101
|
Hanxiao Y, Boyun Y, Minyue J, Xiaoxiao S. Identification of a novel competing endogenous RNA network and candidate drugs associated with ferroptosis in aldosterone-producing adenomas. Aging (Albany NY) 2023; 15:9193-9216. [PMID: 37709486 PMCID: PMC10522391 DOI: 10.18632/aging.205028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Aldosterone-producing adenoma (APA), characterized by unilaterally excessive aldosterone production, is a common cause of primary aldosteronism. Ferroptosis, a recently raised iron-dependent mode of programmed cell death, has been involved in the development and therapy of various diseases. This study obtained datasets of the mRNA and lncRNA expression profiles for APA and adjacent adrenal gland (AAG) from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and lncRNAs (DE lncRNAs) associated with ferroptosis were identified. Enrichment analyses indicated 89 ferroptosis-related DEGs were primarily enriched in ROS related processes and ferroptosis. Two physical cores, and one combined core were identified in the protein-protein interaction (PPI). DEGs and clinical traits were used in conjunction to screen eight hub genes from two hub modules and 89 DEGs. A competitive endogenous RNA (ceRNA) network was constructed via co-express analysis. Thereafter, molecular docking was used to identify potential targets. Two active compounds, QL-X-138 and MK-1775, bound to AURKA and DUOX1, respectively, with the lowest binding energies. Molecular dynamics simulation verified the stability of the two complexes. In summary, our studies identified eight hub genes and a novel ceRNA regulatory network associated with ferroptosis, wherein QL-X-138 and MK-1775 were considered to be potential drugs for treating APA.
Collapse
Affiliation(s)
- Yu Hanxiao
- Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Boyun
- Department of Allergy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Minyue
- Department of Ultrasound, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Song Xiaoxiao
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
102
|
Li Y, Liu J, Ma X, Bai X. Maresin-1 inhibits high glucose induced ferroptosis in ARPE-19 cells by activating the Nrf2/HO-1/GPX4 pathway. BMC Ophthalmol 2023; 23:368. [PMID: 37674121 PMCID: PMC10481498 DOI: 10.1186/s12886-023-03115-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Maresin-1 plays an important role in diabetic illnesses and ferroptosis is associated with pathogenic processes of diabetic retinopathy (DR). The goal of this study is to explore the influence of maresin-1 on ferroptosis and its molecular mechanism in DR. METHODS ARPE-19 cells were exposed to high glucose (HG) condition for developing a cellular model of DR. The CCK-8 assay and flow cytometry were used to assess ARPE-19 cell proliferation and apoptosis, respectively. Furthermore, the GSH content, MDA content, ROS level, and Fe2+ level were measured by using a colorimetric GSH test kit, a Lipid Peroxidation MDA Assay Kit, a DCFH-DA assay and the phirozine technique, respectively. Immunofluorescence labelling was used to detect protein levels of ACSL4 and PTGS2. Messenger RNA and protein expression of HO-1, GPX4 and Nrf2 was evaluated through western blotting and quantitative real time-polymerase chain reaction (qRT-PCR). To establish a diabetic mouse model, mice were intraperitoneally injected 150 mg/kg streptozotocin. The MDA content, ROS level and the iron level were detected by using corresponding commercial kits. RESULTS Maresin-1 promoted cell proliferation while reducing the apoptotic process in HG-induced ARPE-19 cells. Maresin-1 significantly reduced ferroptosis induced by HG in ARPE-19 cells, as demonstrated as a result of decreased MDA content, ROS level, Fe2+ level, PTGS2 expression, ACSL4 expression and increased GSH content. With respect to mechanisms, maresin-1 treatment up-regulated the mRNA expression and protein expression of HO-1, GPX4 and Nrf2 in HG-induced ARPE-19 cells. Nrf2 inhibitor reversed the inhibitory effects of maresin-1 on ferroptosis in HG-induced ARPE-19 cells. In vivo experiments, we found that Maresin-1 evidently repressed ferroptosis a mouse model of DR, as evidenced by the decreased MDA content, ROS level and iron level in retinal tissues of mice. CONCLUSION Maresin-1 protects ARPE cells from HG-induced ferroptosis via activating the Nrf2/HO-1/GPX4 pathway, suggesting that maresin-1 prevents DR development.
Collapse
Affiliation(s)
- Yufei Li
- Ophthalmology Department, Zhongshan Hospital Affiliated to Xiamen University, No.201-209 Hubinnan Road, Siming District, 361004, Xiamen, China
| | - Jieyu Liu
- Endocrinology Department, Beijing Electric Power Hospital, 100073, Beijing, China
| | - Xibo Ma
- Otorhinolaryngology Department, Jilin Province People's Hospital, 130000, Changchun, China
| | - Xue Bai
- Ophthalmology Department, Zhongshan Hospital Affiliated to Xiamen University, No.201-209 Hubinnan Road, Siming District, 361004, Xiamen, China.
| |
Collapse
|
103
|
Lv S, Li H, Zhang T, Su X, Sun W, Wang Q, Wang L, Feng N, Zhang S, Wang Y, Cui H. San-Huang-Yi-Shen capsule ameliorates diabetic nephropathy in mice through inhibiting ferroptosis. Biomed Pharmacother 2023; 165:115086. [PMID: 37418978 DOI: 10.1016/j.biopha.2023.115086] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the main complications of diabetes. However, effective therapy to block or slow down the progression of DN is still lacking. San-Huang-Yi-Shen capsule (SHYS) has been shown to significantly improve renal function and delay the progression of DN. However, the mechanism of SHYS on DN is still unclear. In this study, we established a mouse model of DN. Then, we investigated the anti-ferroptotic effects of SHYS including the reduction of iron overload and the activation of cystine/GSH/GPX4 axis. Finally, we used a GPX4 inhibitor (RSL3) and ferroptosis inhibitor (ferrostatin-1) to determine whether SHYS ameliorates DN through inhibiting ferroptosis. The results showed that SHYS treatment was effective for mice with DN in terms of improving renal function, and reducing inflammation and oxidative stress. Besides, SHYS treatment reduced iron overload and upregulated the expression of cystine/GSH/GPX4 axis-related factors in kidney. Moreover, SHYS exhibited similar therapeutic effect on DN as ferrostatin-1, RSL3 could abolish the therapeutic and anti- ferroptotic effects of SHYS on DN. In conclusion, SHYS can be used to treat mice with DN. Furthermore, SHYS could inhibit ferroptosis in DN through reducing iron overload and upregulating the expression of cystine/GSH/GPX4 axis.
Collapse
Affiliation(s)
- Shuquan Lv
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Hebei, China; Hebei University of Traditional Chinese Medicine, Hebei, China
| | - Huajun Li
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Hebei, China
| | - Tianyu Zhang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Hebei, China
| | - Xiuhai Su
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Hebei, China
| | - Wenjuan Sun
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Hebei, China
| | - Qinghai Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Hebei, China
| | - Lixin Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Hebei, China
| | - Nana Feng
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Hebei, China
| | - Shufang Zhang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Hebei, China.
| | - Yuansong Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Hebei, China.
| | - Huantian Cui
- Yunnan University of Chinese Medicine, Yunnan, China; Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Shandong, China.
| |
Collapse
|
104
|
Zhang S, Li Y, Liu X, Guo S, Jiang L, Huang Y, Wu Y. Carnosine alleviates kidney tubular epithelial injury by targeting NRF2 mediated ferroptosis in diabetic nephropathy. Amino Acids 2023; 55:1141-1155. [PMID: 37450047 DOI: 10.1007/s00726-023-03301-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Diabetic nephropathy (DN) can promote the occurrence of end-stage renal disease (ESRD). The injury of renal tubular epithelial cells is a significant reason for the occurrence of ESRD. A recent research demonstrated that ferroptosis was associated with renal tubular injury in DN. Ferroptosis is a kind of cell death brought on by the buildup of iron ions and lipid peroxidation brought on by ROS. Because carnosine (CAR) is a scavenger of iron ions and reactive oxygen species, we investigated whether CAR can improve DN by regulating ferroptosis. The results show that both CAR and Fer-1 significantly reduced kidney damage and inhibited ferroptosis in STZ mice. In addition, ferroptosis caused by HG or erastin (an inducer of ferroptosis) in human kidney tubular epithelial cell (HK2) was also rescued by CAR treatment. It was discovered that the protective effect of CAR against HG-induced ferroptosis was abolished when NRF2 was specifically knocked down in HK2 cells.
Collapse
Affiliation(s)
- Song Zhang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Yuanyuan Li
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Xueqi Liu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Shanshan Guo
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Ling Jiang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Yuebo Huang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China.
| | - Yonggui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China.
- Center for Scientific Research of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China.
| |
Collapse
|
105
|
Yang Z, Su W, Wei X, Qu S, Zhao D, Zhou J, Wang Y, Guan Q, Qin C, Xiang J, Zen K, Yao B. HIF-1α drives resistance to ferroptosis in solid tumors by promoting lactate production and activating SLC1A1. Cell Rep 2023; 42:112945. [PMID: 37542723 DOI: 10.1016/j.celrep.2023.112945] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/06/2023] [Accepted: 07/21/2023] [Indexed: 08/07/2023] Open
Abstract
Solid tumors have developed robust ferroptosis resistance. The mechanism underlying ferroptosis resistance regulation in solid tumors, however, remains elusive. Here, we report that the hypoxic tumor microenvironment potently promotes ferroptosis resistance in solid tumors in a hypoxia-inducible factor 1α (HIF-1α)-dependent manner. In combination with HIF-2α, which promotes tumor ferroptosis under hypoxia, HIF-1α is the main driver of hypoxia-induced ferroptosis resistance. Mechanistically, HIF-1α-induced lactate contributes to ferroptosis resistance in a pH-dependent manner that is parallel to the classical SLC7A11 and FSP1 systems. In addition, HIF-1α also enhances transcription of SLC1A1, an important glutamate transporter, and promotes cystine uptake to promote ferroptosis resistance. In support of the role of hypoxia in ferroptosis resistance, silencing HIF-1α sensitizes mouse solid tumors to ferroptosis inducers. In conclusion, our results reveal a mechanism by which hypoxia drives ferroptosis resistance and identify the combination of hypoxia alleviation and ferroptosis induction as a promising therapeutic strategy for solid tumors.
Collapse
Affiliation(s)
- Zhou Yang
- National Experimental Teaching Center of Basic Medical Science, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China; Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Su
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiyi Wei
- The State Key Lab of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuang Qu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Dan Zhao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingwan Zhou
- National Experimental Teaching Center of Basic Medical Science, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yunjun Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qing Guan
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chao Qin
- The State Key Lab of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Jun Xiang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China.
| | - Bing Yao
- National Experimental Teaching Center of Basic Medical Science, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China; Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
106
|
Markelic M, Stancic A, Saksida T, Grigorov I, Micanovic D, Velickovic K, Martinovic V, Savic N, Gudelj A, Otasevic V. Defining the ferroptotic phenotype of beta cells in type 1 diabetes and its inhibition as a potential antidiabetic strategy. Front Endocrinol (Lausanne) 2023; 14:1227498. [PMID: 37600723 PMCID: PMC10437050 DOI: 10.3389/fendo.2023.1227498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Recently, the involvement of ferroptotic cell death in the reduction of β-cell mass in diabetes has been demonstrated. To elucidate the mechanisms of β-cell ferroptosis and potential antidiabetic effects of the ferroptosis inhibitor ferrostatin-1 (Fer-1) in vivo, a mouse model of type 1 diabetes (T1D) was used. Methods Animals were divided into three groups: control (vehicle-treated), diabetic (streptozotocin-treated, 40 mg/kg, from days 1-5), and diabetic treated with Fer-1 (1 mg/kg, from days 1-21). On day 22, glycemia and insulinemia were measured and pancreases were isolated for microscopic analyses. Results Diabetes disturbed general parameters of β-cell mass (islet size, β-cell abundance and distribution) and health (insulin and PDX-1 expression), increased lipid peroxidation in islet cells, and phagocytic removal of iron-containing material. It also downregulated the main players of the antiferroptotic pathway - Nrf2, GPX4, and xCT. In contrast, Fer-1 ameliorated the signs of deterioration of β-cell/islets, decreased lipid peroxidation, and reduced phagocytic activity, while upregulated expression of Nrf2 (and its nuclear translocation), GPX4, and xCT in β-cell/islets. Discussion Overall, our study confirms ferroptosis as an important mode of β-cell death in T1D and suggests antiferroptotic agents as a promising strategy for the prevention and treatment of diabetes.
