, Stegemann JP. Fabrication and characterization of osteogenic function of progenitor cell-laden gelatin microcarriers. J Biomed Mater Res B Appl Biomater 2021; 110:1265-1278. [PMID: 34918466 DOI: 10.1002/jbm.b.34998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 11/11/2022]
Abstract
Biomaterial-based bone regeneration strategies often include a cellular component to accelerate healing. Modular approaches have the potential for minimally-invasive delivery and the ability to conformally fill complex defects. In this study, spherical gelatin microparticles were fabricated via water-in-oil emulsification and were subsequently crosslinked with genipin. Microparticle diameter depended on impeller geometry, and increased stirring rates consistently produced smaller particles with narrower size distributions. Increasing the concentration of gelatin resulted in larger particles with a broader size distribution. Viscoelastic characterization showed that increased gelatin concentration produced stiffer matrices, though the mechanical properties at lower gelatin concentration were more stable across strain rate. Microparticles of 6.0% wt/vol gelatin were then applied as microcarriers for packed-bed culture of human mesenchymal stromal cells (MSC) at seeding densities of 5.0 × 103 , 2.5 × 104 , or 5.0 × 104 cells/cm2 of surface area, in either control or osteogenic medium. Cell viability was uniformly high (>90%) across seeding densities over 22 days in culture. MSC number stayed approximately constant in the 5.0 × 103 and 2.5 × 104 cells/cm2 samples, while it dropped over time at 5.0 × 104 cells/cm2 . Alkaline phosphatase activity was significantly upregulated in osteogenic conditions relative to controls at day 15, and absolute calcium deposition was strongly induced by days 15 and 22. However, calcium deposition per cell was highest in the lowest cell density, suggesting an inhibitory effect of high cell numbers. These results show that genipin-crosslinked gelatin microcarriers can be reproducibly fabricated and used as microcarriers for progenitor cells, which may have utility in treating large and complex bone defects.
Collapse
Affiliation(s)
- Chukwuma E Nweke
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Jan P Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
117
|
Sidharthan DS, Abhinandan R, Balagangadharan K, Selvamurugan N. Advancements in nucleic acids-based techniques for bone regeneration. Biotechnol J 2021; 17:e2100570. [PMID: 34882984 DOI: 10.1002/biot.202100570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/21/2022]
Abstract
The dynamic biology of bone involving an enormous magnitude of cellular interactions and signaling transduction provides ample biomolecular targets, which can be enhanced or repressed to mediate a rapid regeneration of the impaired bone tissue. The delivery of nucleic acids such as DNA and RNA can enhance the expression of osteogenic proteins. Members of the RNA interference pathway such as miRNA and siRNA can repress negative osteoblast differentiation regulators. Advances in nanomaterials have provided researchers with a plethora of delivery modules that can ensure proper transfection. Combining the nucleic acid carrying vectors with bone scaffolds has met with tremendous success in accomplishing bone formation. Recent years have witnessed the advent of CRISPR and DNA nanostructures in regenerative medicine. This review focuses on the delivery of nucleic acids and touches upon the prospect of CRISPR and DNA nanostructures for bone tissue engineering, emphasizing their potential in treating bone defects.
Collapse
Affiliation(s)
- Dharmaraj Saleth Sidharthan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ranganathan Abhinandan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Kalimuthu Balagangadharan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
118
|
Poly (glycerol sebacate) and polyhydroxybutyrate electrospun nanocomposite facilitates osteogenic differentiation of mesenchymal stem cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
119
|
Bakhtiarimoghadam B, Shirian S, Mirzaei E, Sharifi S, Karimi I, Gharati G, Takallu S, Nazari H. Comparison capacity of collagen hydrogel, mix-powder and in situ hydroxyapatite/collagen hydrogelscaffolds with and without mesenchymal stem cells and platelet-rich plasma in regeneration of critical sized bone defect in a rabbit animal model. J Biomed Mater Res B Appl Biomater 2021; 109:2199-2212. [PMID: 34008330 DOI: 10.1002/jbm.b.34867] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/18/2022]
Abstract
The aim of this study was to investigate the effect of developed collagen (Co) hydrogel (CH), powder-mixed hydroxyapatite/collagen (HA/Co) hydrogel and in situ synthesized HA/Co (In/HA/Co) hydrogel with or without mesenchymal stem cell (MSC) and platelet-rich plasma (PRP) on the regeneration of full-thickness critical size bone defect in the rabbit animal model. In the first step of this study, the scaffolds were synthesized and characterized using FTIR spectroscopy, X-ray diffraction, and scanning electron microcopy. In the second step or animal study, the radial bone defects were filled with the synthesized scaffolds with and without MSC and PRP. One hundred sixty one year-old New Zealand white male rabbits were randomly divided in 16 groups of 10 rabbits including control with bone defect without treatment, In/HA/Co, HA/Co, CH, PRP, MSC, CH + PRP, HA/Co, In/HA/Co + PRP, HA/Co + PRP, CH + MSC, In/HA/Co + MSC, HA/Co + MSC, CH + PRP + MSC, In/HA/Co + PRP + MSC, and HA/Co + PRP + MSC. The created defects were filled using the constructed scaffolds alone or seeded with MSCs, with and without PRP injection. The treatments were assessed using histopathological, immunohistochemical and rediographical analysis on days 14, 28, 42, 56 post-treatment. The plate-like HA particles were distributed homogeneously in the in situ HA/Co scaffold compared to the HA/Co scaffold and had a similar structure to bone with carbonated plate-like HA particles and nanofibrilated Co matrix. In situ HA/Co nanocomposite seeded with MSC and enriched by PRP can accelerate bone regeneration resulted from osteoblastic production of osteocalcin protein. Therefore, in situ HA/Co hydrogel seeded with MSC and PRP can be a new approach for bone tissue engineering.
Collapse
Affiliation(s)
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Siavash Sharifi
- Department of Surgery, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Iraj Karimi
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Gelavizh Gharati
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Sara Takallu
- Department of Medical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Nazari
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
120
|
Dalisson B, Charbonnier B, Aoude A, Gilardino M, Harvey E, Makhoul N, Barralet J. Skeletal regeneration for segmental bone loss: Vascularised grafts, analogues and surrogates. Acta Biomater 2021; 136:37-55. [PMID: 34626818 DOI: 10.1016/j.actbio.2021.09.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 02/08/2023]
Abstract
Massive segmental bone defects (SBD) are mostly treated by removing the fibula and transplanting it complete with blood supply. While revolutionary 50 years ago, this remains the standard treatment. This review considers different strategies to repair SBD and emerging potential replacements for this highly invasive procedure. Prior to the technical breakthrough of microsurgery, researchers in the 1960s and 1970s had begun to make considerable progress in developing non autologous routes to repairing SBD. While the breaktthrough of vascularised bone transplantation solved the immediate problem of a lack of reliable repair strategies, much of their prior work is still relevant today. We challenge the assumption that mimicry is necessary or likely to be successful and instead point to the utility of quite crude (from a materials technology perspective), approaches. Together there are quite compelling indications that the body can regenerate entire bone segments with few or no exogenous factors. This is important, as there is a limit to how expensive a bone repair can be and still be widely available to all patients since cost restraints within healthcare systems are not likely to diminish in the near future. STATEMENT OF SIGNIFICANCE: This review is significant because it is a multidisciplinary view of several surgeons and scientists as to what is driving improvement in segmental bone defect repair, why many approaches to date have not succeeded and why some quite basic approaches can be as effective as they are. While there are many reviews of the literature of grafting and bone repair the relative lack of substantial improvement and slow rate of progress in clinical translation is often overlooked and we seek to challenge the reader to consider the issue more broadly.
