101
|
Yuan TF, Peng B, Machado S, Arias-Carrion O. Morphological Bases of Neuronal Hyperexcitability in Neurodegeneration. CNS Neurosci Ther 2015; 21:867-9. [PMID: 26494127 DOI: 10.1111/cns.12439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Ti-Fei Yuan
- School of psychology, Nanjing Normal university, Nanjing, China
| | - Bo Peng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sergio Machado
- Panic and Respiration, Institute of Psychiatry of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Oscar Arias-Carrion
- Unidad de Trastornos del Movimiento y Sueño (TMS), Hospital General Dr. Manuel Gea González/IFC-UNAM, Mexico City, Mexico
| |
Collapse
|
102
|
Mundinano IC, Kwan WC, Bourne JA. Mapping the mosaic sequence of primate visual cortical development. Front Neuroanat 2015; 9:132. [PMID: 26539084 PMCID: PMC4611065 DOI: 10.3389/fnana.2015.00132] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/05/2015] [Indexed: 12/04/2022] Open
Abstract
Traditional “textbook” theory suggests that the development and maturation of visual cortical areas occur as a wave from V1. However, more recent evidence would suggest that this is not the case, and the emergence of extrastriate areas occurs in a non-hierarchical fashion. This proposition comes from both physiological and anatomical studies but the actual developmental sequence of extrastriate areas remains unknown. In the current study, we examined the development and maturation of the visual cortex of the marmoset monkey, a New World simian, from embryonic day 130 (15 days prior to birth) through to adulthood. Utilizing the well-described expression characteristics of the calcium-binding proteins calbindin and parvalbumin, and nonphosphorylated neurofilament for the pyramidal neurons, we were able to accurately map the sequence of development and maturation of the visual cortex. To this end, we demonstrated that both V1 and middle temporal area (MT) emerge first and that MT likely supports dorsal stream development while V1 supports ventral stream development. Furthermore, the emergence of the dorsal stream-associated areas was significantly earlier than ventral stream areas. The difference in the temporal development of the visual streams is likely driven by a teleological requirement for specific visual behavior in early life.
Collapse
Affiliation(s)
- Inaki-Carril Mundinano
- Bourne Group, Australian Regenerative Medicine Institute, Monash University Melbourne, VIC, Australia
| | - William Chin Kwan
- Bourne Group, Australian Regenerative Medicine Institute, Monash University Melbourne, VIC, Australia
| | - James A Bourne
- Bourne Group, Australian Regenerative Medicine Institute, Monash University Melbourne, VIC, Australia
| |
Collapse
|
103
|
Edgar JC, Murray R, Kuschner ES, Pratt K, Paulson DN, Dell J, Golembski R, Lam P, Bloy L, Gaetz W, Roberts TPL. The maturation of auditory responses in infants and young children: a cross-sectional study from 6 to 59 months. Front Neuroanat 2015; 9:131. [PMID: 26528144 PMCID: PMC4607780 DOI: 10.3389/fnana.2015.00131] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/22/2015] [Indexed: 11/13/2022] Open
Abstract
Background: An understanding of the maturation of auditory cortex responses in typically developing infants and toddlers is needed to later identify auditory processing abnormalities in infants at risk for neurodevelopmental disorders. The availability of infant and young child magnetoencephalography (MEG) systems may now provide near optimal assessment of left and right hemisphere auditory neuromagnetic responses in young populations. To assess the performance of a novel whole-head infant MEG system, a cross-sectional study examined the maturation of left and right auditory cortex responses in children 6- to 59-months of age. Methods: Blocks of 1000 Hz (1st and 3rd blocks) and 500 Hz tones (2nd block) were presented while MEG data were recorded using an infant/young child biomagnetometer (Artemis 123). Data were obtained from 29 children (11 males; 6- to 59-months). Latency measures were obtained for the first positive-to-negative evoked response waveform complex in each hemisphere. Latency and age associations as well as frequency and hemisphere latency differences were examined. For the 1000 Hz tone, measures of reliability were computed. Results: For the first response—a response with a “P2m” topography—latencies decreased as a function of age. For the second response—a response with a “N2m” topography—no N2m latency and age relationships were observed. A main effect of tone frequency showed earlier P2m responses for 1st 1000 Hz (150 ms) and 2nd 1000 Hz (148 ms) vs. 500 Hz tones (162 ms). A significant main effect of hemisphere showed earlier N2m responses for 2nd 1000 Hz (226 ms) vs. 1st 1000 Hz (241 ms) vs. 500 Hz tones (265 ms). P2m and N2m interclass correlation coefficient latency findings were as follows: left P2m (0.72, p < 0.001), right P2m (0.84, p < 0.001), left N2m (0.77, p < 0.001), and right N2m (0.77,p < 0.01). Conclusions: Findings of strong age and latency associations, sensitivity to tone frequency, and good test-retest reliability support the viability of longitudinal infant MEG studies that include younger as well as older participants as well as studies examining auditory processing abnormalities in infants at risk for neurodevelopmental disorders.