Collapse
Affiliation(s)
- Milica Markelic
- Department of Cell and Tissue Biology, Faculty of Biology, University of Belgrade, Serbia
| | - Ana Stancic
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara Saksida
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ilijana Grigorov
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dragica Micanovic
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ksenija Velickovic
- Department of Cell and Tissue Biology, Faculty of Biology, University of Belgrade, Serbia
| | - Vesna Martinovic
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nevena Savic
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Andjelija Gudelj
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vesna Otasevic
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
107
|
Darenskaya M, Kolesnikov S, Semenova N, Kolesnikova L. Diabetic Nephropathy: Significance of Determining Oxidative Stress and Opportunities for Antioxidant Therapies. Int J Mol Sci 2023; 24:12378. [PMID: 37569752 PMCID: PMC10419189 DOI: 10.3390/ijms241512378] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Diabetes mellitus (DM) belongs to the category of socially significant diseases with epidemic rates of increases in prevalence. Diabetic nephropathy (DN) is a specific kind of kidney damage that occurs in 40% of patients with DM and is considered a serious complication of DM. Most modern methods for treatments aimed at slowing down the progression of DN have side effects and do not produce unambiguous positive results in the long term. This fact has encouraged researchers to search for additional or alternative treatment methods. Hyperglycemia has a negative effect on renal structures due to a number of factors, including the activation of the polyol and hexosamine glucose metabolism pathways, the activation of the renin-angiotensin-aldosterone and sympathetic nervous systems, the accumulation of advanced glycation end products and increases in the insulin resistance and endothelial dysfunction of tissues. The above mechanisms cause the development of oxidative stress (OS) reactions and mitochondrial dysfunction, which in turn contribute to the development and progression of DN. Modern antioxidant therapies for DN involve various phytochemicals (food antioxidants, resveratrol, curcumin, alpha-lipoic acid preparations, etc.), which are widely used not only for the treatment of diabetes but also other systemic diseases. It has also been suggested that therapeutic approaches that target the source of reactive oxygen species in DN may have certain advantages in terms of nephroprotection from OS. This review describes the significance of studies on OS biomarkers in the pathogenesis of DN and analyzes various approaches to reducing the intensity of OS in the prevention and treatment of DN.
Collapse
Affiliation(s)
- Marina Darenskaya
- Department of Personalized and Preventive Medicine, Scientific Centre for Family Health and Human Reproduction Problems, 664003 Irkutsk, Russia; (S.K.); (N.S.); (L.K.)
| | | | | | | |
Collapse
|
108
|
Li L, Dai Y, Ke D, Liu J, Chen P, Wei D, Wang T, Teng Y, Yuan X, Zhang Z. Ferroptosis: new insight into the mechanisms of diabetic nephropathy and retinopathy. Front Endocrinol (Lausanne) 2023; 14:1215292. [PMID: 37600716 PMCID: PMC10435881 DOI: 10.3389/fendo.2023.1215292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Diabetic nephropathy (DN) and diabetic retinopathy (DR) are the most serious and common diabetes-associated complications. DN and DR are all highly prevalent and dangerous global diseases, but the underlying mechanism remains to be elucidated. Ferroptosis, a relatively recently described type of cell death, has been confirmed to be involved in the occurrence and development of various diabetic complications. The disturbance of cellular iron metabolism directly triggers ferroptosis, and abnormal iron metabolism is closely related to diabetes. However, the molecular mechanism underlying the role of ferroptosis in DN and DR is still unclear, and needs further study. In this review article, we summarize and evaluate the mechanism of ferroptosis and its role and progress in DN and DR, it provides new ideas for the diagnosis and treatment of DN and DR.
Collapse
Affiliation(s)
- Luxin Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Yucen Dai
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Dan Ke
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Peijian Chen
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Dong Wei
- Department of Ophthalmology, Affiliated Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Tongtong Wang
- Department of Endocrinology, Affiliated Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Yanjie Teng
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Xiaohuan Yuan
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
109
|
Wang Y, Jin M, Cheng CK, Li Q. Tubular injury in diabetic kidney disease: molecular mechanisms and potential therapeutic perspectives. Front Endocrinol (Lausanne) 2023; 14:1238927. [PMID: 37600689 PMCID: PMC10433744 DOI: 10.3389/fendo.2023.1238927] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Diabetic kidney disease (DKD) is a chronic complication of diabetes and the leading cause of end-stage renal disease (ESRD) worldwide. Currently, there are limited therapeutic drugs available for DKD. While previous research has primarily focused on glomerular injury, recent studies have increasingly emphasized the role of renal tubular injury in the pathogenesis of DKD. Various factors, including hyperglycemia, lipid accumulation, oxidative stress, hypoxia, RAAS, ER stress, inflammation, EMT and programmed cell death, have been shown to induce renal tubular injury and contribute to the progression of DKD. Additionally, traditional hypoglycemic drugs, anti-inflammation therapies, anti-senescence therapies, mineralocorticoid receptor antagonists, and stem cell therapies have demonstrated their potential to alleviate renal tubular injury in DKD. This review will provide insights into the latest research on the mechanisms and treatments of renal tubular injury in DKD.
Collapse
Affiliation(s)
- Yu Wang
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, Guangdong, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Mingyue Jin
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Chak Kwong Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qiang Li
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
110
|
Feng Q, Yang Y, Ren K, Qiao Y, Sun Z, Pan S, Liu F, Liu Y, Huo J, Liu D, Liu Z. Broadening horizons: the multifaceted functions of ferroptosis in kidney diseases. Int J Biol Sci 2023; 19:3726-3743. [PMID: 37564215 PMCID: PMC10411478 DOI: 10.7150/ijbs.85674] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
Ferroptosis is an iron-dependent programmed cell death pattern that is characterized by iron overload, reactive oxygen species (ROS) accumulation and lipid peroxidation. Growing viewpoints support that the imbalance of iron homeostasis and the disturbance of lipid metabolism contribute to tissue or organ injury in various kidney diseases by triggering ferroptosis. At present, the key regulators and complicated network mechanisms associated with ferroptosis have been deeply studied; however, its role in the initiation and progression of kidney diseases has not been fully revealed. Herein, we aim to discuss the features, key regulators and complicated network mechanisms associated with ferroptosis, explore the emerging roles of organelles in ferroptosis, gather its pharmacological progress, and systematically summarize the most recent discoveries about the crosstalk between ferroptosis and kidney diseases, including renal cell carcinoma (RCC), acute kidney injury (AKI), diabetic kidney disease (DKD), autosomal dominant polycystic kidney disease (ADPKD), renal fibrosis, lupus nephritis (LN) and IgA nephropathy. We further conclude the potential therapeutic strategies by targeting ferroptosis for the prevention and treatment of kidney diseases and hope that this work will provide insight for the further study of ferroptosis in the pathogenesis of kidney-related diseases.
Collapse
Affiliation(s)
- Qi Feng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Yang Yang
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Yingjin Qiao
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Zhi Sun
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Fengxun Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Yong Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Jinling Huo
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Dongwei Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| |
Collapse
|
111
|
Shi J, Wang QH, Wei X, Huo B, Ye JN, Yi X, Feng X, Fang ZM, Jiang DS, Ma MJ. Histone acetyltransferase P300 deficiency promotes ferroptosis of vascular smooth muscle cells by activating the HIF-1α/HMOX1 axis. Mol Med 2023; 29:91. [PMID: 37415103 DOI: 10.1186/s10020-023-00694-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND E1A-associated 300-kDa protein (P300), an endogenous histone acetyltransferase, contributes to modifications of the chromatin landscape of genes involved in multiple cardiovascular diseases. Ferroptosis of vascular smooth muscle cells (VSMCs) is a novel pathological mechanism of aortic dissection. However, whether P300 regulates VSMC ferroptosis remains unknown. METHODS Cystine deprivation (CD) and imidazole ketone erastin (IKE) were used to induce VSMC ferroptosis. Two different knockdown plasmids targeting P300 and A-485 (a specific inhibitor of P300) were used to investigate the function of P300 in the ferroptosis of human aortic smooth muscle cells (HASMCs). Cell counting kit-8, lactate dehydrogenase and flow cytometry with propidium iodide staining were performed to assess the cell viability and death under the treatment of CD and IKE. BODIPY-C11 assay, immunofluorescence staining of 4-hydroxynonenal and malondialdehyde assay were conducted to detect the level of lipid peroxidation. Furthermore, co-immunoprecipitation was utilized to explore the interaction between P300 and HIF-1α, HIF-1α and P53. RESULTS Compared with normal control, the protein level of P300 was significantly decreased in HASMCs treated with CD and IKE, which was largely nullified by the ferroptosis inhibitor ferrostatin-1 but not by the autophagy inhibitor or apoptosis inhibitor. Knockdown of P300 by short-hairpin RNA or inhibition of P300 activity by A-485 promoted CD- and IKE-induced HASMC ferroptosis, as evidenced by a reduction in cell viability and aggravation of lipid peroxidation of HASMCs. Furthermore, we found that hypoxia-inducible factor-1α (HIF-1α)/heme oxygenase 1 (HMOX1) pathway was responsible for the impacts of P300 on ferroptosis of HASMCs. The results of co-immunoprecipitation demonstrated that P300 and P53 competitively bound HIF-1α to regulate the expression of HMOX1. Under normal conditions, P300 interacted with HIF-1α to inhibit HMOX1 expression, while reduced expression of P300 induced by ferroptosis inducers would favor HIF-1α binding to P53 to trigger HMOX1 overexpression. Furthermore, the aggravated effects of P300 knockdown on HASMC ferroptosis were largely nullified by HIF-1α knockdown or the HIF-1α inhibitor BAY87-2243. CONCLUSION Thus, our results revealed that P300 deficiency or inactivation facilitated CD- and IKE-induced VSMC ferroptosis by activating the HIF-1α/HMOX1 axis, which may contribute to the development of diseases related to VSMC ferroptosis.
Collapse
Affiliation(s)
- Juan Shi
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, 430030, Wuhan, Hubei, China
| | - Qun-Hui Wang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, 430030, Wuhan, Hubei, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, 430030, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Bo Huo
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, 430030, Wuhan, Hubei, China
| | - Jian-Nan Ye
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, 430030, Wuhan, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin Feng
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, 430030, Wuhan, Hubei, China
| | - Ze-Min Fang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, 430030, Wuhan, Hubei, China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, 430030, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| | - Ming-Jia Ma
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, 430030, Wuhan, Hubei, China.
| |
Collapse
|
112
|
Wei M, Liu X, Tan Z, Tian X, Li M, Wei J. Ferroptosis: a new strategy for Chinese herbal medicine treatment of diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1188003. [PMID: 37361521 PMCID: PMC10289168 DOI: 10.3389/fendo.2023.1188003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Diabetic nephropathy (DN) is a serious microvascular complication of diabetes. It has become a leading cause of death in patients with diabetes and end-stage renal disease. Ferroptosis is a newly discovered pattern of programmed cell death. Its main manifestation is the excessive accumulation of intracellular iron ion-dependent lipid peroxides. Recent studies have shown that ferroptosis is an important driving factor in the onset and development of DN. Ferroptosis is closely associated with renal intrinsic cell (including renal tubular epithelial cells, podocytes, and mesangial cells) damage in diabetes. Chinese herbal medicine is widely used in the treatment of DN, with a long history and definite curative effect. Accumulating evidence suggests that Chinese herbal medicine can modulate ferroptosis in renal intrinsic cells and show great potential for improving DN. In this review, we outline the key regulators and pathways of ferroptosis in DN and summarize the herbs, mainly monomers and extracts, that target the inhibition of ferroptosis.
Collapse
Affiliation(s)
- Maoying Wei
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xingxing Liu
- Department of Emergency, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhijuan Tan
- Department of Traditional Chinese Medicine, The Seventh Hospital of Xingtai, Xingtai, Heibei, China
| | - Xiaochan Tian
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingdi Li
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junping Wei
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
113
|
Mengstie MA, Seid MA, Gebeyehu NA, Adella GA, Kassie GA, Bayih WA, Gesese MM, Anley DT, Feleke SF, Zemene MA, Dessie AM, Solomon Y, Bantie B, Dejenie TA, Teshome AA, Abebe EC. Ferroptosis in diabetic nephropathy: Mechanisms and therapeutic implications. Metabol Open 2023; 18:100243. [PMID: 37124126 PMCID: PMC10130620 DOI: 10.1016/j.metop.2023.100243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/02/2023] Open
Abstract
Diabetic Nephropathy (DN), the most common complication in diabetes mellitus, has been affecting the lives of people diabetic for a long time. Numerous studies have demonstrated the unbreakable connection between ferroptosis and kidney cell damage. Ferroptosis is a type of iron-dependent, non-apoptotic, regulated cell death, characterized by the buildup of intracellular lipid peroxides to lethal levels. Although the role of programmed cell deaths like apoptosis, autophagy, and necroptosis in the pathogenesis of DN has been demonstrated, the implication of ferroptosis in DN was least interrogated. Hence, the main aim of this review was to discuss the current understanding of ferroptosis focusing on its potential mechanisms, its involvement in DN, and emerging therapeutic opportunities.