Collapse
|
121
|
Wang F, Yang G, Xiao Y, He C, Cai G, Song E, Li Y. Effects of Tissue-engineered Bone by Coculture of Adipose-derived Stem Cells and Vascular Endothelial Cells on Host Immune Status. Ann Plast Surg 2021; 87:689-693. [PMID: 34818288 DOI: 10.1097/sap.0000000000002824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AIM The study aimed to explore the effects of tissue-engineered bone constructed with partially deproteinized biologic bone (PDPBB) and coculture of adipose-derived stem cells (ADSCs) and vascular endothelial cells (VECs) on host immune status, providing a very useful clue for the future development of bone engineering. METHODS Tissue-engineered bones constructed by PDPBB and ADSCs, VECs or coculture of them were implanted into the muscle bag of bilateral femurs of Sprague-Dawley rats. Partially deproteinized biologic bone alone and blank control were also implanted. After transplantation, the proliferation of implanted seed cells in tissue-engineered bones was labeled by bromodeoxyuridine staining. Moreover, the changes of T-lymphocyte subpopulations, including CD3 + CD4+ and CD3 + CD8+ in peripheral blood were then detected using flow cytometry to analyze the immune rejection of tissue-engineered bone implantation based on peripheral blood CD4/CD8 ratios. RESULTS After transplantation, the proliferation of implanted seed cells was observed in tissue-engineered bones of different groups. At different time points after transplantation, the CD4+/CD8+ ratio in peripheral blood of PDPBB + ADSCs, PDPBB + coculture, and blank control groups did not exhibit significant change. Although the CD4+/CD8+ ratio in peripheral blood of PDPBB + VECs group was significantly higher than other group at 1 week after transplantation, that of PDPBB + VECs and PDPBB + coculture group was significantly decreased at 8 week after transplantation compared with that of blank control group. CONCLUSIONS Our results indicated that there was no significant immune rejection after transplantation of tissue-engineered bone constructed with PDPBB and coculture of ADSCs and VECs as seed cells.
Collapse
Affiliation(s)
- Fuke Wang
- From the Department of Sports Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | | | | | | | | | | | | |
Collapse
|
122
|
Dradjat RS, Sananta P, Rosandi RD, Siahaan LD. Osteocalcin biomarker level evaluation on fracture healing with bone defect after stromal vascular fraction application in murine model. Ann Med Surg (Lond) 2021; 71:103020. [PMID: 34840768 PMCID: PMC8606847 DOI: 10.1016/j.amsu.2021.103020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 11/15/2022] Open
Abstract
Introduction Bone defect (3 mm in murine model) is a condition when the bone tissue cannot undergo a natural healing process caused by severe trauma, tumor, or irradiation. A bone defect is a challenge even for experienced Orthopaedic surgeons. Stromal vascular fraction (SVF) is a heterogeneous cell population derived from adipose tissue that results from minimal manipulation of the adipose tissue itself. Several studies have elucidated the effect of either SVF on bone defect healing. However, to the author's knowledge, there is no study evaluating the effect of SVF application on fracture healing, which was measured with osteocalcin biomarker. This study aims to evaluate the effect of SVF application on bone defect healing measured with osteocalcin as a biomarker of bone healing. Materials and methods This was an animal study involving twelve Wistar strain Rattus norvegivus. They were divided into three groups: negative group (normal rats), positive group (rats with bone defect and treated without SVF application), and SVF group (rats with bone defect and treated with SVF application). After 30 days, the rats were sacrificed, the osteocalcin biomarkers were evaluated. This biomarker was quantified using ELISA. Results Osteocalcin biomarker expressions were higher in the group treated with SVF application than those without using SVF. All comparisons of the SVF group and positive control group showed significant differences (p < 0.05). Conclusion SVF application could aid the healing process in a murine model with bone defect, marked by increased osteocalcin levels. A study evaluating the effect of SVF application on fracture healing, measured with osteocalcin biomarker. Osteocalcin is useful in the evaluation of bone turnover and the clinical setting of bone loss. SVF could aid the healing process in a murine model with bone defect. A bone defect is a challenge even for experienced Orthopaedic surgeons.
Collapse
Affiliation(s)
- Respati S Dradjat
- Teaching Staff of Orthopaedic and Traumatology Department, Faculty of Medicine Universitas Brawijaya, RSUD Dr. Saiful Anwar, Malang, Indonesia
| | - Panji Sananta
- Teaching Staff of Orthopaedic and Traumatology Department, Faculty of Medicine Universitas Brawijaya, RSUD Dr. Saiful Anwar, Malang, Indonesia
| | - Rizqi Daniar Rosandi
- Resident of Orthopaedic and Traumatology Department, Faculty of Medicine Universitas Brawijaya, RSUD Dr. Saiful Anwar, Malang, Indonesia
| | - Lasa Dhakka Siahaan
- Research Assistant Orthopaedic and Traumatology Department, Faculty of Medicine Universitas Brawijaya, RSUD Dr. Saiful Anwar, Malang, Indonesia
| |
Collapse
|
123
|
Dradjat RS, Sananta P, Rosandi RD, Siahaan LD. Effect of Stromal Vascular Fraction on Fracture Healing with Bone Defects by Examination of Bone Morphogenetic Protein-2 Biomarkers in Murine Model. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Fractures and segmental bone defects are a significant cause of morbidity and a source of a high economic burden in healthcare. A severe bone defect (3 mm in murine model) is a devastating condition, which the bone cannot heal naturally despite surgical stabilization and usually requires further surgical intervention. The stromal vascular fraction (SVF) contains a heterogeneous collection of cells and several components, primarily: MSCs, HSCs, Treg cells, pericytic cells, AST cells, extracellular matrix, and complex microvascular beds (fibroblasts, white blood cells, dendritic cells, and intra-adventitial smooth muscular-like cells). Bone morphogenetic protein (BMP) is widely known for their important role in bone formation during mammalian development and confers a multifunctional role in the body, which has potential for therapeutic use. Studies have shown that BMPs play a role in the healing of large size bone defects.
AIM: In this study, researchers aim to determine the effect of administering SVF from adipose tissue on the healing process of bone defects assessed based on the level biomarker of BMP-2.
MATERIALS AND METHODS: This was an animal study involving 12 Wistar strain Rattus norvegivus. They were divided into three groups: Negative group (normal rats), positive group (rats with bone defect without SVF application), and SVF group (rats with bone defect with SVF application). After 30 days, the rats were sacrificed; the biomarkers that were evaluated are BMP-2. This biomarker was quantified using ELISA.
RESULTS: BMP-2 biomarker expressions were higher in the SVF application group than in the group without SVF. All comparisons of the SVF group and positive control group showed significant differences (p = 0.026).
CONCLUSION: SVF application could aid the healing process in a murine model with bone defect marked by the increased level of BMP-2 as a bone formation marker.
Collapse
|
124
|
Gillman CE, Jayasuriya AC. FDA-approved bone grafts and bone graft substitute devices in bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112466. [PMID: 34702541 PMCID: PMC8555702 DOI: 10.1016/j.msec.2021.112466] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/26/2021] [Accepted: 09/24/2021] [Indexed: 12/28/2022]
Abstract
To induce bone regeneration there is a complex cascade of growth factors. Growth factors such as recombinant BMP-2, BMP-7, and PDGF are FDA-approved therapies in bone regeneration. Although, BMP shows promising results as being an alternative to autograft, it also has its own downfalls. BMP-2 has many adverse effects such as inflammatory complications such as massive soft-tissue swelling that can compromise a patient's airway, ectopic bone formation, and tumor formation. BMP-2 may also be advantageous for patients not willing to give up smoking as it shows bone regeneration success with smokers. BMP-7 is no longer an option for bone regeneration as it has withdrawn off the market. PDGF-BB grafts in studies have shown PDGF had similar fusion rates to autologous grafts and fewer adverse effects. There is also an FDA-approved bioactive molecule for bone regeneration, a peptide P-15. P-15 was found to be effective, safe, and have similar outcomes to autograft at 2 years post-op for cervical radiculopathy due to cervical degenerative disc disease. Growth factors and bioactive molecules show some promising results in bone regeneration, although more research is needed to avoid their adverse effects and learn about the long-term effects of these therapies. There is a need of a bone regeneration method of similar quality of an autograft that is osteoconductive, osteoinductive, and osteogenic. This review covers all FDA-approved bone regeneration therapies such as the "gold standard" autografts, allografts, synthetic bone grafts, and the newer growth factors/bioactive molecules. It also covers international bone grafts not yet approved in the United States and upcoming technologies in bone grafts.
Collapse
Affiliation(s)
- Cassidy E Gillman
- The Doctor of Medicine (M.D.) Program, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Ambalangodage C Jayasuriya
- Department of Orthopaedic Surgery, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
125
|
Elkhoury K, Morsink M, Sanchez-Gonzalez L, Kahn C, Tamayol A, Arab-Tehrany E. Biofabrication of natural hydrogels for cardiac, neural, and bone Tissue engineering Applications. Bioact Mater 2021; 6:3904-3923. [PMID: 33997485 PMCID: PMC8080408 DOI: 10.1016/j.bioactmat.2021.03.040] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/05/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
Natural hydrogels are one of the most promising biomaterials for tissue engineering applications, due to their biocompatibility, biodegradability, and extracellular matrix mimicking ability. To surpass the limitations of conventional fabrication techniques and to recapitulate the complex architecture of native tissue structure, natural hydrogels are being constructed using novel biofabrication strategies, such as textile techniques and three-dimensional bioprinting. These innovative techniques play an enormous role in the development of advanced scaffolds for various tissue engineering applications. The progress, advantages, and shortcomings of the emerging biofabrication techniques are highlighted in this review. Additionally, the novel applications of biofabricated natural hydrogels in cardiac, neural, and bone tissue engineering are discussed as well.