Collapse
Affiliation(s)
- J Christopher Edgar
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - Rebecca Murray
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - Emily S Kuschner
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - Kevin Pratt
- Tristan Technologies, Inc. San Diego, CA, USA
| | | | - John Dell
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - Rachel Golembski
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - Peter Lam
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - Luke Bloy
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - William Gaetz
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - Timothy P L Roberts
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia Philadelphia, PA, USA
| |
Collapse
|
104
|
Hasan KM, Mwangi B, Cao B, Keser Z, Tustison NJ, Kochunov P, Frye RE, Savatic M, Soares J. Entorhinal Cortex Thickness across the Human Lifespan. J Neuroimaging 2015; 26:278-82. [PMID: 26565394 DOI: 10.1111/jon.12297] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/25/2015] [Accepted: 08/14/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Human entorhinal cortex (ERC) connects the temporal neocortex with hippocampus and is essential for memory retrieval and navigation. Markedly, there have been only few quantitative MRI works on the ERC geometric measurements in pediatric and adult healthy subjects across the lifespan. Here, we sought to fill this gap in knowledge by quantifying the ERC thickness in a very large cohort of subjects spanning 9 decades of life. METHODS Using magnetic resonance imaging data from multiple centers (IXI, MMRR, NKI, OASIS combined with the NIH-Child Dev database and locally recruited healthy subjects), we analyzed the lifespan trajectory of ERC thickness in 1,660 healthy controls ranging from 2 to 94 years of age. RESULTS The ERC thickness increased with age, reached a peak at about 44 years, and then decreased with age. ERC thickness is hemispherically rightward-asymmetric with no gender differences. Mean ERC thickness was found to vary between 2.943 ± .438 mm and 3.525 ± .355 mm across different age populations. Also, more pronounced loss of the ERC thickness in healthy aging men was noticeable. DISCUSSION Our report with high spatial resolution brain MRI data from 1,660 healthy controls provided important clues about ERC thickness across lifespan. We believe that our report will pave the way for the future studies investigating distinct neural pathologies related with cognitive dysfunctions.
