101
|
Velasquez MP, Gottschalk S. Employing Synthetic T-cell Biology to Target AML without On-Target/Off-Cancer Toxicity. Blood Cancer Discov 2021; 2:559-561. [PMID: 35015677 PMCID: PMC9894579 DOI: 10.1158/2643-3230.bcd-21-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ideal targets for chimeric antigen receptor T-cell therapy for acute myeloid leukemia (AML) remain elusive. In this issue of Blood Cancer Discovery, Richards and colleagues explore CD93 as a potential AML target antigen, and devise an approach to mitigate "on-target/off-cancer toxicity."See related article by Richards et al., p. 648.
Collapse
Affiliation(s)
- M. Paulina Velasquez
- Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stephen Gottschalk
- Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee.,Corresponding Author: Stephen Gottschalk, Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS321, Memphis, TN 38105. Phone: 901-595-2166; E-mail:
| |
Collapse
|
102
|
Maiorova V, Mollaev MD, Vikhreva P, Kulakovskaya E, Pershin D, Chudakov DM, Kibardin A, Maschan MA, Larin S. Natural Flt3Lg-Based Chimeric Antigen Receptor (Flt3-CAR) T Cells Successfully Target Flt3 on AML Cell Lines. Vaccines (Basel) 2021; 9:vaccines9111238. [PMID: 34835169 PMCID: PMC8621097 DOI: 10.3390/vaccines9111238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Relapsed/refractory acute myeloid leukemia (AML) cannot be cured with chemotherapy alone, as the blasts survive the treatment. Chimeric antigen receptor (CAR) approaches for AML are being actively developed. CARs promote immune reactions through recognition of the target molecular epitopes at the surface of cancer cells. The recognition involves the extracellular portion of the CAR protein, which corresponds to either the antibody or the physiological binding partner of the targeted antigen. Here, we design a chimeric receptor with a full-length natural Flt3-ligand recognition module that targets Flt3 tyrosine kinase, known as an adverse marker in AML. We demonstrate specific killing of Flt3-positive THP-1 cells by Flt3-CAR T cells and the lack of cytotoxicity towards Flt3-negative U937 cells. We prove that the inherent cytolytic capacity of T cells is essential for the killing. Finally, we confirm the authenticity of targeting by its competitive dose-dependent inhibition with a soluble Flt3-ligand. The developed system can be viewed as a non-immunogenic functional equivalent of scFv-mediated targeting. The robust in vitro antitumor effects of Flt3-CAR T cells, combined with their low off-target cytotoxicity, hold promise for AML treatment.
Collapse
Affiliation(s)
- Varvara Maiorova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (M.D.M.); (P.V.); (E.K.); (D.P.); (A.K.); (M.A.M.); (S.L.)
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia;
- Correspondence:
| | - Murad D. Mollaev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (M.D.M.); (P.V.); (E.K.); (D.P.); (A.K.); (M.A.M.); (S.L.)
| | - Polina Vikhreva
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (M.D.M.); (P.V.); (E.K.); (D.P.); (A.K.); (M.A.M.); (S.L.)
| | - Elena Kulakovskaya
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (M.D.M.); (P.V.); (E.K.); (D.P.); (A.K.); (M.A.M.); (S.L.)
| | - Dmitry Pershin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (M.D.M.); (P.V.); (E.K.); (D.P.); (A.K.); (M.A.M.); (S.L.)
| | - Dmitriy M. Chudakov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia;
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Alexey Kibardin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (M.D.M.); (P.V.); (E.K.); (D.P.); (A.K.); (M.A.M.); (S.L.)
| | - Michael A. Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (M.D.M.); (P.V.); (E.K.); (D.P.); (A.K.); (M.A.M.); (S.L.)
| | - Sergey Larin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (M.D.M.); (P.V.); (E.K.); (D.P.); (A.K.); (M.A.M.); (S.L.)
| |
Collapse
|
103
|
Le Q, Castro S, Tang T, Loeb AM, Hylkema T, McKay CN, Perkins L, Srivastava S, Call L, Smith J, Leonti A, Ries R, Pardo L, Loken MR, Correnti C, Fiorenza S, Turtle CJ, Riddell S, Tarlock K, Meshinchi S. Therapeutic Targeting of Mesothelin with Chimeric Antigen Receptor T Cells in Acute Myeloid Leukemia. Clin Cancer Res 2021; 27:5718-5730. [PMID: 34380639 PMCID: PMC9401532 DOI: 10.1158/1078-0432.ccr-21-1546] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/26/2021] [Accepted: 08/05/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE We previously identified mesothelin (MSLN) as highly expressed in a significant fraction of acute myeloid leukemia (AML) but entirely silent in normal hematopoiesis, providing a promising antigen for immunotherapeutic targeting that avoids hematopoietic toxicity. Given that T cells genetically modified to express chimeric antigen receptors (CAR) are effective at eradicating relapsed/refractory acute lymphocytic leukemia, we developed MSLN-directed CAR T cells for preclinical evaluation in AML. EXPERIMENTAL DESIGN The variable light (VL) and heavy (VH) sequences from the MSLN-targeting SS1P immunotoxin were used to construct the single-chain variable fragment of the standard CAR containing 41-BB costimulatory and CD3Zeta stimulatory domains. The preclinical efficacy of MSLN CAR T cells was evaluated against AML cell lines and patient samples expressing various levels of MSLN in vitro and in vivo. RESULTS We demonstrate that MSLN is expressed on the cell surface of AML blasts and leukemic stem cell-enriched CD34+CD38- subset, but not on normal hematopoietic stem and progenitor cells (HSPC). We further establish that MSLN CAR T cells are highly effective in eliminating MSLN-positive AML cells in cell line- and patient-derived xenograft models. Importantly, MSLN CAR T cells can target and eradicate CD34+CD38- cells without impacting the viability of normal HSPCs. Finally, we show that CAR T-cell functionality can be improved by inhibition of the ADAM17 metalloprotease that promotes shedding of MSLN. CONCLUSIONS These findings demonstrate that MSLN is a viable target for CAR T-cell therapy in AML and that inhibiting MSLN shedding is a promising approach to improve CAR T-cell efficacy.
Collapse
MESH Headings
- Adolescent
- Cell Line, Tumor
- Child
- Child, Preschool
- Female
- Humans
- Immunotherapy, Adoptive/methods
- Infant
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Male
- Mesothelin/antagonists & inhibitors
- Receptors, Antigen, T-Cell
- Receptors, Chimeric Antigen/therapeutic use
Collapse
Affiliation(s)
- Quy Le
- Fred Hutchinson Cancer Research Center, Seattle, Washington.
