101
|
Jiang X, Takacs-Vesbach CD. Microbial community analysis of pH 4 thermal springs in Yellowstone National Park. Extremophiles 2016; 21:135-152. [PMID: 27807621 DOI: 10.1007/s00792-016-0889-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 10/20/2016] [Indexed: 02/01/2023]
Abstract
The pH of the majority of thermal springs in Yellowstone National Park (YNP) is from 1 to 3 and 6 to 10; relatively few springs (~5%) have a pH range of 4-5. We used 16S rRNA gene pyrosequencing to investigate microbial communities sampled from four pH 4 thermal springs collected from four regions of YNP that differed in their fluid temperature and geochemistry. Our results revealed that the composition of bacterial communities varied among the sites, despite sharing similar pH values. The taxonomic composition and metabolic functional potential of the site with the lowest temperature (55 °C), a thermal spring from the Seven Mile Hole (SMH) area, were further investigated using shotgun metagenome sequencing. The taxonomic classification, based on 372 Mbp of unassembled metagenomic reads, indicated that this community included a high proportion of Chloroflexi, Bacteroidetes, Proteobacteria, and Firmicutes. Functional comparison with other YNP thermal spring metagenomes indicated that the SMH metagenome was enriched in genes related to energy production and conversion, transcription, and carbohydrate transport. Analysis of genes involved in nitrogen metabolism revealed assimilatory and dissimilatory nitrate reduction pathways, whereas the majority of genes involved in sulfur metabolism were related to the reduction of sulfate to adenylylsulfate, sulfite, and H2S. Given that pH 4 thermal springs are relatively less common in YNP and thermal areas worldwide, they may harbor novel microbiota and the communities that inhabit them deserve further investigation.
Collapse
Affiliation(s)
- Xiaoben Jiang
- Department of Biology, MSC03 2020 1UNM, University of New Mexico, Albuquerque, NM, 87131, USA
| | | |
Collapse
|
102
|
Geesey GG, Barkay T, King S. Microbes in mercury-enriched geothermal springs in western North America. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:321-331. [PMID: 27344121 DOI: 10.1016/j.scitotenv.2016.06.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/11/2016] [Accepted: 06/12/2016] [Indexed: 06/06/2023]
Abstract
Because geothermal environments contain mercury (Hg) from natural sources, microorganisms that evolved in these systems have likely adapted to this element. Knowledge of the interactions between microorganisms and Hg in geothermal systems may assist in understanding the long-term evolution of microbial adaptation to Hg with relevance to other environments where Hg is introduced from anthropogenic sources. A number of microbiological studies with supporting geochemistry have been conducted in geothermal systems across western North America. Approximately 1 in 5 study sites include measurements of Hg. Of all prokaryotic taxa reported across sites with microbiological and accompanying physicochemical data, 42% have been detected at sites in which Hg was measured. Genes specifying Hg reduction and detoxification by microorganisms were detected in a number of hot springs across the region. Archaeal-like sequences, representing two crenarchaeal orders and one order each of the Euryarchaeota and Thaumarchaeota, dominated in metagenomes' MerA (the mercuric reductase protein) inventories, while bacterial homologs were mostly found in one deeply sequenced metagenome. MerA homologs were more frequently found in metagenomes of microbial communities in acidic springs than in circumneutral or high pH geothermal systems, possibly reflecting higher bioavailability of Hg under acidic conditions. MerA homologs were found in hot springs prokaryotic isolates affiliated with Bacteria and Archaea taxa. Acidic sites with high Hg concentrations contain more of Archaea than Bacteria taxa, while the reverse appears to be the case in circumneutral and high pH sites with high Hg concentrations. However, MerA was detected in only a small fraction of the Archaea and Bacteria taxa inhabiting sites containing Hg. Nevertheless, the presence of MerA homologs and their distribution patterns in systems, in which Hg has yet to be measured, demonstrates the potential for detoxification by Hg reduction in these geothermal systems, particularly the low pH springs that are dominated by Archaea.
Collapse
Affiliation(s)
- Gill G Geesey
- Department of Microbiology and Immunology, Thermal Biology Institute, Montana State University, Bozeman, MT 59717-3520, USA.
| | - Tamar Barkay
- Department of Biochemistry and Microbiology, Graduate Program in Ecology and Evolution, Rutgers University, New Brunswick, NJ 08901-8525, USA.
| | - Sue King
- 2908 3rd Avenue North, Great Falls, MT 59401, USA.
| |
Collapse
|
103
|
Colman DR, Feyhl-Buska J, Robinson KJ, Fecteau KM, Xu H, Shock EL, Boyd ES. Ecological differentiation in planktonic and sediment-associated chemotrophic microbial populations in Yellowstone hot springs. FEMS Microbiol Ecol 2016; 92:fiw137. [PMID: 27306555 DOI: 10.1093/femsec/fiw137] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2016] [Indexed: 01/29/2023] Open
Abstract
Chemosynthetic sediment and planktonic community composition and sizes, aqueous geochemistry and sediment mineralogy were determined in 15 non-photosynthetic hot springs in Yellowstone National Park (YNP). These data were used to evaluate the hypothesis that differences in the availability of dissolved or mineral substrates in the bulk fluids or sediments within springs coincides with ecologically differentiated microbial communities and their populations. Planktonic and sediment-associated communities exhibited differing ecological characteristics including community sizes, evenness and richness. pH and temperature influenced microbial community composition among springs, but within-spring partitioning of taxa into sediment or planktonic communities was widespread, statistically supported (P < 0.05) and could be best explained by the inferred metabolic strategies of the partitioned taxa. Microaerophilic genera of the Aquificales predominated in many of the planktonic communities. In contrast, taxa capable of mineral-based metabolism such as S(o) oxidation/reduction or Fe-oxide reduction predominated in sediment communities. These results indicate that ecological differentiation within thermal spring habitats is common across a range of spring geochemistry and is influenced by the availability of dissolved nutrients and minerals that can be used in metabolism.
Collapse
Affiliation(s)
- Daniel R Colman
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Jayme Feyhl-Buska
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Kirtland J Robinson
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | - Huifang Xu
- Department of Geosciences, University of Wisconsin, Madison, WI 53706, USA NASA Astrobiology Institute, Mountain View, CA 94035, USA School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Everett L Shock
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA NASA Astrobiology Institute, Mountain View, CA 94035, USA School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA NASA Astrobiology Institute, Mountain View, CA 94035, USA School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
104
|
Jay ZJ, Beam JP, Kozubal MA, Jennings RD, Rusch DB, Inskeep WP. The distribution, diversity and function of predominant Thermoproteales in high-temperature environments of Yellowstone National Park. Environ Microbiol 2016; 18:4755-4769. [PMID: 27130276 DOI: 10.1111/1462-2920.13366] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 04/25/2016] [Indexed: 12/01/2022]
Abstract
High-temperature environments (> 70°C) contain diverse and abundant members of the crenarchaeal order Thermoproteales. However, a comprehensive study of the distribution and function of diverse members of this group across different habitat types has not been conducted. Consequently, the goals of this study were to determine the distribution of different Thermoproteales genera across geochemically distinct geothermal habitats of Yellowstone National Park, and to identify key functional attributes of major genera that correlate with environmental parameters. Curated sequence assemblies belonging to five genera were characterized in replicate samples of 11 high-temperature communities ranging in pH from 3 to 9. Thermocladium, Vulcanisaeta and Caldivirga spp. were the primary Thermoproteales populations present in low pH (pH < 5) habitats, whereas Thermoproteus populations were found in mildly-acidic (pH 5-6) sulfur sediments, and Pyrobaculum populations were confined to higher pH (pH > 6) sulfur sediments and/or filamentous 'streamer' communities. Metabolic reconstruction and comparative genomics among assemblies show that these populations are primarily chemoorganotrophs that utilize different electron acceptors depending on geochemical conditions. The presence of potential CO2 fixation pathways in some Thermoproteales populations appears to be linked with NiFe hydrogenases, which combined with high levels of H2 in many sulfidic systems, may provide the energy required to fix inorganic C.