Collapse
Affiliation(s)
- Misganaw Asmamaw Mengstie
- Department of Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
- Corresponding author.
| | - Mohammed Abdu Seid
- Department of Physiology, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Natnael Atnafu Gebeyehu
- Department of Midwifery, College of Medicine and Health Science, Wolaita Sodo University, Sodo, Ethiopia
| | - Getachew Asmare Adella
- Department of Reproductive Health and Nutrition, School of Public Health, Woliata Sodo University, Sodo, Ethiopia
| | - Gizchew Ambaw Kassie
- Department of Epidemiology and Biostatistics, School of Public Health, Woliata Sodo University, Sodo, Ethiopia
| | - Wubet Alebachew Bayih
- Department of Epidemiology and preventive Medicine, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Australia
| | - Molalegn Mesele Gesese
- Department of Midwifery, College of Medicine and Health Science, Wolaita Sodo University, Sodo, Ethiopia
| | - Denekew Tenaw Anley
- Department of Public Health, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Sefineh Fenta Feleke
- Department of Public Health, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Melkamu Aderajew Zemene
- Department of Public Health, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Anteneh Mengist Dessie
- Department of Public Health, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Yenealem Solomon
- Department of Medical Laboratory Science, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Berihun Bantie
- Department of Comprehensive Nursing, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Tadesse Asmamaw Dejenie
- Department of Medical Biochemistry, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Assefa Agegnehu Teshome
- Department of Anatomy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Endeshaw Chekol Abebe
- Department of Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
114
|
Wang D, Yin K, Zhang Y, Lu H, Hou L, Zhao H, Xing M. Fluoride induces neutrophil extracellular traps and aggravates brain inflammation by disrupting neutrophil calcium homeostasis and causing ferroptosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121847. [PMID: 37209896 DOI: 10.1016/j.envpol.2023.121847] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Endemic fluorosis (EF) has been listed as one of the serious public health problems in many countries. Long-term exposure to high fluoride can lead to severe neuropathological damage to the brain. Although long-term research has revealed the mechanism of some brain inflammation caused by excessive fluoride, the role of intercellular interactions, especially immune cells, in brain damage is still unclear. Fluoride can induce ferroptosis and inflammation in the brain in our study. A co-culture system of neutrophil extranets and primary neuronal cells showed that fluoride can aggravate neuronal cell inflammation by causing neutrophil extranets (NETs). In terms of the mechanism of action, we found that fluoride leads to the opening of calcium ion channels by causing neutrophil calcium imbalance, which in turn leads to the opening of L-type calcium ion channels (LTCC). Extracellular free iron enters the cell from the open LTCC, leading to neutrophil ferroptosis, which releases NETs. Blocking LTCC (nifedipine) rescued neutrophil ferroptosis and reduced the generation of NETs. Inhibition of ferroptosis (Fer-1) did not block cellular calcium imbalance. In summary, our study explores the role of NETs in fluoride-induced brain inflammation and suggests that blocking calcium channels may be one of the possibilities to rescue fluoride-induced ferroptosis.
Collapse
Affiliation(s)
- Dongxu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Kai Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Lulu Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
115
|
Tian M, Zhi JY, Pan F, Chen YZ, Wang AZ, Jia HY, Huang R, Zhong WH. Bioinformatics analysis identifies potential ferroptosis key genes in the pathogenesis of diabetic peripheral neuropathy. Front Endocrinol (Lausanne) 2023; 14:1048856. [PMID: 37251674 PMCID: PMC10215986 DOI: 10.3389/fendo.2023.1048856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/10/2023] [Indexed: 05/31/2023] Open
Abstract
Background Diabetic peripheral neuropathy (DPN) is a serious complication in Diabetes Mellitus (DM) patients and the underlying mechanism is yet unclear. Ferroptosis has been recently intensively researched as a key process in the pathogenesis of diabetes but there yet has been no related bioinformatics-based studies in the context of DPN. Methods We used data mining and data analysis techniques to screen differentially expressed genes (DEGs) and immune cell content in patients with DPN, DM patients and healthy participants (dataset GSE95849). These DEGs were then intersected with the ferroptosis dataset (FerrDb) to obtain ferroptosis DEGs and the associated key molecules and miRNAs interactions were predicted. Results A total of 33 ferroptosis DEGs were obtained. Functional pathway enrichment analysis revealed 127 significantly related biological processes, 10 cellular components, 3 molecular functions and 30 KEGG signal pathways. The biological processes that were significantly enriched were in response to extracellular stimulus and oxidative stress. Key modules constructed by the protein-protein interaction network analysis led to the confirmation of the following genes of interest: DCAF7, GABARAPL1, ACSL4, SESN2 and RB1. Further miRNA interaction prediction revealed the possible involvement of miRNAs such as miR108b-8p, miR34a-5p, mir15b-5p, miR-5838-5p, miR-192-5p, miR-222-3p and miR-23c. Immune-environment content of samples between DM and DPN patients revealed significant difference in the levels of endothelial cells and fibroblasts, which further speculates their possible involvement in the pathogenesis of DPN. Conclusion Our findings could provide insight for investigations about the role of ferroptosis in the development of DPN.
Collapse
Affiliation(s)
- Ming Tian
- Burns Department, Shanghai Jiao Tong University Affiliated Ruijin Hospital, Shanghai, China
| | - Jin Yong Zhi
- Department of General Surgery, Putuo Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fan Pan
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yong Zhu Chen
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ai Zhong Wang
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hui Ying Jia
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic (PR) China, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Huang
- Department of General Surgery, Putuo Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen Hui Zhong
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
116
|
Wang H, Liu D, Zheng B, Yang Y, Qiao Y, Li S, Pan S, Liu Y, Feng Q, Liu Z. Emerging Role of Ferroptosis in Diabetic Kidney Disease: Molecular Mechanisms and Therapeutic Opportunities. Int J Biol Sci 2023; 19:2678-2694. [PMID: 37324941 PMCID: PMC10266077 DOI: 10.7150/ijbs.81892] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/05/2023] [Indexed: 06/17/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common and severe microvascular complications of diabetes mellitus (DM), and has become the leading cause of end-stage renal disease (ESRD) worldwide. Although the exact pathogenic mechanism of DKD is still unclear, programmed cell death has been demonstrated to participate in the occurrence and development of diabetic kidney injury, including ferroptosis. Ferroptosis, an iron-dependent form of cell death driven by lipid peroxidation, has been identified to play a vital role in the development and therapeutic responses of a variety of kidney diseases, such as acute kidney injury (AKI), renal cell carcinoma and DKD. In the past two years, ferroptosis has been well investigated in DKD patients and animal models, but the specific mechanisms and therapeutic effects have not been fully revealed. Herein, we reviewed the regulatory mechanisms of ferroptosis, summarized the recent findings associated with the involvement of ferroptosis in DKD, and discussed the potential of ferroptosis as a promising target for DKD treatment, thereby providing a valuable reference for basic study and clinical therapy of DKD.
Collapse
Affiliation(s)
- Hui Wang
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Dongwei Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Bin Zheng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Yang Yang
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Yingjin Qiao
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Shiyang Li
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Yong Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| |
Collapse
|
117
|
Wang S, Song Y, Xu F, Liu HH, Shen Y, Hu L, Fu Y, Zhu L. Identification and validation of ferroptosis-related genes in lipopolysaccharide-induced acute lung injury. Cell Signal 2023; 108:110698. [PMID: 37149072 DOI: 10.1016/j.cellsig.2023.110698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Emerging evidence reveals the important role of ferroptosis in the pathophysiological process of acute lung injury (ALI). We aimed to identify and validate the potential ferroptosis-related genes of ALI through bioinformatics analysis and experimental validation. METHODS Murine ALI model was established via intratracheal instillation with LPS and confirmed by H&E staining and transmission electronic microscopy (TEM). RNA sequencing (RNA-seq) was used to screen differentially expressed genes (DEGs) between control and ALI model mice. The potential differentially expressed ferroptosis-related genes of ALI were identified using the limma R package. Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, gene set enrichment analysis (GSEA), and protein-protein interactions (PPI) were applied for the differentially expressed ferroptosis-related genes. CIBERSORT tool was used to conduct immune cell infiltration analysis. Finally, protein expressions and RNA expression of ferroptosis DEGs were validated in vivo and in vitro by western blots and RT-qPCR. RESULTS Among 5009 DEGs, a total of 86 differentially expressed ferroptosis-related genes (45 up-regulated genes and 41 down-regulated genes) were identified in the lungs between control and ALI. GSEA analysis showed that the genes enriched were mainly involved in response to molecule of bacterial origin and fatty acid metabolic process. The GO and KEGG enrichment analysis indicated that the top 40 ferroptosis DEGs were mainly enriched in reactive oxygen species metabolic process, HIF-1signaling pathway, lipid and atherosclerosis, and ferroptosis. The PPI results and Spearman correlation analysis suggested that these ferroptosis-related genes interacted with each other. Immune infiltration analysis confirmed that ferroptosis DEGs were closely related to immune response. Consistent with the RNA-seq data, the western blot and RT-qPCR unveiled increased mRNA expressions of Cxcl2, Il-6, Il-1β, and Tnfα, and protein expressions of FTH1, TLR4 as well as decreased ACSL3 in LPS-induced ALI. In vitro, the upregulated mRNA levels of CXCL2, IL-6, SLC2A1, FTH1, TNFAIP3, and downregulated NQO1 and CAV1 in LPS-stimulated BEAS-2B and A549 cells were verified. CONCLUSION We identified 86 potential ferroptosis-related genes of LPS-induced ALI through RNA-seq. Several pivotal ferroptosis-related genes involved in lipid metabolism and iron metabolism were implicated in ALI. This study may be helpful to expand our understanding of ALI and provide some potential targets to counteract ferroptosis in ALI.
Collapse
Affiliation(s)
- Sijiao Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yansha Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Fan Xu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Han Han Liu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yue Shen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lijuan Hu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yipeng Fu
- Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China.
| | - Lei Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Pulmonary Medicine, Huadong Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
118
|
Li Y, Huang Z, Pan S, Feng Y, He H, Cheng S, Wang L, Wang L, Pathak JL. Resveratrol Alleviates Diabetic Periodontitis-Induced Alveolar Osteocyte Ferroptosis Possibly via Regulation of SLC7A11/GPX4. Nutrients 2023; 15:2115. [PMID: 37432277 DOI: 10.3390/nu15092115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 07/12/2023] Open
Abstract
The mode and mechanism of diabetic periodontitis-induced alveolar-osteocyte death are still unclear. This study aimed to investigate the occurrence of ferroptosis in alveolar osteocytes during diabetic periodontitis and the therapeutic potential of resveratrol to alleviate osteocyte ferroptosis. Diabetic periodontitis was induced in C57/BL6-male mice and treated with or without resveratrol. Periodontitis pathogenicity was analyzed by micro-CT and histology, and alveolar-osteocyte ferroptosis was analyzed by immunohistochemistry. MLOY4 osteocytes were treated with P. gingivalis-derived lipopolysaccharide (LPS)+advanced glycosylated end products (AGEs) mimicking diabetic periodontitis condition in vitro, with or without resveratrol or ferrostatin-1 (ferroptosis inhibitor). Osteocyte ferroptosis and expression of inflammatory mediators were analyzed. Diabetic periodontitis aggravated periodontitis pathogenicity and inhibited the expression of GPX4 and SLC7A11 in alveolar osteocytes and resveratrol alleviated these effects. LPS+AGEs triggered osteocyte ferroptosis in vitro as indicated by the downregulated GPX4 and SLC7A11, upregulated malondialdehyde, disrupted mitochondrial morphology, and overexpressed pro-inflammatory mediators IL-1β, TNF-α, SOST, RANKL, and IL-6, and ferrostatin-1 or resveratrol treatment reversed these effects. LPS+AGEs upregulated pIKBα and pNF-κB p65 expression in osteocytes, and resveratrol or ferrostatin-1 reversed this effect. In conclusion, diabetic periodontitis triggers alveolar osteocyte ferroptosis possibly via disruption of the SLC7A11/GPX4 axis, and resveratrol has therapeutic potential to correct this biological event.
Collapse
Affiliation(s)
- Yue Li
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Zhijun Huang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Shuaifei Pan
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Yuhui Feng
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Haokun He
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Shuguang Cheng
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Lijing Wang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Liping Wang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Janak Lal Pathak
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| |
Collapse
|
119
|
Ding W, Lin L, Yue K, He Y, Xu B, Shaukat A, Huang S. Ferroptosis as a Potential Therapeutic Target of Traditional Chinese Medicine for Mycotoxicosis: A Review. TOXICS 2023; 11:395. [PMID: 37112624 PMCID: PMC10142935 DOI: 10.3390/toxics11040395] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
Mycotoxin contamination has become one of the biggest hidden dangers of food safety, which seriously threatens human health. Understanding the mechanisms by which mycotoxins exert toxicity is key to detoxification. Ferroptosis is an adjustable cell death characterized by iron overload and lipid reactive oxygen species (ROS) accumulation and glutathione (GSH) depletion. More and more studies have shown that ferroptosis is involved in organ damage from mycotoxins exposure, and natural antioxidants can alleviate mycotoxicosis as well as effectively regulate ferroptosis. In recent years, research on the treatment of diseases by Chinese herbal medicine through ferroptosis has attracted more attention. This article reviews the mechanism of ferroptosis, discusses the role of ferroptosis in mycotoxicosis, and summarizes the current status of the regulation of various mycotoxicosis through ferroptosis by Chinese herbal interventions, providing a potential strategy for better involvement of Chinese herbal medicine in the treatment of mycotoxicosis in the future.