Collapse
Affiliation(s)
| | - Margaretha Morsink
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, 7500AE, the Netherlands
| | | | - Cyril Kahn
- LIBio, Université de Lorraine, Nancy, F-54000, France
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
| | | |
Collapse
|
126
|
Carvalho MS, Alves L, Bogalho I, Cabral JMS, da Silva CL. Impact of Donor Age on the Osteogenic Supportive Capacity of Mesenchymal Stromal Cell-Derived Extracellular Matrix. Front Cell Dev Biol 2021; 9:747521. [PMID: 34676216 PMCID: PMC8523799 DOI: 10.3389/fcell.2021.747521] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/10/2021] [Indexed: 12/27/2022] Open
Abstract
Mesenchymal stromal cells (MSC) have been proposed as an emerging cell-based therapeutic option for regenerative medicine applications as these cells can promote tissue and organ repair. In particular, MSC have been applied for the treatment of bone fractures. However, the healing capacity of these fractures is often compromised by patient's age. Therefore, considering the use of autologous MSC, we evaluated the impact of donor age on the osteogenic potential of bone marrow (BM)-derived MSC. MSC from older patients (60 and 80 years old) demonstrated impaired proliferative and osteogenic capacities compared to MSC isolated from younger patients (30 and 45 years old), suggesting that aging potentially changes the quantity and quality of MSC. Moreover, in this study, we investigated the capacity of the microenvironment [i.e., extracellular matrix (ECM)] to rescue the impaired proliferative and osteogenic potential of aged MSC. In this context, we aimed to understand if BM MSC features could be modulated by exposure to an ECM derived from cells obtained from young or old donors. When aged MSC were cultured on decellularized ECM derived from young MSC, their in vitro proliferative and osteogenic capacities were enhanced, which did not happen when cultured on old ECM. Our results suggest that the microenvironment, specifically the ECM, plays a crucial role in the quality (assessed in terms of osteogenic differentiation capacity) and quantity of MSC. Specifically, the aging of ECM is determinant of osteogenic differentiation of MSC. In fact, old MSC maintained on a young ECM produced higher amounts of extracellularly deposited calcium (9.10 ± 0.22 vs. 4.69 ± 1.41 μg.μl-1.10-7 cells for young ECM and old ECM, respectively) and up-regulated the expression of osteogenic gene markers such as Runx2 and OPN. Cell rejuvenation by exposure to a functional ECM might be a valuable clinical strategy to overcome the age-related decline in the osteogenic potential of MSC by recapitulating a younger microenvironment, attenuating the effects of aging on the stem cell niche. Overall, this study provides new insights on the osteogenic potential of MSC during aging and opens new possibilities for developing clinical strategies for elderly patients with limited bone formation capacity who currently lack effective treatments.
Collapse
Affiliation(s)
- Marta S. Carvalho
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Laura Alves
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Bogalho
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudia L. da Silva
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
127
|
Kaneko K, Chen H, Kaufman M, Sverdlov I, Stein EM, Park‐Min K. Glucocorticoid-induced osteonecrosis in systemic lupus erythematosus patients. Clin Transl Med 2021; 11:e526. [PMID: 34709753 PMCID: PMC8506634 DOI: 10.1002/ctm2.526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 12/24/2022] Open
Abstract
Osteonecrosis (ON) is a complex and multifactorial complication of systemic lupus erythematosus (SLE). ON is a devastating condition that causes severe pain and compromises the quality of life. The prevalence of ON in SLE patients is variable, ranging from 1.7% to 52%. However, the pathophysiology and risk factors for ON in patients with SLE have not yet been fully determined. Several mechanisms for SLE patients' propensity to develop ON have been proposed. Glucocorticoid is a widely used therapeutic option for SLE patients and high-dose glucocorticoid therapy in SLE patients is strongly associated with the development of ON. Although the hips and knees are the most commonly affected areas, it may be present at multiple anatomical locations. Clinically, ON often remains undetected until patients feel discomfort and pain at specific sites at which point the process of bone death is already advanced. However, strategies for prevention and options for treatment are limited. Here, we review the epidemiology, risk factors, diagnosis, and treatment options for glucocorticoid-induced ON, with a specific focus on patients with SLE.
Collapse
Affiliation(s)
- Kaichi Kaneko
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research CenterHospital for Special SurgeryNew YorkNew York10021USA
| | - Hao Chen
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research CenterHospital for Special SurgeryNew YorkNew York10021USA
- Department of OrthopedicsBeijing Friendship HospitalBeijing100050China
| | - Matthew Kaufman
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research CenterHospital for Special SurgeryNew YorkNew York10021USA
- Case Western Reserve School of MedicineClevelandOhio44106USA
| | - Isaak Sverdlov
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research CenterHospital for Special SurgeryNew YorkNew York10021USA
- Tuoro College of Osteopathic Medicine‐New York CampusNew YorkNew York10027USA
| | - Emily M. Stein
- Endocrinology Service, Hospital for Special SurgeryNew YorkNew YorkUSA
- Metabolic Bone Disease Service, Hospital for Special SurgeryNew YorkNew YorkUSA
| | - Kyung‐Hyun Park‐Min
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research CenterHospital for Special SurgeryNew YorkNew York10021USA
- Department of MedicineWeill Cornell Medical CollegeNew YorkNew YorkUSA
- BCMB allied programWeill Cornell Graduate School of Medical SciencesNew YorkNew York10021USA
| |
Collapse
|
128
|
Luo C, Wang C, Wu X, Xie X, Wang C, Zhao C, Zou C, Lv F, Huang W, Liao J. Influence of porous tantalum scaffold pore size on osteogenesis and osteointegration: A comprehensive study based on 3D-printing technology. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112382. [PMID: 34579901 DOI: 10.1016/j.msec.2021.112382] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/15/2021] [Indexed: 02/05/2023]
Abstract
The emerging role of porous tantalum (Ta) scaffold for bone tissue engineering is noticed due to its outstanding biological properties. However, it is controversial which pore size and porosity are more conducive for bone defect repair. In the present work, porous tantalum scaffolds with pore sizes of 100-200, 200-400, 400-600 and 600-800 μm and corresponding porosities of 25%, 55%, 75%, and 85% were constructed, using computer aided design and 3D printing technologies, then comprehensively studied by in vitro and in vivo studies. We found that Ta scaffold with pore size of 400-600 μm showed stronger ability in facilitating cell adhesion, proliferation, and osteogenic differentiation in vitro. In vivo tests identified that porous tantalum scaffolds with pore size of 400-600 μm showed better performance of bone ingrowth and integration. In mechanism, computational fluid dynamics analysis proved porous tantalum scaffolds with pore size of 400-600 μm hold appropriate permeability and surface area, which facilitated cell adhesion and proliferation. Our results strongly indicate that pore size and porosity are essential for further applications of porous tantalum scaffolds, and porous tantalum scaffolds with pore size 400-600 μm are conducive to osteogenesis and osseointegration. These findings provide new evidence for further application of porous tantalum scaffolds for bone defect repair.
