101
|
Xiao L, Miwa N. Hydrogen Nano-Bubble Water Suppresses ROS Generation, Adipogenesis, and Interleukin-6 Secretion in Hydrogen-Peroxide- or PMA-Stimulated Adipocytes and Three-Dimensional Subcutaneous Adipose Equivalents. Cells 2021; 10:cells10030626. [PMID: 33799840 PMCID: PMC7998368 DOI: 10.3390/cells10030626] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS)-induced oxidative stress in adipose tissue is associated with inflammation and the development of obesity-related metabolic disorders. The aim of this study is to investigate the effects of hydrogen nano-bubble water (HW) on ROS generation, adipogenesis, and interleukin-6 (IL-6) secretion in hydrogen peroxide (H2O2) or phorbol 12-myristate 13-acetate (PMA)-stimulated OP9 adipocytes, and three-dimensional (3D) subcutaneous adipose equivalents. Nanoparticle tracking analysis showed that fresh HW contains 1.17 × 108/mL of nano-sized hydrogen bubbles. Even after 8 to 13 months of storage, approximately half of the bubbles still remained in the water. CellROX® staining showed that HW could diminish H2O2- or PMA-induced intracellular ROS generation in human keratinocytes HaCaT and OP9 cells. We discovered that PMA could markedly increase lipid accumulation to 180% and IL-6 secretion 2.7-fold in OP9 adipocytes. Similarly, H2O2 (5 µM) also significantly stimulated lipid accumulation in OP9 cells and the 3D adipose equivalents. HW treatment significantly repressed H2O2- or PMA-induced lipid accumulation and IL-6 secretion in OP9 adipocytes and the 3D adipose equivalents. In conclusion, HW showed a possibility of repressing oxidative stress, inflammatory response, and adipogenesis at cellular/tissue levels. It can be used for preventing the development of metabolic disorders amongst obese people.
Collapse
Affiliation(s)
- Li Xiao
- Department of Pharmacology, School of Life Dentistry at Tokyo, Nippon Dental University, Tokyo 102-8159, Japan
- Correspondence: ; Tel.: +81-3-3261-8772
| | - Nobuhiko Miwa
- Faculty of Life Sciences, Prefectural University of Hiroshima, Hiroshima 727-0023, Japan;
| |
Collapse
|
102
|
Ahmed B, Sultana R, Greene MW. Adipose tissue and insulin resistance in obese. Biomed Pharmacother 2021; 137:111315. [PMID: 33561645 DOI: 10.1016/j.biopha.2021.111315] [Citation(s) in RCA: 330] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 02/08/2023] Open
Abstract
Currently, obesity has become a global health issue and is referred to as an epidemic. Dysfunctional obese adipose tissue plays a pivotal role in the development of insulin resistance. However, the mechanism of how dysfunctional obese-adipose tissue develops insulin-resistant circumstances remains poorly understood. Therefore, this review attempts to highlight the potential mechanisms behind obesity-associated insulin resistance. Multiple risk factors are directly or indirectly associated with the increased risk of obesity; among them, environmental factors, genetics, aging, gut microbiota, and diets are prominent. Once an individual becomes obese, adipocytes increase in their size; therefore, adipose tissues become larger and dysfunctional, recruit macrophages, and then these polarize to pro-inflammatory states. Enlarged adipose tissues release excess free fatty acids (FFAs), reactive oxygen species (ROS), and pro-inflammatory cytokines. Excess systemic FFAs and dietary lipids enter inside the cells of non-adipose organs such as the liver, muscle, and pancreas, and are deposited as ectopic fat, generating lipotoxicity. Toxic lipids dysregulate cellular organelles, e.g., mitochondria, endoplasmic reticulum, and lysosomes. Dysregulated organelles release excess ROS and pro-inflammation, resulting in systemic inflammation. Long term low-grade systemic inflammation prevents insulin from its action in the insulin signaling pathway, disrupts glucose homeostasis, and results in systemic dysregulation. Overall, long-term obesity and overnutrition develop into insulin resistance and chronic low-grade systemic inflammation through lipotoxicity, creating the circumstances to develop clinical conditions. This review also shows that the liver is the most sensitive organ undergoing insulin impairment faster than other organs, and thus, hepatic insulin resistance is the primary event that leads to the subsequent development of peripheral tissue insulin resistance.