| | - Sommer Castro
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Thao Tang
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Anisha M Loeb
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | | | | | | - Lindsey Call
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jenny Smith
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Amanda Leonti
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Rhonda Ries
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Laura Pardo
- Fred Hutchinson Cancer Research Center, Seattle, Washington
- Hematologics, Inc, Seattle, Washington
| | | | - Colin Correnti
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Cameron J Turtle
- Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Medicine, University of Washington, Seattle, Washington
| | | | - Katherine Tarlock
- Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Soheil Meshinchi
- Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
- Children's Oncology Group, Monrovia, California
| |
Collapse
|
104
|
Kang H, Lee JB, Khatri I, Na Y, D’Souza C, Arruda A, Minden MD, Zhang L. Enhancing Therapeutic Efficacy of Double Negative T Cells against Acute Myeloid Leukemia Using Idelalisib. Cancers (Basel) 2021; 13:cancers13205039. [PMID: 34680188 PMCID: PMC8533698 DOI: 10.3390/cancers13205039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Persistence of infused cells is an important factor that dictates the outcome of adoptive cellular therapy (ACT). DNT therapy is a novel form of ACT with promising result in treating relapsed or refractory AML in preclinical and early clinical studies. However, in vivo kinetics of human DNTs in cancer-bearing host have not been previously investigated. This study was the first to investigate the persistence of DNTs and ways to improve it in patient-derived xenograft models. DNTs persistence was observed up to 50 days in various organs of leukemia-bearing hosts. However, the detected DNT level was low while significant level of persisting AMLs was observed. To improve the in vivo persistence and therapeutic efficacy of DNTs, we expanded DNTs in the presence of an PI3Kδ inhibitor, idelalisib (Ide). Ide treatment of healthy donor-derived DNTs promoted early memory subsets and improved overall fitness, reducing exhaustion while improving viability. These Ide-induced attributes led to prolonged persistence of DNTs, resulting in superior anti-leukemic activity in vivo. Further, Ide-treated DNTs improved the durability of the treatment response. Collectively, our study highlights the importance of DNT persistence and Ide-mediated improvements in the overall fitness of DNTs, which promote longer persistence in vivo and better treatment outcome. Abstract The double negative T cell (DNT) is a unique subset of T cells with potent anti-leukemic potential. Previously, DNT therapy has been shown to effectively target AML cells in patient-derived xenograft (PDX) models. Further, a recently completed phase I/IIa clinical study demonstrated the safety, feasibility, and potential efficacy in AML patients that relapsed after allogeneic hematopoietic stem cell transplantation. However, the persistence and durability of DNT-mediated anti-leukemic response is less well understood. In this study, we characterized the in vivo persistence of DNTs in PDX models. Further, we improved the efficacy and durability of DNT-mediated activity with phosphoinositide 3-kinase delta (PI3Kδ) inhibition. Mechanistically, DNTs treated with the PI3Kδ inhibitor, Idelalisib (Ide), exhibited early memory phenotype with superior viability and proliferative capacity but less cell exhaustion. Collectively, the findings from this study support the use of Ide-treated DNTs to improve its therapeutic outcome.
Collapse
Affiliation(s)
- Hyeonjeong Kang
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada; (H.K.); (J.B.L.); (I.K.); (Y.N.); (C.D.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Jong Bok Lee
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada; (H.K.); (J.B.L.); (I.K.); (Y.N.); (C.D.)
| | - Ismat Khatri
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada; (H.K.); (J.B.L.); (I.K.); (Y.N.); (C.D.)
| | - Yoosu Na
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada; (H.K.); (J.B.L.); (I.K.); (Y.N.); (C.D.)
| | - Cheryl D’Souza
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada; (H.K.); (J.B.L.); (I.K.); (Y.N.); (C.D.)
| | - Andrea Arruda
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada; (A.A.); (M.D.M.)
| | - Mark D. Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada; (A.A.); (M.D.M.)
| | - Li Zhang
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada; (H.K.); (J.B.L.); (I.K.); (Y.N.); (C.D.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Correspondence: ; Tel.: +1-(416)-581-7521; Fax: +1-(416)-581-7515
| |
Collapse
|
105
|
Kittel-Boselli E, Soto KEG, Loureiro LR, Hoffmann A, Bergmann R, Arndt C, Koristka S, Mitwasi N, Kegler A, Bartsch T, Berndt N, Altmann H, Fasslrinner F, Bornhäuser M, Bachmann MP, Feldmann A. Targeting Acute Myeloid Leukemia Using the RevCAR Platform: A Programmable, Switchable and Combinatorial Strategy. Cancers (Basel) 2021; 13:cancers13194785. [PMID: 34638268 PMCID: PMC8508561 DOI: 10.3390/cancers13194785] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 11/19/2022] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is a type of blood malignancy particularly affecting the myeloid lineage and one of the most common types of leukemia in adults. It is characterized by high heterogeneity among patients leading to immune escape and disease relapse, which challenges the development of immunotherapies such as chimeric antigen receptor (CAR) T-cells. In this way, the aim of our work was to establish the modular RevCAR platform as a combinatorial tumor targeting approach for the treatment of AML. Herein, we demonstrate the preclinical flexibility and efficiency of RevCAR T-cells in targeting patient-derived AML cells expressing CD33 and CD123. Furthermore, AND gate logic targeting these antigens was successfully established using the RevCAR platform. These accomplishments pave the way towards the future clinical translation of such an improved and personalized immunotherapy for AML patients aiming long-lasting anticarcinogenic responses. Abstract Clinical translation of novel immunotherapeutic strategies such as chimeric antigen receptor (CAR) T-cells in acute myeloid leukemia (AML) is still at an early stage. Major challenges include immune escape and disease relapse demanding for further improvements in CAR design. To overcome such hurdles, we have invented the switchable, flexible and programmable adaptor Reverse (Rev) CAR platform. This consists of T-cells engineered with RevCARs that are primarily inactive as they express an extracellular short peptide epitope incapable of recognizing surface antigens. RevCAR T-cells can be redirected to tumor antigens and controlled by bispecific antibodies cross-linking RevCAR T- and tumor cells resulting in tumor lysis. Remarkably, the RevCAR platform enables combinatorial tumor targeting following Boolean logic gates. We herein show for the first time the applicability of the RevCAR platform to target myeloid malignancies like AML. Applying in vitro and in vivo models, we have proven that AML cell lines as well as patient-derived AML blasts were efficiently killed by redirected RevCAR T-cells targeting CD33 and CD123 in a flexible manner. Furthermore, by targeting both antigens, a Boolean AND gate logic targeting could be achieved using the RevCAR platform. These accomplishments pave the way towards an improved and personalized immunotherapy for AML patients.
Collapse
Affiliation(s)
- Enrico Kittel-Boselli
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (E.K.-B.); (K.E.G.S.); (L.R.L.); (A.H.); (R.B.); (C.A.); (S.K.); (N.M.); (A.K.); (T.B.); (N.B.); (A.F.)
- Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus Dresden, TU Dresden, 01307 Dresden, Germany
| | - Karla Elizabeth González Soto
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (E.K.-B.); (K.E.G.S.); (L.R.L.); (A.H.); (R.B.); (C.A.); (S.K.); (N.M.); (A.K.); (T.B.); (N.B.); (A.F.)
| | - Liliana Rodrigues Loureiro
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (E.K.-B.); (K.E.G.S.); (L.R.L.); (A.H.); (R.B.); (C.A.); (S.K.); (N.M.); (A.K.); (T.B.); (N.B.); (A.F.)
| | - Anja Hoffmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (E.K.-B.); (K.E.G.S.); (L.R.L.); (A.H.); (R.B.); (C.A.); (S.K.); (N.M.); (A.K.); (T.B.); (N.B.); (A.F.)
| | - Ralf Bergmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (E.K.-B.); (K.E.G.S.); (L.R.L.); (A.H.); (R.B.); (C.A.); (S.K.); (N.M.); (A.K.); (T.B.); (N.B.); (A.F.)
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Claudia Arndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (E.K.-B.); (K.E.G.S.); (L.R.L.); (A.H.); (R.B.); (C.A.); (S.K.); (N.M.); (A.K.); (T.B.); (N.B.); (A.F.)
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany;
| | - Stefanie Koristka
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (E.K.-B.); (K.E.G.S.); (L.R.L.); (A.H.); (R.B.); (C.A.); (S.K.); (N.M.); (A.K.); (T.B.); (N.B.); (A.F.)
| | - Nicola Mitwasi
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (E.K.-B.); (K.E.G.S.); (L.R.L.); (A.H.); (R.B.); (C.A.); (S.K.); (N.M.); (A.K.); (T.B.); (N.B.); (A.F.)
| | - Alexandra Kegler
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (E.K.-B.); (K.E.G.S.); (L.R.L.); (A.H.); (R.B.); (C.A.); (S.K.); (N.M.); (A.K.); (T.B.); (N.B.); (A.F.)
| | - Tabea Bartsch
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (E.K.-B.); (K.E.G.S.); (L.R.L.); (A.H.); (R.B.); (C.A.); (S.K.); (N.M.); (A.K.); (T.B.); (N.B.); (A.F.)
| | - Nicole Berndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (E.K.-B.); (K.E.G.S.); (L.R.L.); (A.H.); (R.B.); (C.A.); (S.K.); (N.M.); (A.K.); (T.B.); (N.B.); (A.F.)
| | - Heidi Altmann
- Medical Clinic and Polyclinic I, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (H.A.); (M.B.)
| | - Frederick Fasslrinner
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany;
- Medical Clinic and Polyclinic I, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (H.A.); (M.B.)
| | - Martin Bornhäuser
- Medical Clinic and Polyclinic I, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (H.A.); (M.B.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany
- Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
| | - Michael Philipp Bachmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (E.K.-B.); (K.E.G.S.); (L.R.L.); (A.H.); (R.B.); (C.A.); (S.K.); (N.M.); (A.K.); (T.B.); (N.B.); (A.F.)
- Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus Dresden, TU Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany
- Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
- Correspondence: ; Tel.: +49-351-260-3223
| | - Anja Feldmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (E.K.-B.); (K.E.G.S.); (L.R.L.); (A.H.); (R.B.); (C.A.); (S.K.); (N.M.); (A.K.); (T.B.); (N.B.); (A.F.)
| |
Collapse
|
106
|
Zhang C, Shao C, Jiao X, Bai Y, Li M, Shi H, Lei J, Zhong X. Individual cell‐based modeling of tumor cell plasticity‐induced immune escape after CAR‐T therapy. COMPUTATIONAL AND SYSTEMS ONCOLOGY 2021. [DOI: 10.1002/cso2.1029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Can Zhang
- The Clinical Center of Gene and Cell Engineering Beijing Shijitan Hospital, Capital Medical University Beijing 100038 China
| | - Changrong Shao
- The Clinical Center of Gene and Cell Engineering Beijing Shijitan Hospital, Capital Medical University Beijing 100038 China
| | - Xiaopei Jiao
- Zhou Pei‐Yuan Center for Applied Mathematics Tsinghua University Beijing China
| | - Yue Bai
- The Clinical Center of Gene and Cell Engineering Beijing Shijitan Hospital, Capital Medical University Beijing 100038 China
| | - Miao Li
- The Clinical Center of Gene and Cell Engineering Beijing Shijitan Hospital, Capital Medical University Beijing 100038 China
| | - Hanping Shi
- The Clinical Center of Gene and Cell Engineering Beijing Shijitan Hospital, Capital Medical University Beijing 100038 China
| | - Jinzhi Lei
- School of Mathematical Sciences Center for Applied Mathematics Tiangong University Tianjin China
| | - Xiaosong Zhong
- The Clinical Center of Gene and Cell Engineering Beijing Shijitan Hospital, Capital Medical University Beijing 100038 China
| |
Collapse
|
107
|
Trial Watch: Adoptive TCR-Engineered T-Cell Immunotherapy for Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13184519. [PMID: 34572745 PMCID: PMC8469736 DOI: 10.3390/cancers13184519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is a type of blood cancer with an extremely grim prognosis. This is due to the fact that the majority of patients will relapse after frontline treatment. Overall survival of relapsed AML is very low, and treatment options are few. T lymphocytes harnessed with antitumor T-cell receptors (TCRs) can produce objective clinical responses in certain cancers, such as melanoma, but have not entered the main road for AML. In this review, we describe the current status of the field of TCR-T-cell therapies for AML. Abstract Despite the advent of novel therapies, acute myeloid leukemia (AML) remains associated with a grim prognosis. This is exemplified by 5-year overall survival rates not exceeding 30%. Even with frontline high-intensity chemotherapy regimens and allogeneic hematopoietic stem cell transplantation, the majority of patients with AML will relapse. For these patients, treatment options are few, and novel therapies are urgently needed. Adoptive T-cell therapies represent an attractive therapeutic avenue due to the intrinsic ability of T lymphocytes to recognize tumor cells with high specificity and efficiency. In particular, T-cell therapies focused on introducing T-cell receptors (TCRs) against tumor antigens have achieved objective clinical responses in solid tumors such as synovial sarcoma and melanoma. However, contrary to chimeric antigen receptor (CAR)-T cells with groundbreaking results in B-cell malignancies, the use of TCR-T cells for hematological malignancies is still in its infancy. In this review, we provide an overview of the status and clinical advances in adoptive TCR-T-cell therapy for the treatment of AML.
Collapse
|
108
|
Xu Z, Huang X. Cellular immunotherapy for hematological malignancy: recent progress and future perspectives. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0801. [PMID: 34351724 PMCID: PMC8610149 DOI: 10.20892/j.issn.2095-3941.2020.0801] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/08/2021] [Indexed: 11/14/2022] Open
Abstract
Advancements in the field of cellular immunotherapy have accelerated in recent years and have changed the treatment landscape for a variety of hematologic malignancies. Cellular immunotherapy strategies exploit the patient's immune system to kill cancer cells. The successful use of CD19 chimeric antigen receptor (CAR) T-cells in treating B-cell malignancies is the paradigm of this revolution, and numerous ongoing studies are investigating and extending this approach to other malignancies. However, resistance to CAR-T-cell therapy and non-durable efficacy have prevented CAR-T-cells from becoming the ultimate therapy. Because natural killer (NK) cells play an essential role in antitumor immunity, adoptively transferred allogeneic NK and CAR-modified NK cell therapy has been attempted in certain disease subgroups. Allogenic hematopoietic stem cell transplantation (allo-HSCT) is the oldest form of cellular immunotherapy and the only curative option for hematologic malignancies. Historically, the breadth of application of allo-HSCT has been limited by a lack of identical sibling donors (ISDs). However, great strides have recently been made in the success of haploidentical allografts worldwide, which enable everyone to have a donor. Haploidentical donors can achieve comparable outcomes to those of ISDs and even better outcomes in certain circumstances because of a stronger graft vs. tumor effect. Currently, novel strategies such as CAR-T or NK-based immunotherapy can be applied as a complement to allo-HSCT for curative effects, particularly in refractory cases. Here, we introduce the developments in cellular immunotherapy in hematology.
Collapse
Affiliation(s)
- Zhengli Xu
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Xiaojun Huang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| |
Collapse
|
109
|
|
110
|
Acute Myeloid Leukemia Mutations and Future Mechanistic Target to Overcome Resistance. Curr Treat Options Oncol 2021; 22:76. [PMID: 34213682 DOI: 10.1007/s11864-021-00880-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 12/24/2022]
Abstract
OPINION STATEMENT Cytogenetics and mutation identification in acute myeloid leukemia have allowed for more targeted therapy. Many therapies have been approved by the FDA in the last 3 years including gilteritinib and azacitidine but the overall survival has remained stagnant at 25%. The inability to achieve complete remission was related to the residual leukemic stem cells (LSCs). Thus, the relationship between bone marrow niche and LSCs must be further explored to prevent treatment relapse/resistance. The development of immunotherapy and nanotechnology may play a role in future therapy to achieve the complete remission. Nano-encapsulation of drugs can improve drugs' bioavailability, help drugs evade resistance, and provide combination therapy directly to the cancer cells. Studies indicate targeting surface antigens such as CLL1 and CD123 using chimeric antibody receptor T cells can improve survival outcomes. Finally, new discoveries indicate that inhibiting integrin αvβ3 and acid ceramidase may prove to be efficacious.