Collapse
Affiliation(s)
- Changqi Luo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Orthopaedic Surgery, The Second People's Hospital of Yibin, Yibin, Sichuan 644000, China
| | - Claire Wang
- Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005, USA
| | - Xiangdong Wu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiaoping Xie
- Department of Orthopaedic Surgery, The Second People's Hospital of Yibin, Yibin, Sichuan 644000, China
| | - Chao Wang
- Department of Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chen Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chang Zou
- Department of Orthopaedic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Furong Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Junyi Liao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
129
|
Qiu G, Wu H, Huang M, Ma T, Schneider A, Oates TW, Weir MD, Xu HHK, Zhao L. Novel calcium phosphate cement with biofilm-inhibition and platelet lysate delivery to enhance osteogenesis of encapsulated human periodontal ligament stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112306. [PMID: 34474857 DOI: 10.1016/j.msec.2021.112306] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/09/2023]
Abstract
Osteomyelitis is caused by Staphylococcus aureus (S. aureus), with associated progressive bone loss. This study developed for the first time a calcium phosphate cement (CPC) for delivery of doxycycline (DOX) and human platelet lysate (hPL) to fight against S. aureus infection and enhance the osteogenesis of human periodontal ligament stem cells (hPDLSCs). Chitosan-containing CPC scaffolds were fabricated in the absence (CPCC) or presence of DOX (CPCC+DOX). In addition, hPL was encapsulated in alginate microbeads and incorporated into CPCC+DOX (CPCC+DOX+ hPL). Flexural strength of CPCC+DOX + hPL was (5.56 ± 0.55) MPa, lower than (8.26 ± 1.6) MPa of CPCC+DOX (p < 0.05), but exceeding the reported strength of cancellous bone. CPCC+DOX and CPCC+DOX + hPL exhibited strong antibacterial activity against S. aureus, reducing biofilm CFU by 4 orders of magnitude. The hPDLSCs encapsulated in microbeads were co-cultured with the CPCs. The hPDLSCs were able to be released from the microbeads and showed a high proliferation rate, increasing by about 8 folds at 14 days for all groups. The hPL was released from the scaffold and promoted the osteogenic differentiation of hPDLSCs. ALP activity was 28.07 ± 5.15 mU/mg for CPCC+DOX + hPL, higher than 17.36 ± 2.37 mU/mg and 1.34 ± 0.37 mU/mg of CPCC+DOX and CPCC, respectively (p < 0.05). At 7 days, osteogenic genes (ALP, RUNX2, COL-1, and OPN) in CPCC+DOX + hPL were 3-10 folds those of control. The amount of hPDLSC-synthesized bone mineral with CPCC+DOX + hPL was 3.8 folds that of CPCC (p < 0.05). In summary, the novel CPC + DOX + hPL-hPDLSCs scaffold exhibited strong antibacterial activity, excellent cytocompatibility and hPDLSC osteogenic differentiation, showing a promising approach for treatment and prevention of bone infection and enhancement of bone regeneration.
Collapse
Affiliation(s)
- Gengtao Qiu
- Department of Trauma and Joint Surgery, Shunde Hospital, Southern Medical University, Foshan, Guangdong, China; Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hansen Wu
- General Administration Office, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingguang Huang
- Department of Trauma and Joint Surgery, Shunde Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Tao Ma
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Member, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; Member, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Liang Zhao
- Department of Trauma and Joint Surgery, Shunde Hospital, Southern Medical University, Foshan, Guangdong, China; Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
130
|
Zhang S, Xie D, Zhang Q. Mesenchymal stem cells plus bone repair materials as a therapeutic strategy for abnormal bone metabolism: Evidence of clinical efficacy and mechanisms of action implied. Pharmacol Res 2021; 172:105851. [PMID: 34450314 DOI: 10.1016/j.phrs.2021.105851] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/06/2021] [Accepted: 08/22/2021] [Indexed: 12/18/2022]
Abstract
The regeneration process of human bones is very complicated, the management and treatment of bone damage caused by diseases are the main problems faced by clinicians worldwide. It is known that cell-based stem cell therapy together with biomaterials is a fast-developing method of tissue regeneration. This review focuses on the different types and main characteristics of scaffolds and stem cells suitable for bone regeneration, and aims to provide a state-of-the-art description of the current treatment of common bone metabolism related diseases such as osteoarthritis, osteoporosis and osteosarcoma and the strategies based on stem cell biological scaffolds used in bone tissue engineering. This method may provide a new treatment option for the treatment of common bone metabolism-related diseases that cannot be cured by ordinary and routine applications. Three databases (PubMed, CNKI and Web of Science) search terms used to write this review are: "arthritis", "osteoporosis", "osteosarcoma", "bone tissue engineering", "mesenchymal stem cells", "materials", "bioactive scaffolds" and their combinations, and the most relevant studies are selected. As a conclusion, it needs to be emphasized that despite the encouraging results, further development is needed due to the need for more in-depth research, standardization of stem cell manufacturing processes, large-scale development of clinical methods for bone tissue engineering, and market regulatory approval. Although the research and application of tissue regeneration technology and stem cells are still in their infancy, the application prospect is broad and it is expected to solve the current clinical problems.
Collapse
Affiliation(s)
- Shuqin Zhang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, China
| | - Denghui Xie
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou 510000, China.
| | - Qun Zhang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou 510000, China.
| |
Collapse
|
131
|
Biological Evaluation of a New Sodium-Potassium Silico-Phosphate Glass for Bone Regeneration: In Vitro and In Vivo Studies. MATERIALS 2021; 14:ma14164546. [PMID: 34443069 PMCID: PMC8400910 DOI: 10.3390/ma14164546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/01/2021] [Accepted: 08/10/2021] [Indexed: 12/27/2022]
Abstract
In vitro and in vivo studies are fundamental steps in the characterization of new implantable materials to preliminarily assess their biological response. The present study reports the in vitro and in vivo characterizations of a novel experimental silicate bioactive glass (BG) (47.5B, 47.5SiO2-10Na2O-10K2O-10MgO-20CaO-2.5P2O5 mol.%). Cytocompatibility tests were performed using human mature osteoblasts (U2OS), human mesenchymal stem cells (hMSCs) and human endothelial cells (EA.hy926). The release of the early osteogenic alkaline phosphatase (ALP) marker suggested strong pro-osteogenic properties, as the amount was comparable between hMSCs cultivated onto BG surface and cells cultivated onto polystyrene control. Similarly, real-time PCR revealed that the osteogenic collagen I gene was overexpressed in cells cultivated onto BG surface without biochemical induction. Acute toxicity tests for the determination of the median lethal dose (LD50) allowed classifying the analyzed material as a slightly toxic substance with LD50 = 4522 ± 248 mg/kg. A statistically significant difference in bone formation was observed in vivo through comparing the control (untreated) group and the experimental one, proving a clear osteogenic effect induced by the implantation at the defect site. Complete resorption of 47.5B powder was observed after only 3 months in favor of newly formed tissue, thus confirming the high osteostimulatory potential of 47.5B glass.
Collapse
|
132
|
Ping J, Zhou C, Dong Y, Wu X, Huang X, Sun B, Zeng B, Xu F, Liang W. Modulating immune microenvironment during bone repair using biomaterials: Focusing on the role of macrophages. Mol Immunol 2021; 138:110-120. [PMID: 34392109 DOI: 10.1016/j.molimm.2021.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
Bone is a self-regenerative tissue that can repair small defects and fractures. In large defects, bone tissue is unable to provide nutrients and oxygen for repair, and autologous grafting is used as the gold standard. As an alternative method, the bone tissue regeneration approach uses osteoconductive biomaterials to overcome bone graft disadvantages. However, biomaterials are considered as foreign components that can stimulate host immune responses. Although traditional principles have been aimed to minimize immune reactions, the design of biomaterials has steadily shifted toward creating an immunomodulatory microenvironment to harness immune cells and responses to repair damaged tissue. Among immune cells, macrophages secrete various immunomodulatory mediators and crosstalk with bone-forming cells and play key roles in bone tissue engineering. Macrophage polarization toward M1 and M2 subtypes mediate pro-inflammatory and anti-inflammatory responses, respectively, which are crucial for bone repairing at different stages. This review provides an overview of the crosstalk between various immune cells and biomaterials, macrophage polarization, and the effect of physicochemical properties of biomaterials on the immune responses, especially macrophages, in bone tissue engineering.
Collapse
Affiliation(s)
- Jianfeng Ping
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing 312000, Zhejiang Province, PR China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan 316000, Zhejiang Province, PR China
| | - Yongqiang Dong
- Department of Orthopaedics, Xinchang People's Hospital, Shaoxing 312500, Zhejiang Province, PR China
| | - Xudong Wu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, Zhejiang Province, PR China
| | - Xiaogang Huang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, Zhejiang Province, PR China
| | - Bin Sun
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, Zhejiang Province, PR China
| | - Bin Zeng
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, Zhejiang Province, PR China
| | - Fangming Xu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, Zhejiang Province, PR China.
| | - Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, Zhejiang Province, PR China.
| |
Collapse
|
133
|
Wildemann B, Ignatius A, Leung F, Taitsman LA, Smith RM, Pesántez R, Stoddart MJ, Richards RG, Jupiter JB. Non-union bone fractures. Nat Rev Dis Primers 2021; 7:57. [PMID: 34354083 DOI: 10.1038/s41572-021-00289-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 11/09/2022]
Abstract
The human skeleton has remarkable regenerative properties, being one of the few structures in the body that can heal by recreating its normal cellular composition, orientation and mechanical strength. When the healing process of a fractured bone fails owing to inadequate immobilization, failed surgical intervention, insufficient biological response or infection, the outcome after a prolonged period of no healing is defined as non-union. Non-union represents a chronic medical condition not only affecting function but also potentially impacting the individual's psychosocial and economic well-being. This Primer provides the reader with an in-depth understanding of our contemporary knowledge regarding the important features to be considered when faced with non-union. The normal mechanisms involved in bone healing and the factors that disrupt the normal signalling mechanisms are addressed. Epidemiological considerations and advances in the diagnosis and surgical therapy of non-union are highlighted and the need for greater efforts in basic, translational and clinical research are identified.