Collapse
Affiliation(s)
- Khader M Hasan
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center, Houston, TX
| | - Benson Mwangi
- Department of Diagnostic and Psychiatry, University of Texas Health Science Center, Houston, TX
| | - Bo Cao
- Department of Diagnostic and Psychiatry, University of Texas Health Science Center, Houston, TX
| | - Zafer Keser
- Department of Diagnostic and Physical Medicine and Rehabilitation, University of Texas Health Science Center, Houston, TX
| | - Nicholas J Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA
| | | | - Richard E Frye
- University of Arkansas for Medical Sciences, Little Rock, AR
| | - Mirjana Savatic
- Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX
| | - Jair Soares
- Department of Diagnostic and Psychiatry, University of Texas Health Science Center, Houston, TX
| |
Collapse
|
105
|
Kelly EA, Russo AS, Jackson CD, Lamantia CE, Majewska AK. Proteolytic regulation of synaptic plasticity in the mouse primary visual cortex: analysis of matrix metalloproteinase 9 deficient mice. Front Cell Neurosci 2015; 9:369. [PMID: 26441540 PMCID: PMC4585116 DOI: 10.3389/fncel.2015.00369] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/04/2015] [Indexed: 01/16/2023] Open
Abstract
The extracellular matrix (ECM) is known to play important roles in regulating neuronal recovery from injury. The ECM can also impact physiological synaptic plasticity, although this process is less well understood. To understand the impact of the ECM on synaptic function and remodeling in vivo, we examined ECM composition and proteolysis in a well-established model of experience-dependent plasticity in the visual cortex. We describe a rapid change in ECM protein composition during Ocular Dominance Plasticity (ODP) in adolescent mice, and a loss of ECM remodeling in mice that lack the extracellular protease, matrix metalloproteinase-9 (MMP9). Loss of MMP9 also attenuated functional ODP following monocular deprivation (MD) and reduced excitatory synapse density and spine density in sensory cortex. While we observed no change in the morphology of existing dendritic spines, spine dynamics were altered, and MMP9 knock-out (KO) mice showed increased turnover of dendritic spines over a period of 2 days. We also analyzed the effects of MMP9 loss on microglia, as these cells are involved in extracellular remodeling and have been recently shown to be important for synaptic plasticity. MMP9 KO mice exhibited very limited changes in microglial morphology. Ultrastructural analysis, however, showed that the extracellular space surrounding microglia was increased, with concomitant increases in microglial inclusions, suggesting possible changes in microglial function in the absence of MMP9. Taken together, our results show that MMP9 contributes to ECM degradation, synaptic dynamics and sensory-evoked plasticity in the mouse visual cortex.
Collapse
Affiliation(s)
- Emily A Kelly
- Center for Visual Science, School of Medicine and Dentistry, Department of Neurobiology and Anatomy, University of Rochester Rochester, NY, USA
| | - Amanda S Russo
- Center for Visual Science, School of Medicine and Dentistry, Department of Neurobiology and Anatomy, University of Rochester Rochester, NY, USA
| | - Cory D Jackson
- Center for Visual Science, School of Medicine and Dentistry, Department of Neurobiology and Anatomy, University of Rochester Rochester, NY, USA
| | - Cassandra E Lamantia
- Center for Visual Science, School of Medicine and Dentistry, Department of Neurobiology and Anatomy, University of Rochester Rochester, NY, USA
| | - Ania K Majewska
- Center for Visual Science, School of Medicine and Dentistry, Department of Neurobiology and Anatomy, University of Rochester Rochester, NY, USA
| |
Collapse
|
106
|
O'Neill KM, Akum BF, Dhawan ST, Kwon M, Langhammer CG, Firestein BL. Assessing effects on dendritic arborization using novel Sholl analyses. Front Cell Neurosci 2015; 9:285. [PMID: 26283921 PMCID: PMC4519774 DOI: 10.3389/fncel.2015.00285] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/13/2015] [Indexed: 01/12/2023] Open
Abstract
Determining the shape of cell-specific dendritic arbors is a tightly regulated process that occurs during development. When this regulation is aberrant, which occurs during disease or injury, alterations in dendritic shape result in changes to neural circuitry. There has been significant progress on characterizing extracellular and intrinsic factors that regulate dendrite number by our laboratory and others. Generally, changes to the dendritic arbor are assessed by Sholl analysis or simple dendrite counting. However, we have found that this general method often overlooks local changes to the arbor. Previously, we developed a program (titled Bonfire) to facilitate digitization of neurite morphology and subsequent Sholl analysis and to assess changes to root, intermediate, and terminal neurites. Here, we apply these different Sholl analyses, and a novel Sholl analysis, to uncover previously unknown changes to the dendritic arbor when we overexpress an important regulator of dendrite branching, cytosolic PSD-95 interactor (cypin), at two developmental time points. Our results suggest that standard Sholl analysis and simple dendrite counting are not sufficient for uncovering local changes to the dendritic arbor.