Collapse
Affiliation(s)
- Bulbul Ahmed
- Department of Nutrition, Auburn University, Auburn, AL, 36849, United States.
| | - Rifat Sultana
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, United States
| | - Michael W Greene
- Department of Nutrition, Auburn University, Auburn, AL, 36849, United States
| |
Collapse
|
103
|
Raposo HF, Forsythe P, Chausse B, Castelli JZ, Moraes-Vieira PM, Nunes VS, Oliveira HCF. Novel role of cholesteryl ester transfer protein (CETP): attenuation of adiposity by enhancing lipolysis and brown adipose tissue activity. Metabolism 2021; 114:154429. [PMID: 33166579 DOI: 10.1016/j.metabol.2020.154429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/13/2020] [Accepted: 11/04/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The systemic function of CETP has been well characterized. CETP plasma activity reduces HDL cholesterol and thus increases the risk of atherosclerosis. Here, we investigated whether CETP expression modulate adiposity. METHODS Body adiposity and energy metabolism related assays and gene/protein expression were compared in CETP transgenic and non-transgenic mice and in hamsters treated with CETP neutralizing antibody. RESULTS We found that transgenic mice expressing human CETP present less white adipose tissue mass and lower leptinemia than nontransgenic (NTg) littermates. No differences were found in physical activity, food intake, fat fecal excretion, lipogenesis or exogenous lipid accumulation in adipose depots. Nonetheless, adipose lipolysis rates and whole-body energy expenditure were elevated in CETP mice. In accordance, lipolysis-related gene expression and protein content were increased in visceral and brown adipose tissue (BAT). In addition, we verified increased BAT temperature and oxygen consumption. These results were confirmed in two other animal models: 1) hamsters treated with CETP neutralizing antibody and 2) an independent line of transgenic mice expressing simian CETP. CONCLUSIONS These findings reveal a novel anti-adipogenic role for CETP.
Collapse
Affiliation(s)
- Helena F Raposo
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil; Obesity and Comorbidities Research Center, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Patricia Forsythe
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Bruno Chausse
- Obesity and Comorbidities Research Center, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Júlia Z Castelli
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil; Obesity and Comorbidities Research Center, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Pedro M Moraes-Vieira
- Obesity and Comorbidities Research Center, Institute of Biology, State University of Campinas, Campinas, SP, Brazil; Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil; Experimental Medicine Research Cluster (EMRC), State University of Campinas, SP, Brazil
| | - Valéria S Nunes
- Laboratorio de Lipides (LIM10), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Helena C F Oliveira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil; Obesity and Comorbidities Research Center, Institute of Biology, State University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
104
|
Liu J, Guan L, Zhao M, Li Q, Song A, Gao L, Lin H, Zhao J. Association Between the Triglyceride-Glucose Index and Outcomes of Nonalcoholic Fatty Liver Disease: A Large-Scale Health Management Cohort Study. Diabetes Metab Syndr Obes 2021; 14:2829-2839. [PMID: 34188506 PMCID: PMC8232855 DOI: 10.2147/dmso.s316864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is increasingly becoming a major health burden. Due to the difficulty of liver biopsy, there is no reliable indicator to evaluate the outcomes of NAFLD. The triglyceride-glucose (TyG) index is a simple and convenient marker of insulin resistance for use in medical practice. Whether the TyG index is predictive of later risk of NAFLD remains unknown. OBJECTIVE To evaluate the relationship between TyG index with NAFLD progression and improvement during a median follow-up period of 21 months. MATERIAL AND METHODS A total of 11,424 subjects (9327 men) diagnosed with NAFLD were included. The TyG index was calculated as follows: ln [fasting triglycerides (mg/dL) * fasting glucose (mg/dL)/2]. Multivariable Cox regression analysis was applied to analyze the data. RESULTS In this study, the severity of NAFLD remained the same in 38.8% of subjects, worsened in 17.4% of subjects, and improved in 43.8% of subjects. Compared with the lowest quartile of the TyG index, the adjusted HR of NAFLD progression in the highest quartile (TyG≥9.34) was 1.448 (1.229 to 1.706), and the adjusted HR of NAFLD improvement was 0.817 (0.723 to 0.923). Subgroup analysis found that smoking increased the correlation between the TyG index and the risk of NAFLD progression, while female, vegan diet, and weight control enhanced the correlation between the TyG index and the risk of NAFLD improvement. CONCLUSION The TyG index may be a simple and helpful indicator for further risk appraisal of NAFLD in daily clinical practice.