Collapse
Affiliation(s)
- Britt Wildemann
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany. .,Julius Wolff Institute and BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University, Ulm, Baden Württemberg, Germany
| | - Frankie Leung
- Department of Orthopaedics and Traumatology, Queen Mary Hospital, the University of Hong Kong, Hong Kong, Hong Kong
| | - Lisa A Taitsman
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | - R Malcolm Smith
- Orthopedic trauma service, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rodrigo Pesántez
- Departamento de Ortopedia Y Traumatología Fundación Santa Fé de Bogotá - Universidad de los Andes, Bogotá, Colombia
| | | | | | - Jesse B Jupiter
- Department of Orthopaedic surgery, Massachussets General Hospital, Boston, MA, USA.
| |
Collapse
|
134
|
Abstract
Cell-based therapy is a promising approach in the field of regenerative medicine. As cells are formed into spheroids, their survival, functions, and engraftment in the transplanted site are significantly improved compared to single cell transplantation. To improve the therapeutic effect of cell spheroids even further, various biomaterials (e.g., nano- or microparticles, fibers, and hydrogels) have been developed for spheroid engineering. These biomaterials not only can control the overall spheroid formation (e.g., size, shape, aggregation speed, and degree of compaction), but also can regulate cell-to-cell and cell-to-matrix interactions in spheroids. Therefore, cell spheroids in synergy with biomaterials have recently emerged for cell-based regenerative therapy. Biomaterials-assisted spheroid engineering has been extensively studied for regeneration of bone or/and cartilage defects, critical limb ischemia, and myocardial infarction. Furthermore, it has been expanded to pancreas islets and hair follicle transplantation. This paper comprehensively reviews biomaterials-assisted spheroid engineering for regenerative therapy.
Collapse
Affiliation(s)
- Na-Hyun Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Oyunchimeg Bayaraa
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Zhou Zechu
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | | |
Collapse
|
135
|
Mesenchymal Stem Cells, Bioactive Factors, and Scaffolds in Bone Repair: From Research Perspectives to Clinical Practice. Cells 2021; 10:cells10081925. [PMID: 34440694 PMCID: PMC8392210 DOI: 10.3390/cells10081925] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cell-based therapies are promising tools for bone tissue regeneration. However, tracking cells and maintaining them in the site of injury is difficult. A potential solution is to seed the cells onto a biocompatible scaffold. Construct development in bone tissue engineering is a complex step-by-step process with many variables to be optimized, such as stem cell source, osteogenic molecular factors, scaffold design, and an appropriate in vivo animal model. In this review, an MSC-based tissue engineering approach for bone repair is reported. Firstly, MSC role in bone formation and regeneration is detailed. Secondly, MSC-based bone tissue biomaterial design is analyzed from a research perspective. Finally, examples of animal preclinical and human clinical trials involving MSCs and scaffolds in bone repair are presented.
Collapse
|
136
|
|
137
|
Lee NH, Bayaraa O, Zechu Z, Kim HS. Biomaterials-assisted spheroid engineering for regenerative therapy. BMB Rep 2021; 54:356-367. [PMID: 34154700 PMCID: PMC8328824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/23/2021] [Accepted: 06/15/2021] [Indexed: 04/04/2024] Open
Abstract
Cell-based therapy is a promising approach in the field of regenerative medicine. As cells are formed into spheroids, their survival, functions, and engraftment in the transplanted site are significantly improved compared to single cell transplantation. To improve the therapeutic effect of cell spheroids even further, various biomaterials (e.g., nano- or microparticles, fibers, and hydrogels) have been developed for spheroid engineering. These biomaterials not only can control the overall spheroid formation (e.g., size, shape, aggregation speed, and degree of compaction), but also can regulate cell-to-cell and cell-to-matrix interactions in spheroids. Therefore, cell spheroids in synergy with biomaterials have recently emerged for cell-based regenerative therapy. Biomaterials-assisted spheroid engineering has been extensively studied for regeneration of bone or/and cartilage defects, critical limb ischemia, and myocardial infarction. Furthermore, it has been expanded to pancreas islets and hair follicle transplantation. This paper comprehensively reviews biomaterials-assisted spheroid engineering for regenerative therapy. [BMB Reports 2021; 54(7): 356-367].
Collapse
Affiliation(s)
- Na-Hyun Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Oyunchimeg Bayaraa
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Zhou Zechu
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Hye Sung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
138
|
Zhang K, Feng Q, Fang Z, Gu L, Bian L. Structurally Dynamic Hydrogels for Biomedical Applications: Pursuing a Fine Balance between Macroscopic Stability and Microscopic Dynamics. Chem Rev 2021; 121:11149-11193. [PMID: 34189903 DOI: 10.1021/acs.chemrev.1c00071] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Owing to their unique chemical and physical properties, hydrogels are attracting increasing attention in both basic and translational biomedical studies. Although the classical hydrogels with static networks have been widely reported for decades, a growing number of recent studies have shown that structurally dynamic hydrogels can better mimic the dynamics and functions of natural extracellular matrix (ECM) in soft tissues. These synthetic materials with defined compositions can recapitulate key chemical and biophysical properties of living tissues, providing an important means to understanding the mechanisms by which cells sense and remodel their surrounding microenvironments. This review begins with the overall expectation and design principles of dynamic hydrogels. We then highlight recent progress in the fabrication strategies of dynamic hydrogels including both degradation-dependent and degradation-independent approaches, followed by their unique properties and use in biomedical applications such as regenerative medicine, drug delivery, and 3D culture. Finally, challenges and emerging trends in the development and application of dynamic hydrogels are discussed.
Collapse
Affiliation(s)
- Kunyu Zhang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Qian Feng
- Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China
| | - Zhiwei Fang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Luo Gu
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Liming Bian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, People's Republic of China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, People's Republic of China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, People's Republic of China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
| |
Collapse
|
139
|
Jayankura M, Schulz AP, Delahaut O, Witvrouw R, Seefried L, Berg BV, Heynen G, Sonnet W. Percutaneous administration of allogeneic bone-forming cells for the treatment of delayed unions of fractures: a pilot study. Stem Cell Res Ther 2021; 12:363. [PMID: 34174963 PMCID: PMC8235864 DOI: 10.1186/s13287-021-02432-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/06/2021] [Indexed: 01/15/2023] Open
Abstract
Background Overall, 5–10% of fractures result in delayed unions or non-unions, causing major disabilities and a huge socioeconomic burden. Since rescue surgery with autologous bone grafts can cause additional challenges, alternative treatment options have been developed to stimulate a deficient healing process. This study assessed the technical feasibility, safety and preliminary efficacy of local percutaneous implantation of allogeneic bone-forming cells in delayed unions of long bone fractures. Methods In this phase I/IIA open-label pilot trial, 22 adult patients with non-infected delayed unions of long bone fractures, which failed to consolidate after 3 to 7 months, received a percutaneous implantation of allogeneic bone-forming cells derived from bone marrow mesenchymal stem cells (ALLOB; Bone Therapeutics) into the fracture site (50 × 106 to 100 × 106 cells). Patients were monitored for adverse events and need for rescue surgery for 30 months. Fracture healing was monitored by Tomographic Union Score (TUS) and modified Radiographic Union Score. The health status was evaluated using the Global Disease Evaluation (GDE) score and pain at palpation using a visual analogue scale. The presence of reactive anti-human leukocyte antigen (HLA) antibodies was evaluated. Results During the 6-month follow-up, three serious treatment-emergent adverse events were reported in two patients, of which two were considered as possibly treatment-related. None of the 21 patients in the per-protocol efficacy population needed rescue surgery within 6 months, but 2/21 (9.5%) patients had rescue surgery within 30 months post-treatment. At 6 months post-treatment, an improvement of at least 2 points in TUS was reached in 76.2% of patients, the GDE score improved by a mean of 48%, and pain at palpation at the fracture site was reduced by an average of 61% compared to baseline. The proportion of blood samples containing donor-specific anti-HLA antibodies increased from 8/22 (36.4%) before treatment to 13/22 (59.1%) at 6 months post-treatment, but no treatment-mediated allogeneic immune reactions were observed. Conclusion This pilot study showed that the percutaneous implantation of allogeneic bone-forming cells was technically feasible and well tolerated in patients with delayed unions of long bone fractures. Preliminary efficacy evidence is supporting the further development of this treatment. Trial registration NCT02020590. Registered on 25 December 2013. ALLOB-DU1, A pilot Phase I/IIa, multicentre, open proof-of-concept study on the efficacy and safetyof allogeneic osteoblastic cells (ALLOB®) implantation in non-infected delayed-union fractures. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02432-4.
