101
|
Booth JS, Salerno-Goncalves R, Blanchard TG, Patil SA, Kader HA, Safta AM, Morningstar LM, Czinn SJ, Greenwald BD, Sztein MB. Mucosal-Associated Invariant T Cells in the Human Gastric Mucosa and Blood: Role in Helicobacter pylori Infection. Front Immunol 2015; 6:466. [PMID: 26441971 PMCID: PMC4585133 DOI: 10.3389/fimmu.2015.00466] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/26/2015] [Indexed: 01/01/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells represent a class of antimicrobial innate-like T cells that have been characterized in human blood, liver, lungs, and intestine. Here, we investigated, for the first time, the presence of MAIT cells in the stomach of children, adults, and the elderly undergoing routine endoscopy and assessed their reactivity to Helicobacter pylori (H. pylori – Hp), a major gastric pathogen. We observed that MAIT cells are present in the lamina propria compartment of the stomach and display a similar memory phenotype to blood MAIT cells. We then demonstrated that gastric and blood MAIT cells are able to recognize H. pylori. We found that CD8+ and CD4−CD8− (double negative) MAIT cell subsets respond to H. pylori-infected macrophages stimulation in a MR-1 restrictive manner by producing cytokines (IFN-γ, TNF-α, IL-17A) and exhibiting cytotoxic activity. Interestingly, we observed that blood MAIT cell frequency in Hp+ve individuals was significantly lower than in Hp−ve individuals. However, gastric MAIT cell frequency was not significantly different between Hp+ve and Hp−ve individuals, demonstrating a dichotomy between blood and gastric tissues. Further, we observed that the majority of gastric MAIT cells (>80%) expressed tissue-resident markers (CD69+ CD103+), which were only marginally present on PBMC MAIT cells (<3%), suggesting that gastric MAIT cells are readily available to respond quickly to pathogens. These results contribute important new information to the understanding of MAIT cells function on peripheral and mucosal tissues and its possible implications in the host response to H. pylori.
Collapse
Affiliation(s)
- Jayaum S Booth
- Center for Vaccine Development, University of Maryland School of Medicine , Baltimore, MD , USA ; Department of Pediatrics, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Rosangela Salerno-Goncalves
- Center for Vaccine Development, University of Maryland School of Medicine , Baltimore, MD , USA ; Department of Pediatrics, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Thomas G Blanchard
- Department of Pediatrics, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Seema A Patil
- Department of Medicine, University of Maryland School of Medicine , Baltimore, MD , USA ; Division of Gastroenterology and Hepatology, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Howard A Kader
- Department of Pediatrics, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Anca M Safta
- Department of Pediatrics, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Lindsay M Morningstar
- Department of Pediatrics, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Steven J Czinn
- Department of Pediatrics, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Bruce D Greenwald
- Department of Medicine, University of Maryland School of Medicine , Baltimore, MD , USA ; Division of Gastroenterology and Hepatology, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Marcelo B Sztein
- Center for Vaccine Development, University of Maryland School of Medicine , Baltimore, MD , USA ; Department of Pediatrics, University of Maryland School of Medicine , Baltimore, MD , USA ; Department of Medicine, University of Maryland School of Medicine , Baltimore, MD , USA
| |
Collapse
|
102
|
Doherty DG. Immunity, tolerance and autoimmunity in the liver: A comprehensive review. J Autoimmun 2015; 66:60-75. [PMID: 26358406 DOI: 10.1016/j.jaut.2015.08.020] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 12/14/2022]
Abstract
The hepatic immune system is constantly exposed to a massive load of harmless dietary and commensal antigens, to which it must remain tolerant. Immune tolerance in the liver is mediated by a number of specialized antigen-presenting cells, including dendritic cells, Kupffer cells, liver sinusoidal endothelial cells and hepatic stellate cells. These cells are capable of presenting antigens to T cells leading to T cell apoptosis, anergy, or differentiation into regulatory T cells. However, the hepatic immune system must also be able to respond to pathogens and tumours and therefore must be equipped with mechanisms to override immune tolerance. The liver is a site of accumulation of a number of innate lymphocyte populations, including natural killer cells, CD56(+) T cells, natural killer T cells, γδ T cells, and mucosal-associated invariant T cells. Innate lymphocytes recognize conserved metabolites derived from microorganisms and host cells and respond by killing target cells or promoting the differentiation and/or activation of other cells of the immune system. Innate lymphocytes can promote the maturation of antigen-presenting cells from their precursors and thereby contribute to the generation of immunogenic T cell responses. These cells may be responsible for overriding hepatic immune tolerance to autoantigens, resulting in the induction and maintenance of autoreactive T cells that mediate liver injury causing autoimmune liver disease. Some innate lymphocyte populations can also directly mediate liver injury by killing hepatocytes or bile duct cells in murine models of hepatitis, whilst other populations may protect against liver disease. It is likely that innate lymphocyte populations can promote or protect against autoimmune liver disease in humans and that these cells can be targeted therapeutically. Here I review the cellular mechanisms by which hepatic antigen-presenting cells and innate lymphocytes control the balance between immunity, tolerance and autoimmunity in the liver.