Collapse
Affiliation(s)
- Zackary J Jay
- Department of Land Resources and Environmental Sciences and Thermal Biology Institute, Montana State University, Bozeman, MT, 59175-3120, USA
| | - Jacob P Beam
- Department of Land Resources and Environmental Sciences and Thermal Biology Institute, Montana State University, Bozeman, MT, 59175-3120, USA
| | - Mark A Kozubal
- Department of Land Resources and Environmental Sciences and Thermal Biology Institute, Montana State University, Bozeman, MT, 59175-3120, USA
| | - Ryan deM Jennings
- Department of Land Resources and Environmental Sciences and Thermal Biology Institute, Montana State University, Bozeman, MT, 59175-3120, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | - William P Inskeep
- Department of Land Resources and Environmental Sciences and Thermal Biology Institute, Montana State University, Bozeman, MT, 59175-3120, USA
| |
Collapse
|
105
|
Microbial communities and arsenic biogeochemistry at the outflow of an alkaline sulfide-rich hot spring. Sci Rep 2016; 6:25262. [PMID: 27126380 PMCID: PMC4850476 DOI: 10.1038/srep25262] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/21/2016] [Indexed: 02/03/2023] Open
Abstract
Alkaline sulfide-rich hot springs provide a unique environment for microbial community and arsenic (As) biogeochemistry. In this study, a representative alkaline sulfide-rich hot spring, Zimeiquan in the Tengchong geothermal area, was chosen to study arsenic geochemistry and microbial community using Illumina MiSeq sequencing. Over 0.26 million 16S rRNA sequence reads were obtained from 5-paired parallel water and sediment samples along the hot spring’s outflow channel. High ratios of As(V)/AsSum (total combined arsenate and arsenite concentrations) (0.59–0.78), coupled with high sulfide (up to 5.87 mg/L), were present in the hot spring’s pools, which suggested As(III) oxidation occurred. Along the outflow channel, AsSum increased from 5.45 to 13.86 μmol/L, and the combined sulfide and sulfate concentrations increased from 292.02 to 364.28 μmol/L. These increases were primarily attributed to thioarsenic transformation. Temperature, sulfide, As and dissolved oxygen significantly shaped the microbial communities between not only the pools and downstream samples, but also water and sediment samples. Results implied that the upstream Thermocrinis was responsible for the transformation of thioarsenic to As(III) and the downstream Thermus contributed to derived As(III) oxidation. This study improves our understanding of microbially-mediated As transformation in alkaline sulfide-rich hot springs.
Collapse
|
106
|
Colman DR, Jay ZJ, Inskeep WP, Jennings RD, Maas KR, Rusch DB, Takacs-Vesbach CD. Novel, Deep-Branching Heterotrophic Bacterial Populations Recovered from Thermal Spring Metagenomes. Front Microbiol 2016; 7:304. [PMID: 27014227 PMCID: PMC4791363 DOI: 10.3389/fmicb.2016.00304] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 02/24/2016] [Indexed: 11/24/2022] Open
Abstract
Thermal spring ecosystems are a valuable resource for the discovery of novel hyperthermophilic Bacteria and Archaea, and harbor deeply-branching lineages that provide insight regarding the nature of early microbial life. We characterized bacterial populations in two circumneutral (pH ~8) Yellowstone National Park thermal (T ~80°C) spring filamentous “streamer” communities using random metagenomic DNA sequence to investigate the metabolic potential of these novel populations. Four de novo assemblies representing three abundant, deeply-branching bacterial phylotypes were recovered. Analysis of conserved phylogenetic marker genes indicated that two of the phylotypes represent separate groups of an uncharacterized phylum (for which we propose the candidate phylum name “Pyropristinus”). The third new phylotype falls within the proposed Calescamantes phylum. Metabolic reconstructions of the “Pyropristinus” and Calescamantes populations showed that these organisms appear to be chemoorganoheterotrophs and have the genomic potential for aerobic respiration and oxidative phosphorylation via archaeal-like V-type, and bacterial F-type ATPases, respectively. A survey of similar phylotypes (>97% nt identity) within 16S rRNA gene datasets suggest that the newly described organisms are restricted to terrestrial thermal springs ranging from 70 to 90°C and pH values of ~7–9. The characterization of these lineages is important for understanding the diversity of deeply-branching bacterial phyla, and their functional role in high-temperature circumneutral “streamer” communities.
Collapse
Affiliation(s)
- Daniel R Colman
- Department of Biology, University of New Mexico Albuquerque, NM, USA
| | - Zackary J Jay
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - William P Inskeep
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - Ryan deM Jennings
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - Kendra R Maas
- Department of Biology, University of New Mexico Albuquerque, NM, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University Bloomington, IN, USA
| | | |
Collapse
|
107
|
Eloe-Fadrosh EA, Paez-Espino D, Jarett J, Dunfield PF, Hedlund BP, Dekas AE, Grasby SE, Brady AL, Dong H, Briggs BR, Li WJ, Goudeau D, Malmstrom R, Pati A, Pett-Ridge J, Rubin EM, Woyke T, Kyrpides NC, Ivanova NN. Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs. Nat Commun 2016; 7:10476. [PMID: 26814032 PMCID: PMC4737851 DOI: 10.1038/ncomms10476] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/07/2015] [Indexed: 01/01/2023] Open
Abstract
Analysis of the increasing wealth of metagenomic data collected from diverse environments can lead to the discovery of novel branches on the tree of life. Here we analyse 5.2 Tb of metagenomic data collected globally to discover a novel bacterial phylum (‘Candidatus Kryptonia') found exclusively in high-temperature pH-neutral geothermal springs. This lineage had remained hidden as a taxonomic ‘blind spot' because of mismatches in the primers commonly used for ribosomal gene surveys. Genome reconstruction from metagenomic data combined with single-cell genomics results in several high-quality genomes representing four genera from the new phylum. Metabolic reconstruction indicates a heterotrophic lifestyle with conspicuous nutritional deficiencies, suggesting the need for metabolic complementarity with other microbes. Co-occurrence patterns identifies a number of putative partners, including an uncultured Armatimonadetes lineage. The discovery of Kryptonia within previously studied geothermal springs underscores the importance of globally sampled metagenomic data in detection of microbial novelty, and highlights the extraordinary diversity of microbial life still awaiting discovery. The analysis of existing metagenomic data can lead to discovery of new microorganisms. Here, Eloe-Fadrosh et al. perform a large-scale analysis of global metagenomic data, followed by genome reconstruction and single-cell genomics, to describe a new bacterial phylum that inhabits geothermal springs.
Collapse
Affiliation(s)
| | - David Paez-Espino
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Jessica Jarett
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Peter F Dunfield
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, USA
| | - Anne E Dekas
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | | | - Allyson L Brady
- School of Geography &Earth Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Hailiang Dong
- Department of Geology and Environmental Earth Sciences, Miami University, Oxford, Ohio 45056, USA
| | - Brandon R Briggs
- Department of Biological Sciences, University of Alaska-Anchorage, Anchorage, Alaska 99508, USA
| | - Wen-Jun Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Danielle Goudeau
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Rex Malmstrom
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Amrita Pati
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | | | - Edward M Rubin
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA.,Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Nikos C Kyrpides
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Natalia N Ivanova
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| |
Collapse
|
108
|
Jiang Z, Li P, Jiang D, Dai X, Zhang R, Wang Y, Wang Y. Microbial Community Structure and Arsenic Biogeochemistry in an Acid Vapor-Formed Spring in Tengchong Geothermal Area, China. PLoS One 2016; 11:e0146331. [PMID: 26761709 PMCID: PMC4711897 DOI: 10.1371/journal.pone.0146331] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 12/16/2015] [Indexed: 11/24/2022] Open
Abstract
Arsenic biogeochemistry has been studied extensively in acid sulfate-chloride hot springs, but not in acid sulfate hot springs with low chloride. In this study, Zhenzhuquan in Tengchong geothermal area, a representative acid sulfate hot spring with low chloride, was chosen to study arsenic geochemistry and microbial community structure using Illumina MiSeq sequencing. Over 0.3 million 16S rRNA sequence reads were obtained from 6-paired parallel water and sediment samples along its outflow channel. Arsenic oxidation occurred in the Zhenxhuquan pool, with distinctly high ratios of arsenate to total dissolved arsenic (0.73–0.86). Coupled with iron and sulfur oxidation along the outflow channel, arsenic accumulated in downstream sediments with concentrations up to 16.44 g/kg and appeared to significantly constrain their microbial community diversity. These oxidations might be correlated with the appearance of some putative functional microbial populations, such as Aquificae and Pseudomonas (arsenic oxidation), Sulfolobus (sulfur and iron oxidation), Metallosphaera and Acidicaldus (iron oxidation). Temperature, total organic carbon and dissolved oxygen significantly shaped the microbial community structure of upstream and downstream samples. In the upstream outflow channel region, most microbial populations were microaerophilic/anaerobic thermophiles and hyperthermophiles, such as Sulfolobus, Nocardia, Fervidicoccus, Delftia, and Ralstonia. In the downstream region, aerobic heterotrophic mesophiles and thermophiles were identified, including Ktedonobacteria, Acidicaldus, Chthonomonas and Sphingobacteria. A total of 72.41–95.91% unassigned-genus sequences were derived from the downstream high arsenic sediments 16S rRNA clone libraries. This study could enable us to achieve an integrated understanding on arsenic biogeochemistry in acid hot springs.