Collapse
Affiliation(s)
- Kate M O'Neill
- Department of Cell Biology and Neuroscience, Rutgers University Piscataway, NJ, USA ; Graduate Program in Biomedical Engineering, Rutgers University Piscataway, NJ, USA
| | - Barbara F Akum
- Department of Cell Biology and Neuroscience, Rutgers University Piscataway, NJ, USA
| | - Survandita T Dhawan
- Department of Cell Biology and Neuroscience, Rutgers University Piscataway, NJ, USA
| | - Munjin Kwon
- Department of Cell Biology and Neuroscience, Rutgers University Piscataway, NJ, USA
| | | | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers University Piscataway, NJ, USA
| |
Collapse
|
107
|
Jacobs B, Lee L, Schall M, Raghanti MA, Lewandowski AH, Kottwitz JJ, Roberts JF, Hof PR, Sherwood CC. Neocortical neuronal morphology in the newborn giraffe (Giraffa camelopardalis tippelskirchi) and African elephant (Loxodonta africana). J Comp Neurol 2015; 524:257-87. [DOI: 10.1002/cne.23841] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Bob Jacobs
- Laboratory of Quantitative Neuromorphology Department of Psychology, Colorado College; Colorado Springs Colorado 80903
| | - Laura Lee
- Laboratory of Quantitative Neuromorphology Department of Psychology, Colorado College; Colorado Springs Colorado 80903
| | - Matthew Schall
- Laboratory of Quantitative Neuromorphology Department of Psychology, Colorado College; Colorado Springs Colorado 80903
| | | | | | - Jack J. Kottwitz
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine; Auburn University; Auburn Alabama 36849
| | - John F. Roberts
- Thompson Bishop Sparks State Diagnostic Laboratory Alabama Department of Agriculture and Industries; Auburn Alabama 36849
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute; Icahn School of Medicine at Mount Sinai; New York New York 10029
| | - Chet C. Sherwood
- Department of Anthropology; The George Washington University; Washington DC 20052
| |
Collapse
|
108
|
Heck N, Benavides-Piccione R. Editorial: Dendritic spines: from shape to function. Front Neuroanat 2015; 9:101. [PMID: 26283930 PMCID: PMC4517375 DOI: 10.3389/fnana.2015.00101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/13/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nicolas Heck
- Sorbonne Universités, UPMC Paris 06, Institut de Biologie Paris Seine, Neuroscience Paris Seine Paris, France
| | - Ruth Benavides-Piccione
- Instituto Cajal (CSIC) Madrid, Spain ; Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid Pozuelo de Alarcón, Spain
| |
Collapse
|
109
|
Smyser TA, Smyser CD, Rogers CE, Gillespie SK, Inder TE, Neil JJ. Cortical Gray and Adjacent White Matter Demonstrate Synchronous Maturation in Very Preterm Infants. Cereb Cortex 2015. [PMID: 26209848 DOI: 10.1093/cercor/bhv164] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spatial and functional gradients of development have been described for the maturation of cerebral gray and white matter using histological and radiological approaches. We evaluated these patterns in very preterm (VPT) infants using diffusion tensor imaging. Data were obtained from 3 groups: 1) 22 VPT infants without white matter injury (WMI), of whom all had serial MRI studies during the neonatal period, 2) 19 VPT infants with WMI, of whom 3 had serial MRI studies and 3) 12 healthy, term-born infants. Regions of interest were placed in the cortical gray and adjacent white matter in primary motor, primary visual, visual association, and prefrontal regions. From the MRI data at term-equivalent postmenstrual age, differences in mean diffusivity were found in all areas between VPT infants with WMI and the other 2 groups. In contrast, minimal differences in fractional anisotropy were found between the 3 groups. These findings suggest that cortical maturation is delayed in VPT infants with WMI when compared with term control infants and VPT infants without WMI. From the serial MRI data from VPT infants, synchronous development between gray and white matter was evident in all areas and all groups, with maturation in primary motor and sensory regions preceding that of association areas. This finding highlights the regionally varying but locally synchronous nature of the development of cortical gray matter and its adjacent white matter.
