101
|
Pang H, Lei D, Guo Y, Yu Y, Liu T, Liu Y, Chen T, Fan C. Three categories of similarities between the placenta and cancer that can aid cancer treatment: Cells, the microenvironment, and metabolites. Front Oncol 2022; 12:977618. [PMID: 36059660 PMCID: PMC9434275 DOI: 10.3389/fonc.2022.977618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is one of the most harmful diseases, while pregnancy is a common condition of females. Placenta is the most important organ for fetal growth, which has not been fully understand. It's well known that placenta and solid tumor have some similar biological behaviors. What's more, decidua, the microenvironment of placenta, and metabolism all undergo adaptive shift for healthy pregnancy. Interestingly, decidua and the tumor microenvironment (TME); metabolism changes during pregnancy and cancer cachexia all have underlying links. However, whether the close link between pregnancy and cancer can bring some new ideas to treat cancer is still unclear. So, in this review we note that pregnancy may offer clues to treat cancer related to three categories: from cell perspective, through the shared development process of the placenta and cancer; from microenvironment perspective, though the shared features of the decidua and TME; and from metabolism perspective, through shared metabolites changes during pregnancy and cancer cachexia. Firstly, comparing gene mutations of both placenta and cancer, which is the underlying mechanism of many similar biological behaviors, helps us understand the origin of cancer and find the key factors to restore tumorigenesis. Secondly, exploring how decidua affect placenta development and similarities of decidua and TME is helpful to reshape TME, then to inhibit cancer. Thirdly, we also illustrate the possibility that the altered metabolites during pregnancy may reverse cancer cachexia. So, some key molecules changed in circulation of pregnancy may help relieve cachexia and make survival with cancer realized.
Collapse
Affiliation(s)
- Huiyuan Pang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Di Lei
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuping Guo
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Ying Yu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tingting Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yujie Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tingting Chen
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Cuifang Fan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
102
|
Lee CL, Lee M, Lee JY, Hong SH, Yang SW, Min JH, Lee DE, Baek J, Kim C, Lim JS, Song KH, Shin JH, Kim GH. Transcriptomic Profiling Analysis of Castration-Resistant Prostate Cancer Cell Lines Treated with Chronic Intermittent Hypoxia. Cancers (Basel) 2022; 14:cancers14163959. [PMID: 36010952 PMCID: PMC9406188 DOI: 10.3390/cancers14163959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/07/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Prostate cancer is the second most frequently diagnosed cancer and the fifth cause of cancer mortality among men. Although localized and confined tumors are relatively curable, patients with advanced metastatic prostate cancer are still problematic. Hypoxia, which is a marked characteristic of advanced solid tumors, has been suggested to induce the progression of prostate cancer. This study aimed to evaluate the impact of chronic intermittent hypoxia on a castration-resistant prostate cancer cell line in inducing cancer progression using RNA sequencing analysis. Through RNA sequencing analysis, we prove that COL13A1, which is a key factor for the progression of metastasis, is closely related to metastatic prostate cancer. These results suggest that our findings indicate a novel strategy for the clinical management of mCRPC. Abstract Castration-resistant prostate cancer (CRPC) is still a major concern in men’s health, with 375,000 cancer deaths annually. Hypoxia, which is a marked characteristic of advanced solid tumors, has been suggested to induce prostate cancer towards CRPC, metastasis and treatment resistance. To evaluate the effect of hypoxia on prostate cancer, two and five cycles of hypoxia and reoxygenation were administered using 22Rv1 cell lines and denominated as 22Rv1-CI and 22Rv1-PCI, respectively. Cancer cell migration was promoted in 22Rv1-CI compared to controls, and the expression of COL13A1 was significantly up-regulated in 22Rv1-CI according to differentially expressed gene analysis of RNA sequencing among groups. Cancer cell migration was impeded in a wound healing assay after transfecting si-COL13A1. Moreover, the expression of COL13A1 was also higher in the cell line originating from bone metastatic prostate cancer compared to other cell lines. Using the open database GEO, we also confirmed that the expression of COL13A1 was higher in bone metastatic prostate cancer tissue than in localized prostate cancer tissue in patients. Therefore, COL13A1 may be closely related to the bony metastasis of prostate cancer, and our findings may provide valuable information on the pathophysiology of the metastatic niche induced by hypoxia in patients with CRPC.
Collapse
Affiliation(s)
- Chung Lyul Lee
- Department of Urology, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon 35015, Korea
| | - Minji Lee
- Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Ji Yong Lee
- Department of Urology, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon 35015, Korea
| | - Sin-hyoung Hong
- Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon 34113, Korea
- Research Center for Bio convergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea
| | - Seung Woo Yang
- Department of Urology, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon 35015, Korea
| | - Ji-hyeon Min
- Research Center for Bio convergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea
| | - Dong-eon Lee
- Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon 34113, Korea
- Research Center for Bio convergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea
| | - Joonyoung Baek
- Research Center for Bio convergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea
| | - Chanseul Kim
- Research Center for Bio convergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea
| | - Jae Sung Lim
- Department of Urology, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon 35015, Korea
| | - Ki Hak Song
- Department of Urology, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon 35015, Korea
| | - Ju Hyun Shin
- Department of Urology, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon 35015, Korea
- Correspondence: (J.H.S.); (G.-H.K.); Tel.: +82-42-2807810 (J.H.S.); +82-43-2405420 (G.-H.K.)
| | - Gun-Hwa Kim
- Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon 34113, Korea
- Research Center for Bio convergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea
- Correspondence: (J.H.S.); (G.-H.K.); Tel.: +82-42-2807810 (J.H.S.); +82-43-2405420 (G.-H.K.)
| |
Collapse
|
103
|
Peng L, Ma M, Dong Y, Wu Q, An S, Cao M, Wang Y, Zhou C, Zhou M, Wang X, Liang Q, Wang Y. Kuoxin Decoction promotes lymphangiogenesis in zebrafish and in vitro based on network analysis. Front Pharmacol 2022; 13:915161. [PMID: 36105188 PMCID: PMC9465995 DOI: 10.3389/fphar.2022.915161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Inadequate lymphangiogenesis is closely related to the occurrence of many kinds of diseases, and one of the important treatments is to promote lymphangiogenesis. Kuoxin Decoction (KXF) is an herbal formula from traditional Chinese medicine used to treat dilated cardiomyopathy (DCM), which is associated with lymphangiogenesis deficiency. In this study, we comprehensively verified whether KXF promotes lymphangiogenesis in zebrafish and in vitro based on network analysis. Methods: We performed virtual screening of the active compounds of KXF and potential targets regarding DCM based on network analysis. Tg (Flila: EGFP; Gata1: DsRed) transgenic zebrafish embryos were treated with different concentrations of KXF for 48 h with or without the pretreatment of MAZ51 for 6 h, followed by morphological observation of the lymphatic vessels and an assessment of lymphopoiesis. RT-qPCR was employed to identify VEGF-C, VEGF-A, PROX1, and LYVE-1 mRNA expression levels in different groups. After the treatment of lymphatic endothelial cells (LECs) with different concentrations of salvianolic acid B (SAB, the active ingredient of KXF), their proliferation, migration, and protein expression of VEGF-C and VEGFR-3 were compared by CCK-8 assay, wound healing assay, and western blot. Results: A total of 106 active compounds were identified constituting KXF, and 58 target genes of KXF for DCM were identified. There were 132 pathways generated from KEGG enrichment, including 5 signaling pathways related to lymphangiogenesis. Zebrafish experiments confirmed that KXF promoted lymphangiogenesis and increased VEGF-C and VEGF-A mRNA expression levels in zebrafish with or without MAZ51-induced thoracic duct injury. In LECs, SAB promoted proliferation and migration, and it could upregulate the protein expression of VEGF-C and VEGFR-3 in LECs after injury. Conclusion: The results of network analysis showed that KXF could regulate lymphangiogenesis through VEGF-C and VEGF-A, and experiments with zebrafish confirmed that KXF could promote lymphangiogenesis. Cell experiments confirmed that SAB could promote the proliferation and migration of LECs and upregulate the protein expression of VEGF-C and VEGFR-3. These results suggest that KXF promotes lymphangiogenesis by a mechanism related to the upregulation of VEGF-C/VEGFR-3, and the main component exerting this effect may be SAB.