Collapse
Affiliation(s)
- Wenli Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (W.D.)
| | - Luxi Lin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (W.D.)
| | - Ke Yue
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (W.D.)
| | - Yanfeng He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (W.D.)
| | - Bowen Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (W.D.)
| | - Aftab Shaukat
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Shucheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (W.D.)
| |
Collapse
|
120
|
Zheng Q, Wang Y, Yang H, Sun L, Zhang P, Zhang X, Guo J, Liu YN, Liu WJ. Cardiac and Kidney Adverse Effects of HIF Prolyl-Hydroxylase Inhibitors for Anemia in Patients With CKD Not Receiving Dialysis: A Systematic Review and Meta-analysis. Am J Kidney Dis 2023; 81:434-445.e1. [PMID: 36396085 DOI: 10.1053/j.ajkd.2022.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 09/11/2022] [Indexed: 11/16/2022]
Abstract
RATIONALE & OBJECTIVE Hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHIs) are novel, orally administered agents for anemia management in chronic kidney disease (CKD). We evaluated the cardiac and kidney-related adverse effects of HIF-PHIs among patients with CKD and anemia. STUDY DESIGN Systematic review and meta-analysis of randomized controlled trials (RCTs). SETTING & STUDY POPULATIONS Patients with anemia and CKD not receiving maintenance dialysis. SELECTION CRITERIA FOR STUDIES RCTs comparing HIF-PHIs to placebo or an erythropoiesis-stimulating agent (ESA) with primary outcomes of cardiac and kidney-related adverse events (AEs). DATA EXTRACTION Two independent reviewers evaluated RCTs for eligibility and extracted relevant data. ANALYTICAL APPROACH Dichotomous variables were pooled using the Mantel-Haenszel method and presented as risk ratios (RRs). Subgroup analyses evaluated different intervention times and HIF-PHIs, as well as phase 2 versus phase 3 trials. The certainty of findings was rated according to GRADE criteria. RESULTS Twenty-three studies with 15,144 participants were included. No significant difference in the risk of cardiac AEs was observed between the HIF-PHIs group and the placebo (RR, 1.02 [95% CI, 0.89-1.16]; moderate certainty) or ESA (RR, 1.06 [95% CI, 0.98-1.14]; low certainty) groups. No significant difference in the risk of kidney-related AEs was observed between the HIF-PHIs group and the placebo (RR, 1.09 [95% CI, 0.98-1.20]; moderate certainty) or ESA (RR, 1.00 [95% CI, 0.94-1.06]; low certainty) groups. The occurrence of hypertension and hyperkalemia was higher in the HIF-PHIs group than in the placebo group (RRs of 1.35 [95% CI, 1.14-1.60] and 1.25 [95% CI, 1.03-1.51], respectively; both findings had high certainty). The occurrence of hypertension was lower in the HIF-PHIs group than in the ESA group (RR, 0.89 [95% CI, 0.81-0.98]; moderate certainty). LIMITATIONS The reporting criteria of cardiac and kidney-related AEs and dosage of HIF-PHIs were inconsistent across trials. CONCLUSIONS The occurrence of cardiac or kidney-related AEs in the HIF-PHI groups were not different compared with placebo or ESA groups. REGISTRATION Registered at PROSPERO with registration number CRD42021228243.
Collapse
Affiliation(s)
- Qiyan Zheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing; Renal Research Institution, Beijing University of Chinese Medicine, Beijing; Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen
| | - Yahui Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing; Renal Research Institution, Beijing University of Chinese Medicine, Beijing; Fangshan Hospital Affiliated to Beijing University of Chinese Medicine, Beijing
| | - Huisheng Yang
- Shenzhen Maternity & Child Healthcare Hospital, Shenzhen
| | - Luying Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing; Renal Research Institution, Beijing University of Chinese Medicine, Beijing; Fangshan Hospital Affiliated to Beijing University of Chinese Medicine, Beijing
| | - Pingna Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing; Renal Research Institution, Beijing University of Chinese Medicine, Beijing
| | - Xueqin Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing; Renal Research Institution, Beijing University of Chinese Medicine, Beijing
| | - Jing Guo
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing; Renal Research Institution, Beijing University of Chinese Medicine, Beijing
| | - Yu Ning Liu
- Renal Research Institution, Beijing University of Chinese Medicine, Beijing.
| | - Wei Jing Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing; Renal Research Institution, Beijing University of Chinese Medicine, Beijing.
| |
Collapse
|
121
|
Wu Y, Sun Y, Wu Y, Zhang K, Chen Y. Predictive value of ferroptosis-related biomarkers for diabetic kidney disease: a prospective observational study. Acta Diabetol 2023; 60:507-516. [PMID: 36633709 PMCID: PMC10033569 DOI: 10.1007/s00592-022-02028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023]
Abstract
AIMS To explore the predictive value of ferroptosis-related (FR) biomarkers for diabetic kidney disease (DKD) in patients with type 2 diabetes mellitus (T2DM). METHODS This prospective observational study enrolled patients with T2DM at the Second Hospital of Jilin University between December 2021 and March 2022. DKD was measured by the urinary albumin-to-creatinine ratio. Receiver operating characteristic curve (ROC) analysis was performed to assess the predictive value of ferroptosis-related biomarkers for DKD.The risk factors for massive proteinuria were performed by multivariable logistic regression analysis. RESULTS Finally, 118 patients (53.0 ± 12.2 years, 76 males) were enrolled, 52 of them without DKD (had normal proteinuria), while 66 with DKD. (Forty-one had microproteinuria, and 25 had massive proteinuria.) FR biomarkers, including acyl-CoA synthase long chain family member 4 (ACSL4), malondialdehyde (MDA), and reactive oxygen species (ROS), were significantly higher in the massive proteinuria group than in the other groups, while glutathione peroxidase 4 (GPX4) was significantly lower (all P < 0.05). The area under the ROC of the combination of GPX4, ACSL4, MDA, and ROS for predicting DKD was 0.804 (P < 0.001). Additionally, multivariate logistic regression analysis showed that the course of disease and ferritin levels were independent risk factors for massive proteinuria, while high serum iron, transferrin, and GPX4 levels were independent protective factors for massive proteinuria in patients with T2DM (all P < 0.05). CONCLUSIONS The GPX4, ACSL4, MDA, and ROS combination might have a good predictive value for DKD. Additionally, the course of disease, ferritin levels, serum iron, transferrin, and GPX4 were independently associated with massive proteinuria.
Collapse
Affiliation(s)
- You Wu
- Department of Endocrinology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Nanguan Distract, Changchun, 130041, China
| | - Yunwei Sun
- Department of Endocrinology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Nanguan Distract, Changchun, 130041, China
| | - Yiwei Wu
- Department of Endocrinology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Nanguan Distract, Changchun, 130041, China
| | - Kecheng Zhang
- Department of Endocrinology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Nanguan Distract, Changchun, 130041, China
| | - Yan Chen
- Department of Endocrinology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Nanguan Distract, Changchun, 130041, China.
| |
Collapse
|
122
|
Du X, Ma X, Tan Y, Shao F, Li C, Zhao Y, Miao Y, Han L, Dang G, Song Y, Yang D, Deng Z, Wang Y, Jiang C, Kong W, Feng J, Wang X. B cell-derived anti-beta 2 glycoprotein I antibody mediates hyperhomocysteinemia-aggravated hypertensive glomerular lesions by triggering ferroptosis. Signal Transduct Target Ther 2023; 8:103. [PMID: 36907919 PMCID: PMC10008839 DOI: 10.1038/s41392-023-01313-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/14/2022] [Accepted: 01/09/2023] [Indexed: 03/14/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) is a risk factor for chronic kidney diseases (CKDs) that affects about 85% CKD patients. HHcy stimulates B cells to secrete pathological antibodies, although it is unknown whether this pathway mediates kidney injury. In HHcy-treated 2-kidney, 1-clip (2K1C) hypertensive murine model, HHcy-activated B cells secreted anti-beta 2 glycoprotein I (β2GPI) antibodies that deposited in glomerular endothelial cells (GECs), exacerbating glomerulosclerosis and reducing renal function. Mechanistically, HHcy 2K1C mice increased phosphatidylethanolamine (PE) (18:0/20:4, 18:0/22:6, 16:0/20:4) in kidney tissue, as determined by lipidomics. GECs oxidative lipidomics validated the increase of oxidized phospholipids upon Hcy-activated B cells culture medium (Hcy-B CM) treatment, including PE (18:0/20:4 + 3[O], PE (18:0a/22:4 + 1[O], PE (18:0/22:4 + 2[O] and PE (18:0/22:4 + 3[O]). PE synthases ethanolamine kinase 2 (etnk2) and ethanolamine-phosphate cytidylyltransferase 2 (pcyt2) were increased in the kidney GECs of HHcy 2K1C mice and facilitated polyunsaturated PE synthesis to act as lipid peroxidation substrates. In HHcy 2K1C mice and Hcy-B CM-treated GECs, the oxidative environment induced by iron accumulation and the insufficient clearance of lipid peroxides caused by transferrin receptor (TFR) elevation and down-regulation of SLC7A11/glutathione peroxidase 4 (GPX4) contributed to GECs ferroptosis of the kidneys. In vivo, pharmacological depletion of B cells or inhibition of ferroptosis mitigated the HHcy-aggravated hypertensive renal injury. Consequently, our findings uncovered a novel mechanism by which B cell-derived pathogenic anti-β2GPI IgG generated by HHcy exacerbated hypertensive kidney damage by inducing GECs ferroptosis. Targeting B cells or ferroptosis may be viable therapeutic strategies for ameliorating lipid peroxidative renal injury in HHcy patients with hypertensive nephropathy.
Collapse
Affiliation(s)
- Xing Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 100191, Beijing, P. R. China
| | - Xiaolong Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 100191, Beijing, P. R. China
| | - Ying Tan
- Department of Nephrology, Peking University First Hospital, 100034, Beijing, P. R. China
| | - Fangyu Shao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 100191, Beijing, P. R. China
| | - Chun Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Yang Zhao
- Department of Laboratory Medicine, Peking University Third Hospital, 100083, Beijing, P. R. China
| | - Yutong Miao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 100191, Beijing, P. R. China
| | - Lulu Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 100191, Beijing, P. R. China
| | - Guohui Dang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 100191, Beijing, P. R. China
| | - Yuwei Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 100191, Beijing, P. R. China
| | - Dongmin Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 100191, Beijing, P. R. China
| | - Zhenling Deng
- Department of Nephrology, Peking University Third Hospital, 100083, Beijing, P. R. China
| | - Yue Wang
- Department of Nephrology, Peking University Third Hospital, 100083, Beijing, P. R. China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 100191, Beijing, P. R. China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 100191, Beijing, P. R. China
| | - Juan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 100191, Beijing, P. R. China.
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 100191, Beijing, P. R. China.
| |
Collapse
|
123
|
Iron metabolism and ferroptosis in type 2 diabetes mellitus and complications: mechanisms and therapeutic opportunities. Cell Death Dis 2023; 14:186. [PMID: 36882414 PMCID: PMC9992652 DOI: 10.1038/s41419-023-05708-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/09/2023]
Abstract
The maintenance of iron homeostasis is essential for proper endocrine function. A growing body of evidence suggests that iron imbalance is a key factor in the development of several endocrine diseases. Nowadays, ferroptosis, an iron-dependent form of regulated cell death, has become increasingly recognized as an important process to mediate the pathogenesis and progression of type 2 diabetes mellitus (T2DM). It has been shown that ferroptosis in pancreas β cells leads to decreased insulin secretion; and ferroptosis in the liver, fat, and muscle induces insulin resistance. Understanding the mechanisms concerning the regulation of iron metabolism and ferroptosis in T2DM may lead to improved disease management. In this review, we summarized the connection between the metabolic pathways and molecular mechanisms of iron metabolism and ferroptosis in T2DM. Additionally, we discuss the potential targets and pathways concerning ferroptosis in treating T2DM and analysis the current limitations and future directions concerning these novel T2DM treatment targets.
Collapse
|
124
|
Zheng Y, Fan J, Jiang X. The role of ferroptosis-related genes in airway epithelial cells of asthmatic patients based on bioinformatics. Medicine (Baltimore) 2023; 102:e33119. [PMID: 36862916 PMCID: PMC9981416 DOI: 10.1097/md.0000000000033119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
It has been reported that airway epithelial cells and ferroptosis have certain effect on asthma. However, the action mechanism of ferroptosis-related genes in airway epithelial cells of asthmatic patients is still unclear. Firstly, the study downloaded the GSE43696 training set, GSE63142 validation set and GSE164119 (miRNA) dataset from the gene expression omnibus database. 342 ferroptosis-related genes were downloaded from the ferroptosis database. Moreover, differentially expressed genes (DEGs) between asthma and control samples in the GSE43696 dataset were screened by differential analysis. Consensus clustering analysis was performed on asthma patients to classify clusters, and differential analysis was performed on clusters to obtain inter-cluster DEGs. Asthma-related module was screened by weighted gene co-expression network analysis. Then, DEGs between asthma and control samples, inter-cluster DEGs and asthma-related module were subjected to venn analysis for obtaining candidate genes. The last absolute shrinkage and selection operator and support vector machines were respectively applied to the candidate genes to screen for feature genes, and functional enrichment analysis was performed. Finally, a competition endogenetic RNA network was constructed and drug sensitivity analysis was conducted. There were 438 DEGs (183 up-regulated and 255 down-regulated) between asthma and control samples. 359 inter-cluster DEGs (158 up-regulated and 201 down-regulated) were obtained by screening. Then, the black module was significantly and strongly correlated with asthma. The venn analysis yielded 88 candidate genes. 9 feature genes (NAV3, ITGA10, SYT4, NOX1, SNTG2, RNF182, UPK1B, POSTN, SHISA2) were screened and they were involved in proteasome, dopaminergic synapse etc. Besides, 4 mRNAs, 5 miRNAs, and 2 lncRNAs collectively formed competition endogenetic RNA regulatory network, which included RNF182-hsa-miR-455-3p-LINC00319 and so on. The predicted therapeutic drug network map contained NAV3-bisphenol A and other relationship pairs. The study investigated the potential molecular mechanisms of NAV3, ITGA10, SYT4, NOX1, SNTG2, RNF182, UPK1B, POSTN, SHISA2 in airway epithelial cells of asthmatic patients through bioinformatics analysis, providing a reference for the research of asthma and ferroptosis.