Collapse
Affiliation(s)
| | - Christopher D Smyser
- Department of Neurology
- Department of Pediatrics
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | - Sarah K Gillespie
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
- University College, Washington University, St Louis, MO 63110, USA
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jeffrey J Neil
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
110
|
On-going elucidation of mechanisms of primate specific synaptic spine development using the common marmoset (Callithrix jacchus). Neurosci Res 2015; 93:176-8. [DOI: 10.1016/j.neures.2014.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 02/06/2023]
|
111
|
Böhm MRR, Melkonyan H, Thanos S. Life-time expression of the proteins peroxiredoxin, beta-synuclein, PARK7/DJ-1, and stathmin in the primary visual and primary somatosensory cortices in rats. Front Neuroanat 2015; 9:16. [PMID: 25788877 PMCID: PMC4349188 DOI: 10.3389/fnana.2015.00016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/04/2015] [Indexed: 11/16/2022] Open
Abstract
Four distinct proteins are regulated in the aging neuroretina and may be regulated in the cerebral cortex, too: peroxiredoxin, beta-synuclein, PARK[Parkinson disease(autosomal recessive, early onset)]7/DJ-1, and Stathmin. Thus, we performed a comparative analysis of these proteins in the the primary somatosensory cortex (S1) and primary visual cortex (V1) in rats, in order to detect putative common development-, maturation- and age-related changes. The expressions of peroxiredoxin, beta-synuclein, PARK[Parkinson disease (autosomal recessive, early onset)]7/DJ-1, and Stathmin were compared in the newborn, juvenile, adult, and aged S1 and V1. Western blot (WB), quantitative reverse-transcription polymerase chain reaction (qRT-PCR), and immunohistochemistry (IHC) analyses were employed to determine whether the changes identified by proteomics were verifiable at the cellular and molecular levels. All of the proteins were detected in both of the investigated cortical areas. Changes in the expressions of the four proteins were found throughout the life-time of the rats. Peroxiredoxin expression remained unchanged over life-time. Beta-Synuclein expression was massively increased up to the adult stage of life in both the S1 and V1. PARK[Parkinson disease (autosomal recessive, early onset)]7/DJ-1 exhibited a massive up-regulation in both the S1 and V1 at all ages. Stathmin expression was massively down regulated after the neonatal period in both the S1 and V1. The detected protein alterations were analogous to their retinal profiles. This study is the first to provide evidence that peroxiredoxin, beta-synuclein, PARK[Parkinson disease (autosomal recessive, early onset)]7/DJ-1, and Stathmin are associated with postnatal maturation and aging in both the S1 and V1 of rats. These changes may indicate their involvement in key functional pathways and may account for the onset or progression of age-related pathologies.