Collapse
Affiliation(s)
- Longping Peng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengjiao Ma
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yidan Dong
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiong Wu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shiying An
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Cao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chang Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Maolin Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Wang
- Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Qianqian Liang, ; Youhua Wang,
| | - Youhua Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Qianqian Liang, ; Youhua Wang,
| |
Collapse
|
104
|
Jarrold BB, Tan CYR, Ho CY, Soon AL, Lam TT, Yang X, Nguyen C, Guo W, Chew YC, DeAngelis YM, Costello L, De Los Santos Gomez P, Przyborski S, Bellanger S, Dreesen O, Kimball AB, Oblong JE. Early onset of senescence and imbalanced epidermal homeostasis across the decades in photoexposed human skin: Fingerprints of inflammaging. Exp Dermatol 2022; 31:1748-1760. [DOI: 10.1111/exd.14654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/11/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Chin Yee Ho
- A*STAR Skin Research Labs Singapore City Singapore
| | - Ai Ling Soon
- A*STAR Skin Research Labs Singapore City Singapore
| | - TuKiet T. Lam
- Keck MS & Proteomics Resource Yale School of Medicine New Haven Connecticut USA
| | | | | | - Wei Guo
- Zymo Research Corporation Irvine California USA
| | | | | | | | | | | | | | | | - Alexa B. Kimball
- Beth Israel Deaconess Medical Center and Harvard Medical School Boston Massachusetts USA
| | | |
Collapse
|
105
|
Tsujikawa R, Thapa J, Okubo T, Nakamura S, Zhang S, Furuta Y, Higashi H, Yamaguchi H. Chlamydia trachomatis L2/434/Bu Favors Hypoxia for its Growth in Human Lymphoid Jurkat Cells While Maintaining Production of Proinflammatory Cytokines. Curr Microbiol 2022; 79:265. [PMID: 35859064 DOI: 10.1007/s00284-022-02961-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/27/2022] [Indexed: 11/03/2022]
Abstract
The role of lymphocytes as a cornerstone of the inflammatory response in the invasive pathogenesis of Chlamydia trachomatis (Ct) LGV (L1-3) infection is unclear. Therefore, we assessed whether the adaptation of CtL2 to immortal lymphoid Jurkat cells under hypoxic conditions occurred through proinflammatory cytokine profile modification. The quantities of inclusion-forming units with chlamydial 16S rDNA confirmed that CtL2 grew well under hypoxic rather than normoxic conditions in the cells. Confocal microscopic imaging and transmission electron microscopy revealed the presence of bacterial progeny in the inclusions and showed that the inclusions were larger under hypoxic rather than normoxic conditions; this was supported by the results of 3D image construction. Furthermore, PCR-based analysis of proinflammatory cytokines revealed that the gene expression levels under hypoxic conditions were significantly higher than those under normoxic conditions. In particular, the expression of two genes (CXCL8 and CXCR3) was significantly diminished under normoxic conditions. Taken together, the results indicated that hypoxia promoted CtL2 growth in Jurkat cells while maintaining the levels of proinflammatory cytokines. Thus, Ct LGV infection in lymphocytes under hypoxic conditions might be crucial to a complete understanding of the invasive pathogenesis.
Collapse
Affiliation(s)
- Ryoya Tsujikawa
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Kitaku, Sapporo, Hokkaido, 060-0812, Japan
| | - Jeewan Thapa
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, North-20, West-10, Kita-ku, Sapporo, 001-0020, Japan
| | - Torahiko Okubo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Kitaku, Sapporo, Hokkaido, 060-0812, Japan
| | - Shinji Nakamura
- Division of Biomedical Imaging Research, and Division of Ultrastructural Research, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Saicheng Zhang
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Kitaku, Sapporo, Hokkaido, 060-0812, Japan
| | - Yoshikazu Furuta
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, North-20, West-10, Kita-ku, Sapporo, 001-0020, Japan
| | - Hideaki Higashi
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, North-20, West-10, Kita-ku, Sapporo, 001-0020, Japan
| | - Hiroyuki Yamaguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Kitaku, Sapporo, Hokkaido, 060-0812, Japan.
| |
Collapse
|
106
|
Wu Q, Tu H, Li J. Multifaceted Roles of Chemokine C-X-C Motif Ligand 7 in Inflammatory Diseases and Cancer. Front Pharmacol 2022; 13:914730. [PMID: 35837284 PMCID: PMC9273993 DOI: 10.3389/fphar.2022.914730] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Over recent years, C-X-C motif ligand 7 (CXCL7) has received widespread attention as a chemokine involved in inflammatory responses. Abnormal production of the chemokine CXCL7 has been identified in different inflammatory diseases; nevertheless, the exact role of CXCL7 in the pathogenesis of inflammatory diseases is not fully understood. Persistent infection or chronic inflammation can induce tumorigenesis and progression. Previous studies have shown that the pro-inflammatory chemokine CXCL7 is also expressed by malignant tumor cells and that binding of CXCL7 to its cognate receptors C-X-C chemokine receptor 1 (CXCR1) and C-X-C chemokine receptor 2 (CXCR2) can influence tumor biological behavior (proliferation, invasion, metastasis, and tumor angiogenesis) in an autocrine and paracrine manner. CXCL7 and its receptor CXCR1/CXCR2, which are aberrantly expressed in tumors, may represent new targets for clinical tumor immunotherapy.