Collapse
Affiliation(s)
- Ye Zheng
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingyao Fan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaofeng Jiang
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Xiaofeng Jiang, Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, No. 766, Xiangan North Street, Harbin 150028, China (e-mail )
| |
Collapse
|
125
|
Huang X, Song Y, Wei L, Guo J, Xu W, Li M. The emerging roles of ferroptosis in organ fibrosis and its potential therapeutic effect. Int Immunopharmacol 2023; 116:109812. [PMID: 36746022 DOI: 10.1016/j.intimp.2023.109812] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/19/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Fibrosis refers to the process of excessive deposition of extracellular matrix (ECM) proteins, eventually leading to excessive scar formation. Fibrotic diseases can occur in many organs and result in high mortality. Currently, there is no effective treatment for fibrosis. As a new form of regulatory cell death (RCD), ferroptosis is mainly mediated by iron overload and lipid peroxidation. Emerging evidence shows that ferroptosis is involved in the pathogenesis of fibrotic diseases. Generally, ferroptosis of parenchymal cells exacerbates the progression of fibrosis, while ferroptosis of myofibroblasts may ameliorate it. Therefore, studying the mechanisms of ferroptosis in fibrosis and targeting ferroptosis in certain cells can provide valuable insights into the pathogenesis of fibrotic diseases. In the present review, we summarized the mechanisms and regulators of ferroptosis and then described the mechanism of fibrosis and the role of ferroptosis in fibrotic diseases, including liver fibrosis, renal fibrosis, pulmonary fibrosis, and myocardial fibrosis.
Collapse
Affiliation(s)
- Xuege Huang
- Institute of Biology and Medical Sciences, Soochow University, Building 703, 199 Ren-ai Road, Suzhou 215123, China
| | - Yahui Song
- Institute of Biology and Medical Sciences, Soochow University, Building 703, 199 Ren-ai Road, Suzhou 215123, China
| | - Lin Wei
- Institute of Biology and Medical Sciences, Soochow University, Building 703, 199 Ren-ai Road, Suzhou 215123, China
| | - Jing Guo
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Wei Xu
- Institute of Biology and Medical Sciences, Soochow University, Building 703, 199 Ren-ai Road, Suzhou 215123, China.
| | - Min Li
- Institute of Biology and Medical Sciences, Soochow University, Building 703, 199 Ren-ai Road, Suzhou 215123, China.
| |
Collapse
|
126
|
Deng Q, Zhu Y, Zhang M, Fei A, Liang J, Zheng J, Zhang Q, Cheng T, Ge X. Ferroptosis as a potential new therapeutic target for diabetes and its complications. Endocr Connect 2023; 12:e220419. [PMID: 36656308 PMCID: PMC9986392 DOI: 10.1530/ec-22-0419] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/19/2023] [Indexed: 01/20/2023]
Abstract
Diabetes is a complex metabolic disease. In recent years, diabetes and its chronic complications have become a health hotspot of global concern. It is very important to find promising therapeutic targets and directions. Ferroptosis is a new type of programmed cell death that is different from cell necrosis, apoptosis, and autophagy. Ferroptosis is mainly characterized by iron-dependent lipid peroxidation. With the reduction of the anti-oxidative capacity of cells, the accumulated reactive lipid oxygen species will cause oxidative cell death and lead to ferroptosis at lethal levels. Recent studies have shown that ferroptosis plays an important regulatory role in the initiation and development of diabetes, as well as various complications of diabetes. In this review, we will summarize new findings related to ferroptosis and diabetic complications and propose ferroptosis as a potential target for treating diabetic complications.
Collapse
Affiliation(s)
- Qian Deng
- Graduate College of Anhui University of Chinese Medicine, Hefei, China
| | - Yue Zhu
- Graduate College of Anhui University of Chinese Medicine, Hefei, China
| | - Mengmeng Zhang
- Graduate College of Anhui University of Chinese Medicine, Hefei, China
| | - Aihua Fei
- Department of Endocrinology, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Jiaqi Liang
- Graduate College of Anhui University of Chinese Medicine, Hefei, China
| | - Jinjin Zheng
- Graduate College of Anhui University of Chinese Medicine, Hefei, China
| | - Qingping Zhang
- College of Acupuncture-moxibustion and Tuina, Anhui University of Chinese Medicine, Hefei, China
| | - Tong Cheng
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xia Ge
- Department of Endocrinology, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
127
|
Chen B, Chen L, Yang Z, Fu Q, Li X, Cao C. Acute Aluminum Sulfate Triggers Inflammation and Oxidative Stress, Inducing Tissue Damage in the Kidney of the Chick. Biol Trace Elem Res 2023; 201:1442-1450. [PMID: 35551605 DOI: 10.1007/s12011-022-03260-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
In this study, a total of 20 7-day-old chicks were randomly divided into an experimental group and a control group. The experimental group was administered aluminum sulfate (Al2(SO4)3) once by gavage, and the control group was sacrificed after 24 h of fasting with distilled water. Serum and kidney tissue samples from both groups were collected and compared using hematoxylin-eosin staining (H&E) and microscopy. The Paller scores increased (p < 0.01) for biochemical kidney function, redox-related indicators, and mRNA expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) downstream related genes. The results showed that in the kidneys of the experimental group, renal tubular epithelial cells appeared to swell, and there was necrosis and shedding; the blood urea nitrogen (BUN) and uric acid (UA) decreased, serum creatinine (CREA) increased; nitric oxide (NO), glutathione (GSH), and malondialdehyde (MDA) contents increased; NO synthase (NOS), glutathione peroxidase (GSH-PX), and superoxide dismutase (SOD) enzyme activities increased; tumor necrosis factor alpha (TNF-α), tumor necrosis factor receptor 1 (TNF-R1), tumor necrosis factor receptor 2 (TNF -R2), cyclooxygenase-2 (COX-2), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and heme oxygenase-1 (HO-1) mRNA expression levels increased (p < 0.05 or p < 0.01); Nrf2, glutathione S-transferase A3 (GSTA3), glutathione-S-transferase mu-1 (GSTM1), glutathione synthetase (GSS), glutamate cysteine ligase (GCLC and GCLM), quinone oxidoreductase 1 (NQO1), and Kelch-like ECH-associated protein 1 (Keap1) mRNA expression levels decreased (p < 0.05 or p < 0.01) compared to the control group. Acute aluminum poisoning can cause obvious pathological changes in the structure of the kidney tissue of the chick, resulting in damage to the kidney function, as well as triggering inflammation and oxidative stress in the kidney.
Collapse
Affiliation(s)
- Bo Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Lina Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Zhiqing Yang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Qiang Fu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Xinran Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China.
- Foshan University Veterinary Teaching Hospital, Foshan, Guangdong, 528231, People's Republic of China.
| | - Changyu Cao
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China.
| |
Collapse
|
128
|
Lu Q, Yang L, Xiao JJ, Liu Q, Ni L, Hu JW, Yu H, Wu X, Zhang BF. Empagliflozin attenuates the renal tubular ferroptosis in diabetic kidney disease through AMPK/NRF2 pathway. Free Radic Biol Med 2023; 195:89-102. [PMID: 36581059 DOI: 10.1016/j.freeradbiomed.2022.12.088] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Renal tubular damage plays a key role in the pathogenesis of diabetic kidney disease (DKD), and one of the main pathological process associated with DKD in diabetic mice is the ferroptosis, a novel form of cell death caused by iron-dependent lipid peroxidation. Several researches suggested that empagliflozin may treat renal injury, but its effects on diabetic-related ferroptosis and underlying mechanisms were not fully elucidated. In this study, the influence of empagliflozin on renal injury was evaluated in vivo and in vitro in a mouse model and in high-glucose (HG) or Erastin-stimulated renal HK-2 cell line, respectively. Ferroptosis-related markers were assessed, including GSH, labile iron levels, and ferroptosis regulators by Western blot, qRT-PCR, immunohistochemistry, and immunofluorescence. The level of malondialdehyde (MDA) and the fluorescence intensity of BODIPY probe indicated the level of lipid peroxidation. It was demonstrated that solute carrier family 7, member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) were less expressed in renal biopsy samples from patients affected by DKD than in those from non-diabetic renal disease patients (NDRD), proving the ferroptosis of tubular epithelial cells in case of DKD. Furthermore, empagliflozin markedly decreased the ferroptosis impairment in DKD mice, as well as in HG model of HK-2 cells. Our investigations showed the ability of empagliflozin to suppress ferroptosis was partially countered by AMP-activated protein kinase (AMPK) inhibitor, which led to a reduction of the nuclear translocation of the antioxidant transcription factor NFE2-related factor 2 (NRF2) and downregulation of target genes such as GPX4, ferritin heavy chain 1 (FTH1), and SLC7A11, while AMPK agonists were responsible for the enhancement of the protective effects of empagliflozin. Taken together, our findings showed that empagliflozin may prevent the development of ferroptosis by promoting the AMPK-mediated NRF2 activation pathway, providing important insights for possible novel treatment approaches for DKD.
Collapse
Affiliation(s)
- QianYu Lu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - LiJiao Yang
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing-Jie Xiao
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Qing Liu
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - LiHua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun-Wei Hu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hong Yu
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - XiaoYan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Bai-Fang Zhang
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China.
| |
Collapse
|
129
|
Wang Z, Li K, Xu Y, Song Z, Lan X, Pan C, Zhang S, Foulkes NS, Zhao H. Ferroptosis contributes to nickel-induced developmental neurotoxicity in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160078. [PMID: 36372175 DOI: 10.1016/j.scitotenv.2022.160078] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/29/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Nickel (Ni) is a widely utilized heavy metal that can cause environmental pollution and health hazards. Its safety has attracted the attention of both the environmental ecology and public health fields. While the central nervous system (CNS) is one of the main targets of Ni, its neurotoxicity and the underlying mechanisms remain unclear. Here, by taking advantage of the zebrafish model for live imaging, genetic analysis and neurobehavioral studies, we reveal that the neurotoxic effects induced by exposure to environmentally relevant levels of Ni are closely related to ferroptosis, a newly-described form of iron-mediated cell death. In vivo two-photon imaging, neurobehavioral analysis and transcriptome sequencing consistently demonstrate that early neurodevelopment, neuroimmune function and vasculogenesis in zebrafish larvae are significantly affected by environmental Ni exposure. Importantly, exposure to various concentrations of Ni activates the ferroptosis pathway, as demonstrated by physiological/biochemical tests, as well as the expression of ferroptosis markers. Furthermore, pharmacological intervention of ferroptosis via deferoxamine (DFO), a classical iron chelating agent, strongly implicates iron dyshomeostasis and ferroptosis in these Ni-induced neurotoxic effects. Thus, this study elucidates the cellular and molecular mechanisms underlying Ni neurotoxicity, with implications for our understanding of the physiologically damaging effects of other environmental heavy metal pollutants.
Collapse
Affiliation(s)
- Zuo Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Kemin Li
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Yanyi Xu
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Zan Song
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Shengxiang Zhang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Nicholas S Foulkes
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Haiyu Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| |
Collapse
|
130
|
Paricalcitol Ameliorates Acute Kidney Injury in Mice by Suppressing Oxidative Stress and Inflammation via Nrf2/HO-1 Signaling. Int J Mol Sci 2023; 24:ijms24020969. [PMID: 36674485 PMCID: PMC9861387 DOI: 10.3390/ijms24020969] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Effective and targeted prevention and treatment methods for acute kidney injury (AKI), a common clinical complication, still needs to be explored. Paricalcitol is a biologically active chemical that binds to vitamin D receptors in the body to exert anti-oxidant and anti-inflammatory effects. However, the molecular mechanism of the effect of paricalcitol on AKI remains unclear. The current study uses a paricalcitol pretreatment with a mouse AKI model induced by cisplatin to detect changes in renal function, pathology and ultrastructure. Results showed that paricalcitol significantly improved renal function in mice and reduced inflammatory cell infiltration and mitochondrial damage in renal tissue. Furthermore, paricalcitol markedly suppressed reactive oxygen species and malondialdehyde levels in the kidneys of AKI mice and increased the levels of glutathione, superoxide dismutase, Catalase and total anti-oxidant capacity. In addition, we detected renal necrosis and inflammation-related proteins in AKI mice by immunofluorescence and Western blot, and found that their levels were markedly decreased after paricalcitol pretreatment. Moreover, paricalcitol promotes nuclear factor erythroid 2-related factor 2 (Nrf2) in the nucleus and activates the Nrf2/heme oxygenase-1 (HO-1) signaling pathway; while HO-1 is inhibited, the protective effect of paricalcitol on the kidney is attenuated. In conclusion, paricalcitol exerts a renoprotective effect by decreasing renal oxidative injury and inflammation through Nrf2/HO-1 signaling, providing a new insight into AKI prevention.