Collapse
|
111
|
Miazek-Zapala N, Slusarczyk A, Kusowska A, Zapala P, Kubacz M, Winiarska M, Bobrowicz M. The "Magic Bullet" Is Here? Cell-Based Immunotherapies for Hematological Malignancies in the Twilight of the Chemotherapy Era. Cells 2021; 10:1511. [PMID: 34203935 PMCID: PMC8232692 DOI: 10.3390/cells10061511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Despite the introduction of a plethora of different anti-neoplastic approaches including standard chemotherapy, molecularly targeted small-molecule inhibitors, monoclonal antibodies, and finally hematopoietic stem cell transplantation (HSCT), there is still a need for novel therapeutic options with the potential to cure hematological malignancies. Although nowadays HSCT already offers a curative effect, its implementation is largely limited by the age and frailty of the patient. Moreover, its efficacy in combating the malignancy with graft-versus-tumor effect frequently coexists with undesirable graft-versus-host disease (GvHD). Therefore, it seems that cell-based adoptive immunotherapies may constitute optimal strategies to be successfully incorporated into the standard therapeutic protocols. Thus, modern cell-based immunotherapy may finally represent the long-awaited "magic bullet" against cancer. However, enhancing the safety and efficacy of this treatment regimen still presents many challenges. In this review, we summarize the up-to-date state of the art concerning the use of CAR-T cells and NK-cell-based immunotherapies in hemato-oncology, identify possible obstacles, and delineate further perspectives.
Collapse
Affiliation(s)
- Nina Miazek-Zapala
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (N.M.-Z.); (A.S.); (A.K.); (M.K.); (M.W.)
- Institute of Physiology and Pathophysiology of Hearing, World Hearing Center, 05-830 Nadarzyn, Poland
| | - Aleksander Slusarczyk
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (N.M.-Z.); (A.S.); (A.K.); (M.K.); (M.W.)
- Department of General, Oncological and Functional Urology, Medical University of Warsaw, 02-005 Warsaw, Poland;
| | - Aleksandra Kusowska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (N.M.-Z.); (A.S.); (A.K.); (M.K.); (M.W.)
| | - Piotr Zapala
- Department of General, Oncological and Functional Urology, Medical University of Warsaw, 02-005 Warsaw, Poland;
| | - Matylda Kubacz
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (N.M.-Z.); (A.S.); (A.K.); (M.K.); (M.W.)
| | - Magdalena Winiarska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (N.M.-Z.); (A.S.); (A.K.); (M.K.); (M.W.)
| | - Malgorzata Bobrowicz
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (N.M.-Z.); (A.S.); (A.K.); (M.K.); (M.W.)
| |
Collapse
|
112
|
Abstract
OPINION STATEMENT Chimeric antigen receptor (CAR) T-cell therapy has become the standard of care for children and young adults with relapsed and refractory B-cell acute lymphoblastic leukemia (B-ALL), and it is a highly promising therapy under investigation for adults with relapsed disease. Despite having potentially life-threatening toxicities, such as cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome, the benefits of CAR T-cell therapy far outweigh these risks, particularly as increased experience and improved supportive care measures are mitigating these toxicities. CAR T cells can result in complete remission for significant proportion of patients with relapsed and refractory B-ALL and permit them to proceed to potentially curative allogeneic hematopoietic stem cell transplantation (allo-HSCT). CAR T cells may also be curative by themselves. Herein lie the greatest challenges and questions for clinical investigators, specifically, how are CAR T cells best employed and how do we overcome mechanisms of resistance to them? The primary clinical question is the timing and even the necessity of allo-HSCT. Relative to resistance, we know that target antigen loss, specifically CD19, is a major contributor to resistance. However, current investigations of alternative targets, such CD22, and CAR T cells expressing dual targeting antigen receptors have demonstrated encouraging initial results and provide a high degree of optimism that the efficacy and the broader application of CAR T-cell therapy will gradually increase in B-ALL. That optimism is not as high and the challenges are increased for the application of CAR T cells in T-cell leukemias and acute myeloid leukemia due to the relative lack of suitable leukemia surface targets that are not also expressed on normal hematopoietic progenitors. Despite these significant challenges, considerable research is being conducted into the development of CAR T cells for these diseases utilizing unique technologies, which may be applicable to other diseases.
Collapse
|
113
|
Michelozzi IM, Kirtsios E, Giustacchini A. Driving CAR T Stem Cell Targeting in Acute Myeloid Leukemia: The Roads to Success. Cancers (Basel) 2021; 13:2816. [PMID: 34198742 PMCID: PMC8201025 DOI: 10.3390/cancers13112816] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Current treatment outcome for acute myeloid leukemia (AML) patients is unsatisfactory and characterized by high rates of relapse and poor overall survival. Increasing evidence points to a crucial role of leukemic stem cells (LSC) and the bone marrow (BM) leukemic niche, in which they reside, in AML evolution and chemoresistance. Thus, future strategies aiming at improving AML therapeutic protocols are likely to be directed against LSC and their niche. Chimeric antigen receptor (CAR) T-cells have been extremely successful in the treatment of relapsed/refractory acute lymphoblastic leukemia and B-cell non-Hodgkin lymphoma and comparable results in AML are highly desirable. At present, we are at the dawn of CAR T-cell application in AML, with several preclinical studies and few early phase clinical trials. However, the lack of leukemia-specific targets and the genetic and phenotypic heterogeneity of the disease combined with the leukemia-induced remodeling of the BM microenvironment are limiting CAR T-cell exploitation in AML. Here, we reviewed AML-LSC and AML-BM niche features in the context of their therapeutic targeting using CAR T-cells. We summarized recent progress in CAR T-cell application to the treatment of AML, and we discussed the remaining therapeutic challenges and promising novel strategies to overcome them.
Collapse
Affiliation(s)
- Ilaria M. Michelozzi
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, London WC1N 1DZ, UK;
| | | | - Alice Giustacchini
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, London WC1N 1DZ, UK;
| |
Collapse
|
114
|
Acute Myeloid Leukemia: Is It T Time? Cancers (Basel) 2021; 13:cancers13102385. [PMID: 34069204 PMCID: PMC8156992 DOI: 10.3390/cancers13102385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 12/24/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease driven by impaired differentiation of hematopoietic primitive cells toward myeloid lineages (monocytes, granulocytes, red blood cells, platelets), leading to expansion and accumulation of "stem" and/or "progenitor"-like or differentiated leukemic cells in the bone marrow and blood. AML progression alters the bone marrow microenvironment and inhibits hematopoiesis' proper functioning, causing sustained cytopenia and immunodeficiency. This review describes how the AML microenvironment influences lymphoid lineages, particularly T lymphocytes that originate from the thymus and orchestrate adaptive immune response. We focus on the elderly population, which is mainly affected by this pathology. We discuss how a permissive AML microenvironment can alter and even worsen the thymic function, T cells' peripheral homeostasis, phenotype, and functions. Based on the recent findings on the mechanisms supporting that AML induces quantitative and qualitative changes in T cells, we suggest and summarize current immunotherapeutic strategies and challenges to overcome these anomalies to improve the anti-leukemic immune response and the clinical outcome of patients.
Collapse
|
115
|
New Insights into the Pathogenesis of Systemic Mastocytosis. Int J Mol Sci 2021; 22:ijms22094900. [PMID: 34063170 PMCID: PMC8125314 DOI: 10.3390/ijms22094900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Mastocytosis is a type of myeloid neoplasm characterized by the clonal, neoplastic proliferation of morphologically and immunophenotypically abnormal mast cells that infiltrate one or more organ systems. Systemic mastocytosis (SM) is a more aggressive variant of mastocytosis with extracutaneous involvement, which might be associated with multi-organ dysfunction or failure and shortened survival. Over 80% of patients with SM carry the KIT D816V mutation. However, the KIT D816V mutation serves as a weak oncogene and appears to be a late event in the pathogenesis of mastocytosis. The management of SM is highly individualized and was largely palliative for patients without a targeted form of therapy in past decades. Targeted therapy with midostaurin, a multiple kinase inhibitor that inhibits KIT, has demonstrated efficacy in patients with advanced SM. This led to the recent approval of midostaurin by the United States Food and Drug Administration and European Medicines Agency. However, the overall survival of patients treated with midostaurin remains unsatisfactory. The identification of genetic and epigenetic alterations and understanding their interactions and the molecular mechanisms involved in mastocytosis is necessary to develop rationally targeted therapeutic strategies. This review briefly summarizes recent developments in the understanding of SM pathogenesis and potential treatment strategies for patients with SM.