Collapse
Affiliation(s)
- Qianmiao Wu
- Department of Hematology, Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Medicine, Nanchang University, Nanchang, China
| | - Huaijun Tu
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Li
- Department of Hematology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
107
|
Baldini C, Danlos FX, Varga A, Texier M, Halse H, Mouraud S, Cassard L, Champiat S, Signolle N, Vuagnat P, Martin-Romano P, Michot JM, Bahleda R, Gazzah A, Boselli L, Bredel D, Grivel J, Mohamed-Djalim C, Escriou G, Grynszpan L, Bigorgne A, Rafie S, Abbassi A, Ribrag V, Postel-Vinay S, Hollebecque A, Susini S, Farhane S, Lacroix L, Parpaleix A, Laghouati S, Zitvogel L, Adam J, Chaput N, Soria JC, Massard C, Marabelle A. Safety, recommended dose, efficacy and immune correlates for nintedanib in combination with pembrolizumab in patients with advanced cancers. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:217. [PMID: 35794623 PMCID: PMC9260998 DOI: 10.1186/s13046-022-02423-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/17/2022] [Indexed: 12/15/2022]
Abstract
Background We aimed to determine the safety and efficacy of nintedanib, an oral anti-angiogenic tyrosine kinase inhibitor, in combination with pembrolizumab, an anti-PD1 immunotherapy, in patients with advanced solid tumors (PEMBIB trial; NCT02856425). Methods In this monocentric phase Ib dose escalation cohort, we evaluated escalating doses of nintedanib (Dose level 1 (DL1) = 150 mg bid [bis in die, as twice a day]; DL2 = 200 mg bid, oral delivery) in combination with pembrolizumab (200 mg Q3W, IV). Patients received a 1-week lead-in dose of nintedanib monotherapy prior starting pembrolizumab. The primary objective was to establish the maximum tolerated dose (MTD) of the combination based on dose limiting toxicity (DLT) occurrence during the first 4 weeks. Secondary objectives were to assess the anti-tumor efficacy and to identify the associated immune and angiogenic parameters in order to establish the recommended nintedanib dose for expansion cohorts. Flow cytometry (FC), Immuno-Histo-Chemistry (IHC) and electrochemiluminescence multi-arrays were prospectively performed on baseline & on-treatment tumor and blood samples to identify immune correlates of efficacy. Results A total of 12/13 patients enrolled were evaluable for DLT (1 patient withdrew consent prior receiving pembrolizumab). Three patients at 200 mg bid experienced a DLT (grade 3 liver enzymes increase). Four patients developed grade 1–2 immune related adverse events (irAE). Eight patients died because of cancer progression. Median follow-up was 23.7 months (95%CI: 5.55–40.5). Three patients developed a partial response (PR) (ORR = 25%) and five patients (42%) had durable clinical benefit (DCB), defined as PR or stable disease (SD) ≥ 6 months. At baseline, patients with DCB had higher plasma levels of Tie2, CXCL10, CCL22 and circulating CD4+ PD1+ OX40+ T cells than patients without DCB. Patients with DCB presented also with more DC-LAMP+ dendritic cells, CD3+ T cells and FOXP3+ Tregs in baseline tumor biopsies. For DCB patients, the nintedanib lead-in monotherapy resulted in higher blood CCL3, Tregs and CCR4+ CXCR3+ CXCR5− memory CD4 T cells. After the first pembrolizumab infusion, patients with DCB showed lower IL-6, IL-8, IL-27 plasma levels. Conclusion Nintedanib 150 mg bid is the recommended dose for combination with pembrolizumab and is currently investigated in multiple expansion cohorts. Early tumoral and circulating immune factors were associated with cancer outcome under nintedanib & pembrolizumab therapy. Trial registration ClinicalTrials.gov, NCT02856425. Registered August 4, 2016 — Prospectively registered. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02423-0.
Collapse
Affiliation(s)
- Capucine Baldini
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
| | - Francois-Xavier Danlos
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France.,INSERM U1015 & CIC1428, Gustave Roussy, Villejuif, France.,Faculté de Médecine, Université Paris Saclay, Le Kremlin-Bicetre, France
| | - Andreea Varga
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
| | - Matthieu Texier
- Département de Biostatistiques, Gustave Roussy, Villejuif, France
| | | | | | - Lydie Cassard
- Laboratoire d'Immuno-Oncologie (LIO), CNRS-UMS 3655 and INSERM-US23, Gustave Roussy, Villejuif, France
| | - Stéphane Champiat
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
| | - Nicolas Signolle
- INSERM U981, Department of Experimental Pathology, Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Perrine Vuagnat
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Institut Curie, Paris, France
| | - Patricia Martin-Romano
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
| | - Jean-Marie Michot
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
| | - Rastislav Bahleda
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
| | - Anas Gazzah
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
| | - Lisa Boselli
- Laboratoire d'Immuno-Oncologie (LIO), CNRS-UMS 3655 and INSERM-US23, Gustave Roussy, Villejuif, France
| | | | - Jonathan Grivel
- Laboratoire d'Immuno-Oncologie (LIO), CNRS-UMS 3655 and INSERM-US23, Gustave Roussy, Villejuif, France
| | | | | | - Laetitia Grynszpan
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | | | - Saloomeh Rafie
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
| | - Alae Abbassi
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
| | - Vincent Ribrag
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
| | - Sophie Postel-Vinay
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France.,INSERM U981, Gustave Roussy, Villejuif, France
| | - Antoine Hollebecque
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
| | | | - Siham Farhane
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
| | - Ludovic Lacroix
- Département de Biopathologie, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Aurelien Parpaleix
- Service de Promotion des Etudes Cliniques, Gustave Roussy, Villejuif, France
| | | | - Laurence Zitvogel
- INSERM U1015 & CIC1428, Gustave Roussy, Villejuif, France.,Faculté de Médecine, Université Paris Saclay, Le Kremlin-Bicetre, France
| | - Julien Adam
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France.,Service d'Anatomo-Pathologie, Hôpital Paris Saint-Joseph, Paris, France
| | - Nathalie Chaput
- Laboratoire d'Immuno-Oncologie (LIO), CNRS-UMS 3655 and INSERM-US23, Gustave Roussy, Villejuif, France
| | | | - Christophe Massard
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
| | - Aurelien Marabelle
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France. .,INSERM U1015 & CIC1428, Gustave Roussy, Villejuif, France. .,Faculté de Médecine, Université Paris Saclay, Le Kremlin-Bicetre, France.
| |
Collapse
|
108
|
Protective effect of Ulinastatin on acute lung injury in diabetic sepsis rats. Int Immunopharmacol 2022; 108:108908. [DOI: 10.1016/j.intimp.2022.108908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022]
|
109
|
Ciccone V, Terzuoli E, Ristori E, Filippelli A, Ziche M, Morbidelli L, Donnini S. ALDH1A1 overexpression in melanoma cells promotes tumor angiogenesis by activating the IL‑8/Notch signaling cascade. Int J Mol Med 2022; 50:99. [PMID: 35656893 PMCID: PMC9186295 DOI: 10.3892/ijmm.2022.5155] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/29/2022] [Indexed: 11/06/2022] Open
Abstract
ALDH1A1 is a cytosolic enzyme upregulated in tumor cells, involved in detoxifying cells from reactive aldehydes and in acquiring resistance to chemotherapeutic drugs. Its expression correlates with poor clinical outcomes in a number of cancers, including melanoma. The present study hypothesized that the increased ALDH1A1 expression and activity upregulated the release of proangiogenic factors from melanoma cells, which regulate angiogenic features in endothelial cells (ECs) through a rearrangement of the Notch pathway. In vivo, when subcutaneously implanted in immunodeficient mice, ALDH1A1 overexpressing melanoma cells displayed a higher microvessel density. In a 3D multicellular system, obtained co‑culturing melanoma cancer cells with stromal cells, including ECs, melanoma ALDH1A1 overexpression induced the recruitment of ECs into the core of the tumorspheres. By using a genes array, overexpression of ALDH1A1 in tumor cells also promoted modulation of Notch cascade gene expression in ECs, suggesting an interaction between tumor cells and ECs mediated by enrichment of angiogenic factors in the tumor microenvironment. To confirm this hypothesis, inactivation of ALDH1A1 by the pharmacological inhibitor CM037 significantly affected the release of angiogenic factors, including IL‑8, from melanoma cells. High levels of ALDH1A1, through the retinoic acid pathway, regulated the activation of NF‑kB‑p65 and IL‑8. Further, in a 2D co‑culture system, the addition of an IL‑8 neutralizing antibody to ECs co‑cultured with melanoma cells forced to express ALDH1A1 dampened endothelial angiogenic features, both at the molecular (in terms of gene and protein expression of mediators of the Notch pathway) and at the functional level (proliferation, scratch assay, tube formation and permeability). In conclusion, these findings demonstrated the existence of a link between melanoma ALDH1A1 expression and EC Notch signaling modification that results in a pro‑angiogenic phenotype. Based on the crucial role of ALDH1A1 in melanoma control of the tumor microenvironment, the enzyme seems a promising target for the development of novel drugs able to interrupt the cross‑talk between cancer (stem) cells and endothelial cells.