Collapse
|
131
|
Zhan S, Liang J, Lin H, Cai J, Yang X, Wu H, Wei J, Wang S, Xian M. SATB1/SLC7A11/HO-1 Axis Ameliorates Ferroptosis in Neuron Cells After Ischemic Stroke by Danhong Injection. Mol Neurobiol 2023; 60:413-427. [PMID: 36274077 DOI: 10.1007/s12035-022-03075-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/08/2022] [Indexed: 12/30/2022]
Abstract
Neuronal damage after ischemic stroke (IS) is frequently due to ferroptosis, contributing significantly to ischemic injury. However, the mechanism against ferroptosis in IS remained unclear. The aim of this study was to investigate the potential mechanism of Danhong injection (DHI) and the critical transcription factor SATB1 in preventing neuronal ferroptosis after ischemic stroke in vivo and in vitro. The results showed that DHI treatment significantly reduced the infarct area and associated damage in the brains of the pMCAO mice, and enhanced the viability of OGD-injured neurons. And several characteristic indicators of ferroptosis, such as mitochondrial necrosis and iron accumulation, were regulated by DHI after IS. Importantly, we found that the expression and activity of SATB1 were decreased in the pMCAO mice, especially in neuron cells. Meanwhile, the SATB1/SLC7A11/HO-1 signaling pathway was activated after DHI treatment in ischemic stroke and was found to improve neuronal ferroptosis. Inhibition of SATB1 significantly reduced SLC7A11-HO-1 and significantly attenuated the anti-ferroptosis effects of DHI in the OGD model. These findings indicate that neuronal ferroptosis after IS can be alleviated by DHI through SATB1/SLC7A11/HO-1 pathway, and SATB1 may be an attractive therapeutic target for treating ischemic stroke.
Collapse
Affiliation(s)
- Sikai Zhan
- Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiayin Liang
- Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Huiting Lin
- Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiale Cai
- Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xinxin Yang
- Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hongwei Wu
- China Academy of Chinese Medical Sciences, Dongzhimen 16 Nanxiao Road, Dongcheng District, Beijing, 100700, China
| | - Junying Wei
- China Academy of Chinese Medical Sciences, Dongzhimen 16 Nanxiao Road, Dongcheng District, Beijing, 100700, China.
| | - Shumei Wang
- Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China. .,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China. .,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Minghua Xian
- Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China. .,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China. .,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
132
|
Li Q, Meng X, Hua Q. Circ ASAP2 decreased inflammation and ferroptosis in diabetic nephropathy through SOX2/SLC7A11 by miR-770-5p. Acta Diabetol 2023; 60:29-42. [PMID: 36153434 DOI: 10.1007/s00592-022-01961-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/16/2022] [Indexed: 01/07/2023]
Abstract
AIMS Diabetes nephropathy (DN) is one of the major complications in diabetes. With the improvement of people's living standards in China in recent years, the incidence of diabetes has become the main cause of end-stage renal disease. However, how and whether circ ASAP2 could mediate DN remain poorly understood. This study aimed to determine the function and its biological mechanism of circ ASAP2 on inflammation and ferroptosis of DN. METHODS C57BL/6 mice were fed with a high-fat diet and injected with streptozotocin. Human renal glomerular endothelial cells stimulated with 20 mmol/L D-glucose. RESULTS In mice model DN, circular ASAP2 expression level was down-regulated, and miR-770-5p expression level was up-regulated. Moreover, the inhibition of ASAP2 aggravated diabetic nephropathy in mice model. The inhibition of ASAP2 promoted inflammation and oxidative stress to aggravate renal injury in mice model. Circular ASAP2 was reducing inflammation and oxidative stress in vitro model. The inhibition of ASAP2 promoted ferroptosis in model of DN. CASAP2 suppressed miR-770-5p in DN. Additionally, miR-770-5p aggravated diabetic nephropathy in mice model. MiR-770-5p promoted inflammation and oxidative stress to aggravate renal injury in mice model. MiR-770-5p was increasing inflammation and oxidative stress in vitro model. Circular ASAP2 induced SLC7A11 expression in model of DN through SOX2 by miR-770-5p. CONCLUSIONS These results suggest that circ ASAP2 decreased inflammation and ferroptosis in DN through SOX2/SLC7A11 by miR-770-5p, which might serve as a target for improving the role of ferroptosis in DN.
Collapse
Affiliation(s)
- Qin Li
- Department of Endocrinology, Yijishan Hospital of Wannan Medical College, No.2 Zheshanxi Road, Wuhu, 241001, Anhui, China
| | - Xiangjian Meng
- Department of Endocrinology, Yijishan Hospital of Wannan Medical College, No.2 Zheshanxi Road, Wuhu, 241001, Anhui, China.
| | - Qiang Hua
- Department of Endocrinology, Yijishan Hospital of Wannan Medical College, No.2 Zheshanxi Road, Wuhu, 241001, Anhui, China.
| |
Collapse
|
133
|
Dong H, Zhang C, Shi D, Xiao X, Chen X, Zeng Y, Li X, Xie R. Ferroptosis related genes participate in the pathogenesis of spinal cord injury via HIF-1 signaling pathway. Brain Res Bull 2023; 192:192-202. [PMID: 36414158 DOI: 10.1016/j.brainresbull.2022.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/29/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) is a crushing disease without a effective and specific therapeutic strategy. Therefore, it is crucial to uncover underlying mechanism in order to identify potential treatments for SCI. Current studies show ferroptosis might pay important role in SCI. METHODS In this study, we aimed to identify the key ferroptosis-related genes providing therapeutic targets for SCI. GSE45006, GSE19890 and GSE156999 from Gene Expression Omnibus (GEO) database were analyzed. RESULTS A total of 61 ferroptosis-related DEGs were identified, followed by bioinformatics enrichment analyses and PPI network construction. Ten key ferroptosis-related genes were identified by Cytoscape (Cytohubba), most of which were enriched in the HIF-1 signaling pathway. Then we constructed a clip SCI rat model and qPCR was performed to assess the expressions of five genes enriched in HIF-1 signaling pathway (Stat3, Tlr4, Hmox1, Hif1a and Cybb). Finally, a ceRNA network, Stat3, Tlr4, Hmox1/miR127, miR383, miR485/rno-Mut_0003, rno-Pwwp2a_0002 was constructed and expression of mentioned molecules were validated by chip data. CONCLUSIONS Five hub genes from HIF-1 signaling pathway were identified and might play a central role in SCI, which indicated that ferroptosis was correlated with HIF-1 signaling pathway. These results can provide a new insight into molecular mechanisms and identify potential therapeutic targets for SCI.
Collapse
Affiliation(s)
- Haoru Dong
- Department of Neurosurgery; National Center for Neurological Disorders; Neurosurgical Institute of Fudan University; Shanghai Clinical Medical Center of Neurosurgery; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Chi Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Donglei Shi
- Department of Nursing, Huashan Hospital, Fudan University, Shanghai 200032, China.
| | - Xiao Xiao
- Department of Neurosurgery; National Center for Neurological Disorders; Neurosurgical Institute of Fudan University; Shanghai Clinical Medical Center of Neurosurgery; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Xingyu Chen
- Department of Neurosurgery; National Center for Neurological Disorders; Neurosurgical Institute of Fudan University; Shanghai Clinical Medical Center of Neurosurgery; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Yuanxiao Zeng
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Xiaomu Li
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Rong Xie
- Department of Neurosurgery; National Center for Neurological Disorders; Neurosurgical Institute of Fudan University; Shanghai Clinical Medical Center of Neurosurgery; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai 200040, China; Department of Neurosurgery, National Regional Medical Center; Huashan Hospital Fujian Campus, Fudan University; The First Affiliated Hospital of Fujian Medical University, Fuzhou 350209, Fujian Province, China.
| |
Collapse
|
134
|
Wei ZJ, Feng SQ, Li JZ, Fan BY, Sun T, Wang XX, Li JJ, Zhang JP, Gu GJ, Shen WY, Liu DR. Bioinformatics analysis of ferroptosis in spinal cord injury. Neural Regen Res 2023; 18:626-633. [DOI: 10.4103/1673-5374.350209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
135
|
Identification of ferroptosis-related genes and pathways in diabetic kidney disease using bioinformatics analysis. Sci Rep 2022; 12:22613. [PMID: 36585417 PMCID: PMC9803720 DOI: 10.1038/s41598-022-26495-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
Diabetic kidney disease (DKD) is a major public health issue because of its refractory nature. Ferroptosis is a newly coined programmed cell death characterized by the accumulation of lipid reactive oxygen species (ROS). However, the prognostic and diagnostic value of ferroptosis-related genes (FRGs) and their biological mechanisms in DKD remain elusive. The gene expression profiles GSE96804, GSE30566, GSE99339 and GSE30528 were obtained and analyzed. We constructed a reliable prognostic model for DKD consisting of eight FRGs (SKIL, RASA1, YTHDC2, SON, MRPL11, HSD17B14, DUSP1 and FOS). The receiver operating characteristic (ROC) curves showed that the ferroptosis-related model had predictive power with an area under the curve (AUC) of 0.818. Gene functional enrichment analysis showed significant differences between the DKD and normal groups, and ferroptosis played an important role in DKD. Consensus clustering analysis showed four different ferroptosis types, and the risk score of type four was significantly higher than that of other groups. Immune infiltration analysis indicated that the expression of macrophages M2 increased significantly, while that of neutrophils and mast cells activated decreased significantly in the high-risk group. Our study identified and validated the molecular mechanisms of ferroptosis in DKD. FRGs could serve as credible diagnostic biomarkers and therapeutic targets for DKD.
Collapse
|
136
|
Wang S, Zheng Y, Jin S, Fu Y, Liu Y. Dioscin Protects against Cisplatin-Induced Acute Kidney Injury by Reducing Ferroptosis and Apoptosis through Activating Nrf2/HO-1 Signaling. Antioxidants (Basel) 2022; 11:antiox11122443. [PMID: 36552651 PMCID: PMC9774127 DOI: 10.3390/antiox11122443] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome with high morbidity and mortality worldwide, and there is currently no effective means to prevent it. Dioscin is naturally present in the dioscoreaceae plants and has antioxidant and anti-inflammatory effects. Here, we found that dioscin is protective against cisplatin-induced AKI. Pathological and ultrastructural observations revealed that dioscin reduced renal tissue lesions and mitochondrial damage. Furthermore, dioscin markedly suppressed reactive oxygen species and malondialdehyde levels in the kidneys of AKI rats and increased the contents of glutathione and catalase. In addition, dioscin dramatically reduced the number of apoptotic cells and the expression of pro-apoptotic proteins in rat kidneys and human renal tubular epithelial cells (HK2). Conversely, the protein levels of anti-ferroptosis including GPX4 and FSP1 in vivo and in vitro were significantly enhanced after dioscin treatment. Mechanistically, dioscin promotes the entry of Nrf2 into the nucleus and regulates the expression of downstream HO-1 to exert renal protection. However, the nephroprotective effect of dioscin was weakened after inhibiting Nrf2 in vitro and in vivo. In conclusion, dioscin exerts a reno-protective effect by decreasing renal oxidative injury, apoptosis and ferroptosis through the Nrf2/HO-1 signaling pathway, providing a new insight into AKI prevention.
Collapse
Affiliation(s)
- Shuang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yingce Zheng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Shengzi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yunwei Fu
- Northeast Agricultural University Animal Hospital, Harbin 150030, China
- Heilongjiang Province Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yun Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Province Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Correspondence:
| |
Collapse
|
137
|
Prasad M K, Mohandas S, Kunka Mohanram R. Role of ferroptosis inhibitors in the management of diabetes. Biofactors 2022; 49:270-296. [PMID: 36468443 DOI: 10.1002/biof.1920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
Ferroptosis, the iron-dependent, lipid peroxide-mediated cell death, has garnered attention due to its critical involvement in crucial physiological and pathological cellular processes. Indeed, several studies have attributed its role in developing a range of disorders, including diabetes. As accumulating evidence further the understanding of ferroptotic mechanisms, the impact this specialized mode of cell death has on diabetic pathogenesis is still unclear. Several in vivo and in vitro studies have highlighted the association of ferroptosis with beta-cell death and insulin resistance, supported by observations of marked alterations in ferroptotic markers in experimental diabetes models. The constant improvement in understanding ferroptosis in diabetes has demonstrated it as a potential therapeutic target in diabetic management. In this regard, ferroptosis inhibitors promise to rescue pancreatic beta-cell function and alleviate diabetes and its complications. This review article elucidates the key ferroptotic pathways that mediate beta-cell death in diabetes, and its complications. In particular, we share our insight into the cross talk between ferroptosis and other hallmark pathogenic mediators such as oxidative and endoplasmic reticulum stress regulators relevant to diabetes progression. Further, we extensively summarize the recent developments on the role of ferroptosis inhibitors and their therapeutic action in alleviating diabetes and its complications.