Collapse
Affiliation(s)
- Derek G Doherty
- Division of Immunology, School of Medicine, Trinity College Dublin, Ireland.
| |
Collapse
|
103
|
Wenzel U, Turner JE, Krebs C, Kurts C, Harrison DG, Ehmke H. Immune Mechanisms in Arterial Hypertension. J Am Soc Nephrol 2015; 27:677-86. [PMID: 26319245 DOI: 10.1681/asn.2015050562] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Traditionally, arterial hypertension and subsequent end-organ damage have been attributed to hemodynamic factors, but increasing evidence indicates that inflammation also contributes to the deleterious consequences of this disease. The immune system has evolved to prevent invasion of foreign organisms and to promote tissue healing after injury. However, this beneficial activity comes at a cost of collateral damage when the immune system overreacts to internal injury, such as prehypertension. Renal inflammation results in injury and impaired urinary sodium excretion, and vascular inflammation leads to endothelial dysfunction, increased vascular resistance, and arterial remodeling and stiffening. Notably, modulation of the immune response can reduce the severity of BP elevation and hypertensive end-organ damage in several animal models. Indeed, recent studies have improved our understanding of how the immune response affects the pathogenesis of arterial hypertension, but the remarkable advances in basic immunology made during the last few years still await translation to the field of hypertension. This review briefly summarizes recent advances in immunity and hypertension as well as hypertensive end-organ damage.
Collapse
Affiliation(s)
| | | | | | - Christian Kurts
- Institutes of Molecular Medicine and Experimental Immunology, Rheinische Friedrich-Wilhelms University, Bonn, Germany; and
| | - David G Harrison
- Division of Clinical Pharmacology, Department of Medicine, Nashville, Tennessee
| | - Heimo Ehmke
- Department of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
104
|
Mothé BR, Lindestam Arlehamn CS, Dow C, Dillon MBC, Wiseman RW, Bohn P, Karl J, Golden NA, Gilpin T, Foreman TW, Rodgers MA, Mehra S, Scriba TJ, Flynn JL, Kaushal D, O'Connor DH, Sette A. The TB-specific CD4(+) T cell immune repertoire in both cynomolgus and rhesus macaques largely overlap with humans. Tuberculosis (Edinb) 2015; 95:722-735. [PMID: 26526557 DOI: 10.1016/j.tube.2015.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/23/2015] [Accepted: 07/26/2015] [Indexed: 01/05/2023]
Abstract
Non-human primate (NHP) models of tuberculosis (TB) immunity and pathogenesis, especially rhesus and cynomolgus macaques, are particularly attractive because of the high similarity of the human and macaque immune systems. However, little is known about the MHC class II epitopes recognized in macaques, thus hindering the establishment of immune correlates of immunopathology and protective vaccination. We characterized immune responses in rhesus macaques vaccinated against and/or infected with Mycobacterium tuberculosis (Mtb), to a panel of antigens currently in human vaccine trials. We defined 54 new immunodominant CD4(+) T cell epitopes, and noted that antigens immunodominant in humans are also immunodominant in rhesus macaques, including Rv3875 (ESAT-6) and Rv3874 (CFP10). Pedigree and inferred restriction analysis demonstrated that this phenomenon was not due to common ancestry or inbreeding, but rather presentation by common alleles, as well as, promiscuous binding. Experiments using a second cohort of rhesus macaques demonstrated that a pool of epitopes defined in the previous experiments can be used to detect T cell responses in over 75% of individual monkeys. Additionally, 100% of cynomolgus macaques, irrespective of their latent or active TB status, responded to rhesus and human defined epitope pools. Thus, these findings reveal an unexpected general repertoire overlap between MHC class II epitopes recognized in both species of macaques and in humans, showing that epitope pools defined in humans can also be used to characterize macaque responses, despite differences in species and antigen exposure. The results have general implications for the evaluation of new vaccines and diagnostics in NHPs, and immediate applicability in the setting of macaque models of TB.