Collapse
Affiliation(s)
- Valerio Ciccone
- Department of Life Sciences, University of Siena, Siena I‑53100, Italy
| | - Erika Terzuoli
- Department of Life Sciences, University of Siena, Siena I‑53100, Italy
| | - Emma Ristori
- Department of Life Sciences, University of Siena, Siena I‑53100, Italy
| | | | - Marina Ziche
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena I‑53100, Italy
| | - Lucia Morbidelli
- Department of Life Sciences, University of Siena, Siena I‑53100, Italy
| | - Sandra Donnini
- Department of Life Sciences, University of Siena, Siena I‑53100, Italy
| |
Collapse
|
110
|
CXCR4 inhibition attenuates calcium oxalate crystal deposition-induced renal fibrosis. Int Immunopharmacol 2022; 107:108677. [DOI: 10.1016/j.intimp.2022.108677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022]
|
111
|
Yang H, Shen Z, Luo L, Gao J, Chen S, Che J, Xu L, Wu M, Dong X. Molecular dynamics insights into the selectivity toward CXCR1 and CXCR2 antagonists. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
112
|
Liu G, Li M, Qian S, Yu L, Qian L, Feng X. Interleukin-35 exhibits protective effects in a rat model of hypoxic-ischemic encephalopathy through the inhibition of microglia-mediated inflammation. Transl Pediatr 2022; 11:651-662. [PMID: 35685068 PMCID: PMC9173876 DOI: 10.21037/tp-22-100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/13/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) brain damage is related to inflammatory responses and oxidative stress. Interleukin (IL)-35 is an antioxidant and anti-inflammatory cytokine. Thus, the effect of IL-35 treatment on neonatal rats with hypoxic-ischemic brain injury was investigated. METHODS A total of 96 7-day-old Sprague Dawley rats were randomly divided into three groups: sham group, HIE group, and IL-35 group. After left common carotid occlusion and 2.5 h hypoxia (HI injury), IL-35 (20 µg/g) was intraperitoneally (i.p.) administered to the pups. In vitro, BV2 cells were treated with or without IL-35 6 h before oxygen-glucose deprivation (OGD) insult and the microglia culture medium (MCM) was co-cultured with b.End3 cerebral vascular endothelial cells. Microglial polarization and activation were assessed by real-time quantitative polymerase chain reaction (RT-qPCR), Western blot, and enzyme-linked immunosorbent assay (ELISA). Endothelial cell dysfunction was measured by cell counting kit-8 and Western blot assays. RESULTS Administration of IL-35 alleviated neurological deficiencies, decreased brain edema, ameliorated cerebral infarction, and limited M1 microglial polarization in HI-injured pups. Meanwhile, IL-35 decreased pro-inflammatory cytokines, tumor necrosis factor-α, IL-1β, and reactive oxygen species generation in OGD-induced bEnd.3 cells. Furthermore, IL-35 treatment could reverse the vascular endothelial cell injury induced by microglial polarization. Finally, IL-35 markedly suppressed the activation of hypoxia-inducible factor-1α (HIF-1α) and the nuclear factor-κB (NF-κB) signaling pathway in vivo and in vitro. CONCLUSIONS IL-35 relieved hypoxic-ischemic-induced brain injury and inhibited the inflammatory response by suppressing microglial polarization and activation. These results suggest that IL-35 might have potential applications for the treatment of HIE.
Collapse
Affiliation(s)
- Guangliang Liu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China.,Department of Pediatrics, Binhai County People's Hospital, Bianhai, China
| | - Ming Li
- Department of Laboratory Medicine, Binhai County People's Hospital, Bianhai, China
| | - Shuang Qian
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of the Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lulu Yu
- Department of Laboratory Medicine, Binhai County People's Hospital, Bianhai, China
| | - Lei Qian
- Department of Laboratory Medicine, Binhai County People's Hospital, Bianhai, China
| | - Xing Feng
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
113
|
Li B, Xian X, Lin X, Huang L, Liang A, Jiang H, Gong Q. Hypoxia Alters the Proteome Profile and Enhances the Angiogenic Potential of Dental Pulp Stem Cell-Derived Exosomes. Biomolecules 2022; 12:biom12040575. [PMID: 35454164 PMCID: PMC9029684 DOI: 10.3390/biom12040575] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Dental pulp stem cells (DPSCs) and their exosomes (Exos) are effective treatments for regenerative medicine. Hypoxia was confirmed to improve the angiogenic potential of stem cells. However, the angiogenic effect and mechanism of hypoxia-preconditioned DPSC-Exos are poorly understood. We isolated exosomes from DPSCs under normoxia (Nor-Exos) and hypoxia (Hypo-Exos) and added them to human umbilical vein endothelial cells (HUVECs). HUVEC proliferation, migration and angiogenic capacity were assessed by CCK-8, transwell, tube formation assays, qRT-PCR and Western blot. iTRAQ-based proteomics and bioinformatic analysis were performed to investigate proteome profile differences between Nor-Exos and Hypo-Exos. Western blot, immunofluorescence and immunohistochemistry were used to detect the expression of lysyl oxidase-like 2 (LOXL2) in vitro and in vivo. Finally, we silenced LOXL2 in HUVECs and rescued tube formation with Hypo-Exos. Hypo-Exos enhanced HUVEC proliferation, migration and tube formation in vitro superior to Nor-Exos. The proteomics analysis identified 79 proteins with significantly different expression in Hypo-Exos, among which LOXL2 was verified as being upregulated in hypoxia-preconditioned DPSCs, Hypo-Exos, and inflamed dental pulp. Hypo-Exos partially rescued the inhibitory influence of LOXL2 silence on HUVEC tube formation. In conclusion, hypoxia enhanced the angiogenic potential of DPSCs-Exos and partially altered their proteome profile. LOXL2 is likely involved in Hypo-Exos mediated angiogenesis.