Collapse
Affiliation(s)
- Marc Jayankura
- Service d'Orthopédie - Traumatologie, Cliniques Universitaires de Bruxelles - Université Libre de Bruxelles, Hôpital Erasme, Route de Lennik 808, 1070, Brussels, Belgium.
| | - Arndt Peter Schulz
- Klinik für Orthopädie und Unfallchirurgie, Universität zu Lübeck, Ratzeburger Allee 160, 23568, Lübeck, Germany.,Labor für Biomechanik, BG Klinikum Hamburg, Bergedorfer Str. 10, 21033, Hamburg, Germany.,Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, Mönkhofer Weg 239 a, 23562, Lübeck, Germany
| | - Olivier Delahaut
- Service d'Orthopédie, Centre Hospitalier Universitaire de Charleroi, Charleroi, Belgium
| | - Richard Witvrouw
- Department of Traumatology and Orthopaedics, Oost-Limburg Hospital, Schiepse Bos 2, Genk, Belgium
| | - Lothar Seefried
- Orthopedic Department, University of Wuerzburg, Wuerzburg, Germany
| | - Bruno Vande Berg
- Service de Radiologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Guy Heynen
- Bone Therapeutics S.A., Gosselies, Belgium
| | | |
Collapse
|
140
|
Harrison A, Alt V. Low-intensity pulsed ultrasound (LIPUS) for stimulation of bone healing - A narrative review. Injury 2021; 52 Suppl 2:S91-S96. [PMID: 34020780 DOI: 10.1016/j.injury.2021.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023]
Abstract
The use of low intensity pulsed ultrasound (LIPUS) to accelerate the fracture repair process in humans was first reported by Xavier & Duarte in 1983 [1]. This success led to clinical trials and the 1994 approval of LIPUS in the United States for the accelerated healing of certain fresh fractures. LIPUS was approved in the US for the treatment of established non-unions in 2000, and is also approved around the world. In this article, we present relevant literature on the effect of LIPUS on bone healing in patients with acute fractures and non-unions and provide a molecular explanation for the effects of LIPUS on bone healing. Data on LIPUS accelerated fracture repair is controversial with many controlled studies showing a positive effect. However, the largest trial in acute tibial fractures stabilized with an intramedullary nail failed to show significant differences in accelerated healing and in functional outcomes. Uncontrolled data from prospective case series suggest a positive effect of LIPUS in non united fractures with healing rates of around 85%. Evaluation of results from studies, both positive and negative, has enabled an understanding that the patient population with potentially the greatest benefit from receiving LIPUS are those at-risk for fracture healing, e.g. diabetic & elderly patients. The elucidation of a pathway to activate the Rac-1 pathway by LIPUS might explain this beneficial effect. Overall, there is a strong need for further clinical trials, particularly for acute fractures at risk of progressing to non-union and in established non-unions including a comparison to the current standard of care.
Collapse
Affiliation(s)
- Andrew Harrison
- Bioventus International, Taurusavenue 31, 2131 LS, Hoofddorp, Netherlands.
| | - Volker Alt
- Department of Trauma Surgery, University Hospital Regensburg, Germany.
| |
Collapse
|
141
|
Shih KW, Chen WC, Chang CH, Tai TE, Wu JC, Huang AC, Liu MC. Non-Muscular Invasive Bladder Cancer: Re-envisioning Therapeutic Journey from Traditional to Regenerative Interventions. Aging Dis 2021; 12:868-885. [PMID: 34094648 PMCID: PMC8139208 DOI: 10.14336/ad.2020.1109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/09/2020] [Indexed: 01/01/2023] Open
Abstract
Non-muscular invasive bladder cancer (NMIBC) is one of the most common cancer and major cause of economical and health burden in developed countries. Progression of NMIBC has been characterized as low-grade (Ta) and high grade (carcinoma in situ and T1). The current surgical intervention for NMIBC includes transurethral resection of bladder tumor; however, its recurrence still remains a challenge. The BCG-based immunotherapy is much effective against low-grade NMIBC. BCG increases the influx of T cells at bladder cancer site and inhibits proliferation of bladder cancer cells. The chemotherapy is another traditional approach to address NMIBC by supplementing BCG. Notwithstanding, these current therapeutic measures possess limited efficacy in controlling NMIBC, and do not provide comprehensive long-term relief. Hence, biomaterials and scaffolds seem an effective medium to deliver therapeutic agents for restructuring bladder post-treatment. The regenerative therapies such as stem cells and PRP have also been explored for possible solution to NMIBC. Based on above-mentioned approaches, we have comprehensively analyzed therapeutic journey from traditional to regenerative interventions for the treatment of NMIBC.
Collapse
Affiliation(s)
- Kuan-Wei Shih
- 1Department of Urology, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Wei-Chieh Chen
- 1Department of Urology, Taipei Medical University Hospital, Taipei 11031, Taiwan.,2Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,3TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Hsin Chang
- 1Department of Urology, Taipei Medical University Hospital, Taipei 11031, Taiwan.,3TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan.,4Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 11031, Taiwan
| | - Ting-En Tai
- 1Department of Urology, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Jeng-Cheng Wu
- 1Department of Urology, Taipei Medical University Hospital, Taipei 11031, Taiwan.,3TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan.,5Department of Education, Taipei Medical University Hospital, Taipei 11031, Taiwan.,6Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Andy C Huang
- 8Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei,11221, Taiwan.,9Department of Urology, Department of Surgery, Taipei City Hospital Ren-Ai Branch, Taipei 10629, Taiwan
| | - Ming-Che Liu
- 1Department of Urology, Taipei Medical University Hospital, Taipei 11031, Taiwan.,2Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,3TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan.,7Clinical Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan.,10School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
142
|
Li J, Wei J, Li A, Liu H, Sun J, Qiao H. A Dual Peptide Sustained-Release System Based on Nanohydroxyapatite/Polyamide 66 Scaffold for Synergistic-Enhancing Diabetic Rats' Fracture Healing in Osteogenesis and Angiogenesis. Front Bioeng Biotechnol 2021; 9:657699. [PMID: 34124019 PMCID: PMC8188490 DOI: 10.3389/fbioe.2021.657699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetes mellitus impairs fracture healing and function of stem cells related to bone regeneration; thus, effective bone tissue engineering therapies can intervene with those dysfunctions. Nanohydroxyapatite/polyamide 66 (n-HA/PA66) scaffold has been used in fracture healing, whereas the low bioactivity limits its further application. Herein, we developed a novel bone morphogenetic protein-2- (BMP-2) and vascular endothelial growth factor- (VEGF) derived peptides-decorated n-HA/PA66 (BVHP66) scaffold for diabetic fracture. The n-HA/PA66 scaffold was functionalized by covalent grafting of BMP-2 and VEGF peptides to construct a dual peptide sustained-release system. The structural characteristics and peptide release profiles of BVHP66 scaffold were tested by scanning electron microscopy, Fourier transform infrared spectroscopy, and fluorescence microscope. Under high glucose (HG) condition, the effect of BVHP66 scaffold on rat bone marrow mesenchymal stem cells’ (rBMSCs) adherent, proliferative, and differentiate capacities and human umbilical vein endothelial cells’ (HUVECs) proliferative and tube formation capacities was assessed. Finally, the BVHP66 scaffold was applied to fracture of diabetic rats, and its effect on osteogenesis and angiogenesis was evaluated. In vitro, the peptide loaded on the BVHP66 scaffold was in a sustained-release mode of 14 days. The BVHP66 scaffold significantly promoted rBMSCs’ and HUVECs’ proliferation and improved osteogenic differentiation of rBMSCs and tube formation of HUVECs in HG environment. In vivo, the BVHP66 scaffold enhanced osteogenesis and angiogenesis, rescuing the poor fracture healing in diabetic rats. Comparing with single peptide modification, the dual peptide-modified scaffold had a synergetic effect on bone regeneration in vivo. Overall, this study reported a novel BVHP66 scaffold with excellent biocompatibility and bioactive property and its application in diabetic fracture.