Collapse
Affiliation(s)
- Bianca R Mothé
- Department of Biology, CSUSM, San Marcos, CA 92096, USA; La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA.
| | | | - Courtney Dow
- Department of Biology, CSUSM, San Marcos, CA 92096, USA
| | - Myles B C Dillon
- La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | - Roger W Wiseman
- Wisconsin National Primate Research Center and Department of Pathology and Laboratory Medicine, UW-Madison, Madison, WI 53706, USA
| | - Patrick Bohn
- Wisconsin National Primate Research Center and Department of Pathology and Laboratory Medicine, UW-Madison, Madison, WI 53706, USA
| | - Julie Karl
- Wisconsin National Primate Research Center and Department of Pathology and Laboratory Medicine, UW-Madison, Madison, WI 53706, USA
| | - Nadia A Golden
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Trey Gilpin
- Department of Biology, CSUSM, San Marcos, CA 92096, USA
| | - Taylor W Foreman
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Mark A Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15216, USA
| | - Smriti Mehra
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University Baton Rouge, LA 70803, USA
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Department of Pediatrics and Child Health, University of Cape Town, Cape Town 7925, South Africa
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15216, USA
| | - Deepak Kaushal
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - David H O'Connor
- Wisconsin National Primate Research Center and Department of Pathology and Laboratory Medicine, UW-Madison, Madison, WI 53706, USA
| | - Alessandro Sette
- La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| |
Collapse
|
105
|
Sabatino JJ, Zamvil SS. Unique invariant CD8(+) T cell population persists in MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2015; 2:e140. [PMID: 26280013 PMCID: PMC4529280 DOI: 10.1212/nxi.0000000000000140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Joseph J Sabatino
- Department of Neurology (J.J.S.), Johns Hopkins Hospital, Baltimore, MD; and Department of Neurology (S.S.Z.), University of California, San Francisco
| | - Scott S Zamvil
- Department of Neurology (J.J.S.), Johns Hopkins Hospital, Baltimore, MD; and Department of Neurology (S.S.Z.), University of California, San Francisco
| |
Collapse
|
106
|
Salio M, Cerundolo V. Regulation of Lipid Specific and Vitamin Specific Non-MHC Restricted T Cells by Antigen Presenting Cells and Their Therapeutic Potentials. Front Immunol 2015; 6:388. [PMID: 26284072 PMCID: PMC4517378 DOI: 10.3389/fimmu.2015.00388] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/13/2015] [Indexed: 12/17/2022] Open
Abstract
Since initial reports, more than 25 years ago, that T cells recognize lipids in the context on non-polymorphic CD1 molecules, our understanding of antigen presentation to non-peptide-specific T cell populations has deepened. It is now clear that αβ T cells bearing semi-invariant T cell receptor, as well as subsets of γδ T cells, recognize a variety of self and non-self lipids and contribute to shaping immune responses via cross talk with dendritic cells and B cells. Furthermore, it has been demonstrated that small molecules derived from the microbial riboflavin biosynthetic pathway (vitamin B2) bind monomorphic MR1 molecules and activate mucosal-associated invariant T cells, another population of semi-invariant T cells. Novel insights in the biological relevance of non-peptide-specific T cells have emerged with the development of tetrameric CD1 and MR1 molecules, which has allowed accurate enumeration and functional analysis of CD1- and MR1-restricted T cells in humans and discovery of novel populations of semi-invariant T cells. The phenotype and function of non-peptide-specific T cells will be discussed in the context of the known distribution of CD1 and MR1 molecules by different subsets of antigen-presenting cells at steady state and following infection. Concurrent modulation of CD1 transcription and lipid biosynthetic pathways upon TLR stimulation, coupled with efficient lipid antigen processing, result in the increased cell surface expression of antigenic CD1-lipid complexes. Similarly, MR1 expression is almost undetectable in resting APC and it is upregulated following bacterial infection, likely due to stabilization of MR1 molecules by microbial antigens. The tight regulation of CD1 and MR1 expression at steady state and during infection may represent an important mechanism to limit autoreactivity, while promoting T cell responses to foreign antigens.
Collapse
Affiliation(s)
- Mariolina Salio
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
107
|
Liuzzi AR, McLaren JE, Price DA, Eberl M. Early innate responses to pathogens: pattern recognition by unconventional human T-cells. Curr Opin Immunol 2015; 36:31-7. [PMID: 26182978 PMCID: PMC4594761 DOI: 10.1016/j.coi.2015.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/13/2015] [Indexed: 02/06/2023]
Abstract
Although typically viewed as a feature of innate immune responses, microbial pattern recognition is increasingly acknowledged as a function of particular cells nominally categorized within the adaptive immune system. Groundbreaking research over the past three years has shown how unconventional human T-cells carrying invariant or semi-invariant TCRs that are not restricted by classical MHC molecules sense microbial compounds via entirely novel antigen presenting pathways. This review will focus on the innate-like recognition of non-self metabolites by Vγ9/Vδ2 T-cells, mucosal-associated invariant T (MAIT) cells and germline-encoded mycolyl-reactive (GEM) T-cells, with an emphasis on early immune responses in acute infection.