Collapse
Affiliation(s)
- Jing Liu
- Department of Endocrinology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Affiliated to Shandong Provincial Hospital, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Disease, Affiliated to Shandong Provincial Hospital, Jinan, Shandong, 250021, People’s Republic of China
| | - Liying Guan
- Health Management Center, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Meng Zhao
- Department of Endocrinology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Affiliated to Shandong Provincial Hospital, Jinan, Shandong, 250021, People’s Republic of China
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People’s Republic of China
| | - Qihang Li
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Affiliated to Shandong Provincial Hospital, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Disease, Affiliated to Shandong Provincial Hospital, Jinan, Shandong, 250021, People’s Republic of China
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People’s Republic of China
| | - An Song
- Peking Union Medical College Hospital, Affiliated to Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
| | - Ling Gao
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Affiliated to Shandong Provincial Hospital, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Affiliated to Shandong Provincial Hospital, Jinan, Shandong, 250021, People’s Republic of China
- Department of Scientific Center, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Haiyan Lin
- Health Management Center, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
- Correspondence: Haiyan Lin Health Management Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing 5 Road, Jinan, Shandong, 250021, People’s Republic of ChinaTel +86-531-68776123 (Clin.)Fax +86-531-87068707 Email
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Affiliated to Shandong Provincial Hospital, Jinan, Shandong, 250021, People’s Republic of China
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Affiliated to Shandong Provincial Hospital, Jinan, Shandong, 250021, People’s Republic of China
- Jiajun Zhao Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing 5 Road, Jinan, Shandong, 250021, People’s Republic of ChinaTel +86-531-68776375 (Clin.); +86-531-68776094 (Lab.)Fax +86-531-87068707 Email
| |
Collapse
|
105
|
Radogna F, Gérard D, Dicato M, Diederich M. Assessment of Mitochondrial Cell Metabolism by Respiratory Chain Electron Flow Assays. Methods Mol Biol 2021; 2276:129-141. [PMID: 34060037 DOI: 10.1007/978-1-0716-1266-8_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cellular energy metabolism is regulated by complex metabolic pathways. Although anaerobic glycolysis was reported as a primary source of energy in cancer leading to a high rate of lactate production, current evidence shows that the main energy source supporting cancer cell metabolism relies on mitochondrial metabolism. Mitochondria are the key organelle maintaining optimal cellular energy levels. MitoPlate™ S-1 provides a highly reproducible bioenergetics tool to analyze the electron flow rate in live cells. Measuring the rates of electron flow into and through the electron transport chain using different NADH and FADH2-producing metabolic substrates enables the assessment of mitochondrial functionality. MitoPlate™ S-1 are 96-well microplates pre-coated with different substrates used as probes to examine the activity of mitochondrial metabolic pathways based on a colorimetric assay. A comparative metabolic analysis between cell lines or primary cells allows to establish a specific metabolic profile and to detect possible alterations of the mitochondrial function of a tumor cell. Moreover, the direct measurements of electron flux triggered by metabolic pathway activation could highlight targets for potential drug candidates.
Collapse
Affiliation(s)
- Flavia Radogna
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Déborah Gérard
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Marc Diederich
- College of Pharmacy, Seoul National University, Seoul, South Korea.