Collapse
Affiliation(s)
- Zhou Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, People's Republic of China
- School of Environmental Studies, China University of Geosciences, Wuhan, People's Republic of China
| | - Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, People's Republic of China
- * E-mail: (PL); (YXW)
| | - Dawei Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, People's Republic of China
| | - Xinyue Dai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, People's Republic of China
- School of Environmental Studies, China University of Geosciences, Wuhan, People's Republic of China
| | - Rui Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, People's Republic of China
| | - Yanhong Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, People's Republic of China
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, People's Republic of China
- School of Environmental Studies, China University of Geosciences, Wuhan, People's Republic of China
- * E-mail: (PL); (YXW)
| |
Collapse
|
109
|
Beam JP, Jay ZJ, Schmid MC, Rusch DB, Romine MF, M Jennings RD, Kozubal MA, Tringe SG, Wagner M, Inskeep WP. Ecophysiology of an uncultivated lineage of Aigarchaeota from an oxic, hot spring filamentous 'streamer' community. THE ISME JOURNAL 2016; 10:210-24. [PMID: 26140529 PMCID: PMC4681859 DOI: 10.1038/ismej.2015.83] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/09/2015] [Accepted: 04/17/2015] [Indexed: 12/22/2022]
Abstract
The candidate archaeal phylum 'Aigarchaeota' contains microorganisms from terrestrial and subsurface geothermal ecosystems. The phylogeny and metabolic potential of Aigarchaeota has been deduced from several recent single-cell amplified genomes; however, a detailed description of their metabolic potential and in situ transcriptional activity is absent. Here, we report a comprehensive metatranscriptome-based reconstruction of the in situ metabolism of Aigarchaeota in an oxic, hot spring filamentous 'streamer' community. Fluorescence in situ hybridization showed that these newly discovered Aigarchaeota are filamentous, which is consistent with the presence and transcription of an actin-encoding gene. Aigarchaeota filaments are intricately associated with other community members, which include both bacteria (for example, filamentous Thermocrinis spp.) and archaea. Metabolic reconstruction of genomic and metatranscriptomic data suggests that this aigarchaeon is an aerobic, chemoorganoheterotroph with autotrophic potential. A heme copper oxidase complex was identified in the environmental genome assembly and highly transcribed in situ. Potential electron donors include acetate, fatty acids, amino acids, sugars and aromatic compounds, which may originate from extracellular polymeric substances produced by other microorganisms shown to exist in close proximity and/or autochthonous dissolved organic carbon (OC). Transcripts related to genes specific to each of these potential electron donors were identified, indicating that this aigarchaeon likely utilizes several OC substrates. Characterized members of this lineage cannot synthesize heme, and other cofactors and vitamins de novo, which suggests auxotrophy. We propose the name Candidatus 'Calditenuis aerorheumensis' for this aigarchaeon, which describes its filamentous morphology and its primary electron acceptor, oxygen.
Collapse
Affiliation(s)
- Jacob P Beam
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
| | - Zackary J Jay
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
| | - Markus C Schmid
- Divison of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | | | - Ryan de M Jennings
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
| | - Mark A Kozubal
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
- Sustainable Bioproducts LLC, Bozeman, MT, USA
| | | | - Michael Wagner
- Divison of Microbial Ecology, University of Vienna, Vienna, Austria
| | - William P Inskeep
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
- Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
110
|
Single-Cell-Genomics-Facilitated Read Binning of Candidate Phylum EM19 Genomes from Geothermal Spring Metagenomes. Appl Environ Microbiol 2015; 82:992-1003. [PMID: 26637598 DOI: 10.1128/aem.03140-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/12/2015] [Indexed: 12/17/2022] Open
Abstract
The vast majority of microbial life remains uncatalogued due to the inability to cultivate these organisms in the laboratory. This "microbial dark matter" represents a substantial portion of the tree of life and of the populations that contribute to chemical cycling in many ecosystems. In this work, we leveraged an existing single-cell genomic data set representing the candidate bacterial phylum "Calescamantes" (EM19) to calibrate machine learning algorithms and define metagenomic bins directly from pyrosequencing reads derived from Great Boiling Spring in the U.S. Great Basin. Compared to other assembly-based methods, taxonomic binning with a read-based machine learning approach yielded final assemblies with the highest predicted genome completeness of any method tested. Read-first binning subsequently was used to extract Calescamantes bins from all metagenomes with abundant Calescamantes populations, including metagenomes from Octopus Spring and Bison Pool in Yellowstone National Park and Gongxiaoshe Spring in Yunnan Province, China. Metabolic reconstruction suggests that Calescamantes are heterotrophic, facultative anaerobes, which can utilize oxidized nitrogen sources as terminal electron acceptors for respiration in the absence of oxygen and use proteins as their primary carbon source. Despite their phylogenetic divergence, the geographically separate Calescamantes populations were highly similar in their predicted metabolic capabilities and core gene content, respiring O2, or oxidized nitrogen species for energy conservation in distant but chemically similar hot springs.
Collapse
|
111
|
Lin KH, Liao BY, Chang HW, Huang SW, Chang TY, Yang CY, Wang YB, Lin YTK, Wu YW, Tang SL, Yu HT. Metabolic characteristics of dominant microbes and key rare species from an acidic hot spring in Taiwan revealed by metagenomics. BMC Genomics 2015; 16:1029. [PMID: 26630941 PMCID: PMC4668684 DOI: 10.1186/s12864-015-2230-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/18/2015] [Indexed: 11/10/2022] Open
Abstract
Background Microbial diversity and community structures in acidic hot springs have been characterized by 16S rRNA gene-based diversity surveys. However, our understanding regarding the interactions among microbes, or between microbes and environmental factors, remains limited. Results In the present study, a metagenomic approach, followed by bioinformatics analyses, were used to predict interactions within the microbial ecosystem in Shi-Huang-Ping (SHP), an acidic hot spring in northern Taiwan. Characterizing environmental parameters and potential metabolic pathways highlighted the importance of carbon assimilatory pathways. Four distinct carbon assimilatory pathways were identified in five dominant genera of bacteria. Of those dominant carbon fixers, Hydrogenobaculum bacteria outcompeted other carbon assimilators and dominated the SHP, presumably due to their ability to metabolize hydrogen and to withstand an anaerobic environment with fluctuating temperatures. Furthermore, most dominant microbes were capable of metabolizing inorganic sulfur-related compounds (abundant in SHP). However, Acidithiobacillus ferrooxidans was the only species among key rare microbes with the capability to fix nitrogen, suggesting a key role in nitrogen cycling. In addition to potential metabolic interactions, based on the 16S rRNAs gene sequence of Nanoarchaeum-related and its potential host Ignicoccus-related archaea, as well as sequences of viruses and CRISPR arrays, we inferred that there were complex microbe-microbe interactions. Conclusions Our study provided evidence that there were numerous microbe-microbe and microbe-environment interactions within the microbial community in an acidic hot spring. We proposed that Hydrogenobaculum bacteria were the dominant microbial genus, as they were able to metabolize hydrogen, assimilate carbon and live in an anaerobic environment with fluctuating temperatures. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2230-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kuei-Han Lin
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan, Republic of China.
| | - Ben-Yang Liao
- Division of Biostatistics & Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan Town, Miaoli County, 35053, Taiwan, Republic of China.
| | - Hao-Wei Chang
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan, Republic of China. .,Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Science, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Shiao-Wei Huang
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan, Republic of China.
| | - Ting-Yan Chang
- Division of Biostatistics & Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan Town, Miaoli County, 35053, Taiwan, Republic of China.
| | - Cheng-Yu Yang
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan, Republic of China.
| | - Yu-Bin Wang
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan, Republic of China. .,Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan, Republic of China.
| | - Yu-Teh Kirk Lin
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan, Republic of China. .,Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, 10617, Taiwan, Republic of China.
| | - Yu-Wei Wu
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA. .,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan, Republic of China.
| | - Hon-Tsen Yu
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan, Republic of China. .,Degree Program of Genome and Systems Biology, National Taiwan University and Academia Sinica, Taipei, 10617, Taiwan, Republic of China.
| |
Collapse
|
112
|
Li H, Yang Q, Li J, Gao H, Li P, Zhou H. The impact of temperature on microbial diversity and AOA activity in the Tengchong Geothermal Field, China. Sci Rep 2015; 5:17056. [PMID: 26608685 PMCID: PMC4660298 DOI: 10.1038/srep17056] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 10/20/2015] [Indexed: 02/07/2023] Open
Abstract
Using a culture-independent method that combines CARD-FISH, qPCR and 16S rDNA, we investigated the abundance, community structure and diversity of microbes along a steep thermal gradient (50–90 °C) in the Tengchong Geothermal Field. We found that Bacteria and Archaea abundance changed markedly with temperature changes and that the number of cells was lowest at high temperatures (90.8 °C). Under low-temperature conditions (52.3–74.6 °C), the microbial communities were dominated by Bacteria, which accounted for 60–80% of the total number of cells. At 74.6 °C, Archaea were dominant, and at 90.8 °C, they accounted for more than 90% of the total number of cells. Additionally, the microbial communities at high temperatures (74.6–90.8 °C) were substantially simpler than those at the low-temperature sites. Only a few genera (e.g., bacterial Caldisericum, Thermotoga and Thermoanaerobacter, archaeal Vulcanisaeta and Hyperthermus) often dominated in high-temperature environments. Additionally, a positive correlation between Ammonia-Oxidizing Archaea (AOA) activity and temperature was detected. AOA activity increased from 17 to 52 pmol of NO2− per cell d−1 with a temperature change from 50 to 70 °C.