Collapse
Affiliation(s)
- Anna Rita Liuzzi
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - James E McLaren
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - David A Price
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| |
Collapse
|
108
|
Rahimpour A, Koay HF, Enders A, Clanchy R, Eckle SBG, Meehan B, Chen Z, Whittle B, Liu L, Fairlie DP, Goodnow CC, McCluskey J, Rossjohn J, Uldrich AP, Pellicci DG, Godfrey DI. Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers. ACTA ACUST UNITED AC 2015; 212:1095-108. [PMID: 26101265 PMCID: PMC4493408 DOI: 10.1084/jem.20142110] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 05/26/2015] [Indexed: 12/14/2022]
Abstract
Rahimpour et al. use MR1 tetramers to characterize the heterogeneous population of mouse MAIT cells and find a close resemblance to their human counterparts. These findings will provide the foundation for further investigation of MAIT cells in health and disease. Studies on the biology of mucosal-associated invariant T cells (MAIT cells) in mice have been hampered by a lack of specific reagents. Using MR1-antigen (Ag) tetramers that specifically bind to the MR1-restricted MAIT T cell receptors (TCRs), we demonstrate that MAIT cells are detectable in a broad range of tissues in C57BL/6 and BALB/c mice. These cells include CD4−CD8−, CD4−CD8+, and CD4+CD8− subsets, and their frequency varies in a tissue- and strain-specific manner. Mouse MAIT cells have a CD44hiCD62Llo memory phenotype and produce high levels of IL-17A, whereas other cytokines, including IFN-γ, IL-4, IL-10, IL-13, and GM-CSF, are produced at low to moderate levels. Consistent with high IL-17A production, most MAIT cells express high levels of retinoic acid–related orphan receptor γt (RORγt), whereas RORγtlo MAIT cells predominantly express T-bet and produce IFN-γ. Most MAIT cells express the promyelocytic leukemia zinc finger (PLZF) transcription factor, and their development is largely PLZF dependent. These observations contrast with previous reports that MAIT cells from Vα19 TCR transgenic mice are PLZF− and express a naive CD44lo phenotype. Accordingly, MAIT cells from normal mice more closely resemble human MAIT cells than previously appreciated, and this provides the foundation for further investigations of these cells in health and disease.
Collapse
Affiliation(s)
- Azad Rahimpour
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hui Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anselm Enders
- Department of Immunology and Infectious Disease and Australian Phenomics Facility, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Rhiannon Clanchy
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sidonia B G Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bronwyn Meehan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Belinda Whittle
- Department of Immunology and Infectious Disease and Australian Phenomics Facility, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Ligong Liu
- Institute for Molecular Bioscience and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Queensland, Brisbane, Queensland 4072, Australia Institute for Molecular Bioscience and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P Fairlie
- Institute for Molecular Bioscience and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Queensland, Brisbane, Queensland 4072, Australia Institute for Molecular Bioscience and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Chris C Goodnow
- Department of Immunology and Infectious Disease and Australian Phenomics Facility, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia Department of Biochemistry and Molecular Biology, School of Biomedical Sciences and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia Institute of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, Wales, UK
| | - Adam P Uldrich
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Daniel G Pellicci
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
109
|
Gao Y, Williams AP. Role of Innate T Cells in Anti-Bacterial Immunity. Front Immunol 2015; 6:302. [PMID: 26124758 PMCID: PMC4463001 DOI: 10.3389/fimmu.2015.00302] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/27/2015] [Indexed: 01/12/2023] Open
Abstract
Innate T cells are a heterogeneous group of αβ and γδ T cells that respond rapidly (<2 h) upon activation. These innate T cells also share a non MHC class I or II restriction requirement for antigen recognition. Three major populations within the innate T cell group are recognized, namely, invariant NKT cells, mucosal associated invariant T cells, and gamma delta T cells. These cells recognize foreign/self-lipid presented by non-classical MHC molecules, such as CD1d, MR1, and CD1a. They are activated during the early stages of bacterial infection and act as a bridge between the innate and adaptive immune systems. In this review, we focus on the functional properties of these three innate T cell populations and how they are purposed for antimicrobial defense. Furthermore, we address the mechanisms through which their effector functions are targeted for bacterial control and compare this in human and murine systems. Lastly, we speculate on future roles of these cell types in therapeutic settings such as vaccination.