Collapse
Affiliation(s)
- Jian Li
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiaxing Wei
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ang Li
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyu Liu
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingxue Sun
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Qiao
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
143
|
Bouland C, Philippart P, Dequanter D, Corrillon F, Loeb I, Bron D, Lagneaux L, Meuleman N. Cross-Talk Between Mesenchymal Stromal Cells (MSCs) and Endothelial Progenitor Cells (EPCs) in Bone Regeneration. Front Cell Dev Biol 2021; 9:674084. [PMID: 34079804 PMCID: PMC8166285 DOI: 10.3389/fcell.2021.674084] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Bone regeneration is a complex, well-orchestrated process based on the interactions between osteogenesis and angiogenesis, observed in both physiological and pathological situations. However, specific conditions (e.g., bone regeneration in large quantity, immunocompromised regenerative process) require additional support. Tissue engineering offers novel strategies. Bone regeneration requires a cell source, a matrix, growth factors and mechanical stimulation. Regenerative cells, endowed with proliferation and differentiation capacities, aim to recover, maintain, and improve bone functions. Vascularization is mandatory for bone formation, skeletal development, and different osseointegration processes. The latter delivers nutrients, growth factors, oxygen, minerals, etc. The development of mesenchymal stromal cells (MSCs) and endothelial progenitor cells (EPCs) cocultures has shown synergy between the two cell populations. The phenomena of osteogenesis and angiogenesis are intimately intertwined. Thus, cells of the endothelial line indirectly foster osteogenesis, and conversely, MSCs promote angiogenesis through different interaction mechanisms. In addition, various studies have highlighted the importance of the microenvironment via the release of extracellular vesicles (EVs). These EVs stimulate bone regeneration and angiogenesis. In this review, we describe (1) the phenomenon of bone regeneration by different sources of MSCs. We assess (2) the input of EPCs in coculture in bone regeneration and describe their contribution to the osteogenic potential of MSCs. We discuss (3) the interaction mechanisms between MSCs and EPCs in the context of osteogenesis: direct or indirect contact, production of growth factors, and the importance of the microenvironment via the release of EVs.
Collapse
Affiliation(s)
- Cyril Bouland
- Department of Stomatology and Maxillofacial Surgery, Saint-Pierre Hospital, Brussels, Belgium.,Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Pierre Philippart
- Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.,Department of Stomatology and Maxillofacial Surgery, IRIS South Hospital, Brussels, Belgium
| | - Didier Dequanter
- Department of Stomatology and Maxillofacial Surgery, Saint-Pierre Hospital, Brussels, Belgium.,Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Florent Corrillon
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Isabelle Loeb
- Department of Stomatology and Maxillofacial Surgery, Saint-Pierre Hospital, Brussels, Belgium.,Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Dominique Bron
- Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.,Department of Hematology, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium.,Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.,Department of Hematology, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
144
|
Li L, Peng Y, Yuan Q, Sun J, Zhuang A, Bi X. Cathelicidin LL37 Promotes Osteogenic Differentiation in vitro and Bone Regeneration in vivo. Front Bioeng Biotechnol 2021; 9:638494. [PMID: 34012955 PMCID: PMC8126666 DOI: 10.3389/fbioe.2021.638494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/08/2021] [Indexed: 11/17/2022] Open
Abstract
Different types of biomaterials have been used to repair the defect of bony orbit. However, exposure and infections are still critical risks in clinical application. Biomaterials with characteristics of osteogenesis and antibiosis are needed for bone regeneration. In this study, we aimed to characterize the antimicrobial effects of cathelicidin-LL37 and to assess any impacts on osteogenic activity. Furthermore, we attempted to demonstrate the feasibility of LL37 as a potential strategy in the reconstruction of clinical bone defects. Human adipose-derived mesenchyme stem cells (hADSCs) were cultured with different concentrations of LL37 and the optimum concentration for osteogenesis was selected for further in vitro studies. We then evaluated the antibiotic properties of LL37 at the optimum osteogenic concentration. Finally, we estimated the efficiency of a PSeD/hADSCs/LL37 combined scaffold on reconstructing bone defects in the rat calvarial defect model. The osteogenic ability on hADSCs in vitro was shown to be dependent on the concentration of LL37 and reached a peak at 4 μg/ml. The optimum concentration of LL37 showed good antimicrobial properties against Escherichia coli and Staphylococcus anurans. The combination scaffold of PSeD/hADSCs/LL37 showed superior osteogenic properties compared to the PSeD/hADSCs, PSeD, and control groups scaffolds, indicating a strong bone reconstruction effect in the rat calvarial bone defect model. In Conclusion, LL37 was shown to promote osteogenic differentiation in vitro as well as antibacterial properties. The combination of PSeD/hADSCs/LL37 was advantageous in the rat calvarial defect reconstruction model, showing high potential in clinical bone regeneration.
Collapse
Affiliation(s)
- Lunhao Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yiyu Peng
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Qingyue Yuan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jing Sun
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Ai Zhuang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xiaoping Bi
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
145
|
Yang L, Dai H, Yang J, Yang H, Yang D, Kang J. Molecular Mechanism of Neurotrophic Factor-Activated Long Non-Coding RNA Plasmacytoma Variant Translocation 1 Promoting Mesenchymal Stem Cell Migration and Repair of Fractures. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It has been reported that neurotrophic factor (NF) promotes bone marrow mesenchymal stem cells (MSCs) migration to repair fractures. However, whether and how lncRNA PVT1 regulates differentiation induced by neurotrophic factors to promote MSC migration to repair fractures has not been
explored. To explore the molecular mechanism of neurotrophic factor activating lncRNA PVT1 to promote MSC migration and repair fractures. Differential expression of neurotrophic factors stimulated by MSCs was analyzed based on microarray lncRNA and lncRNAs was further verified by qRT-PCR.
The conditions of promoting MSC migration and osteogenic differentiation were identified by trans-fection of lncRNA PVT1 overexpressed plasmids and inhibitor and the targets of its regulation were confirmed by target gene prediction tools. In this study lncRNA array and qRT-PCR showed that
lncRNA PVT1 was significantly down-regulated during neurotrophic factor-induced MSCs differentiation. Transfection of lncRNA PVT1 overexpression plasmid significantly inhibited the expression of osteogenic markers alkaline phosphatase (ALP) and osteopontin (OPN) in MSCs, while transfection
of lncRNA PVT1 inhibitor promoted the expression of alkaline phosphatase (ALP) and osteopontin (OPN). lncRNA PVT1 is a negative regulator of MSCs differentiation induced by neurotrophic factors. The distal deletion homologous box 5(DLX5) was identified as the target of lncRNA PVT1 and the
relationship between lncRNA PVT1 inhibiting the expression of DLX5 and the osteogenic differentiation of MSCs was verified in MSCs. lncRNA PVT1 negatively regulates the migration and differentiation of MSCs induced by neurotrophic factors by targeting DLX5, providing the foundation for bone
repair.
Collapse
Affiliation(s)
- Linyu Yang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Haoping Dai
- Hospital (t.c.m) Affiliated to Southwest Medical University-Spine Surgery, Luzhou, Sichuan, 646000, China
| | - Jian Yang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Han Yang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Daoyin Yang
- Luzhou Jiuzheng Orthopaedic Hospital, Luzhou, Sichuan, 646099, China
| | - Jianping Kang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| |
Collapse
|
146
|
Flores-Sánchez MG, Islas-Arteaga NC, Raya-Rivera AM, Esquiliano-Rendon DR, Morales-Corona J, Uribe-Juarez OE, Vivar-Velázquez FI, Ortiz-Vázquez GP, Olayo R. Effect of a plasma synthesized polypyrrole coverage on polylactic acid/hydroxyapatite scaffolds for bone tissue engineering. J Biomed Mater Res A 2021; 109:2199-2211. [PMID: 33904255 DOI: 10.1002/jbm.a.37205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 03/25/2021] [Accepted: 04/16/2021] [Indexed: 11/09/2022]
Abstract
Composite biomaterials are solids that contain two or more different materials, combining the properties of their components to restore or improve the function of tissues. In this study, we report the generation of electrospun matrices with osteoconductive properties and porosity using the combination of a biodegradable polyester, polylactic acid (PLA), and hydroxyapatite (HA). Additionally, we report the effects of modifying these matrices through plasma polymerization of pyrrole on the growth and osteogenic differentiation of rabbit bone marrow stem cells. Cells were isolated, seeded and cultured on biomaterials for periods between 7 and 28 days. The matrices we obtained were formed by nano and microfibers containing up to 35.7 wt% HA, presenting a variety of apparent pore sizes to allow for the passage of nutrients to bone cells. Scanning electron microscopy showed that the fibers were coated with polypyrrole doped with iodine, and MTT assay demonstrated this increased cell proliferation and significantly improved cell viability due to the adhesive properties of the polymer. Our results show that PLA/HA/Pyrrole/Iodine matrices are favorable for bone tissue engineering.