Collapse
Affiliation(s)
- Baoyu Li
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; (B.L.); (X.L.); (L.H.); (A.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Xuehong Xian
- Department of Stomatology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China;
- Foshan Stomatological Hospital, Foshan University, Foshan 528000, China
| | - Xinwei Lin
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; (B.L.); (X.L.); (L.H.); (A.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Luo Huang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; (B.L.); (X.L.); (L.H.); (A.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Ailin Liang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; (B.L.); (X.L.); (L.H.); (A.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Hongwei Jiang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; (B.L.); (X.L.); (L.H.); (A.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
- Correspondence: (H.J.); (Q.G.)
| | - Qimei Gong
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; (B.L.); (X.L.); (L.H.); (A.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
- Correspondence: (H.J.); (Q.G.)
| |
Collapse
|
114
|
Chen C, Xia C, Tang H, Jiang Y, Wang S, Zhang X, Huang T, Yuan X, Wang J, Peng L. Circular RNAs Involve in Immunity of Digestive Cancers From Bench to Bedside: A Review. Front Immunol 2022; 13:833058. [PMID: 35464462 PMCID: PMC9020258 DOI: 10.3389/fimmu.2022.833058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
The immune system plays a complex role in tumor formation and development. On the one hand, immune surveillance can inhibit the growth of tumors; on the other hand, immune evasion of tumors can create conditions conducive for tumor development and growth. CircRNAs are endogenous non-coding RNAs with a covalently closed loop structure that are abundantly expressed in eukaryotic organisms. They are characterized by stable structure, rich diversity, and high evolutionary conservation. In particular, circRNAs play a vital role in the occurrence, development, and treatment of tumors through their unique functions. Recently, the incidence and mortality of digestive cancers, especially those of gastric cancer, colorectal cancer, and liver cancer, have remained high. However, the functions of circRNAs in digestive cancers immunity are less known. The relationship between circRNAs and digestive tumor immunity is systematically discussed in our paper for the first time. CircRNA can influence the immune microenvironment of gastrointestinal tumors to promote their occurrence and development by acting as a miRNA molecular sponge, interacting with proteins, and regulating selective splicing. The circRNA vaccine even provides a new idea for tumor immunotherapy. Future studies should be focused on the location, transportation, and degradation mechanisms of circRNA in living cells and the relationship between circRNA and tumor immunity. This paper provides a new idea for the diagnosis and treatment of gastrointestinal tumors.
Collapse
Affiliation(s)
- Chunyue Chen
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Congcong Xia
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Hao Tang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yirun Jiang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Xin Zhang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Tao Huang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Xiaoqing Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumour Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Junpu Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Li Peng, ; Junpu Wang,
| | - Li Peng
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Li Peng, ; Junpu Wang,
| |
Collapse
|
115
|
Li Y, Li M, Qu C, Li Y, Tang Z, Zhou Z, Yu Z, Wang X, Xin L, Shi T. The Polygenic Map of Keloid Fibroblasts Reveals Fibrosis-Associated Gene Alterations in Inflammation and Immune Responses. Front Immunol 2022; 12:810290. [PMID: 35082796 PMCID: PMC8785650 DOI: 10.3389/fimmu.2021.810290] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/15/2021] [Indexed: 01/02/2023] Open
Abstract
Due to many inconsistencies in differentially expressed genes (DEGs) related to genomic expression changes during keloid formation and a lack of satisfactory prevention and treatment methods for this disease, the critical biomarkers related to inflammation and the immune response affecting keloid formation should be systematically clarified. Normal skin/keloid scar tissue-derived fibroblast genome expression data sets were obtained from the Gene Expression Omnibus (GEO) and ArrayExpress databases. Hub genes have a high degree of connectivity and gene function aggregation in the integration network. The hub DEGs were screened by gene-related protein–protein interactions (PPIs), and their biological processes and signaling pathways were annotated to identify critical biomarkers. Finally, eighty-one hub DEGs were selected for further analysis, and some noteworthy signaling pathways and genes were found to be closely related to keloid fibrosis. For example, IL17RA is involved in IL-17 signal transduction, TIMP2 and MMP14 activate extracellular matrix metalloproteinases, and TNC, ITGB2, and ITGA4 interact with cell surface integrins. Furthermore, changes in local immune cell activity in keloid tissue were detected by DEG expression, immune cell infiltration, and mass CyTOF analyses. The results showed that CD4+ T cells, CD8+ T cells and NK cells were abnormal in keloid tissue compared with normal skin tissue. These findings not only support the key roles of fibrosis-related pathways, immune cells and critical genes in the pathogenesis of keloids but also expand our understanding of targets that may be useful for the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Yang Li
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Min Li
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Caijie Qu
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Yongxi Li
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Zhanli Tang
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, China
| | - Zhike Zhou
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Zengzhao Yu
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Xu Wang
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Linlin Xin
- Department of Dermatology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Tongxin Shi
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
116
|
Comprehensive analysis of the expression and significance of CXCLs in human diffuse large B-cell lymphoma. Sci Rep 2022; 12:2817. [PMID: 35181719 PMCID: PMC8857324 DOI: 10.1038/s41598-022-06877-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/07/2022] [Indexed: 11/17/2022] Open
Abstract
CXCL chemokines (CXCLs) are small cytokines or signal proteins secreted by cells that have been proven to be linked to the occurrence and development of many kinds of cancer. However, the expression and diagnostic and prognostic value of CXCLs in diffuse large B-cell lymphoma (DLBCL) remain to be further studied. We obtained CXCL transcription and survival data of patients with DLBCL from Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), The Cancer Genome Atlas (TCGA), TIMER and cBioPortal databases. R software, STRING and EXCEL were used to process the data. This study discovered that the expression levels of CXCL9-14 in DLBCL were higher than those in normal tissues, while CXCL4, CXCL7 and CXCL8 were lower in tumor than in normal tissues. The expression levels of CXCL2, CXCL10 and CXCL11 were related to tumor stage. CXCL9-14 could be used as an auxiliary molecular marker for the diagnosis of DLBCL. CXCL17 might be a potential prognostic marker of DLBCL.
Collapse
|
117
|
Ding X, Sun X, Cai H, Wu L, Liu Y, Zhao Y, Zhou D, Yu G, Zhou X. Engineering Macrophages via Nanotechnology and Genetic Manipulation for Cancer Therapy. Front Oncol 2022; 11:786913. [PMID: 35070992 PMCID: PMC8770285 DOI: 10.3389/fonc.2021.786913] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Macrophages play critical roles in tumor progression. In the tumor microenvironment, macrophages display highly diverse phenotypes and may perform antitumorigenic or protumorigenic functions in a context-dependent manner. Recent studies have shown that macrophages can be engineered to transport drug nanoparticles (NPs) to tumor sites in a targeted manner, thereby exerting significant anticancer effects. In addition, macrophages engineered to express chimeric antigen receptors (CARs) were shown to actively migrate to tumor sites and eliminate tumor cells through phagocytosis. Importantly, after reaching tumor sites, these engineered macrophages can significantly change the otherwise immune-suppressive tumor microenvironment and thereby enhance T cell-mediated anticancer immune responses. In this review, we first introduce the multifaceted activities of macrophages and the principles of nanotechnology in cancer therapy and then elaborate on macrophage engineering via nanotechnology or genetic approaches and discuss the effects, mechanisms, and limitations of such engineered macrophages, with a focus on using live macrophages as carriers to actively deliver NP drugs to tumor sites. Several new directions in macrophage engineering are reviewed, such as transporting NP drugs through macrophage cell membranes or extracellular vesicles, reprogramming tumor-associated macrophages (TAMs) by nanotechnology, and engineering macrophages with CARs. Finally, we discuss the possibility of combining engineered macrophages and other treatments to improve outcomes in cancer therapy.