Collapse
|
116
|
Forsythe A, Sandman K. What Does the Economic Burden of Acute Myeloid Leukemia Treatment Look Like for the Next Decade? An Analysis of Key Findings, Challenges and Recommendations. J Blood Med 2021; 12:245-255. [PMID: 33981169 PMCID: PMC8107010 DOI: 10.2147/jbm.s279736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
Acute myeloid leukemia (AML) is conventionally treated with chemotherapy in eligible patients. Potentially curative regimens are associated with significant toxicity, and the major cost drivers in AML historically have been hospitalization and hematopoietic stem cell transplantation. The past several years have seen a dramatic increase in the number of treatment options, including oral therapies and drugs targeted to biological pathways implicated in AML. Major current and future drivers of cost in AML include hospitalization and medical costs, stem cell transplantation for eligible patients, and medication costs. It is likely that hospitalization and medical costs will decline as more AML treatment moves to the outpatient setting. Stem cell transplantation costs may increase, if more patients are eligible for improved procedures, although the overall cost of transplantation could decrease if new procedures reduce the need for hospitalization. Medication costs are likely to increase, with various branded drugs available and in development. From a broader perspective, another driver of cost is the proportion of patients with AML who can undergo treatment. Patients who may previously have been unable to tolerate chemotherapy are more likely to be treated with the range of less intensive, more tolerable options now available. The effectiveness of newer AML treatment options also suggests that, overall, there may be more patients staying alive and on treatment longer than in the past. While certain advances, such as increased use of oral and outpatient therapies, could potentially reduce costs, the overall economic impact of AML is likely to increase as more patients are eligible for novel therapies across several phases from induction to maintenance to relapsed/refractory disease. While these novel therapies have the potential to deliver value in the form of improved efficacy, safety, and convenience, payers will need to determine how to cover a longer, more complex AML treatment pathway.
Collapse
|
117
|
Sánchez-Corrales YE, Pohle RVC, Castellano S, Giustacchini A. Taming Cell-to-Cell Heterogeneity in Acute Myeloid Leukaemia With Machine Learning. Front Oncol 2021; 11:666829. [PMID: 33996595 PMCID: PMC8117935 DOI: 10.3389/fonc.2021.666829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022] Open
Abstract
Acute Myeloid Leukaemia (AML) is a phenotypically and genetically heterogenous blood cancer characterised by very poor prognosis, with disease relapse being the primary cause of treatment failure. AML heterogeneity arise from different genetic and non-genetic sources, including its proposed hierarchical structure, with leukemic stem cells (LSCs) and progenitors giving origin to a variety of more mature leukemic subsets. Recent advances in single-cell molecular and phenotypic profiling have highlighted the intra and inter-patient heterogeneous nature of AML, which has so far limited the success of cell-based immunotherapy approaches against single targets. Machine Learning (ML) can be uniquely used to find non-trivial patterns from high-dimensional datasets and identify rare sub-populations. Here we review some recent ML tools that applied to single-cell data could help disentangle cell heterogeneity in AML by identifying distinct core molecular signatures of leukemic cell subsets. We discuss the advantages and limitations of unsupervised and supervised ML approaches to cluster and classify cell populations in AML, for the identification of biomarkers and the design of personalised therapies.
Collapse
Affiliation(s)
- Yara E. Sánchez-Corrales
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Ruben V. C. Pohle
- Molecular and Cellular Immunology Section, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Sergi Castellano
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- University College London (UCL) Genomics, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Alice Giustacchini
- Molecular and Cellular Immunology Section, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
118
|
Xu N, Tse B, Yang L, Tang TCY, Haber M, Micklethwaite K, Dolnikov A. Priming Leukemia with 5-Azacytidine Enhances CAR T Cell Therapy. Immunotargets Ther 2021; 10:123-140. [PMID: 33954150 PMCID: PMC8091475 DOI: 10.2147/itt.s296161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/24/2021] [Indexed: 12/26/2022] Open
Abstract
Purpose Despite the success of chimeric antigen receptor (CAR) T cells in clinical studies, a significant proportion of responding patients eventually relapsed, with the latter correlating with low CAR T cell expansion and persistence. Methods and Results Using patient-derived xenograft (PDX) mouse models of CD19+ B cell acute lymphoblastic leukemia (B-ALL), we show that priming leukemia-bearing mice with 5-azacytidine (AZA) enhances CAR T cell therapy. AZA given 1 day prior to CAR T cell infusion delayed leukemia growth and promoted CAR T cell expansion and effector function. Priming leukemia cells with AZA increased CAR T cell/target cell conjugation and target cell killing, promoted CAR T cell divisions and expanded IFNγ+ effector T cells in co-cultures with CD19+ leukemia Nalm-6 and Raji cells. Transcriptome analysis revealed activation of diverse immune pathways in leukemia cells isolated from mice treated with AZA. We propose that epigenetic priming with AZA induces transcriptional changes that sensitize tumor cells to subsequent CAR T cell treatment. Among the candidate genes up-regulated by AZA is TNFSF4 which encodes OX40L, one of the strongest T cell co-stimulatory ligands. OX40L binds OX40, the TNF receptor superfamily member highly specific for activated T cells. TNFSF4 is heterogeneously expressed in a panel of pediatric PDXs, and high TNFSF4 expression correlated with increased CAR T cell numbers identified in co-cultures with individual PDXs. High OX40L expression in Nalm-6 cells increased their susceptibility to CAR T cell killing while OX40L blockade reduced leukemia cell killing. Conclusion We propose that treatment with AZA activates OX40L/OX40 co-stimulatory signaling in CAR T cells. Our data suggest that the clinical use of AZA before CAR T cells could be considered.
Collapse
Affiliation(s)
- Ning Xu
- Children's Cancer Institute, University of New South Wales, Sydney, NSW, Australia.,School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Benjamin Tse
- Children's Cancer Institute, University of New South Wales, Sydney, NSW, Australia.,School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Lu Yang
- Children's Cancer Institute, University of New South Wales, Sydney, NSW, Australia.,School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Tiffany C Y Tang
- Children's Cancer Institute, University of New South Wales, Sydney, NSW, Australia.,School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute, University of New South Wales, Sydney, NSW, Australia.,School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Kenneth Micklethwaite
- Blood Transplant and Cell Therapies Program, Department of Hematology, Westmead Hospital, Sydney, NSW, Australia.,Sydney Cellular Therapies Laboratory, NSW Health Pathology, Sydney, NSW, Australia.,Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Alla Dolnikov
- Children's Cancer Institute, University of New South Wales, Sydney, NSW, Australia.,School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
119
|
Lee JB, Vasic D, Kang H, Fang KKL, Zhang L. State-of-Art of Cellular Therapy for Acute Leukemia. Int J Mol Sci 2021; 22:ijms22094590. [PMID: 33925571 PMCID: PMC8123829 DOI: 10.3390/ijms22094590] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 12/13/2022] Open
Abstract
With recent clinical breakthroughs, immunotherapy has become the fourth pillar of cancer treatment. Particularly, immune cell-based therapies have been envisioned as a promising treatment option with curative potential for leukemia patients. Hence, an increasing number of preclinical and clinical studies focus on various approaches of immune cell-based therapy for treatment of acute leukemia (AL). However, the use of different immune cell lineages and subsets against different types of leukemia and patient disease statuses challenge the interpretation of the clinical applicability and outcome of immune cell-based therapies. This review aims to provide an overview on recent approaches using various immune cell-based therapies against acute B-, T-, and myeloid leukemias. Further, the apparent limitations observed and potential approaches to overcome these limitations are discussed.