Collapse
Affiliation(s)
- Haizhou Li
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Qunhui Yang
- State Key Laboratory of Marine Geology, School of Ocean and Earth Science, Tongji University, Shanghai 200092, China
| | - Jian Li
- School of Engineering, Anhui Agricultural University, Hefei 230000, China
| | - Hang Gao
- State Key Laboratory of Marine Geology, School of Ocean and Earth Science, Tongji University, Shanghai 200092, China
| | - Ping Li
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Huaiyang Zhou
- State Key Laboratory of Marine Geology, School of Ocean and Earth Science, Tongji University, Shanghai 200092, China
| |
Collapse
|
113
|
Munson-McGee JH, Field EK, Bateson M, Rooney C, Stepanauskas R, Young MJ. Nanoarchaeota, Their Sulfolobales Host, and Nanoarchaeota Virus Distribution across Yellowstone National Park Hot Springs. Appl Environ Microbiol 2015; 81:7860-8. [PMID: 26341207 PMCID: PMC4616950 DOI: 10.1128/aem.01539-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/01/2015] [Indexed: 11/20/2022] Open
Abstract
Nanoarchaeota are obligate symbionts with reduced genomes first described from marine thermal vent environments. Here, both community metagenomics and single-cell analysis revealed the presence of Nanoarchaeota in high-temperature (∼90°C), acidic (pH ≈ 2.5 to 3.0) hot springs in Yellowstone National Park (YNP) (United States). Single-cell genome analysis of two cells resulted in two nearly identical genomes, with an estimated full length of 650 kbp. Genome comparison showed that these two cells are more closely related to the recently proposed Nanobsidianus stetteri from a more neutral YNP hot spring than to the marine Nanoarchaeum equitans. Single-cell and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) analysis of environmental hot spring samples identified the host of the YNP Nanoarchaeota as a Sulfolobales species known to inhabit the hot springs. Furthermore, we demonstrate that Nanoarchaeota are widespread in acidic to near neutral hot springs in YNP. An integrated viral sequence was also found within one Nanoarchaeota single-cell genome and further analysis of the purified viral fraction from environmental samples indicates that this is likely a virus replicating within the YNP Nanoarchaeota.
Collapse
Affiliation(s)
- Jacob H Munson-McGee
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| | - Erin K Field
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
| | - Mary Bateson
- Thermal Biology Institute, Montana State University, Bozeman, Montana, USA
| | - Colleen Rooney
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | | | - Mark J Young
- Thermal Biology Institute, Montana State University, Bozeman, Montana, USA Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
114
|
Hemme CL, Tu Q, Shi Z, Qin Y, Gao W, Deng Y, Nostrand JDV, Wu L, He Z, Chain PSG, Tringe SG, Fields MW, Rubin EM, Tiedje JM, Hazen TC, Arkin AP, Zhou J. Comparative metagenomics reveals impact of contaminants on groundwater microbiomes. Front Microbiol 2015; 6:1205. [PMID: 26583008 PMCID: PMC4628106 DOI: 10.3389/fmicb.2015.01205] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/16/2015] [Indexed: 11/15/2022] Open
Abstract
To understand patterns of geochemical cycling in pristine versus contaminated groundwater ecosystems, pristine shallow groundwater (FW301) and contaminated groundwater (FW106) samples from the Oak Ridge Integrated Field Research Center (OR-IFRC) were sequenced and compared to each other to determine phylogenetic and metabolic difference between the communities. Proteobacteria (e.g., Burkholderia, Pseudomonas) are the most abundant lineages in the pristine community, though a significant proportion ( >55%) of the community is composed of poorly characterized low abundance (individually <1%) lineages. The phylogenetic diversity of the pristine community contributed to a broader diversity of metabolic networks than the contaminated community. In addition, the pristine community encodes redundant and mostly complete geochemical cycles distributed over multiple lineages and appears capable of a wide range of metabolic activities. In contrast, many geochemical cycles in the contaminated community appear truncated or minimized due to decreased biodiversity and dominance by Rhodanobacter populations capable of surviving the combination of stresses at the site. These results indicate that the pristine site contains more robust and encodes more functional redundancy than the stressed community, which contributes to more efficient nutrient cycling and adaptability than the stressed community.
Collapse
Affiliation(s)
- Christopher L Hemme
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman OK, USA
| | - Qichao Tu
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman OK, USA
| | - Zhou Shi
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman OK, USA
| | - Yujia Qin
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman OK, USA
| | - Weimin Gao
- The Biodesign Institute, Arizona State University, Tempe AZ, USA
| | - Ye Deng
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman OK, USA ; CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing, China
| | - Joy D Van Nostrand
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman OK, USA
| | - Liyou Wu
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman OK, USA
| | - Zhili He
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman OK, USA
| | - Patrick S G Chain
- Bioscience Division, Los Alamos National Laboratory, Los Alamos NM, USA
| | - Susannah G Tringe
- United States Department of Energy, Joint Genome Institute, Walnut Creek CA, USA
| | - Matthew W Fields
- Department of Microbiology, Montana State University, Bozeman MT, USA
| | - Edward M Rubin
- United States Department of Energy, Joint Genome Institute, Walnut Creek CA, USA
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing MI, USA
| | - Terry C Hazen
- Department of Civil and Environmental Engineering, University of Tennessee-Knoxville, Knoxville TN, USA ; Department of Earth and Planetary Sciences, University of Tennessee-Knoxville, Knoxville TN, USA ; Department of Microbiology, University of Tennessee-Knoxville, Knoxville TN, USA ; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge TN, USA
| | - Adam P Arkin
- Department of Bioengineering, Lawrence Berkeley National Laboratory, Berkeley CA, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman OK, USA ; Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley CA, USA ; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University Beijing, China
| |
Collapse
|
115
|
Inskeep WP, Jay ZJ, Macur RE, Clingenpeel S, Tenney A, Lovalvo D, Beam JP, Kozubal MA, Shanks WC, Morgan LA, Kan J, Gorby Y, Yooseph S, Nealson K. Geomicrobiology of sublacustrine thermal vents in Yellowstone Lake: geochemical controls on microbial community structure and function. Front Microbiol 2015; 6:1044. [PMID: 26579074 PMCID: PMC4620420 DOI: 10.3389/fmicb.2015.01044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 09/14/2015] [Indexed: 12/02/2022] Open
Abstract
Yellowstone Lake (Yellowstone National Park, WY, USA) is a large high-altitude (2200 m), fresh-water lake, which straddles an extensive caldera and is the center of significant geothermal activity. The primary goal of this interdisciplinary study was to evaluate the microbial populations inhabiting thermal vent communities in Yellowstone Lake using 16S rRNA gene and random metagenome sequencing, and to determine how geochemical attributes of vent waters influence the distribution of specific microorganisms and their metabolic potential. Thermal vent waters and associated microbial biomass were sampled during two field seasons (2007–2008) using a remotely operated vehicle (ROV). Sublacustrine thermal vent waters (circa 50–90°C) contained elevated concentrations of numerous constituents associated with geothermal activity including dissolved hydrogen, sulfide, methane and carbon dioxide. Microorganisms associated with sulfur-rich filamentous “streamer” communities of Inflated Plain and West Thumb (pH range 5–6) were dominated by bacteria from the Aquificales, but also contained thermophilic archaea from the Crenarchaeota and Euryarchaeota. Novel groups of methanogens and members of the Korarchaeota were observed in vents from West Thumb and Elliot's Crater (pH 5–6). Conversely, metagenome sequence from Mary Bay vent sediments did not yield large assemblies, and contained diverse thermophilic and nonthermophilic bacterial relatives. Analysis of functional genes associated with the major vent populations indicated a direct linkage to high concentrations of carbon dioxide, reduced sulfur (sulfide and/or elemental S), hydrogen and methane in the deep thermal ecosystems. Our observations show that sublacustrine thermal vents in Yellowstone Lake support novel thermophilic communities, which contain microorganisms with functional attributes not found to date in terrestrial geothermal systems of YNP.