Collapse
Affiliation(s)
- Michael R R Böhm
- Institute of Experimental Ophthalmology and DFG-Center of Excellence Cells in Motion (CiM), area C.4, School of Medicine, Westfalian-Wilhelms-University of Münster Münster, Germany ; Department of Ophthalmology, St. Franziskus Hospital Münster Münster, Germany
| | - Harutyun Melkonyan
- Institute of Experimental Ophthalmology and DFG-Center of Excellence Cells in Motion (CiM), area C.4, School of Medicine, Westfalian-Wilhelms-University of Münster Münster, Germany
| | - Solon Thanos
- Institute of Experimental Ophthalmology and DFG-Center of Excellence Cells in Motion (CiM), area C.4, School of Medicine, Westfalian-Wilhelms-University of Münster Münster, Germany
| |
Collapse
|
112
|
Rotaru DC, Olezene C, Miyamae T, Povysheva NV, Zaitsev AV, Lewis DA, Gonzalez-Burgos G. Functional properties of GABA synaptic inputs onto GABA neurons in monkey prefrontal cortex. J Neurophysiol 2015; 113:1850-61. [PMID: 25540225 PMCID: PMC4359991 DOI: 10.1152/jn.00799.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/23/2014] [Indexed: 11/22/2022] Open
Abstract
In rodent cortex GABAA receptor (GABAAR)-mediated synapses are a significant source of input onto GABA neurons, and the properties of these inputs vary among GABA neuron subtypes that differ in molecular markers and firing patterns. Some features of cortical interneurons are different between rodents and primates, but it is not known whether inhibition of GABA neurons is prominent in the primate cortex and, if so, whether these inputs show heterogeneity across GABA neuron subtypes. We thus studied GABAAR-mediated miniature synaptic events in GABAergic interneurons in layer 3 of monkey dorsolateral prefrontal cortex (DLPFC). Interneurons were identified on the basis of their firing pattern as fast spiking (FS), regular spiking (RS), burst spiking (BS), or irregular spiking (IS). Miniature synaptic events were common in all of the recorded interneurons, and the frequency of these events was highest in FS neurons. The amplitude and kinetics of miniature inhibitory postsynaptic potentials (mIPSPs) also differed between DLPFC interneuron subtypes in a manner correlated with their input resistance and membrane time constant. FS neurons had the fastest mIPSP decay times and the strongest effects of the GABAAR modulator zolpidem, suggesting that the distinctive properties of inhibitory synaptic inputs onto FS cells are in part conferred by GABAARs containing α1 subunits. Moreover, mIPSCs differed between FS and RS interneurons in a manner consistent with the mIPSP findings. These results show that in the monkey DLPFC GABAAR-mediated synaptic inputs are prominent in layer 3 interneurons and may differentially regulate the activity of different interneuron subtypes.
Collapse
Affiliation(s)
- Diana C Rotaru
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Cameron Olezene
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Takeaki Miyamae
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nadezhda V Povysheva
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Aleksey V Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Guillermo Gonzalez-Burgos
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania;
| |
Collapse
|
113
|
Mancuso JJ, Cheng J, Yin Z, Gilliam JC, Xia X, Li X, Wong STC. Integration of multiscale dendritic spine structure and function data into systems biology models. Front Neuroanat 2014; 8:130. [PMID: 25429262 PMCID: PMC4228840 DOI: 10.3389/fnana.2014.00130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/22/2014] [Indexed: 12/27/2022] Open
Abstract
Comprising 1011 neurons with 1014 synaptic connections the human brain is the ultimate systems biology puzzle. An increasing body of evidence highlights the observation that changes in brain function, both normal and pathological, consistently correlate with dynamic changes in neuronal anatomy. Anatomical changes occur on a full range of scales from the trafficking of individual proteins, to alterations in synaptic morphology both individually and on a systems level, to reductions in long distance connectivity and brain volume. The major sites of contact for synapsing neurons are dendritic spines, which provide an excellent metric for the number and strength of signaling connections between elements of functional neuronal circuits. A comprehensive model of anatomical changes and their functional consequences would be a holy grail for the field of systems neuroscience but its realization appears far on the horizon. Various imaging technologies have advanced to allow for multi-scale visualization of brain plasticity and pathology, but computational analysis of the big data sets involved forms the bottleneck toward the creation of multiscale models of brain structure and function. While a full accounting of techniques and progress toward a comprehensive model of brain anatomy and function is beyond the scope of this or any other single paper, this review serves to highlight the opportunities for analysis of neuronal spine anatomy and function provided by new imaging technologies and the high-throughput application of older technologies while surveying the strengths and weaknesses of currently available computational analytical tools and room for future improvement.