Collapse
Affiliation(s)
- Xiaoling Ding
- Department of Immunology, Nantong University, School of Medicine, Nantong, China.,Department of Gastroenterology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Xinchen Sun
- Department of Immunology, Nantong University, School of Medicine, Nantong, China.,Department of Clinical Laboratory, Taizhou Peoples' Hospital, Taizhou, China
| | - Huihui Cai
- Department of Immunology, Nantong University, School of Medicine, Nantong, China.,Department of Clinical Laboratory, The Sixth Nantong People's Hospital, Nantong, China
| | - Lei Wu
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| | - Ying Liu
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| | - Yu Zhao
- Department of Immunology, Southeast University, School of Medicine, Nanjing, China
| | - Dingjingyu Zhou
- Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Guiping Yu
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, China
| | - Xiaorong Zhou
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| |
Collapse
|
118
|
Tang H, Zhou X, Zhao X, Luo X, Luo T, Chen Y, Liang W, Jiang E, Liu K, Shao Z, Shang Z. HSP90/IKK‐rich small extracellular vesicles activate pro‐angiogenic melanoma‐associated fibroblasts via NF‐κB/CXCL1 axis. Cancer Sci 2022; 113:1168-1181. [PMID: 35043517 PMCID: PMC8990732 DOI: 10.1111/cas.15271] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/30/2022] Open
Abstract
Hypoxia is a main feature of most solid tumors, but how melanoma cells under hypoxic conditions exploit tumor microenvironment (TME) to facilitate tumor progression remains poorly understood. In this study, we found that hypoxic melanoma‐derived small extracellular vesicles (sEVs) could improve the proangiogenic capability of cancer‐associated fibroblasts (CAFs). This improvement was due to the activation of the IKK/IκB/NF‐κB signaling pathway and upregulation of CXCL1 expression and secretion in CAFs. By proteomic analysis, we verified that hypoxia could promote enrichment of chaperone HSP90 and client protein phosphorylated IKKα/β (p‐IKKα/β) in melanoma‐derived sEVs. Delivery of the HSP90/p‐IKKα/β complex by sEVs could activate the IKK/IκB/NF‐κB/CXCL1 axis in CAFs and promote angiogenesis in vitro and in vivo. Taken together, these findings deepen the understanding of hypoxic response in melanoma progression and provide potential targets for melanoma treatment.
Collapse
Affiliation(s)
- Hokeung Tang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory for Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Xiaocheng Zhou
- Department of Oral and Maxillofacial Surgery School and Hospital of Stomatology Wuhan University Wuhan China
| | - Xiaoping Zhao
- Center of Stomatology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Xinyue Luo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory for Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Tingting Luo
- Shenzhen PKU‐HKUST Medical Center (Peking University Shenzhen Hospital) Shenzhen China
| | - Yang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory for Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Weilian Liang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory for Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Erhui Jiang
- Department of Oral and Maxillofacial‐Head and Neck Oncology School and Hospital of Stomatology Wuhan University Wuhan China
| | - Ke Liu
- Department of Oral and Maxillofacial‐Head and Neck Oncology School and Hospital of Stomatology Wuhan University Wuhan China
| | - Zhe Shao
- Department of Oral and Maxillofacial‐Head and Neck Oncology School and Hospital of Stomatology Wuhan University Wuhan China
| | - Zhengjun Shang
- Department of Oral and Maxillofacial‐Head and Neck Oncology School and Hospital of Stomatology Wuhan University Wuhan China
| |
Collapse
|
119
|
Zhang Y, Murphy S, Lu X. Cancer-cell-intrinsic mechanisms regulate MDSCs through cytokine networks. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 375:1-31. [PMID: 36967150 DOI: 10.1016/bs.ircmb.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immunotherapy has shifted the paradigm of cancer treatment. However, the majority of cancer patients display de novo or acquired resistance to immunotherapy. One of the main mechanisms of immunotherapy resistance is the immunosuppressive microenvironment dominated by the myeloid-derived suppressor cells (MDSCs). Emerging evidence demonstrates that genetic or epigenetic aberrations in cancer cells shape the accumulation and activation of MDSCs. Understanding this genotype-immunophenotype relationship is critical to the rational design of combination immunotherapy. Here, we review the mechanisms of how molecular changes in cancer cells induce recruitment and reprogram the function of tumor-infiltrating myeloid cells, particularly MDSCs. Tumor-infiltrating MDSCs elicit various pro-tumor functions to promote tumor cell fitness, immune evasion, angiogenesis, tissue remodeling, and metastasis. Through understanding the genotype-immunophenotype relationship between neoplastic cells and MDSCs, new approaches can be developed to tailor current immunotherapy strategies to improve cancer patient outcomes.
Collapse
|
120
|
Xu P, Xu X, Wu X, Zhang L, Meng L, Chen Z, Han W, Yao J, Xu AM. CircTMC5 promotes gastric cancer progression and metastasis by targeting miR-361-3p/RABL6. Gastric Cancer 2022; 25:64-82. [PMID: 34296378 DOI: 10.1007/s10120-021-01220-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric cancer (GC) is common in East Asia, yet its molecular and pathogenic mechanisms remain unclear. Circular RNAs (circRNAs) are differentially expressed in GC and may be promising biomarkers. Here, we investigated the role and regulatory mechanism of circTMC5 in GC. METHODS CircTMC5 expression was detected in human GC and adjacent tissues using microarray assays and qRT-PCR, while the clinicopathological characteristics of patients with GC were used to assess its diagnostic and prognostic value. The circTMC5/miR-361-3p/RABL6 axis was examined in vitro and vivo, and the immune roles of RABL6 were evaluated using bioinformatics analyses and immunohistochemistry (IHC). RESULTS CircTMC5 was highly expressed in GC tissues, plasma, and cell lines, and was closely related to histological grade, pathological stage, and T classification in patients with GC. CircTMC5 expression was also an independent prognostic factor for GC and its combined detection with carcinoembryonic antigen may improve GC diagnosis. Low circTMC5 expression correlated with good prognosis, inhibited GC cell proliferation, and promoted apoptosis. Mechanistically, circTMC5 overexpression promoted GC cell proliferation, invasion, and metastasis but inhibited apoptosis by sponging miR-361-3p and up-regulating RABL6 in vitro and vivo, whereas miR-361-3p up-regulation had the opposite effects. RABL6 was highly expressed in GC and was involved in immune regulation and infiltration in GC. CONCLUSIONS CircTMC5 promotes GC and sponges miR-361-3p to up-regulate RABL6 expression, thus may have diagnostic and prognostic value in GC. RABL6 also displays therapeutic promise due to its role in the immune regulation of GC.