Collapse
MESH Headings
- Acute Disease
- Cell- and Tissue-Based Therapy
- Humans
- Immunotherapy
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/trends
- Killer Cells, Natural/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Leukemia, T-Cell/metabolism
- Leukemia, T-Cell/therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Jong-Bok Lee
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (J.-B.L.); (D.V.); (H.K.); (K.K.-L.F.)
| | - Daniel Vasic
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (J.-B.L.); (D.V.); (H.K.); (K.K.-L.F.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hyeonjeong Kang
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (J.-B.L.); (D.V.); (H.K.); (K.K.-L.F.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Karen Kai-Lin Fang
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (J.-B.L.); (D.V.); (H.K.); (K.K.-L.F.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Li Zhang
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (J.-B.L.); (D.V.); (H.K.); (K.K.-L.F.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence:
| |
Collapse
|
120
|
CAR-T Cell Therapy for Acute Myeloid Leukemia: Preclinical Rationale, Current Clinical Progress, and Barriers to Success. BioDrugs 2021; 35:281-302. [PMID: 33826079 DOI: 10.1007/s40259-021-00477-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has shown impressive results in chemorefractory B cell malignancies, raising the possibilities of using this immunotherapeutic modality for other devastating hematologic malignancies, such as acute myeloid leukemia (AML). AML is an aggressive hematologic malignancy which, like B cell malignancies, poses several challenges for clinical translation of successful immunotherapy. The antigenic heterogeneity of AML results in a list of potential targets that CAR-T cells could be directed towards, each with advantages and disadvantages. In this review, we provide an up-to-date report of outcomes and adverse effects from published and presented clinical trials of CAR-T cell therapy for AML and provide the preclinical rationale underlying these studies and antigen selection. Comparison across trials is difficult, yet themes emerge with respect to appropriate antigen selection and association of adverse effects with outcomes. We highlight currently active clinical trials and the potential improvements and caveats with these novel approaches. Key hurdles to the successful introduction of CAR-T cell therapy for the treatment of AML include the effect of antigenic heterogeneity and trade-offs between therapy specificity and sensitivity; on-target off-tumor toxicities; the AML tumor microenvironment; and practical considerations for future trials that should be addressed to enable successful CAR-T cell therapy for AML.
Collapse
|
121
|
de Lima M, Roboz GJ, Platzbecker U, Craddock C, Ossenkoppele G. AML and the art of remission maintenance. Blood Rev 2021; 49:100829. [PMID: 33832807 DOI: 10.1016/j.blre.2021.100829] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022]
Abstract
Relapse in acute myeloid leukemia (AML) is common, especially in older patients, and there is currently no standard of care maintenance therapy for those who achieve complete remission. Finding effective, tolerable maintenance therapy to prolong remission has been a goal for decades, but early clinical trials testing a variety of agents demonstrated disappointing results with no overall survival benefit. CC-486, an oral hypomethylating agent, was recently approved in the United States for maintenance treatment in patients with AML in first remission following chemotherapy. A number of ongoing studies are assessing various therapeutics in the maintenance setting, including other hypomethylating agents, targeted small-molecule inhibitors, monoclonal antibodies, and immunomodulators. New strategies are needed to identify patients most likely to benefit from maintenance therapy, including those for whom a preemptive approach reliant on monitoring of measurable residual disease would be advantageous.
Collapse
Affiliation(s)
- Marcos de Lima
- The Ohio State University, Columbus, OH, United States of America.
| | - Gail J Roboz
- Weill Cornell Medicine, New York, NY, United States of America; New York Presbyterian Hospital, New York, NY, United States of America
| | | | - Charles Craddock
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | | |
Collapse
|
122
|
Grover NS, Tschernia N, Dotti G, Savoldo B. Extending the Promise of Chimeric Antigen Receptor T-Cell Therapy Beyond Targeting CD19 + Tumors. J Clin Oncol 2021; 39:499-513. [PMID: 33434072 PMCID: PMC8462586 DOI: 10.1200/jco.20.01738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2020] [Indexed: 01/24/2023] Open
Affiliation(s)
- Natalie S. Grover
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Nicholas Tschernia
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Departments of Immunology and Microbiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
123
|
Perriello VM, Gionfriddo I, Rossi R, Milano F, Mezzasoma F, Marra A, Spinelli O, Rambaldi A, Annibali O, Avvisati G, Di Raimondo F, Ascani S, Falini B, Martelli MP, Brunetti L. CD123 Is Consistently Expressed on NPM1-Mutated AML Cells. Cancers (Basel) 2021; 13:cancers13030496. [PMID: 33525388 PMCID: PMC7865228 DOI: 10.3390/cancers13030496] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary One-third of adult acute myeloid leukemia (AML) harbors NPM1 mutations. A deep knowledge of the distribution of selected antigens on the surface of NPM1-mutated AML cells may help optimizing new therapies for this frequent AML subtype. CD123 is known to be expressed on leukemic cells but also on healthy hematopoietic and endothelial cells, although at lower levels. Differences in antigen densities between AML and healthy cells may enlighten therapeutic windows, where targeting CD123 could be effective without triggering “on-target off-tumor” toxicities. Here, we perform a thorough analysis of CD123 expression demonstrating high expression of this antigen on both NPM1-mutated bulk leukemic cells and CD34+CD38− cells. Abstract NPM1-mutated (NPM1mut) acute myeloid leukemia (AML) comprises about 30% of newly diagnosed AML in adults. Despite notable advances in the treatment of this frequent AML subtype, about 50% of NPM1mut AML patients treated with conventional treatment die due to disease progression. CD123 has been identified as potential target for immunotherapy in AML, and several anti-CD123 therapeutic approaches have been developed for AML resistant to conventional therapies. As this antigen has been previously reported to be expressed by NPM1mut cells, we performed a deep flow cytometry analysis of CD123 expression in a large cohort of NPM1mut and wild-type samples, examining the whole blastic population, as well as CD34+CD38− leukemic cells. We demonstrate that CD123 is highly expressed on NPM1mut cells, with particularly high expression levels showed by CD34+CD38− leukemic cells. Additionally, CD123 expression was further enhanced by FLT3 mutations, which frequently co-occur with NPM1 mutations. Our results identify NPM1-mutated and particularly NPM1/FLT3 double-mutated AML as disease subsets that may benefit from anti-CD123 targeted therapies.
Collapse
Affiliation(s)
- Vincenzo Maria Perriello
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
| | - Ilaria Gionfriddo
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
| | - Roberta Rossi
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
| | - Francesca Milano
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
| | - Federica Mezzasoma
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
| | - Andrea Marra
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
| | - Orietta Spinelli
- Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, 24127 Bergamo, Italy; (O.S.); (A.R.)
| | - Alessandro Rambaldi
- Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, 24127 Bergamo, Italy; (O.S.); (A.R.)
- Department of Oncology and Hematology, University of Milan, 20122 Milan, Italy
| | - Ombretta Annibali
- Hematology and Stem Cell Transplant Unit, Campus Biomedico University Hospital, 00128 Rome, Italy; (O.A.); (G.A.)
| | - Giuseppe Avvisati
- Hematology and Stem Cell Transplant Unit, Campus Biomedico University Hospital, 00128 Rome, Italy; (O.A.); (G.A.)
| | - Francesco Di Raimondo
- Hematology and Bone Marrow Transplant Unit, Catania University Hospital, 95125 Catania, Italy;
| | - Stefano Ascani
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
- Hematology and Bone Marrow Transplant Unit, Santa Maria della Misericordia Hospital, 06131 Perugia, Italy
- Pathology, Santa Maria Hospital, 05100 Terni, Italy
| | - Brunangelo Falini
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
- Hematology and Bone Marrow Transplant Unit, Santa Maria della Misericordia Hospital, 06131 Perugia, Italy
| | - Maria Paola Martelli
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
- Hematology and Bone Marrow Transplant Unit, Santa Maria della Misericordia Hospital, 06131 Perugia, Italy
- Correspondence: (M.P.M.); (L.B.)
| | - Lorenzo Brunetti
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
- Hematology and Bone Marrow Transplant Unit, Santa Maria della Misericordia Hospital, 06131 Perugia, Italy
- Correspondence: (M.P.M.); (L.B.)