Collapse
Affiliation(s)
- William P Inskeep
- Thermal Biology Institute, Montana State University Bozeman, MT, USA ; Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - Zackary J Jay
- Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - Richard E Macur
- Center for Biofilm Engineering, Montana State University Bozeman, MT, USA
| | | | | | | | - Jacob P Beam
- Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - Mark A Kozubal
- Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | | | | | - Jinjun Kan
- Department of Earth Sciences, University of Southern California Los Angeles, CA, USA
| | - Yuri Gorby
- Department of Earth Sciences, University of Southern California Los Angeles, CA, USA
| | | | - Kenneth Nealson
- Department of Earth Sciences, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
116
|
Estrella Alcamán M, Fernandez C, Delgado A, Bergman B, Díez B. The cyanobacterium Mastigocladus fulfills the nitrogen demand of a terrestrial hot spring microbial mat. THE ISME JOURNAL 2015; 9:2290-303. [PMID: 26230049 PMCID: PMC4579480 DOI: 10.1038/ismej.2015.63] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 11/09/2022]
Abstract
Cyanobacteria from Subsection V (Stigonematales) are important components of microbial mats in non-acidic terrestrial hot springs. Despite their diazotrophic nature (N2 fixers), their impact on the nitrogen cycle in such extreme ecosystems remains unknown. Here, we surveyed the identity and activity of diazotrophic cyanobacteria in the neutral hot spring of Porcelana (Northern Patagonia, Chile) during 2009 and 2011-2013. We used 16S rRNA and the nifH gene to analyze the distribution and diversity of diazotrophic cyanobacteria. Our results demonstrate the dominance of the heterocystous genus Mastigocladus (Stigonematales) along the entire temperature gradient of the hot spring (69-38 °C). In situ nitrogenase activity (acetylene reduction), nitrogen fixation rates (cellular uptake of (15)N2) and nifH transcription levels in the microbial mats showed that nitrogen fixation and nifH mRNA expression were light-dependent. Nitrogen fixation activities were detected at temperatures ranging from 58 °C to 46 °C, with maximum daily rates of 600 nmol C2H4 cm(-2) per day and 94.1 nmol N cm(-2) per day. These activity patterns strongly suggest a heterocystous cyanobacterial origin and reveal a correlation between nitrogenase activity and nifH gene expression during diurnal cycles in thermal microbial mats. N and C fixation in the mats contributed ~3 g N m(-2) per year and 27 g C m(-2) per year, suggesting that these vital demands are fully met by the diazotrophic and photoautotrophic capacities of the cyanobacteria in the Porcelana hot spring.
Collapse
Affiliation(s)
- María Estrella Alcamán
- Department of Molecular Genetics and Microbiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camila Fernandez
- Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Sorbonne Universités, UPMC Univ Paris 06, UMR 7621, Banyuls/mer, France
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Banyuls/mer, France
- Department of Oceanography, Interdisciplinary Center for Aquaculture Research (INCAR) and COPAS SURAUSTRAL Program, University of Concepción, Concepción, Chile
| | - Antonio Delgado
- Instituto Andaluz de Ciencias de la Tierra (CSIC-Univ. Granada), Armilla, Granada, Spain
| | - Birgitta Bergman
- Department of Ecology, Environment and Plant Sciences and Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Climate and Resilience Research (CR)2, Santiago, Chile
| |
Collapse
|
117
|
Menzel P, Gudbergsdóttir SR, Rike AG, Lin L, Zhang Q, Contursi P, Moracci M, Kristjansson JK, Bolduc B, Gavrilov S, Ravin N, Mardanov A, Bonch-Osmolovskaya E, Young M, Krogh A, Peng X. Comparative Metagenomics of Eight Geographically Remote Terrestrial Hot Springs. MICROBIAL ECOLOGY 2015; 70:411-424. [PMID: 25712554 DOI: 10.1007/s00248-015-0576-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/23/2015] [Indexed: 06/04/2023]
Abstract
Hot springs are natural habitats for thermophilic Archaea and Bacteria. In this paper, we present the metagenomic analysis of eight globally distributed terrestrial hot springs from China, Iceland, Italy, Russia, and the USA with a temperature range between 61 and 92 (∘)C and pH between 1.8 and 7. A comparison of the biodiversity and community composition generally showed a decrease in biodiversity with increasing temperature and decreasing pH. Another important factor shaping microbial diversity of the studied sites was the abundance of organic substrates. Several species of the Crenarchaeal order Thermoprotei were detected, whereas no single bacterial species was found in all samples, suggesting a better adaptation of certain archaeal species to different thermophilic environments. Two hot springs show high abundance of Acidithiobacillus, supporting the idea of a true thermophilic Acidithiobacillus species that can thrive in hyperthermophilic environments. Depending on the sample, up to 58 % of sequencing reads could not be assigned to a known phylum, reinforcing the fact that a large number of microorganisms in nature, including those thriving in hot environments remain to be isolated and characterized.
Collapse
Affiliation(s)
- Peter Menzel
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
The Confluence of Heavy Metal Biooxidation and Heavy Metal Resistance: Implications for Bioleaching by Extreme Thermoacidophiles. MINERALS 2015. [DOI: 10.3390/min5030397] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
119
|
Hedlund BP, Murugapiran SK, Alba TW, Levy A, Dodsworth JA, Goertz GB, Ivanova N, Woyke T. Uncultivated thermophiles: current status and spotlight on 'Aigarchaeota'. Curr Opin Microbiol 2015; 25:136-45. [PMID: 26113243 DOI: 10.1016/j.mib.2015.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/03/2015] [Accepted: 06/03/2015] [Indexed: 01/28/2023]
Abstract
Meta-analysis of cultivation-independent sequence data shows that geothermal systems host an abundance of novel organisms, representing a vast unexplored phylogenetic and functional diversity among yet-uncultivated thermophiles. A number of thermophiles have recently been interrogated using metagenomic and/or single-cell genomic approaches, including members of taxonomic groups that inhabit both thermal and non-thermal environments, such as 'Acetothermia' (OP1) and 'Atribacteria' (OP9/JS1), as well as the exclusively thermophilic lineages 'Korarchaeota', 'Calescamantes' (EM19), 'Fervidibacteria' (OctSpA1-106), and 'Aigarchaeota' (HWCG-I). The 'Aigarchaeota', a sister lineage to the Thaumarchaeota, likely includes both hyperthermophiles and moderate thermophiles. They inhabit terrestrial, marine, and subsurface thermal environments and comprise at least nine genus-level lineages, several of which are globally distributed.
Collapse
Affiliation(s)
- Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA.
| | | | - Timothy W Alba
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Asaf Levy
- DOE Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Jeremy A Dodsworth
- Department of Biology, California State University, San Bernardino, CA 92407, USA
| | - Gisele B Goertz
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | | | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, CA 94598, USA
| |
Collapse
|
120
|
Olsen MT, Nowack S, Wood JM, Becraft ED, LaButti K, Lipzen A, Martin J, Schackwitz WS, Rusch DB, Cohan FM, Bryant DA, Ward DM. The molecular dimension of microbial species: 3. Comparative genomics of Synechococcus strains with different light responses and in situ diel transcription patterns of associated putative ecotypes in the Mushroom Spring microbial mat. Front Microbiol 2015; 6:604. [PMID: 26157428 PMCID: PMC4477158 DOI: 10.3389/fmicb.2015.00604] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/01/2015] [Indexed: 11/26/2022] Open
Abstract
Genomes were obtained for three closely related strains of Synechococcus that are representative of putative ecotypes (PEs) that predominate at different depths in the 1 mm-thick, upper-green layer in the 60°C mat of Mushroom Spring, Yellowstone National Park, and exhibit different light adaptation and acclimation responses. The genomes were compared to the published genome of a previously obtained, closely related strain from a neighboring spring, and differences in both gene content and orthologous gene alleles between high-light-adapted and low-light-adapted strains were identified. Evidence of genetic differences that relate to adaptation to light intensity and/or quality, CO2uptake, nitrogen metabolism, organic carbon metabolism, and uptake of other nutrients were found between strains of the different putative ecotypes. In situ diel transcription patterns of genes, including genes unique to either low-light-adapted or high-light-adapted strains and different alleles of an orthologous photosystem gene, revealed that expression is fine-tuned to the different light environments experienced by ecotypes prevalent at various depths in the mat. This study suggests that strains of closely related PEs have different genomic adaptations that enable them to inhabit distinct ecological niches while living in close proximity within a microbial community.