Collapse
Affiliation(s)
- María G Flores-Sánchez
- Faculty of Engineering, Department of Investigation, La Salle University México, México City, Mexico
| | - Nancy C Islas-Arteaga
- Department of Electric Engineering, Universidad Autónoma Metropolitana, México City, Mexico
| | - Atlántida M Raya-Rivera
- Department of Tissue Engineering, Child Hospital of México Federico Gómez, México City, Mexico
| | | | - Juan Morales-Corona
- Department of Physics, Universidad Autónoma Metropolitana, México City, Mexico
| | - Omar E Uribe-Juarez
- Department of Electric Engineering, Universidad Autónoma Metropolitana, México City, Mexico
| | | | | | - Roberto Olayo
- Department of Physics, Universidad Autónoma Metropolitana, México City, Mexico
| |
Collapse
|
147
|
Li W, Liu W, Wang W, Wang J, Ma T, Chen J, Wu H, Liu C. Sinusoidal electromagnetic fields accelerate bone regeneration by boosting the multifunctionality of bone marrow mesenchymal stem cells. Stem Cell Res Ther 2021; 12:234. [PMID: 33849651 PMCID: PMC8042357 DOI: 10.1186/s13287-021-02302-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 12/26/2022] Open
Abstract
Background The repair of critical-sized bone defects is always a challenging problem. Electromagnetic fields (EMFs), used as a physiotherapy for bone defects, have been suspected to cause potential hazards to human health due to the long-term exposure. To optimize the application of EMF while avoiding its adverse effects, a combination of EMF and tissue engineering techniques is critical. Furthermore, a deeper understanding of the mechanism of action of EMF will lead to better applications in the future. Methods In this research, bone marrow mesenchymal stem cells (BMSCs) seeded on 3D-printed scaffolds were treated with sinusoidal EMFs in vitro. Then, 5.5 mm critical-sized calvarial defects were created in rats, and the cell scaffolds were implanted into the defects. In addition, the molecular and cellular mechanisms by which EMFs regulate BMSCs were explored with various approaches to gain deeper insight into the effects of EMFs. Results The cell scaffolds treated with EMF successfully accelerated the repair of critical-sized calvarial defects. Further studies revealed that EMF could not directly induce the differentiation of BMSCs but improved the sensitivity of BMSCs to BMP signals by upregulating the quantity of specific BMP (bone morphogenetic protein) receptors. Once these receptors receive BMP signals from the surrounding milieu, a cascade of reactions is initiated to promote osteogenic differentiation via the BMP/Smad signalling pathway. Moreover, the cytokines secreted by BMSCs treated with EMF can better facilitate angiogenesis and osteoimmunomodulation which play fundamental roles in bone regeneration. Conclusion In summary, EMF can promote the osteogenic potential of BMSCs and enhance the paracrine function of BMSCs to facilitate bone regeneration. These findings highlight the profound impact of EMF on tissue engineering and provide a new strategy for the clinical treatment of bone defects.
Collapse
Affiliation(s)
- Weigang Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Wenbin Liu
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Wei Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jiachen Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Tian Ma
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jingyuan Chen
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Chaoxu Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
148
|
Sabouri E, Rezaie Z, Enderami SE, Mirahmadi M, Askari M. Different osteoconductivity of
PLLA
/
PHB
composite nanofibers prepared by one‐ and two‐nozzle electrospinning. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Elham Sabouri
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
| | - Zahra Rezaie
- SinaCell Research and Production Company Tehran Iran
| | - Seyed Ehsan Enderami
- Molecular and Cell biology Research Center, Faculty of Medicine Mazandaran University of Medical Sciences Sari Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine Mazandaran University of Medical Sciences Sari Iran
| | - Mahdi Mirahmadi
- Stem Cells and Regenerative Medicine Research Department Iranian Academic Center for Education, Culture Research (ACECR) Mashhad Iran
| | | |
Collapse
|
149
|
Nanohydroxyapatite incorporated photocrosslinked gelatin methacryloyl/poly(ethylene glycol)diacrylate hydrogel for bone tissue engineering. Prog Biomater 2021; 10:43-51. [PMID: 33768485 DOI: 10.1007/s40204-021-00150-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/09/2021] [Indexed: 10/21/2022] Open
Abstract
The development of novel strategies that aim to augment the regenerative potential of bone is critical for devising better treatment options for bone defects or injuries. Facilitation of bone repair and regeneration utilizing composite hydrogels that simulates bone matrix is emerging as a viable approach in bone tissue engineering. The present study aimed to develop nanohydroxyapatite-incorporated gelatin methacryloyl (GelMA)/poly(ethylene glycol) diacrylate (PEGDA) hydrogel (GMPH hydrogel). A facile blending and photocrosslinking approach was employed to incorporate nanohydroxyapatite into the inter-crosslinked polymeric hydrogel network to obtain an ECM mimicking matrix for assisting bone tissue regeneration. Chemical characterization of GelMA and the GMPH hydrogel was carried out using FTIR and 1H NMR. Physical properties of GMPH, such as gelation, swelling and degradation ratios, and internal morphology, signified the suitability of GMPH hydrogel for tissue engineering. Cell viability assay demonstrated a healthy proliferation of MG63 osteoblast cells in GMPH hydrogel extracted growth medium, indicating the hydrogel's cytocompatibility and suitability for bone tissue engineering. Our study documented the fabrication of a novel GelMA/PEGDA-nanohydroxyapatite hydrogel that possesses ideal physicochemical and biological properties for bone tissue engineering.
Collapse
|
150
|
Exploring a Chemotactic Role for EVs from Progenitor Cell Populations of Human Exfoliated Deciduous Teeth for Promoting Migration of Naïve BMSCs in Bone Repair Process. Stem Cells Int 2021; 2021:6681771. [PMID: 33815511 PMCID: PMC7990532 DOI: 10.1155/2021/6681771] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/28/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Mobilization of naïve bone marrow mesenchymal stromal cells (BMSCs) is crucial to desired bone regeneration in both orthopedic and dental contexts. In such conditions, mesenchymal progenitor cell populations from human exfoliated deciduous teeth (SHEDs) present advantageous multipotent properties with easy accessibility which makes them a good candidate in both bone and periodontal tissue regeneration. Extracellular vesicles (EVs) are a functional membranous structure which could participate in multiple cell interactions and imitate the biological functions of their parenting cells largely. To assess their ability to mobilize naïve BMSCs in the bone repair process, Nanosight Tracking Analysis (NTA) and Enzyme-Linked Immunosorbent Assays (ELISA) were performed to illustrate the composition and functional contents of EV samples derived from SHEDs with different culturing time (24 h, 48 h, and 72 h). Afterwards, the Boyden chamber assay was performed to compare their capacity for mobilizing naïve BMSCs. One-way analysis of variance (ANOVA) with a post hoc Turkey test was performed for statistical analysis. SHEDs-derived EVs collected from 24 h, 48 h, and 72 h time points, namely, EV24, EV48, and EV72, were mainly secreted as exosomes and tended to reform into smaller size as a result of sonication indicated by NTA results. Moreover, different EV groups were found to be abundant with multiple growth factors including transforming growth factor-β1 (TGF-β1), platelet-derived growth factor (PDGF), insulin-like growth factor-1 (IGF-1), and fibroblast growth factor-2 (FGF-2) given the detections through ELISA. Boyden chamber assays implied the migratory efficiency of BMSCs driven by EVs at varying concentrations. However, the results showed that migration of BMSCs driven by different EV groups was not statistically significant even with chemotactic factors contained (P > 0.05). Taken together, these data suggest that EVs derived from SHEDs are secreted in functional forms and present a potential of mobilizing naïve BMSCs, which may propose their relevance in assisting bone regeneration.
Collapse
|