| |
Collapse
|
124
|
Russkamp NF, Myburgh R, Kiefer JD, Neri D, Manz MG. Anti-CD117 immunotherapy to eliminate hematopoietic and leukemia stem cells. Exp Hematol 2021; 95:31-45. [PMID: 33484750 DOI: 10.1016/j.exphem.2021.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 12/11/2022]
Abstract
Precise replacement of diseased or dysfunctional organs is the goal of regenerative medicine and has appeared to be a distant goal for a long time. In the field of hematopoietic stem cell transplantation, this goal is now becoming tangible as gene-editing technologies and novel conditioning agents are entering the clinical arena. Targeted immunologic depletion of hematopoietic stem cells (HSCs), which are at the very root of the hematopoietic system, will enable more selective and potentially more effective hematopoietic stem cell transplantation in patients with hematological diseases. In contrast to current conditioning regimes based on ionizing radiation and chemotherapy, immunologic conditioning will spare mature hematopoietic cells and cause substantially less inflammation and unspecific collateral damage to other organs. Biological agents that target the stem cell antigen CD117 are the frontrunners for this purpose and have exhibited preclinical activity in depletion of healthy HSCs. The value of anti-CD117 antibodies as conditioning agents is currently being evaluated in early clinical trials. Whereas mild, antibody-based immunologic conditioning concepts might be appropriate for benign hematological disorders in which incomplete replacement of diseased cells is sufficient, higher efficacy will be required for treatment and elimination of hematologic stem cell malignancies such as acute myeloid leukemia and myelodysplastic syndrome. Antibody-drug conjugates, bispecific T-cell engaging and activating antibodies (TEAs), or chimeric antigen receptor (CAR) T cells might offer increased efficacy compared with naked antibodies and yet higher tolerability and safety compared with current genotoxic conditioning approaches. Here, we summarize the current state regarding immunologic conditioning concepts for the treatment of HSC disorders and outline potential future developments.
Collapse
Affiliation(s)
- Norman F Russkamp
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Renier Myburgh
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Jonathan D Kiefer
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland; Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland.
| |
Collapse
|
125
|
Levin M, Stark M, Ofran Y, Assaraf YG. Deciphering molecular mechanisms underlying chemoresistance in relapsed AML patients: towards precision medicine overcoming drug resistance. Cancer Cell Int 2021; 21:53. [PMID: 33446189 PMCID: PMC7809753 DOI: 10.1186/s12935-021-01746-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/02/2021] [Indexed: 12/13/2022] Open
Abstract
Background Acute myeloid leukemia (AML) remains a devastating disease with a 5-year survival rate of less than 30%. AML treatment has undergone significant changes in recent years, incorporating novel targeted therapies along with improvements in allogeneic bone marrow transplantation techniques. However, the standard of care remains cytarabine and anthracyclines, and the primary hindrance towards curative treatment is the frequent emergence of intrinsic and acquired anticancer drug resistance. In this respect, patients presenting with chemoresistant AML face dismal prognosis even with most advanced therapies. Herein, we aimed to explore the potential implementation of the characterization of chemoresistance mechanisms in individual AML patients towards efficacious personalized medicine. Methods Towards the identification of tailored treatments for individual patients, we herein present the cases of relapsed AML patients, and compare them to patients displaying durable remissions following the same chemotherapeutic induction treatment. We quantified the expression levels of specific genes mediating drug transport and metabolism, nucleotide biosynthesis, and apoptosis, in order to decipher the molecular mechanisms underlying intrinsic and/or acquired chemoresistance modalities in relapsed patients. This was achieved by real-time PCR using patient cDNA, and could be readily implemented in the clinical setting. Results This analysis revealed pre-existing differences in gene expression levels between the relapsed patients and patients with lasting remissions, as well as drug-induced alterations at different relapse stages compared to diagnosis. Each of the relapsed patients displayed unique chemoresistance mechanisms following similar treatment protocols, which could have been missed in a large study aimed at identifying common drug resistance determinants. Conclusions Our findings emphasize the need for standardized evaluation of key drug transport and metabolism genes as an integral component of routine AML management, thereby allowing for the selection of treatments of choice for individual patients. This approach could facilitate the design of efficacious personalized treatment regimens, thereby reducing relapse rates of therapy refractory disease.
Collapse
Affiliation(s)
- May Levin
- The Fred Wyszkowski Cancer Research Laboratory, Dept. of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Michal Stark
- The Fred Wyszkowski Cancer Research Laboratory, Dept. of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Yishai Ofran
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel.
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Dept. of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel.
| |
Collapse
|
126
|
Bieber K, Kridin K, Emtenani S, Boch K, Schmidt E, Ludwig RJ. Milestones in Personalized Medicine in Pemphigus and Pemphigoid. Front Immunol 2021; 11:591971. [PMID: 33505392 PMCID: PMC7829330 DOI: 10.3389/fimmu.2020.591971] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Pemphigus and pemphigoid diseases are autoimmune bullous diseases characterized and caused by autoantibodies targeting adhesion molecules in the skin and/or mucous membranes. Personalized medicine is a new medical model that separates patients into different groups and aims to tailor medical decisions, practices, and interventions based on the individual patient`s predicted response or risk factors. An important milestone in personalized medicine in pemphigus and pemphigoid was achieved by verifying the autoimmune pathogenesis underlying these diseases, as well as by identifying and cloning several pemphigus/pemphigoid autoantigens. The latter has become the basis of the current, molecular-based diagnosis that allows the differentiation of about a dozen pemphigus and pemphigoid entities. The importance of autoantigen-identification in pemphigus/pemphigoid is further highlighted by the emergence of autoantigen-specific B cell depleting strategies. To achieve this goal, the chimeric antigen receptor (CAR) T cell technology, which is used for the treatment of certain hematological malignancies, was adopted, by generating chimeric autoantigen receptor (CAAR) T cells. In addition to these more basic science-driven milestones in personalized medicine in pemphigus and pemphigoid, careful clinical observation and epidemiology are again contributing to personalized medicine. The identification of clearly distinct clinical phenotypes in pemphigoid like the non-inflammatory and gliptin-associated bullous pemphigoid embodies a prominent instance of the latter. We here review these exciting developments in basic, translational, clinical, and epidemiological research in pemphigus and pemphigoid. Overall, we hereby aim to attract more researchers and clinicians to this highly interesting and dynamic field of research.
Collapse
Affiliation(s)
- Katja Bieber
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Khalaf Kridin
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Shirin Emtenani
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Katharina Boch
- Department of Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Department of Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Ralf J. Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Department of Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| |
Collapse
|
127
|
Goldsmith SR, Ghobadi A, DiPersio JF. Hematopoeitic Cell Transplantation and CAR T-Cell Therapy: Complements or Competitors? Front Oncol 2020; 10:608916. [PMID: 33415078 PMCID: PMC7783412 DOI: 10.3389/fonc.2020.608916] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/18/2020] [Indexed: 01/13/2023] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) and chimeric antigen receptor T cell (CAR T) therapy are the main modalities of adoptive cellular immunotherapy that have widely permeated the clinical space. The advent of both technologies revolutionized treatment of many hematologic malignancies, both offering the chance at sustained remissions for patients who would otherwise invariably succumb to their diseases. The understanding and exploitation of the nonspecific alloreactivity of allo-HCT and the graft-versus-tumor effect is contrasted by the genetically engineered precision of CAR T therapy. Historically, those with relapsed and refractory hematologic malignancies have often been considered for allo-HCT, although outcomes vary dramatically and are associated with potential acute and chronic toxicities. Such patients, mainly with B-lymphoid malignancies, may now be offered CAR T therapy. Yet, a lack of prospective data to guide decisions thereafter requires individualized approaches on whether to proceed to allo-HCT or observe. The continued innovations to make CAR T therapy more effective and accessible will continue to alter such approaches, but similar innovations in allo-HCT will likely result in similarly improved clinical outcomes. In this review, we describe the history of the two platforms, dissect the clinical indications emphasizing their intertwining and competitive roles described in trials and practice guidelines, and highlight innovations in which they complement or inform one another.