Collapse
Affiliation(s)
- Millie T Olsen
- Department of Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - Shane Nowack
- Department of Mathematical Sciences, Montana State University Bozeman, MT, USA
| | - Jason M Wood
- Department of Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - Eric D Becraft
- Department of Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - Kurt LaButti
- Department of Energy, Joint Genome Institute Walnut Creek, CA, USA
| | - Anna Lipzen
- Department of Energy, Joint Genome Institute Walnut Creek, CA, USA
| | - Joel Martin
- Department of Energy, Joint Genome Institute Walnut Creek, CA, USA
| | | | | | | | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University University Park, PA, USA ; Department of Chemistry and Biochemistry, Montana State University Bozeman, MT, USA
| | - David M Ward
- Department of Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| |
Collapse
|
121
|
Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc Natl Acad Sci U S A 2015; 112:6449-54. [PMID: 25941371 DOI: 10.1073/pnas.1421834112] [Citation(s) in RCA: 493] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Microbial communities populate most environments on earth and play a critical role in ecology and human health. Their composition is thought to be largely shaped by interspecies competition for the available resources, but cooperative interactions, such as metabolite exchanges, have also been implicated in community assembly. The prevalence of metabolic interactions in microbial communities, however, has remained largely unknown. Here, we systematically survey, by using a genome-scale metabolic modeling approach, the extent of resource competition and metabolic exchanges in over 800 communities. We find that, despite marked resource competition at the level of whole assemblies, microbial communities harbor metabolically interdependent groups that recur across diverse habitats. By enumerating flux-balanced metabolic exchanges in these co-occurring subcommunities we also predict the likely exchanged metabolites, such as amino acids and sugars, that can promote group survival under nutritionally challenging conditions. Our results highlight metabolic dependencies as a major driver of species co-occurrence and hint at cooperative groups as recurring modules of microbial community architecture.
Collapse
|
122
|
Urbieta MS, Donati ER, Chan KG, Shahar S, Sin LL, Goh KM. Thermophiles in the genomic era: Biodiversity, science, and applications. Biotechnol Adv 2015; 33:633-47. [PMID: 25911946 DOI: 10.1016/j.biotechadv.2015.04.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/18/2014] [Accepted: 04/14/2015] [Indexed: 01/30/2023]
Abstract
Thermophiles and hyperthermophiles are present in various regions of the Earth, including volcanic environments, hot springs, mud pots, fumaroles, geysers, coastal thermal springs, and even deep-sea hydrothermal vents. They are also found in man-made environments, such as heated compost facilities, reactors, and spray dryers. Thermophiles, hyperthermophiles, and their bioproducts facilitate various industrial, agricultural, and medicinal applications and offer potential solutions to environmental damages and the demand for biofuels. Intensified efforts to sequence the entire genome of hyperthermophiles and thermophiles are increasing rapidly, as evidenced by the fact that over 120 complete genome sequences of the hyperthermophiles Aquificae, Thermotogae, Crenarchaeota, and Euryarchaeota are now available. In this review, we summarise the major current applications of thermophiles and thermozymes. In addition, emphasis is placed on recent progress in understanding the biodiversity, genomes, transcriptomes, metagenomes, and single-cell sequencing of thermophiles in the genomic era.
Collapse
Affiliation(s)
- M Sofía Urbieta
- CINDEFI (CCT La Plata-CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, 1900 La Plata, Argentina
| | - Edgardo R Donati
- CINDEFI (CCT La Plata-CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, 1900 La Plata, Argentina
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Saleha Shahar
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
| | - Lee Li Sin
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
| | - Kian Mau Goh
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia.
| |
Collapse
|
123
|
Chan CS, Chan KG, Tay YL, Chua YH, Goh KM. Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing. Front Microbiol 2015; 6:177. [PMID: 25798135 PMCID: PMC4350410 DOI: 10.3389/fmicb.2015.00177] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 02/17/2015] [Indexed: 02/04/2023] Open
Abstract
The Sungai Klah (SK) hot spring is the second hottest geothermal spring in Malaysia. This hot spring is a shallow, 150-m-long, fast-flowing stream, with temperatures varying from 50 to 110°C and a pH range of 7.0–9.0. Hidden within a wooded area, the SK hot spring is continually fed by plant litter, resulting in a relatively high degree of total organic content (TOC). In this study, a sample taken from the middle of the stream was analyzed at the 16S rRNA V3-V4 region by amplicon metagenome sequencing. Over 35 phyla were detected by analyzing the 16S rRNA data. Firmicutes and Proteobacteria represented approximately 57% of the microbiome. Approximately 70% of the detected thermophiles were strict anaerobes; however, Hydrogenobacter spp., obligate chemolithotrophic thermophiles, represented one of the major taxa. Several thermophilic photosynthetic microorganisms and acidothermophiles were also detected. Most of the phyla identified by 16S rRNA were also found using the shotgun metagenome approaches. The carbon, sulfur, and nitrogen metabolism within the SK hot spring community were evaluated by shotgun metagenome sequencing, and the data revealed diversity in terms of metabolic activity and dynamics. This hot spring has a rich diversified phylogenetic community partly due to its natural environment (plant litter, high TOC, and a shallow stream) and geochemical parameters (broad temperature and pH range). It is speculated that symbiotic relationships occur between the members of the community.
Collapse
Affiliation(s)
- Chia Sing Chan
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia Skudai, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | | | | | - Kian Mau Goh
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia Skudai, Malaysia
| |
Collapse
|
124
|
Hand BK, Lowe WH, Kovach RP, Muhlfeld CC, Luikart G. Landscape community genomics: understanding eco-evolutionary processes in complex environments. Trends Ecol Evol 2015; 30:161-8. [DOI: 10.1016/j.tree.2015.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 10/24/2022]
|
125
|
Colman DR, Thomas R, Maas KR, Takacs-Vesbach CD. Detection and analysis of elusive members of a novel and diverse archaeal community within a thermal spring streamer consortium. Extremophiles 2014; 19:307-13. [PMID: 25477209 DOI: 10.1007/s00792-014-0715-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/16/2014] [Indexed: 11/27/2022]
Abstract
Recent metagenomic analyses of Yellowstone National Park (YNP) thermal spring communities suggested the presence of minor archaeal populations that simultaneous PCR-based assays using traditional 'universal' 16S rRNA gene primers failed to detect. Here we use metagenomics to identify PCR primers effective at detecting elusive members of the Archaea, assess their efficacy, and describe the diverse and novel archaeal community from a circum-neutral thermal spring from the Bechler region of YNP. We determined that a less commonly used PCR primer, Arch349F, captured more diversity in this spring than the widely used A21F primer. A search of the PCR primers against the RDP 16S rRNA gene database indicated that Arch349F also captured the largest percentage of Archaea, including 41 % more than A21F. Pyrosequencing using the Arch349F primer recovered all of the phylotypes present in the clone-based portion of the study and the metagenome of this spring in addition to several other populations of Archaea, some of which are phylogenetically novel. In contrast to the lack of amplification with traditional 16S rRNA gene primers, our comprehensive analyses suggested a diverse archaeal community in the Bechler spring, with implications for recently discovered groups such as the Geoarchaeota and other undescribed archaeal groups.
Collapse
Affiliation(s)
- Daniel R Colman
- Department of Biology, MSC03 2020, University of New Mexico, Albuquerque, NM, 87131-0001, USA,
| | | | | | | |
Collapse
|
126
|
O'Gorman EJ, Benstead JP, Cross WF, Friberg N, Hood JM, Johnson PW, Sigurdsson BD, Woodward G. Climate change and geothermal ecosystems: natural laboratories, sentinel systems, and future refugia. GLOBAL CHANGE BIOLOGY 2014; 20:3291-9. [PMID: 24729541 DOI: 10.1111/gcb.12602] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/07/2014] [Indexed: 05/14/2023]
Abstract
Understanding and predicting how global warming affects the structure and functioning of natural ecosystems is a key challenge of the 21st century. Isolated laboratory and field experiments testing global change hypotheses have been criticized for being too small-scale and overly simplistic, whereas surveys are inferential and often confound temperature with other drivers. Research that utilizes natural thermal gradients offers a more promising approach and geothermal ecosystems in particular, which span a range of temperatures within a single biogeographic area, allow us to take the laboratory into nature rather than vice versa. By isolating temperature from other drivers, its ecological effects can be quantified without any loss of realism, and transient and equilibrial responses can be measured in the same system across scales that are not feasible using other empirical methods. Embedding manipulative experiments within geothermal gradients is an especially powerful approach, informing us to what extent small-scale experiments can predict the future behaviour of real ecosystems. Geothermal areas also act as sentinel systems by tracking responses of ecological networks to warming and helping to maintain ecosystem functioning in a changing landscape by providing sources of organisms that are preadapted to different climatic conditions. Here, we highlight the emerging use of geothermal systems in climate change research, identify novel research avenues, and assess their roles for catalysing our understanding of ecological and evolutionary responses to global warming.