| |
Collapse
|
106
|
Olive Leaf Extract, from Olea europaea L., Reduces Palmitate-Induced Inflammation via Regulation of Murine Macrophages Polarization. Nutrients 2020; 12:nu12123663. [PMID: 33260769 PMCID: PMC7761141 DOI: 10.3390/nu12123663] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Olive tree (Olea europaea L.) leaves are an abundant source of bioactive compounds with several beneficial effects for human health. Recently, the effect of olive leaf extract in obesity has been studied. However, the molecular mechanism in preventing obesity-related inflammation has not been elucidated. Obesity is a state of chronic low-grade inflammation and is associated with an increase of pro-inflammatory M1 macrophages infiltration in the adipose tissue. In the current study, we explored Olea europaea L. leaf extract (OLE) anti-inflammatory activity using an in vitro model of obesity-induced inflammation obtained by stimulating murine macrophages RAW 264.7 with high dose of the free fatty acid palmitate. We found that OLE significantly suppressed the induction of pro-inflammatory mediators, tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, nitric oxide (NO), prostaglandin E2 (PGE2) and reactive oxygen species (ROS), while it enhanced the anti-inflammatory cytokine, IL-10. Moreover, we demonstrated that OLE reduced the oxidative stress induced by palmitate in macrophages by regulating the NF-E2-related factor 2 (NRF2)−Kelch-like ECH-associated protein 1 (KEAP1) pathway. Finally, we showed that OLE promoted the shift of M1 macrophage toward less inflammatory M2-cells via the modulation of the associated NF-κB and proliferator-activated receptor gamma (PPARγ) signaling pathways. Thereby, our findings shed light on the potential therapeutic feature of OLE in recovering obesity-associated inflammation via regulating M1/M2 status.
Collapse
|
107
|
Man AWC, Xia N, Li H. Circadian Rhythm in Adipose Tissue: Novel Antioxidant Target for Metabolic and Cardiovascular Diseases. Antioxidants (Basel) 2020; 9:E968. [PMID: 33050331 PMCID: PMC7601443 DOI: 10.3390/antiox9100968] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity is a major risk factor for most metabolic and cardiovascular disorders. Adipose tissue is an important endocrine organ that modulates metabolic and cardiovascular health by secreting signaling molecules. Oxidative stress is a common mechanism associated with metabolic and cardiovascular complications including obesity, type 2 diabetes, and hypertension. Oxidative stress can cause adipose tissue dysfunction. Accumulating data from both humans and experimental animal models suggest that adipose tissue function and oxidative stress have an innate connection with the intrinsic biological clock. Circadian clock orchestrates biological processes in adjusting to daily environmental changes according to internal or external cues. Recent studies have identified the genes and molecular pathways exhibiting circadian expression patterns in adipose tissue. Disruption of the circadian rhythmicity has been suggested to augment oxidative stress and aberrate adipose tissue function and metabolism. Therefore, circadian machinery in the adipose tissue may be a novel therapeutic target for the prevention and treatment of metabolic and cardiovascular diseases. In this review, we summarize recent findings on circadian rhythm and oxidative stress in adipose tissue, dissect the key components that play a role in regulating the clock rhythm, oxidative stress and adipose tissue function, and discuss the potential use of antioxidant treatment on metabolic and cardiovascular diseases by targeting the adipose clock.
Collapse
Affiliation(s)
| | | | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Langenbeckstr, 1, 55131 Mainz, Germany; (A.W.C.M.); (N.X.)
| |
Collapse
|
108
|
Protective Effects of Eicosapentaenoic Acid Plus Hydroxytyrosol Supplementation Against White Adipose Tissue Abnormalities in Mice Fed a High-Fat Diet. Molecules 2020; 25:molecules25194433. [PMID: 32992508 PMCID: PMC7582637 DOI: 10.3390/molecules25194433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 02/06/2023] Open
Abstract
Objective: Obesity induced by high-fat diet (HFD) elicits white adipose tissue dysfunction. In this study, we have hypothesized that the metabolic modulator eicosapentaenoic acid (EPA) combined with the antioxidant hydroxytyrosol (HT) attenuates HFD-induced white adipose tissue (WAT) alterations. Methods: C57BL/6J mice were administered with a HFD (60% fat, 20% protein, 20% carbohydrates) or control diet (CD; 10% fat, 20% protein, 70% carbohydrates), with or without EPA (50 mg/kg/day), HT (5 mg/kg/day), or both for 12 weeks. Determinations in WAT include morphological parameters, EPA and docosahexaenoic acid content in phospholipids (gas chromatography), lipogenesis, oxidative stress (OS) and inflammation markers, and gene expression and activities of transcription factors, such as sterol regulatory element-binding protein-1c (SREBP-1c), peroxisome proliferator-activated receptor-gamma (PPAR-γ), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) (p65 subunit) and nuclear factor erythroid 2-related factor 2 (Nrf2) (quantitative polymerase chain reaction and enzyme linked immunosorbent assay). Results: HFD led to WAT hypertrophy in relation to PPAR-γ downregulation. WAT metabolic dysfunction was characterized by upregulation of lipogenic SREBP-1c system, mitochondrial energy metabolism depression, loss of the antioxidant Nrf2 signaling with OS enhancement, n-3 long-chain polyunsaturated fatty acids depletion and activation of the pro-inflammatory NF-κB system. EPA and HT co-supplementation diminished HFD-dependent effects additively, reaching values close or similar to controls. Conclusion: Data presented strengthen the importance of combined protocols such as EPA plus HT to attenuate metabolic-inflammatory states triggered by obesity.