Collapse
Affiliation(s)
- Scott R. Goldsmith
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | | | | |
Collapse
|
128
|
Carter JL, Hege K, Yang J, Kalpage HA, Su Y, Edwards H, Hüttemann M, Taub JW, Ge Y. Targeting multiple signaling pathways: the new approach to acute myeloid leukemia therapy. Signal Transduct Target Ther 2020; 5:288. [PMID: 33335095 PMCID: PMC7746731 DOI: 10.1038/s41392-020-00361-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults and the second most common form of acute leukemia in children. Despite this, very little improvement in survival rates has been achieved over the past few decades. This is partially due to the heterogeneity of AML and the need for more targeted therapeutics than the traditional cytotoxic chemotherapies that have been a mainstay in therapy for the past 50 years. In the past 20 years, research has been diversifying the approach to treating AML by investigating molecular pathways uniquely relevant to AML cell proliferation and survival. Here we review the development of novel therapeutics in targeting apoptosis, receptor tyrosine kinase (RTK) signaling, hedgehog (HH) pathway, mitochondrial function, DNA repair, and c-Myc signaling. There has been an impressive effort into better understanding the diversity of AML cell characteristics and here we highlight important preclinical studies that have supported therapeutic development and continue to promote new ways to target AML cells. In addition, we describe clinical investigations that have led to FDA approval of new targeted AML therapies and ongoing clinical trials of novel therapies targeting AML survival pathways. We also describe the complexity of targeting leukemia stem cells (LSCs) as an approach to addressing relapse and remission in AML and targetable pathways that are unique to LSC survival. This comprehensive review details what we currently understand about the signaling pathways that support AML cell survival and the exceptional ways in which we disrupt them.
Collapse
Affiliation(s)
- Jenna L Carter
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA.,MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Katie Hege
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jay Yang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hasini A Kalpage
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yongwei Su
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.,National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeffrey W Taub
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA. .,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA. .,Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA. .,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Yubin Ge
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA. .,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
129
|
Roussel X, Daguindau E, Berceanu A, Desbrosses Y, Warda W, Neto da Rocha M, Trad R, Deconinck E, Deschamps M, Ferrand C. Acute Myeloid Leukemia: From Biology to Clinical Practices Through Development and Pre-Clinical Therapeutics. Front Oncol 2020; 10:599933. [PMID: 33363031 PMCID: PMC7757414 DOI: 10.3389/fonc.2020.599933] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
Recent studies have provided several insights into acute myeloid leukemia. Studies based on molecular biology have identified eight functional mutations involved in leukemogenesis, including driver and passenger mutations. Insight into Leukemia stem cells (LSCs) and assessment of cell surface markers have enabled characterization of LSCs from hematopoietic stem and progenitor cells. Clonal evolution has been described as having an effect similar to that of microenvironment alterations. Such biological findings have enabled the development of new targeted drugs, including drug inhibitors and monoclonal antibodies with blockage functions. Some recently approved targeted drugs have resulted in new therapeutic strategies that enhance standard intensive chemotherapy regimens as well as supportive care regimens. Besides the progress made in adoptive immunotherapy, since allogenic hematopoietic stem cell transplantation enabled the development of new T-cell transfer therapies, such as chimeric antigen receptor T-cell and transgenic TCR T-cell engineering, new promising strategies that are investigated.
Collapse
Affiliation(s)
- Xavier Roussel
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Etienne Daguindau
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Ana Berceanu
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Yohan Desbrosses
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Walid Warda
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| | | | - Rim Trad
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| | - Eric Deconinck
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Marina Deschamps
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| | - Christophe Ferrand
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
130
|
Leon E, Ranganathan R, Savoldo B. Adoptive T cell therapy: Boosting the immune system to fight cancer. Semin Immunol 2020; 49:101437. [PMID: 33262066 DOI: 10.1016/j.smim.2020.101437] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 01/06/2023]
Abstract
Cellular therapies have shown increasing promise as a cancer treatment. Encouraging results against hematologic malignancies are paving the way to move into solid tumors. In this review, we will focus on T-cell therapies starting from tumor infiltrating lymphocytes (TILs) to optimized T-cell receptor-modified (TCR) cells and chimeric antigen receptor-modified T cells (CAR-Ts). We will discuss the positive preclinical and clinical findings of these approaches, along with some of the persisting barriers that need to be overcome to improve outcomes.
Collapse
Affiliation(s)
- Ernesto Leon
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| | - Raghuveer Ranganathan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Immunology and Microbiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
131
|
Lin WY, Wang HH, Chen YW, Lin CF, Fan HC, Lee YY. Gene Modified CAR-T Cellular Therapy for Hematologic Malignancies. Int J Mol Sci 2020; 21:ijms21228655. [PMID: 33212810 PMCID: PMC7697548 DOI: 10.3390/ijms21228655] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/15/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023] Open
Abstract
With advances in the understanding of characteristics of molecules, specific antigens on the surface of hematological malignant cells were identified and multiple therapies targeting these antigens as neoplasm treatments were developed. Among them, chimeric antigen receptor (CAR) T-cell therapy, which got United States Food and Drug Administration (FDA) approval for relapsed/refractory (r/r) diffuse large B-cell lymphoma (DLBCL) as well as for recurrent acute lymphoblastic leukemia (ALL) within the past five years, and for r/r mantle cell lymphoma (MCL) this year, represents one of the most rapidly evolving immunotherapies. Nevertheless, its applicability to other hematological malignancies, as well as its efficacy and persistence are fraught with clinical challenges. Currently, more than one thousand clinical trials in CAR T-cell therapy are ongoing and its development is changing rapidly. This review introduces the current status of CAR T-cell therapy in terms of the basic molecular aspects of CAR T-cell therapy, its application in hematological malignancies, adverse reactions during clinical use, remaining challenges, and future utilization.
Collapse
Affiliation(s)
- Wen-Ying Lin
- Department of Internal Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Hsin-Hui Wang
- Department of Pediatrics, Division of Pediatric Immunology and Nephrology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Department of Pediatrics, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Yi-Wei Chen
- Division of Radiation Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan;
| | - Chun-Fu Lin
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan;
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Hueng-Chuen Fan
- Department of Pediatrics, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435403, Taiwan;
- Department of Medical Research, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435403, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
- Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
| | - Yi-Yen Lee
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan;
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Correspondence: ; Tel.: +886-2-28757491; Fax: +886-2-28757588
| |
Collapse
|
132
|
Impact of Bone Marrow miR-21 Expression on Acute Myeloid Leukemia T Lymphocyte Fragility and Dysfunction. Cells 2020; 9:cells9092053. [PMID: 32911844 PMCID: PMC7563595 DOI: 10.3390/cells9092053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/18/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a hematopoietic malignancy in which antitumor immunity is impaired. The therapeutic management of AML requires understanding the mechanisms involved in the fragility and immune dysfunction of AML T lymphocytes. METHODS In this study, T lymphocytes from healthy donors (HD) and AML patients were used. Extracellular vesicles (EVs) from leukemic cells were screened for their microRNA content and impact on T lymphocytes. Flow cytometry, transcriptomic as well as lentiviral transduction techniques were used to carry out the research. RESULTS We observed increased cell death of T lymphocytes from AML patients. EVs from leukemia myeloid cell lines harbored several miRNAs, including miR-21, and were able to induce T lymphocyte death. Compared to that in HD, miR-21 was overexpressed in both the bone marrow fluid and infiltrating T lymphocytes of AML patients. MiR-21 induces T lymphocyte cell death by upregulating proapoptotic gene expression. It also increases the immunosuppressive profile of T lymphocytes by upregulating the IL13, IL4, IL10, and FoxP3 genes. CONCLUSIONS Our results demonstrate that miR-21 plays a significant role in AML T lymphocyte dysfunction and apoptosis. Targeting miR-21 may be a novel approach to restore the efficacy of the immune response against AML.
Collapse
|