Collapse
Affiliation(s)
- Eoin J O'Gorman
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Wall CA, Koniges GJ, Miller SR. Divergence with gene flow in a population of thermophilic bacteria: a potential role for spatially varying selection. Mol Ecol 2014; 23:3371-83. [PMID: 24863904 DOI: 10.1111/mec.12812] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/02/2014] [Accepted: 05/06/2014] [Indexed: 01/14/2023]
Abstract
A fundamental goal of evolutionary biology is to understand how ecological diversity arises and is maintained in natural populations. We have investigated the contributions of gene flow and divergent selection to the distribution of genetic variation in an ecologically differentiated population of a thermophilic cyanobacterium (Mastigocladus laminosus) found along the temperature gradient of a nitrogen-limited stream in Yellowstone National Park. For most loci sampled, gene flow appears to be sufficient to prevent substantial genetic divergence. However, one locus (rfbC) exhibited a comparatively low migration rate as well as other signatures expected for a gene experiencing spatially varying selection, including an excess of common variants, an elevated level of polymorphism and extreme genetic differentiation along the gradient. rfbC is part of an expression island involved in the production of the polysaccharide component of the protective envelope of the heterocyst, the specialized nitrogen-fixing cell of these bacteria. SNP genotyping in the vicinity of rfbC revealed a ~5-kbp region including a gene content polymorphism that is tightly associated with environmental temperature and therefore likely contains the target of selection. Two genes have been deleted both in the predominant haplotype found in the downstream region of White Creek and in strains from other Yellowstone populations of M. laminosus, which may result in the production of heterocysts with different envelope properties. This study implicates spatially varying selection in the maintenance of variation related to thermal performance at White Creek despite on-going or recent gene flow.
Collapse
Affiliation(s)
- Christopher A Wall
- Division of Biological Sciences, 32 Campus Dr. #4824, The University of Montana Missoula, MT, 59812-4824, USA
| | | | | |
Collapse
|
128
|
Alsop EB, Boyd ES, Raymond J. Merging metagenomics and geochemistry reveals environmental controls on biological diversity and evolution. BMC Ecol 2014; 14:16. [PMID: 24886397 PMCID: PMC4047435 DOI: 10.1186/1472-6785-14-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/16/2014] [Indexed: 11/13/2022] Open
Abstract
Background The metabolic strategies employed by microbes inhabiting natural systems are, in large part, dictated by the physical and geochemical properties of the environment. This study sheds light onto the complex relationship between biology and environmental geochemistry using forty-three metagenomes collected from geochemically diverse and globally distributed natural systems. It is widely hypothesized that many uncommonly measured geochemical parameters affect community dynamics and this study leverages the development and application of multidimensional biogeochemical metrics to study correlations between geochemistry and microbial ecology. Analysis techniques such as a Markov cluster-based measure of the evolutionary distance between whole communities and a principal component analysis (PCA) of the geochemical gradients between environments allows for the determination of correlations between microbial community dynamics and environmental geochemistry and provides insight into which geochemical parameters most strongly influence microbial biodiversity. Results By progressively building from samples taken along well defined geochemical gradients to samples widely dispersed in geochemical space this study reveals strong links between the extent of taxonomic and functional diversification of resident communities and environmental geochemistry and reveals temperature and pH as the primary factors that have shaped the evolution of these communities. Moreover, the inclusion of extensive geochemical data into analyses reveals new links between geochemical parameters (e.g. oxygen and trace element availability) and the distribution and taxonomic diversification of communities at the functional level. Further, an overall geochemical gradient (from multivariate analyses) between natural systems provides one of the most complete predictions of microbial taxonomic and functional composition. Conclusions Clustering based on the frequency in which orthologous proteins occur among metagenomes facilitated accurate prediction of the ordering of community functional composition along geochemical gradients, despite a lack of geochemical input. The consistency in the results obtained from the application of Markov clustering and multivariate methods to distinct natural systems underscore their utility in predicting the functional potential of microbial communities within a natural system based on system geochemistry alone, allowing geochemical measurements to be used to predict purely biological metrics such as microbial community composition and metabolism.
Collapse
Affiliation(s)
| | | | - Jason Raymond
- School of Earth and Space Exploration, Arizona State University, ISTB4, Room 795, 781 E, Terrace Rd, Tempe, AZ 85287, USA.
| |
Collapse
|
129
|
Carbon dioxide fixation by Metallosphaera yellowstonensis and acidothermophilic iron-oxidizing microbial communities from Yellowstone National Park. Appl Environ Microbiol 2014; 80:2665-71. [PMID: 24532073 DOI: 10.1128/aem.03416-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fixation of inorganic carbon has been documented in all three domains of life and results in the biosynthesis of diverse organic compounds that support heterotrophic organisms. The primary aim of this study was to assess carbon dioxide fixation in high-temperature Fe(III)-oxide mat communities and in pure cultures of a dominant Fe(II)-oxidizing organism (Metallosphaera yellowstonensis strain MK1) originally isolated from these environments. Protein-encoding genes of the complete 3-hydroxypropionate/4-hydroxybutyrate (3-HP/4-HB) carbon dioxide fixation pathway were identified in M. yellowstonensis strain MK1. Highly similar M. yellowstonensis genes for this pathway were identified in metagenomes of replicate Fe(III)-oxide mats, as were genes for the reductive tricarboxylic acid cycle from Hydrogenobaculum spp. (Aquificales). Stable-isotope ((13)CO2) labeling demonstrated CO2 fixation by M. yellowstonensis strain MK1 and in ex situ assays containing live Fe(III)-oxide microbial mats. The results showed that strain MK1 fixes CO2 with a fractionation factor of ∼2.5‰. Analysis of the (13)C composition of dissolved inorganic C (DIC), dissolved organic C (DOC), landscape C, and microbial mat C showed that mat C is from both DIC and non-DIC sources. An isotopic mixing model showed that biomass C contains a minimum of 42% C of DIC origin, depending on the fraction of landscape C that is present. The significance of DIC as a major carbon source for Fe(III)-oxide mat communities provides a foundation for examining microbial interactions that are dependent on the activity of autotrophic organisms (i.e., Hydrogenobaculum and Metallosphaera spp.) in simplified natural communities.
Collapse
|
130
|
Beam JP, Jay ZJ, Kozubal MA, Inskeep WP. Niche specialization of novel Thaumarchaeota to oxic and hypoxic acidic geothermal springs of Yellowstone National Park. ISME JOURNAL 2013; 8:938-51. [PMID: 24196321 DOI: 10.1038/ismej.2013.193] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/06/2013] [Accepted: 09/17/2013] [Indexed: 11/09/2022]
Abstract
Novel lineages of the phylum Thaumarchaeota are endemic to thermal habitats, and may exhibit physiological capabilities that are not yet observed in members of this phylum. The primary goals of this study were to conduct detailed phylogenetic and functional analyses of metagenome sequence assemblies of two different thaumarchaeal populations found in high-temperature (65-72 °C), acidic (pH~3) iron oxide and sulfur sediment environments of Yellowstone National Park (YNP). Metabolic reconstruction was coupled with detailed geochemical measurements of each geothermal habitat and reverse-transcriptase PCR to confirm the in situ activity of these populations. Phylogenetic analyses of ribosomal and housekeeping proteins place these archaea near the root of the thaumarchaeal branch. Metabolic reconstruction suggests that these populations are chemoorganotrophic and couple growth with the reduction of oxygen or nitrate in iron oxide habitats, or sulfur in hypoxic sulfur sediments. The iron oxide population has the potential for growth via the oxidation of sulfide to sulfate using a novel reverse sulfate reduction pathway. Possible carbon sources include aromatic compounds (for example, 4-hydroxyphenylacetate), complex carbohydrates (for example, starch), oligopeptides and amino acids. Both populations contain a type III ribulose bisphosphate carboxylase/oxygenase used for carbon dioxide fixation or adenosine monophosphate salvage. No evidence for the oxidation of ammonia was obtained from de novo sequence assemblies. Our results show that thermoacidophilic Thaumarchaeota from oxic iron mats and hypoxic sulfur sediments exhibit different respiratory machinery depending on the presence of oxygen versus sulfide, represent deeply rooted lineages within the phylum Thaumarchaeota and are endemic to numerous sites in YNP.