Collapse
|
109
|
Podszun MC, Alawad AS, Lingala S, Morris N, Huang WCA, Yang S, Schoenfeld M, Rolt A, Ouwerkerk R, Valdez K, Umarova R, Ma Y, Fatima SZ, Lin DD, Mahajan LS, Samala N, Violet PC, Levine M, Shamburek R, Gharib AM, Kleiner DE, Garraffo HM, Cai H, Walter PJ, Rotman Y. Vitamin E treatment in NAFLD patients demonstrates that oxidative stress drives steatosis through upregulation of de-novo lipogenesis. Redox Biol 2020; 37:101710. [PMID: 32920226 PMCID: PMC7494510 DOI: 10.1016/j.redox.2020.101710] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 02/08/2023] Open
Abstract
Oxidative stress (OS) in non-alcoholic fatty liver disease (NAFLD) promotes liver injury and inflammation. Treatment with vitamin E (α-tocopherol, αT), a lipid-soluble antioxidant, improves liver injury but also decreases steatosis, thought to be upstream of OS, through an unknown mechanism. To elucidate the mechanism, we combined a mechanistic human trial interrogating pathways of intrahepatic triglyceride (IHTG) accumulation and in vitro experiments. 50% of NAFLD patients (n = 20) treated with αT (200-800 IU/d) for 24 weeks had a ≥ 25% relative decrease in IHTG by magnetic resonance spectroscopy. Paired liver biopsies at baseline and week 4 of treatment revealed a decrease in markers of hepatic de novo lipogenesis (DNL) that strongly predicted week 24 response. In vitro, using HepG2 cells and primary human hepatocytes, αT inhibited glucose-induced DNL by decreasing SREBP-1 processing and lipogenic gene expression. This mechanism is dependent on the antioxidant capacity of αT, as redox-silenced methoxy-αT is unable to inhibit DNL in vitro. OS by itself was sufficient to increase S2P expression in vitro, and S2P is upregulated in NAFLD livers. In summary, we utilized αT to demonstrate a vicious cycle in which NAFLD generates OS, which feeds back to augment DNL and increases steatosis. Clinicaltrials.gov: NCT01792115.
Collapse
Affiliation(s)
- Maren C Podszun
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ahmad S Alawad
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shilpa Lingala
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nevitt Morris
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wen-Chun A Huang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shanna Yang
- Nutrition Department, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Megan Schoenfeld
- Nutrition Department, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Adam Rolt
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ronald Ouwerkerk
- Biomedical and Metabolic Imaging Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kristin Valdez
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Regina Umarova
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yanling Ma
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Syeda Zaheen Fatima
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dennis D Lin
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lakshmi S Mahajan
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Niharika Samala
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pierre-Christian Violet
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mark Levine
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert Shamburek
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ahmed M Gharib
- Biomedical and Metabolic Imaging Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David E Kleiner
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - H Martin Garraffo
- Clinical Mass Spectrometry Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hongyi Cai
- Clinical Mass Spectrometry Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter J Walter
- Clinical Mass Spectrometry Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yaron Rotman
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
110
|
Zhang ZJ, Wang KP, Mo JG, Xiong L, Wen Y. Photodynamic therapy regulates fate of cancer stem cells through reactive oxygen species. World J Stem Cells 2020; 12:562-584. [PMID: 32843914 PMCID: PMC7415247 DOI: 10.4252/wjsc.v12.i7.562] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Photodynamic therapy (PDT) is an effective and promising cancer treatment. PDT directly generates reactive oxygen species (ROS) through photochemical reactions. This oxygen-dependent exogenous ROS has anti-cancer stem cell (CSC) effect. In addition, PDT may also increase ROS production by altering metabolism, endoplasmic reticulum stress, or potential of mitochondrial membrane. It is known that the half-life of ROS in PDT is short, with high reactivity and limited diffusion distance. Therefore, the main targeting position of PDT is often the subcellular localization of photosensitizers, which is helpful for us to explain how PDT affects CSC characteristics, including differentiation, self-renewal, apoptosis, autophagy, and immunogenicity. Broadly speaking, excess ROS will damage the redox system and cause oxidative damage to molecules such as DNA, change mitochondrial permeability, activate unfolded protein response, autophagy, and CSC resting state. Therefore, understanding the molecular mechanism by which ROS affect CSCs is beneficial to improve the efficiency of PDT and prevent tumor recurrence and metastasis. In this article, we review the effects of two types of photochemical reactions on PDT, the metabolic processes, and the biological effects of ROS in different subcellular locations on CSCs.