Collapse
Affiliation(s)
- James J Mancuso
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute Houston, TX, USA ; TT and WF Chao Center for Bioinformatics Research and Imaging for Neurosciences, Houston Methodist Research Institute Houston, TX, USA
| | - Jie Cheng
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute Houston, TX, USA ; TT and WF Chao Center for Bioinformatics Research and Imaging for Neurosciences, Houston Methodist Research Institute Houston, TX, USA
| | - Zheng Yin
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute Houston, TX, USA ; TT and WF Chao Center for Bioinformatics Research and Imaging for Neurosciences, Houston Methodist Research Institute Houston, TX, USA
| | - Jared C Gilliam
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute Houston, TX, USA ; TT and WF Chao Center for Bioinformatics Research and Imaging for Neurosciences, Houston Methodist Research Institute Houston, TX, USA
| | - Xiaofeng Xia
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute Houston, TX, USA ; TT and WF Chao Center for Bioinformatics Research and Imaging for Neurosciences, Houston Methodist Research Institute Houston, TX, USA
| | - Xuping Li
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute Houston, TX, USA ; TT and WF Chao Center for Bioinformatics Research and Imaging for Neurosciences, Houston Methodist Research Institute Houston, TX, USA
| | - Stephen T C Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute Houston, TX, USA ; TT and WF Chao Center for Bioinformatics Research and Imaging for Neurosciences, Houston Methodist Research Institute Houston, TX, USA
| |
Collapse
|
114
|
Kelly EA, Opanashuk LA, Majewska AK. The effects of postnatal exposure to low-dose bisphenol-A on activity-dependent plasticity in the mouse sensory cortex. Front Neuroanat 2014; 8:117. [PMID: 25374513 PMCID: PMC4205826 DOI: 10.3389/fnana.2014.00117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/02/2014] [Indexed: 01/03/2023] Open
Abstract
Bisphenol-A (BPA) is a monomer used in the production of polycarbonate plastics, epoxies and resins and is present in many common household objects ranging from water bottles, can linings, baby bottles, and dental resins. BPA exposure has been linked to numerous negative health effects throughout the body, although the mechanisms of BPA action on the developing brain are still poorly understood. In this study, we sought to investigate whether low dose BPA exposure during a developmental phase when brain connectivity is being organized can cause long-term deleterious effects on brain function and plasticity that outlast the BPA exposure. Lactating dams were orally exposed to 25 μg/kg/day of BPA (one half the U.S. Environmental Protection Agency's 50 μg/kg/day rodent dose reference) or vehicle alone from postnatal day (P)5 to P21. Pups exposed to BPA in their mother's milk exhibited deficits in activity-dependent plasticity in the visual cortex during the visual critical period (P28). To determine the possible mechanisms underlying BPA action, we used immunohistochemistry to examine histological markers known to impact cortical maturity and developmental plasticity and quantified cortical dendritic spine density, morphology, and dynamics. While we saw no changes in parvalbumin neuron density, myelin basic protein expression or microglial density in BPA-exposed animals, we observed increases in spine density on apical dendrites in cortical layer five neurons but no significant alterations in other morphological parameters. Taken together our results suggest that exposure to very low levels of BPA during a critical period of brain development can have profound consequences for the normal wiring of sensory circuits and their plasticity later in life.
Collapse
Affiliation(s)
- Emily A Kelly
- Department of Neurobiology and Anatomy, Center for Visual Science, School of Medicine and Dentistry, University of Rochester Rochester, NY, USA
| | - Lisa A Opanashuk
- Department of Environmental Medicine, University of Rochester Rochester, NY, USA
| | - Ania K Majewska
- Department of Neurobiology and Anatomy, Center for Visual Science, School of Medicine and Dentistry, University of Rochester Rochester, NY, USA
| |
Collapse
|
115
|
Postnatal development of dendritic structure of layer III pyramidal neurons in the medial prefrontal cortex of marmoset. Brain Struct Funct 2014; 220:3245-58. [DOI: 10.1007/s00429-014-0853-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/16/2014] [Indexed: 11/26/2022]
|