Collapse
Affiliation(s)
- Jacob P Beam
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
| | - Zackary J Jay
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
| | - Mark A Kozubal
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
| | - William P Inskeep
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
| |
Collapse
|
131
|
Predominant Acidilobus-like populations from geothermal environments in yellowstone national park exhibit similar metabolic potential in different hypoxic microbial communities. Appl Environ Microbiol 2013; 80:294-305. [PMID: 24162572 DOI: 10.1128/aem.02860-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
High-temperature (>70°C) ecosystems in Yellowstone National Park (YNP) provide an unparalleled opportunity to study chemotrophic archaea and their role in microbial community structure and function under highly constrained geochemical conditions. Acidilobus spp. (order Desulfurococcales) comprise one of the dominant phylotypes in hypoxic geothermal sulfur sediment and Fe(III)-oxide environments along with members of the Thermoproteales and Sulfolobales. Consequently, the primary goals of the current study were to analyze and compare replicate de novo sequence assemblies of Acidilobus-like populations from four different mildly acidic (pH 3.3 to 6.1) high-temperature (72°C to 82°C) environments and to identify metabolic pathways and/or protein-encoding genes that provide a detailed foundation of the potential functional role of these populations in situ. De novo assemblies of the highly similar Acidilobus-like populations (>99% 16S rRNA gene identity) represent near-complete consensus genomes based on an inventory of single-copy genes, deduced metabolic potential, and assembly statistics generated across sites. Functional analysis of coding sequences and confirmation of gene transcription by Acidilobus-like populations provide evidence that they are primarily chemoorganoheterotrophs, generating acetyl coenzyme A (acetyl-CoA) via the degradation of carbohydrates, lipids, and proteins, and auxotrophic with respect to several external vitamins, cofactors, and metabolites. No obvious pathways or protein-encoding genes responsible for the dissimilatory reduction of sulfur were identified. The presence of a formate dehydrogenase (Fdh) and other protein-encoding genes involved in mixed-acid fermentation supports the hypothesis that Acidilobus spp. function as degraders of complex organic constituents in high-temperature, mildly acidic, hypoxic geothermal systems.
Collapse
|
132
|
Klatt CG, Inskeep WP, Herrgard MJ, Jay ZJ, Rusch DB, Tringe SG, Niki Parenteau M, Ward DM, Boomer SM, Bryant DA, Miller SR. Community structure and function of high-temperature chlorophototrophic microbial mats inhabiting diverse geothermal environments. Front Microbiol 2013; 4:106. [PMID: 23761787 PMCID: PMC3669762 DOI: 10.3389/fmicb.2013.00106] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 04/13/2013] [Indexed: 11/13/2022] Open
Abstract
Six phototrophic microbial mat communities from different geothermal springs (YNP) were studied using metagenome sequencing and geochemical analyses. The primary goals of this work were to determine differences in community composition of high-temperature phototrophic mats distributed across the Yellowstone geothermal ecosystem, and to identify metabolic attributes of predominant organisms present in these communities that may correlate with environmental attributes important in niche differentiation. Random shotgun metagenome sequences from six phototrophic communities (average ∼53 Mbp/site) were subjected to multiple taxonomic, phylogenetic, and functional analyses. All methods, including G + C content distribution, MEGAN analyses, and oligonucleotide frequency-based clustering, provided strong support for the dominant community members present in each site. Cyanobacteria were only observed in non-sulfidic sites; de novo assemblies were obtained for Synechococcus-like populations at Chocolate Pots (CP_7) and Fischerella-like populations at White Creek (WC_6). Chloroflexi-like sequences (esp. Roseiflexus and/or Chloroflexus spp.) were observed in all six samples and contained genes involved in bacteriochlorophyll biosynthesis and the 3-hydroxypropionate carbon fixation pathway. Other major sequence assemblies were obtained for a Chlorobiales population from CP_7 (proposed family Thermochlorobacteriaceae), and an anoxygenic, sulfur-oxidizing Thermochromatium-like (Gamma-proteobacteria) population from Bath Lake Vista Annex (BLVA_20). Additional sequence coverage is necessary to establish more complete assemblies of other novel bacteria in these sites (e.g., Bacteroidetes and Firmicutes); however, current assemblies suggested that several of these organisms play important roles in heterotrophic and fermentative metabolisms. Definitive linkages were established between several of the dominant phylotypes present in these habitats and important functional processes such as photosynthesis, carbon fixation, sulfur oxidation, and fermentation.
Collapse
Affiliation(s)
- Christian G Klatt
- Department of Land Resources and Environmental Sciences, Montana State University , Bozeman, MT , USA ; Thermal Biology Institute, Montana State University , Bozeman, MT , USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Takacs-Vesbach C, Inskeep WP, Jay ZJ, Herrgard MJ, Rusch DB, Tringe SG, Kozubal MA, Hamamura N, Macur RE, Fouke BW, Reysenbach AL, McDermott TR, Jennings RD, Hengartner NW, Xie G. Metagenome sequence analysis of filamentous microbial communities obtained from geochemically distinct geothermal channels reveals specialization of three aquificales lineages. Front Microbiol 2013; 4:84. [PMID: 23755042 PMCID: PMC3665934 DOI: 10.3389/fmicb.2013.00084] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 03/25/2013] [Indexed: 02/01/2023] Open
Abstract
The Aquificales are thermophilic microorganisms that inhabit hydrothermal systems worldwide and are considered one of the earliest lineages of the domain Bacteria. We analyzed metagenome sequence obtained from six thermal "filamentous streamer" communities (∼40 Mbp per site), which targeted three different groups of Aquificales found in Yellowstone National Park (YNP). Unassembled metagenome sequence and PCR-amplified 16S rRNA gene libraries revealed that acidic, sulfidic sites were dominated by Hydrogenobaculum (Aquificaceae) populations, whereas the circum-neutral pH (6.5-7.8) sites containing dissolved sulfide were dominated by Sulfurihydrogenibium spp. (Hydrogenothermaceae). Thermocrinis (Aquificaceae) populations were found primarily in the circum-neutral sites with undetectable sulfide, and to a lesser extent in one sulfidic system at pH 8. Phylogenetic analysis of assembled sequence containing 16S rRNA genes as well as conserved protein-encoding genes revealed that the composition and function of these communities varied across geochemical conditions. Each Aquificales lineage contained genes for CO2 fixation by the reverse-TCA cycle, but only the Sulfurihydrogenibium populations perform citrate cleavage using ATP citrate lyase (Acl). The Aquificaceae populations use an alternative pathway catalyzed by two separate enzymes, citryl-CoA synthetase (Ccs), and citryl-CoA lyase (Ccl). All three Aquificales lineages contained evidence of aerobic respiration, albeit due to completely different types of heme Cu oxidases (subunit I) involved in oxygen reduction. The distribution of Aquificales populations and differences among functional genes involved in energy generation and electron transport is consistent with the hypothesis that geochemical parameters (e.g., pH, sulfide, H2, O2) have resulted in niche specialization among members of the Aquificales.
Collapse
|
134
|
Inskeep WP, Jay ZJ, Herrgard MJ, Kozubal MA, Rusch DB, Tringe SG, Macur RE, Jennings RD, Boyd ES, Spear JR, Roberto FF. Phylogenetic and Functional Analysis of Metagenome Sequence from High-Temperature Archaeal Habitats Demonstrate Linkages between Metabolic Potential and Geochemistry. Front Microbiol 2013; 4:95. [PMID: 23720654 PMCID: PMC3654217 DOI: 10.3389/fmicb.2013.00095] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 04/03/2013] [Indexed: 12/21/2022] Open
Abstract
Geothermal habitats in Yellowstone National Park (YNP) provide an unparalleled opportunity to understand the environmental factors that control the distribution of archaea in thermal habitats. Here we describe, analyze, and synthesize metagenomic and geochemical data collected from seven high-temperature sites that contain microbial communities dominated by archaea relative to bacteria. The specific objectives of the study were to use metagenome sequencing to determine the structure and functional capacity of thermophilic archaeal-dominated microbial communities across a pH range from 2.5 to 6.4 and to discuss specific examples where the metabolic potential correlated with measured environmental parameters and geochemical processes occurring in situ. Random shotgun metagenome sequence (∼40–45 Mb Sanger sequencing per site) was obtained from environmental DNA extracted from high-temperature sediments and/or microbial mats and subjected to numerous phylogenetic and functional analyses. Analysis of individual sequences (e.g., MEGAN and G + C content) and assemblies from each habitat type revealed the presence of dominant archaeal populations in all environments, 10 of whose genomes were largely reconstructed from the sequence data. Analysis of protein family occurrence, particularly of those involved in energy conservation, electron transport, and autotrophic metabolism, revealed significant differences in metabolic strategies across sites consistent with differences in major geochemical attributes (e.g., sulfide, oxygen, pH). These observations provide an ecological basis for understanding the distribution of indigenous archaeal lineages across high-temperature systems of YNP.
Collapse
Affiliation(s)
- William P Inskeep
- Department of Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA ; Thermal Biology Institute, Montana State University Bozeman, MT, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|