Collapse
Affiliation(s)
- Yifang Gao
- Academic Unit of Cancer Sciences, Faculty of Medicine and Institute for Life Sciences, University of Southampton and NIHR Cancer Research UK Experimental Cancer Medicine Centre , Southampton , UK
| | - Anthony P Williams
- Academic Unit of Cancer Sciences, Faculty of Medicine and Institute for Life Sciences, University of Southampton and NIHR Cancer Research UK Experimental Cancer Medicine Centre , Southampton , UK ; Wessex Investigational Sciences Hub (WISH) Laboratory, Department of Allergy, Asthma and Clinical Immunology, University Hospital Southampton NHS Foundation Trust , Southampton , UK
| |
Collapse
|
110
|
Attrition of TCR Vα7.2+ CD161++ MAIT cells in HIV-tuberculosis co-infection is associated with elevated levels of PD-1 expression. PLoS One 2015; 10:e0124659. [PMID: 25894562 PMCID: PMC4403924 DOI: 10.1371/journal.pone.0124659] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/17/2015] [Indexed: 12/21/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are evolutionarily conserved antimicrobial MR1-restricted CD8+ T cells co-expressing the semi-invariant TCR Vα7.2, and are numerous in the blood and mucosal tissues of humans. MAIT cells appear to undergo exhaustion in chronic viral infections. However, their role in human immunodeficiency virus type 1 (HIV-1) mono-infection and HIV/tuberculosis (TB) co-infection have seldom been elaborately investigated. We conducted a cross-sectional study to investigate the frequencies and phenotypes of CD161++CD8+ T cells among anti-retroviral therapy (ART)/anti-TB therapy (ATT) treatment-naïve HIV/TB co-infected, ART/TB treated HIV/TB co-infected, ART naïve HIV-infected, ART-treated HIV-infected patients, and HIV negative healthy controls (HCs) by flow cytometry. Our data revealed that the frequency of MAIT cells was severely depleted in HIV mono- and HIV/TB co-infections. Further, PD-1 expression on MAIT cells was significantly increased in HIV mono- and HIV-TB co-infected patients. The frequency of MAIT cells did not show any significant increase despite the initiation of ART and/or ATT. Majority of the MAIT cells in HCs showed a significant increase in CCR6 expression as compared to HIV/TB co-infections. No marked difference was seen with expressions of chemokine co-receptor CCR5 and CD103 among the study groups. Decrease of CCR6 expression appears to explain why HIV-infected patients display weakened mucosal immune responses.
Collapse
|
111
|
Treiner E. Mucosal-associated invariant T cells in inflammatory bowel diseases: bystanders, defenders, or offenders? Front Immunol 2015; 6:27. [PMID: 25699045 PMCID: PMC4313715 DOI: 10.3389/fimmu.2015.00027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/13/2015] [Indexed: 11/25/2022] Open
Affiliation(s)
- Emmanuel Treiner
- Centre de Physiopathologie de Toulouse-Purpan (CPTP) INSERM UMR1043 , Toulouse , France
| |
Collapse
|
112
|
Chapman NM, Chi H. mTOR Links Environmental Signals to T Cell Fate Decisions. Front Immunol 2015; 5:686. [PMID: 25653651 PMCID: PMC4299512 DOI: 10.3389/fimmu.2014.00686] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/20/2014] [Indexed: 12/18/2022] Open
Abstract
T cell fate decisions play an integral role in maintaining the health of organisms under homeostatic and inflammatory conditions. The localized microenvironment in which developing and mature T cells reside provides signals that serve essential functions in shaping these fate decisions. These signals are derived from the immune compartment, including antigens, co-stimulation, and cytokines, and other factors, including growth factors and nutrients. The mechanistic target of rapamycin (mTOR), a vital sensor of signals within the immune microenvironment, is a central regulator of T cell biology. In this review, we discuss how various environmental cues tune mTOR activity in T cells, and summarize how mTOR integrates these signals to influence multiple aspects of T cell biology.
Collapse
Affiliation(s)
- Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital , Memphis, TN , USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital , Memphis, TN , USA
| |
Collapse
|
113
|
Park YW, Kee SJ. Mucosal-associated Invariant T cells: A New Player in Innate Immunity. JOURNAL OF RHEUMATIC DISEASES 2015. [DOI: 10.4078/jrd.2015.22.6.337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Yong-Wook Park
- Department of Rheumatology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|