Collapse
Affiliation(s)
- Krishna Prasad M
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Sundhar Mohandas
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ramkumar Kunka Mohanram
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
138
|
Wan J, Jiang Z, Liu D, Pan S, Zhou S, Liu Z. Inhibition of the glycogen synthase kinase 3β-hypoxia-inducible factor 1α pathway alleviates NLRP3-mediated pyroptosis induced by high glucose in renal tubular epithelial cells. Exp Physiol 2022; 107:1493-1506. [PMID: 36056793 DOI: 10.1113/ep090685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of this study? Activation of the glycogen synthase kinase 3 β (GSK-3β)-hypoxia-inducible factor 1 α (HIF-1α) pathway results in stimulation of pyroptosis under high glucose, and exerts actions in a number renal diseases: does this pathway have a role in renal tubular epithelial cells? What is the main finding and its importance? Down-regulation of GSK-3β can inhibit pyroptosis of renal tubular epithelial cells induced by high glucose and this may be related to down-regulation of HIF-1α. This role of the GSK-3β-HIF-1α pathway has not previously been reported and identifies a potential new therapeutic target in diabetic nephropathy. ABSTRACT Diabetic nephropathy (DN) is not only one of the main complications of diabetes, but also has a high incidence rate and a high mortality rate. Glycogen synthase kinase 3 β (GSK-3β) and hypoxia-inducible factor 1 α (HIF-1α) have been demonstrated to influence DN by regulating pyroptosis. This study aimed to investigate the effect of the GSK-3β-HIF-1α pathway on pyroptosis of high-glucose (HG)-induced renal tubular cells. Mouse renal proximal tubular epithelial cells (TKPT cells) were induced by HG to simulate DN cell and we transfected TKPT cells with GSK-3β knockdown lentivirus. Western blot analysis confirmed the transfection effects and detected the expression of GSK-3β, HIF-1α, Nod-like receptor protein 3 (NLRP3), cleaved-caspase-1, pro-caspase-1, gasdermin D (GSDMD) and GSDMD-N. The expression of GSDMD-N and HIF-1α were also verified by immunofluorescence. The levels of interleukin (IL)-1β and IL-18 were measured by enzyme linked immunosorbent assay. Flow cytometric analysis determined the apoptosis rate. Results showed that HIF-1α expression was increased in HG-induced TKPT cells, and GSK-3β knockdown could decrease the levels of NLRP3, cleaved-caspase-1, GSDMD-N and HIF-1α, verified by immunofluorescence. Moreover, GSK-3β knockdown suppressed the expression of IL-1β and IL-18, and reduced the apoptosis rate. Lithium chloride (LiCl) interference could cause the same changes as GSK-3β knockdown for HG-induced TKPT cells, and dimethyloxallyl glycine could reverse the effect of GSK-3β-knockdown interference. Our studies definitively demonstrate that the GSK-3β-HIF-1α signalling pathway mediates HG-stimulated pyroptosis in renal tubular epithelial cells and that down-regulation of GSK-3β inhibited HG-induced pyroptosis by inhibiting the expression of HIF-1α. These findings suggest a new potential target for the treatment of DN.
Collapse
Affiliation(s)
- Jiayi Wan
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China.,Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| | - Ziming Jiang
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China.,Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China.,Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China.,Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| | - Sijie Zhou
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China.,Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China.,Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| |
Collapse
|
139
|
Huang D, Shen P, Wang C, Gao J, Ye C, Wu F. Calycosin plays a protective role in diabetic kidney disease through the regulation of ferroptosis. PHARMACEUTICAL BIOLOGY 2022; 60:990-996. [PMID: 35587919 PMCID: PMC9132481 DOI: 10.1080/13880209.2022.2067572] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
CONTEXT Diabetic kidney disease (DKD) is a devastating complication of diabetes. Renal functional deterioration caused by tubular injury is the primary change associated with this disease. Calycosin shows protective roles in various diseases. OBJECTIVES This study explored the function and underlying mechanism of calycosin in DKD. MATERIALS AND METHODS HK-2 cells were treated with 25 mM high glucose (HG) to establish a renal tubule injury cell model. Then, the viability of cells treated with 0, 5, 10, 20, 40 and 80 μM of calycosin was measured using Cell Counting Kit-8. For the in vivo model, db/db mice were treated with 10 and 20 mg/kg/day of calycosin; db/m mice served as controls. The histomorphology was analyzed via haematoxylin and eosin staining. RESULTS HG-induced decreased expression of glutathione (491.57 ± 33.56 to 122.6 ± 9.78 μmol/mL) and glutathione peroxidase 4 (inhibition rate 92.3%) and increased expression of lactate dehydrogenase (3.85 ± 0.89 to 16.84 ± 2.18 U/mL), malondialdehyde (3.72 ± 0.66 to 18.2 ± 1.58 nmol/mL), lipid ROS (4.31-fold increase) and NCOA4 (7.69-fold increase). The effects induced by HG could be blocked by calycosin. Moreover, calycosin alleviated the HG-induced decrease of cell viability and the increase of lipid ROS, but erastin could block the effects caused by calycosin. The in vivo model showed that calycosin alleviated the renal injury caused by diabetes. DISCUSSION AND CONCLUSION Calycosin has a protective effect on diabetic kidney disease; ferroptosis may be involved in this process.
Collapse
Affiliation(s)
- Di Huang
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peicheng Shen
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiandong Gao
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chaoyang Ye
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Wu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- CONTACT Feng Wu Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Pudong District, Shanghai201203, China
| |
Collapse
|
140
|
Chen J, Ou Z, Gao T, Yang Y, Shu A, Xu H, Chen Y, Lv Z. Ginkgolide B alleviates oxidative stress and ferroptosis by inhibiting GPX4 ubiquitination to improve diabetic nephropathy. Biomed Pharmacother 2022; 156:113953. [DOI: 10.1016/j.biopha.2022.113953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
|
141
|
Mitrofanova A, Fontanella A, Tolerico M, Mallela S, Molina David J, Zuo Y, Boulina M, Kim JJ, Santos J, Ge M, Sloan A, Issa W, Gurumani M, Pressly J, Ito M, Kretzler M, Eddy S, Nelson R, Merscher S, Burke G, Fornoni A. Activation of Stimulator of IFN Genes (STING) Causes Proteinuria and Contributes to Glomerular Diseases. J Am Soc Nephrol 2022; 33:2153-2173. [PMID: 36198430 PMCID: PMC9731637 DOI: 10.1681/asn.2021101286] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 09/06/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The signaling molecule stimulator of IFN genes (STING) was identified as a crucial regulator of the DNA-sensing cyclic GMP-AMP synthase (cGAS)-STING pathway, and this signaling pathway regulates inflammation and energy homeostasis under conditions of obesity, kidney fibrosis, and AKI. However, the role of STING in causing CKD, including diabetic kidney disease (DKD) and Alport syndrome, is unknown. METHODS To investigate whether STING activation contributes to the development and progression of glomerular diseases such as DKD and Alport syndrome, immortalized human and murine podocytes were differentiated for 14 days and treated with a STING-specific agonist. We used diabetic db/db mice, mice with experimental Alport syndrome, C57BL/6 mice, and STING knockout mice to assess the role of the STING signaling pathway in kidney failure. RESULTS In vitro, murine and human podocytes express all of the components of the cGAS-STING pathway. In vivo, activation of STING renders C57BL/6 mice susceptible to albuminuria and podocyte loss. STING is activated at baseline in mice with experimental DKD and Alport syndrome. STING activation occurs in the glomerular but not the tubulointerstitial compartment in association with autophagic podocyte death in Alport syndrome mice and with apoptotic podocyte death in DKD mouse models. Genetic or pharmacologic inhibition of STING protects from progression of kidney disease in mice with DKD and Alport syndrome and increases lifespan in Alport syndrome mice. CONCLUSION The activation of the STING pathway acts as a mediator of disease progression in DKD and Alport syndrome. Targeting STING may offer a therapeutic option to treat glomerular diseases of metabolic and nonmetabolic origin or prevent their development, progression, or both.
Collapse
Affiliation(s)
- Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Antonio Fontanella
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Matthew Tolerico
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Shamroop Mallela
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Judith Molina David
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Yiqin Zuo
- Department of Pathology, University of Miami Medical Group, Miller School of Medicine, Miami, Florida
| | - Marcia Boulina
- Diabetes Research Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - Jin-Ju Kim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Javier Santos
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Mengyuan Ge
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Alexis Sloan
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Wadih Issa
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Margaret Gurumani
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Jeffrey Pressly
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Marie Ito
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Matthias Kretzler
- Division of Nephrology, Departments of Internal Medicine and Computational Medicine and Bioinformatics, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Sean Eddy
- Division of Nephrology, Departments of Internal Medicine and Computational Medicine and Bioinformatics, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Robert Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - George Burke
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
- Diabetes Research Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| |
Collapse
|
142
|
Zhang Y, Zhang J, Feng D, Zhou H, Gui Z, Zheng M, Hang Z, Wang Z, Wang Z, Gu M, Tan R. IRF1/ZNF350/GPX4-mediated ferroptosis of renal tubular epithelial cells promote chronic renal allograft interstitial fibrosis. Free Radic Biol Med 2022; 193:579-594. [PMID: 36356714 DOI: 10.1016/j.freeradbiomed.2022.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Renal interstitial fibrosis and tubular atrophy are essential pathological characteristics of chronic renal allograft dysfunction (CAD). Herein, we revealed that ferroptosis of renal tubular epithelial cells (RTECs) might contribute to renal tubular injury in CAD. Mechanistically, TNF-α induced ferroptosis by inhibiting GPX4 transcription through upregulating IRF1 in RTECs. IRF1 could bind with ZNF350 to form a transcription factor complex, which directly binds to the GPX4 promoter region to inhibit GPX4 transcription. Ferroptotic RTECs might secrete profibrotic factors, including PDGF-BB and IL-6, to activate neighboring fibroblasts to transform into myofibroblasts or induce EMT in adjacent RTECs. In conclusion, our results confirmed a novel role of ferroptosis in renal tubular injury and interstitial fibrosis, thereby providing insights into the pathogenesis of chronic renal allograft interstitial fibrosis during CAD.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianjian Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dengyuan Feng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hai Zhou
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zeping Gui
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Zheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhou Hang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zijie Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Gu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
143
|
Ferroptosis and renal fibrosis: A new target for the future (Review). Exp Ther Med 2022; 25:13. [PMID: 36561607 PMCID: PMC9748635 DOI: 10.3892/etm.2022.11712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/21/2022] [Indexed: 11/18/2022] Open
Abstract
Ferroptosis is a type of non-apoptotic controlled cell death triggered by oxidative stress and iron-dependent lipid peroxidation. Ferroptosis is regulated by signalling pathways that are associated with metabolism, including glutathione peroxidase 4 dysfunction, the cystine/glutamate antiporter system, lipid peroxidation and inadequate iron metabolism. Ferroptosis is associated with renal fibrosis; however, further research is required to understand the specific molecular mechanisms involved. The present review aimed to discuss the known molecular mechanisms of ferroptosis and outline the biological reactions that occur during renal fibrosis that may be associated with ferroptosis. Further investigation into the association between ferroptosis and renal fibrosis may lead to the development of novel treatment methods.
Collapse
|
144
|
López M, Quintero-Macías L, Huerta M, Rodríguez-Hernández A, Melnikov V, Cárdenas Y, Bricio-Barrios JA, Sánchez-Pastor E, Gamboa-Domínguez A, Leal C, Trujillo X, Ríos-Silva M. Capsaicin Decreases Kidney Iron Deposits and Increases Hepcidin Levels in Diabetic Rats with Iron Overload: A Preliminary Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227764. [PMID: 36431865 PMCID: PMC9695924 DOI: 10.3390/molecules27227764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/27/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Iron overload (IOL) increases the risk of diabetes mellitus (DM). Capsaicin (CAP), an agonist of transient receptor potential vanilloid-1 (TRPV1), reduces the effects of IOL. We evaluated the effects of chronic CAP administration on hepcidin expression, kidney iron deposits, and urinary biomarkers in a male Wistar rat model with IOL and DM (DM-IOL). IOL was induced with oral administration of iron for 12 weeks and DM was induced with streptozotocin. Four groups were studied: Healthy, DM, DM-IOL, and DM-IOL + CAP (1 mg·kg-1·day-1 for 12 weeks). Iron deposits were visualized with Perls tissue staining and a colorimetric assay. Serum hepcidin levels were measured with an enzyme-linked immunosorbent assay. Kidney biomarkers were assayed in 24 h urine samples. In the DM-IOL + CAP group, the total area of iron deposits and the total iron content in kidneys were smaller than those observed in both untreated DM groups. CAP administration significantly increased hepcidin levels in the DM-IOL group. Urinary levels of albumin, cystatin C, and beta-2-microglobulin were similar in all three experimental groups. In conclusion, we showed that in a DM-IOL animal model, CAP reduced renal iron deposits and increased the level of circulating hepcidin.