Collapse
Affiliation(s)
- Peng Xu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, No. 100 Huaihai Avenue, Xinzhan District, Hefei City, 230000, Anhui Province, China.,Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98, Nantong West Road, Yangzhou City, 225001, Jiangsu Province, China
| | - XiaoLan Xu
- Department of Critical Care Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Xiao Wu
- Department of Pathophysiology, Basic Medical College of Anhui Medical University, Anhui Provincial Key Laboratory of Pathophysiology, Hefei, 230022, China
| | - LiXiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui, Medical University, Hefei, 230022, China
| | - Lei Meng
- Department of General Surgery, The First Affiliated Hospital of Anhui, Medical University, Hefei, 230022, China
| | - ZhangMing Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui, Medical University, Hefei, 230022, China
| | - WenXiu Han
- Department of General Surgery, The First Affiliated Hospital of Anhui, Medical University, Hefei, 230022, China
| | - Jie Yao
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98, Nantong West Road, Yangzhou City, 225001, Jiangsu Province, China.
| | - AMan Xu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, No. 100 Huaihai Avenue, Xinzhan District, Hefei City, 230000, Anhui Province, China. .,Department of General Surgery, The First Affiliated Hospital of Anhui, Medical University, Hefei, 230022, China.
| |
Collapse
|
121
|
Distinct Hypoxia-Related Gene Profiling Characterizes Clinicopathological Features and Immune Status of Mismatch Repair-Deficient Colon Cancer. JOURNAL OF ONCOLOGY 2021; 2021:2427427. [PMID: 34917146 PMCID: PMC8670907 DOI: 10.1155/2021/2427427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/07/2021] [Accepted: 11/13/2021] [Indexed: 12/09/2022]
Abstract
Despite dramatic responses to immune checkpoint inhibitors (ICIs) in patients with colon cancer (CC) harboring deficient mismatch repair (dMMR), more than half of these patients ultimately progress and experience primary or secondary drug resistance. There is no useful biomarker that is currently validated to accurately predict this resistance or stratify patients who may benefit from ICI-based immunotherapy. As hypoxic and acidic tumor microenvironment would greatly impair tumor-suppressing functions of tumor-infiltrating lymphocytes (TILs), we sought to explore distinct immunological phenotypes by analysis of the intratumoral hypoxia state using a well-established gene signature. Based on the Gene Expression Omnibus (GEO) (n = 88) and The Cancer Genome Atlas (TCGA) (n = 49) databases of patients with CC, we found that dMMR CC patients could be separated into normoxia subgroup (NS) and hypoxia subgroup (HS) with different levels of expression of hypoxia-related genes (lower in NS group and higher in HS group) using NMF package. Tumoral parenchyma in the HS group had a relatively lower level of immune cell infiltration, particularly CD8+ T cells and M1 macrophages than the NS group, and coincided with higher expression of immune checkpoint molecules and C-X-C motif chemokines, which might be associated with ICI resistance and prognosis. Furthermore, three genes, namely, MT1E, MT2A, and MAFF, were identified to be differentially expressed between NS and HS groups in both GEO and TCGA cohorts. Based on these genes, a prognostic model with stable and valuable predicting ability has been built for clinical application. In conclusion, the varying tumor-immune microenvironment (TIME) classified by hypoxia-related genes might be closely associated with different therapeutic responses of ICIs and prognosis of dMMR CC patients.
Collapse
|
122
|
Chang WA, Tsai MJ, Hung JY, Wu KL, Tsai YM, Huang YC, Chang CY, Tsai PH, Hsu YL. miR-150-5p-Containing Extracellular Vesicles Are a New Immunoregulator That Favor the Progression of Lung Cancer in Hypoxic Microenvironments by Altering the Phenotype of NK Cells. Cancers (Basel) 2021; 13:cancers13246252. [PMID: 34944871 PMCID: PMC8699319 DOI: 10.3390/cancers13246252] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/28/2022] Open
Abstract
Natural killer (NKs) cells are cytotoxic effector cells, which can modulate tumor metastasis according to their function; however, the role of NK cells in lung cancer has not been extensively investigated. In this study, we determined the functional profiles of NK cells in a hypoxic tumor microenvironment (TME) of lung cancer. We revealed CD226 downregulation and functional repression of NK cells after hypoxic lung cancer priming and we then investigated their interaction with extracellular vesicles (EVs) and miR-150-5p. We also found that NK cells from lung cancer patients had lower expression of CD226 on their surface and exhibited a pro-inflammatory, pro-angiogenic and tumorigenesis phenotype by expressing VEGF, CXCL1, CXCL8, S100A8 and MMPs. Moreover, inhibition of miR-150 improved tumor surveillance by reversing CD226 expression and subsequently reinstating cytotoxic NK cell activity in an animal model. Our study introduces a new scenario for the pro-inflammatory and pro-angiogenic activities of NK cells in the hypoxic TME in lung cancer.
Collapse
Affiliation(s)
- Wei-An Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.-A.C.); (M.-J.T.); (J.-Y.H.); (K.-L.W.); (Y.-M.T.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Ming-Ju Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.-A.C.); (M.-J.T.); (J.-Y.H.); (K.-L.W.); (Y.-M.T.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Jen-Yu Hung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.-A.C.); (M.-J.T.); (J.-Y.H.); (K.-L.W.); (Y.-M.T.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 801, Taiwan
| | - Kuan-Li Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.-A.C.); (M.-J.T.); (J.-Y.H.); (K.-L.W.); (Y.-M.T.)
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 801, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.H.); (P.-H.T.)
| | - Ying-Ming Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.-A.C.); (M.-J.T.); (J.-Y.H.); (K.-L.W.); (Y.-M.T.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Yung-Chi Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.H.); (P.-H.T.)
| | - Chao-Yuan Chang
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.H.); (P.-H.T.)
- Department of Anatomy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Pei-Hsun Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.H.); (P.-H.T.)
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.H.); (P.-H.T.)
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-312-1101 (ext. 2136-26)
| |
Collapse
|
123
|
Impacts of Chemokine (C-X-C Motif) Receptor 2 C1208T Polymorphism on Cancer Susceptibility. J Immunol Res 2021; 2021:8727924. [PMID: 34692853 PMCID: PMC8531794 DOI: 10.1155/2021/8727924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/17/2021] [Indexed: 11/18/2022] Open
Abstract
Background The CXC chemokines belong to a unique family of cytokines that participates in the progression and development of many malignant tumors. Evidence for the relationship between chemokine (C-X-C motif) receptor 2 (CXCR2) C1208T polymorphism and susceptibility to cancer remains inconsistent. Methods Odds ratios (ORs), 95% confidence intervals (CIs), and combined analysis were used to investigate the effect of CXCR2 variation on cancer risk. Gene Set Enrichment Analysis (GSEA) and enzyme-linked immunosorbent assay (ELISA) were also used to evaluate the expression of CXCR2 in prostate cancer (PCA). Results Across 11 case-control studies, 4,909 cases and 5,884 controls were involved in the current analysis. Individuals with a TT genotype were associated with increased risk of digestive cancer, compared to those with a TC+CC genotype (OR = 1.16, 95%CI = 1.02-1.31, P = 0.025). Individuals carrying the TT genotype had a 39% higher risk of urinary cancer than those carrying CC genotype (OR = 1.39, 95%CI = 1.04-1.87, P = 0.025). Individuals with a TT genotype showed a 56% augmented breast cancer risk, compared to those with a CC genotype (OR = 1.56, 95%CI = 1.03-2.35, P = 0.034). It was found that CXCR2 expression was downregulated in PCA. Compared with PCA subjects carrying the CC genotype, the expression of CXCR2 was decreased in patients with the TT genotype. Conclusions The CXCR2 C1208T variation was associated with elevated risk of urinary, breast, and digestive cancer. However, the C1208T polymorphism was correlated with attenuated risk of lung cancer.