Collapse
Affiliation(s)
- Zi-Jian Zhang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Kun-Peng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang Province, China
| | - Jing-Gang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang Province, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.
| |
Collapse
|
111
|
Prasun P. Mitochondrial dysfunction in metabolic syndrome. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165838. [PMID: 32428560 DOI: 10.1016/j.bbadis.2020.165838] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/29/2022]
Abstract
Metabolic syndrome is co-occurrence of obesity, insulin resistance, atherogenic dyslipidemia (high triglyceride, low high density lipoprotein cholesterol), and hypertension. It is a global health problem. An estimated 20%-30% of adults of the world have metabolic syndrome. Metabolic syndrome is associated with increased risk of type 2 diabetes mellitus, nonalcoholic fatty liver disease, myocardial infarction, and stroke. Thus, it is a major cause of morbidity and mortality worldwide. However, molecular pathogenesis of metabolic syndrome is not well known. Recently, there has been interest in the role of mitochondria in pathogenesis of metabolic problems such as obesity, metabolic syndrome, and type 2 diabetes mellitus. Mitochondrial dysfunction contributes to the oxidative stress and systemic inflammation seen in metabolic syndrome. Role of mitochondria in the pathogenesis of metabolic syndrome is intriguing but far from completely understood. However, a better understanding will be very rewarding as it may lead to novel approaches to control this major public health problem. This brief review explores pathogenesis of metabolic syndrome from a mitochondrial perspective.
Collapse
Affiliation(s)
- Pankaj Prasun
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
112
|
Beneficial Effects of Melatonin on Apolipoprotein-E Knockout Mice by Morphological and 18F-FDG PET/CT Assessments. Int J Mol Sci 2020; 21:ijms21082920. [PMID: 32331251 PMCID: PMC7216051 DOI: 10.3390/ijms21082920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis represents one of the main risk factors for the development of cardiovascular diseases. Their etiologies have been studied in recent years in order to better define therapeutic targets for intervention and to identify diagnostic methods. Two different subtypes of macrophages, M1 and M2, have been described in physiological conditions. They can also be found in the atherosclerotic process, where they both have opposite roles in disease progression. Perivascular brown adipose tissue is also involved in inflammation and endothelial damage. In this work, we provide insights into the protective role of melatonin in the atherosclerotic process by morphological and 18F-FDG-PET/CT analyses. In particular, we examined the effects of melatonin on pathways that are linked to atherosclerosis development. We showed that melatonin, by suppressing M1 activity, reduced inflammation and directed macrophage polarization toward the M2 macrophage subtype. Moreover, melatonin preserved the activity of perivascular brown adipose tissue. In addition, 18F-FDG uptake is very high in mice treated with melatonin, confirming that other factors may alter 18F-FDG distribution. In conclusion, we showed that melatonin affects inflammatory pathways that have been linked to atherosclerosis, assessed the relationships of the 18F-FDG PET/CT parameters with macrophage markers and the production of their cytokines, which that have been defined by morphological evaluations.
Collapse
|
113
|
Siasos G, Paschou SA, Tousoulis D. Mitochondria and diabetes. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:262. [PMID: 32355706 PMCID: PMC7186614 DOI: 10.21037/atm.2020.03.15] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gerasimos Siasos
- Department of Cardiology, Hippokration Hospital, "Aghia Sophia" Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula A Paschou
- Department of Cardiology, Hippokration Hospital, "Aghia Sophia" Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Division of Endocrinology and Diabetes, "Aghia Sophia" Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Tousoulis
- Department of Cardiology, Hippokration Hospital, "Aghia Sophia" Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|