Collapse
Affiliation(s)
- Marisa López
- University Center of Biomedical Research, Universidad de Colima, Av. 25 de Julio #965, Col. Villas San Sebastian, Colima 28045, Mexico
| | - Laura Quintero-Macías
- Faculty of Medicine, Universidad de Colima, Av. Universidad #333, Col. Las Víboras, Colima 28040, Mexico
| | - Miguel Huerta
- University Center of Biomedical Research, Universidad de Colima, Av. 25 de Julio #965, Col. Villas San Sebastian, Colima 28045, Mexico
| | | | - Valery Melnikov
- Faculty of Medicine, Universidad de Colima, Av. Universidad #333, Col. Las Víboras, Colima 28040, Mexico
| | - Yolitzy Cárdenas
- University Center of Biomedical Research, Universidad de Colima, Av. 25 de Julio #965, Col. Villas San Sebastian, Colima 28045, Mexico
| | | | - Enrique Sánchez-Pastor
- University Center of Biomedical Research, Universidad de Colima, Av. 25 de Julio #965, Col. Villas San Sebastian, Colima 28045, Mexico
| | - Armando Gamboa-Domínguez
- Belisario Domínguez Sección XVI, Pathology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Caridad Leal
- Centro de Investigaciones Biomédicas de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada No. 800, Col. Independencia, Guadalajara 44340, Mexico
| | - Xóchitl Trujillo
- University Center of Biomedical Research, Universidad de Colima, Av. 25 de Julio #965, Col. Villas San Sebastian, Colima 28045, Mexico
| | - Mónica Ríos-Silva
- University Center of Biomedical Research, CONACyT-Universidad de Colima, Av. 25 de Julio #965, Col. Villas San Sebastian, Colima 28045, Mexico
- Correspondence: ; Tel./Fax: +52-312-316-1000 (ext. 70557 or 47452)
| |
Collapse
|
145
|
Liu H, Li Y, Xiong J. The Role of Hypoxia-Inducible Factor-1 Alpha in Renal Disease. Molecules 2022; 27:molecules27217318. [PMID: 36364144 PMCID: PMC9657345 DOI: 10.3390/molecules27217318] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
Partial pressure of oxygen (pO2) in the kidney is maintained at a relatively stable level by a unique and complex functional interplay between renal blood flow, glomerular filtration rate (GFR), oxygen consumption, and arteriovenous oxygen shunting. The vulnerability of this interaction renders the kidney vulnerable to hypoxic injury, leading to different renal diseases. Hypoxia has long been recognized as an important factor in the pathogenesis of acute kidney injury (AKI), especially renal ischemia/reperfusion injury. Accumulating evidence suggests that hypoxia also plays an important role in the pathogenesis and progression of chronic kidney disease (CKD) and CKD-related complications, such as anemia, cardiovascular events, and sarcopenia. In addition, renal cancer is linked to the deregulation of hypoxia pathways. Renal cancer utilizes various molecular pathways to respond and adapt to changes in renal oxygenation. Particularly, hypoxia-inducible factor (HIF) (including HIF-1, 2, 3) has been shown to be activated in renal disease and plays a major role in the protective response to hypoxia. HIF-1 is a heterodimer that is composed of an oxygen-regulated HIF-1α subunit and a constitutively expressed HIF-1β subunit. In renal diseases, the critical characteristic of HIF-1α is protective, but it also has a negative effect, such as in sarcopenia. This review summarizes the mechanisms of HIF-1α regulation in renal disease.
Collapse
Affiliation(s)
| | | | - Jing Xiong
- Correspondence: ; Tel.: +86-027-8572-6713
| |
Collapse
|
146
|
Zhou Y, Zhang J, Guan Q, Tao X, Wang J, Li W. The role of ferroptosis in the development of acute and chronic kidney diseases. J Cell Physiol 2022; 237:4412-4427. [PMID: 36260516 DOI: 10.1002/jcp.30901] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022]
Abstract
Ferroptosis, a novel form of regulated cell death, is characterized by imbalance of intracellular iron and redox systems, resulting from overgeneration of toxic lipid peroxidation products. In recent years, the verified crucial role of ferroptosis has been widely concerned in rudimentary pathogenesis and development of various acute and chronic kidney disease (CKD), comprehending the potential patterns of cell death can afford more reliable bases and principles for treatment and prevention of renal disease. In this review, the regulatory mechanisms of ferroptosis were introduced and the important roles of ferroptosis in diverse renal diseases such as acute kidney injury, CKD, and renal fibrosis were outlined to illuminate the potential of restraining ferroptosis in treatment and prevention of kidney disease.
Collapse
Affiliation(s)
- Yijun Zhou
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong Province, China
| | - Junlan Zhang
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong Province, China
| | - Qingyan Guan
- School of Nursing, Weifang Medical University, Weifang, Shandong Province, China
| | - Xun Tao
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong Province, China
| | - Jinling Wang
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong Province, China
| | - Wentong Li
- Department of Pathology, Weifang Medical University, Weifang, Shandong Province, China
| |
Collapse
|
147
|
Wang YH, Chang DY, Zhao MH, Chen M. Glutathione Peroxidase 4 Is a Predictor of Diabetic Kidney Disease Progression in Type 2 Diabetes Mellitus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2948248. [PMID: 36275902 PMCID: PMC9581693 DOI: 10.1155/2022/2948248] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/18/2022] [Accepted: 09/09/2022] [Indexed: 08/22/2023]
Abstract
BACKGROUND Diabetic kidney disease (DKD) represents a heavy burden in type 2 diabetes mellitus (T2DM). Ferroptosis plays an important role in DKD, and it thus provides new perspectives to pursue more related biomarkers to assess the disease severity and prognosis. Glutathione peroxidase 4 (GPX4) is the mainstay in regulating ferroptosis. The current study investigated the predictive value of kidney GPX4 expression level in DKD progression. METHODS We measured GPX4 levels in kidney paraffin sections of 85 biopsy-proven DKD patients by immunohistochemistry staining. The associations between the GPX4 level and clinicopathological parameters as well as renal outcomes were analyzed. RESULTS GPX4 is mainly expressed in kidney tubulointerstitium, especially in tubular epithelial cells of DKD patients. The GPX4 expression level was significantly lower in DKD patients than healthy controls. Besides, GPX4 level significantly correlated with proteinuria (r = -0.42, p < 0.001), urinary albumin-to-creatinine ratio (uACR) (r = -0.40, p < 0.01), serum creatinine (Scr) (r = -0.59, p < 0.001), estimated glomerular filtration rate (eGFR) (r = 0.66, p < 0.001), and the percentage of sclerosed glomeruli (r = -0.42, p < 0.001) in renal specimens. During follow-up, the GPX4 level positively correlated with eGFR slope (r = 0.48, p < 0.001), and GPX4-low patients showed a significantly higher probability of developing end-stage kidney disease (ESKD) compared with GPX4-high patients (p < 0.01). Moreover, after adjusting for other potential predictors, the GPX4 level was still an independent predictor of developing ESKD (HR 2.15, 95% CI 1.08 to 4.28, p < 0.05). CONCLUSIONS Kidney tubulointerstitial GPX4 expression level was associated with the disease severity and progression of DKD.
Collapse
Affiliation(s)
- Yi-hui Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing 100034, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Dong-yuan Chang
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming-hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing 100034, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
148
|
Ferroptosis, a Rising Force against Renal Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7686956. [PMID: 36275899 PMCID: PMC9581688 DOI: 10.1155/2022/7686956] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/11/2022] [Indexed: 11/18/2022]
Abstract
Ferroptosis is a type of programmed cell death characterized by iron overload, oxidative stress, imbalance in lipid repair, and mitochondria-specific pathological manifestations. Growing number of molecular mechanisms and signaling pathways have been found to be involved in ferroptosis progression, including iron metabolism, amino acid metabolism, lipid metabolism, and energy metabolism. It is worth noting that ferroptosis is involved in the progression of fibrotic diseases such as liver cirrhosis, cardiomyopathy, and idiopathic pulmonary fibrosis, and inhibition of ferroptosis has acquired beneficial outcomes in rodent models, while studies on ferroptosis and renal fibrosis remains limited. Recent studies have revealed that targeting ferroptosis can effectively mitigate chronic kidney injury and renal fibrosis. Moreover, myofibroblasts suffer from ferroptosis during fiber and extracellular matrix deposition in the fibrotic cascade reaction and pharmacological modulation of ferroptosis shows great therapeutic effect on renal fibrosis. Here, we summarize the latest molecular mechanisms of ferroptosis from high-quality studies and review its therapeutic potential in renal fibrosis.
Collapse
|
149
|
Xu W, Sun T, Wang J, Wang T, Wang S, Liu J, Li H. GPX4 Alleviates Diabetes Mellitus-Induced Erectile Dysfunction by Inhibiting Ferroptosis. Antioxidants (Basel) 2022; 11:antiox11101896. [PMID: 36290619 PMCID: PMC9598206 DOI: 10.3390/antiox11101896] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Pharmacological therapy of diabetes mellitus-induced erectile dysfunction (DMED) is intractable owig to the poor response to phosphodiesterase type 5 inhibitors (PDE5i). The surge in the number of diabetic patients makes it extremely urgent to find a novel therapy for DMED. Ferroptosis is a recently discovered form of cell death evoked by lipid peroxidation and is related to several diabetic complications. GPX4, an important phospholipid hydroperoxidase, can alleviate ferroptosis and maintain redox balance via reducing lipid peroxides. However, whether GPX4 can be a prospective target of DMED needs to be determined. Fifty rats were randomly divided into control group, DMED group, DMED + negative control group (DMED + NC group), DMED + low-dose group (1 × 106 infectious units), and DMED + high-dose group (2 × 106 infectious units). Erectile function was assessed 4 weeks after intracavernous injection of GPX4 or negative control lentivirus. The penile shafts were collected for subsequent molecular biological and histological analysis. The results demonstrated that erectile function of the rats in DMED and DMED + NC groups was extremely impaired and was improved in a dose-dependent manner with GPX4 lentivirus (GPX4-LV) injection. Additionally, upregulation of the ACSL4-LPCAT3-LOX pathway, iron overload, oxidative stress, fibrosis, and decreased endothelial and smooth muscle cell numbers were observed in the corpus cavernosum of DMED group. Meanwhile, the nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) pathway was inhibited, and the Ras homolog gene family member A (RhoA)/Rho-associated protein kinase (ROCK) pathway was promoted in DMED rats. The above histologic alterations and related molecular changes were alleviated after GPX4-LV injection. The results revealed that GPX4 improved erectile function by modulating ferroptosis during DMED progression. This finding is of paramount significance in deciphering the molecular mechanism of hyperglycemia-induced ferroptosis, thereby providing a prospective target for preventing the development of DMED.
Collapse
Affiliation(s)
- Wenchao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Taotao Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiaxin Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (J.L.); (H.L.)
| | - Hao Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (J.L.); (H.L.)
| |
Collapse
|
150
|
Wu Z, Huang X, Cai M, Huang P. Potential biomarkers for predicting the overall survival outcome of kidney renal papillary cell carcinoma: an analysis of ferroptosis-related LNCRNAs. BMC Urol 2022; 22:152. [PMID: 36104680 PMCID: PMC9476343 DOI: 10.1186/s12894-022-01037-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/26/2022] [Indexed: 11/30/2022] Open
Abstract
Background Kidney renal papillary cell carcinoma (KIRP) is a dangerous cancer, which accounts for 15–20% of all kidney malignancies. Ferroptosis is a rare kind of cell death that overcomes medication resistance. Ferroptosis-related long non-coding RNAs (LNCRNAs) in KIRP, remain unknown. Method We wanted to express how ferroptosis-related LNCRNAs interact with immune cell infiltration in KIRP. Gene set enrichment analysis in the GO and KEGG databases were used to explore gene expression enrichment. The prognostic model was constructed using Lasso regression. In addition, we also analyzed the modifications in the tumor microenvironment (TME) and immunological association. Result The expression of LNCRNA was closely connected to the ferroptosis, according to co-expression analyses. CASC19, AC090197.1, AC099850.3, AL033397.2, LINC00462, and B3GALT1-AS1 were found to be significantly increased in the high-risk group, indicating that all of these markers implicates the malignancy processes for KIRP patients and may be cancer-promoting variables. LNCTAM34A and AC024022.1 were shown to be significantly elevated in the low-risk group; these might represent as the KIRP tumor suppressor genes. According to the TCGA, CCR, and inflammation-promoting genes were considered to be significantly different between the low-risk and high-risk groups. The expression of CD160, TNFSF4, CD80, BTLA, and TNFRSF9 was different in the two risk groups. Conclusion LNCRNAs associated with ferroptosis were linked to the occurrence and progression of KIRP. Ferroptosis-related LNCRNAs and immune cell infiltration in the TME may be potential biomarkers in KIRP that should be further investigated. Supplementary Information The online version contains supplementary material available at 10.1186/s12894-022-01037-0.
Collapse
|