Collapse
|
124
|
Chen L, Wang L, Luo Y, Huang Q, Ji K, Bao J, Liu H. Integrated Proteotranscriptomics of Human Myometrium in Labor Landscape Reveals the Increased Molecular Associated With Inflammation Under Hypoxia Stress. Front Immunol 2021; 12:722816. [PMID: 34671346 PMCID: PMC8521035 DOI: 10.3389/fimmu.2021.722816] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/01/2021] [Indexed: 01/16/2023] Open
Abstract
During labor, a variety of coordinated physiological and biochemical events cause the myometrium to transition from a quiescent to contractile state; the molecular mechanisms responsible for this transition, however, remain unclear. To better understand this transition at a molecular level, the global transcriptome and proteome of human myometrial samples in labor and those not in labor were investigated through RNA sequencing (RNA-seq) and quantitative liquid chromatography–tandem mass spectrometry (LC-MS/MS) via data-independent acquisition (DIA) and parallel reaction monitoring (PRM) methods. Furthermore, an integrated proteotranscriptomic analysis was performed to explore biological processes and pathway alterations during labor; this analysis identified 1,626 differentially expressed mRNAs (1,101 upregulated, 525 downregulated) and 135 differentially expressed proteins (97 upregulated, 38 downregulated) in myometrium between nonlabor and in labor groups. The comprehensive results of these analyses showed that the upregulated mRNAs and proteins increased inflammation under hypoxia stress in the myometrium under labor, and related proteins and cytokines were validated by PRM and Luminex assays. Our study confirmed the biological process of inflammation and hypoxia in laboring myometrium at the transcriptome and proteome levels and provided recourse to discover new molecular and biological changes during labor.
Collapse
Affiliation(s)
- Lina Chen
- School of Medicine, South China University of Technology, Guangzhou, China.,Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lele Wang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yihong Luo
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qian Huang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kaiyuan Ji
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Junjie Bao
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huishu Liu
- School of Medicine, South China University of Technology, Guangzhou, China.,Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
125
|
Korbecki J, Simińska D, Gąssowska-Dobrowolska M, Listos J, Gutowska I, Chlubek D, Baranowska-Bosiacka I. Chronic and Cycling Hypoxia: Drivers of Cancer Chronic Inflammation through HIF-1 and NF-κB Activation: A Review of the Molecular Mechanisms. Int J Mol Sci 2021; 22:ijms221910701. [PMID: 34639040 PMCID: PMC8509318 DOI: 10.3390/ijms221910701] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic (continuous, non-interrupted) hypoxia and cycling (intermittent, transient) hypoxia are two types of hypoxia occurring in malignant tumors. They are both associated with the activation of hypoxia-inducible factor-1 (HIF-1) and nuclear factor κB (NF-κB), which induce changes in gene expression. This paper discusses in detail the mechanisms of activation of these two transcription factors in chronic and cycling hypoxia and the crosstalk between both signaling pathways. In particular, it focuses on the importance of reactive oxygen species (ROS), reactive nitrogen species (RNS) together with nitric oxide synthase, acetylation of HIF-1, and the action of MAPK cascades. The paper also discusses the importance of hypoxia in the formation of chronic low-grade inflammation in cancerous tumors. Finally, we discuss the effects of cycling hypoxia on the tumor microenvironment, in particular on the expression of VEGF-A, CCL2/MCP-1, CXCL1/GRO-α, CXCL8/IL-8, and COX-2 together with PGE2. These factors induce angiogenesis and recruit various cells into the tumor niche, including neutrophils and monocytes which, in the tumor, are transformed into tumor-associated neutrophils (TAN) and tumor-associated macrophages (TAM) that participate in tumorigenesis.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (D.S.); (I.G.); (D.C.)
| | - Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (D.S.); (I.G.); (D.C.)
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland;
| | - Izabela Gutowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (D.S.); (I.G.); (D.C.)
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (D.S.); (I.G.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (D.S.); (I.G.); (D.C.)
- Correspondence: ; Tel.: +48-(91)-466-1515
| |
Collapse
|
126
|
Pan Y, Song X, Wang Y, Wei J. Firing up the Tumor Microenvironment with Nanoparticle-Based Therapies. Pharmaceutics 2021; 13:pharmaceutics13091338. [PMID: 34575414 PMCID: PMC8472427 DOI: 10.3390/pharmaceutics13091338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/14/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
Therapies mobilizing host immunity against cancer cells have profoundly improved prognosis of cancer patients. However, efficacy of immunotherapies depends on local immune conditions. The "cold" tumor, which is characterized by lacking inflamed T cells, is insensitive to immunotherapy. Current strategies of improving the "cold" tumor microenvironment are far from satisfying. Nanoparticle-based therapies provide novel inspiration in firing up the tumor microenvironment. In this review, we presented progress and limitations of conventional immunotherapies. Then, we enumerate advantages of nanoparticle-based therapies in remodeling the "cold" tumor microenvironment. Finally, we discuss the prospect of nanoparticle-based therapies in clinical application.
Collapse
Affiliation(s)
- Yunfeng Pan
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China; (Y.P.); (X.S.); (Y.W.)
| | - Xueru Song
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China; (Y.P.); (X.S.); (Y.W.)
| | - Yue Wang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China; (Y.P.); (X.S.); (Y.W.)
| | - Jia Wei
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China; (Y.P.); (X.S.); (Y.W.)
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210008, China
- Correspondence:
| |
Collapse
|
127
|
Olmos-Ortiz A, Flores-Espinosa P, Díaz L, Velázquez P, Ramírez-Isarraraz C, Zaga-Clavellina V. Immunoendocrine Dysregulation during Gestational Diabetes Mellitus: The Central Role of the Placenta. Int J Mol Sci 2021; 22:8087. [PMID: 34360849 PMCID: PMC8348825 DOI: 10.3390/ijms22158087] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Gestational Diabetes Mellitus (GDM) is a transitory metabolic condition caused by dysregulation triggered by intolerance to carbohydrates, dysfunction of beta-pancreatic and endothelial cells, and insulin resistance during pregnancy. However, this disease includes not only changes related to metabolic distress but also placental immunoendocrine adaptations, resulting in harmful effects to the mother and fetus. In this review, we focus on the placenta as an immuno-endocrine organ that can recognize and respond to the hyperglycemic environment. It synthesizes diverse chemicals that play a role in inflammation, innate defense, endocrine response, oxidative stress, and angiogenesis, all associated with different perinatal outcomes.
Collapse
Affiliation(s)
- Andrea Olmos-Ortiz
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico; (A.O.-O.); (P.F.-E.)
| | - Pilar Flores-Espinosa
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico; (A.O.-O.); (P.F.-E.)
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico;
| | - Pilar Velázquez
- Departamento de Ginecología y Obstetricia, Hospital Ángeles México, Ciudad de México 11800, Mexico;
| | - Carlos Ramírez-Isarraraz
- Clínica de Urología Ginecológica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico;
| | - Verónica Zaga-Clavellina
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico
| |
Collapse
|
128
|
Abstract
Dual oxidase 1 (DUOX1) is an NADPH oxidase that is highly expre-ssed in respiratory epithelial cells and produces H2O2 in the airway lumen. While a line of prior in vitro observations suggested that DUOX1 works in partnership with an airway peroxidase, lactoperoxidase (LPO), to produce antimicrobial hypothiocyanite (OSCN-) in the airways, the in vivo role of DUOX1 in mammalian organisms has remained unproven to date. Here, we show that Duox1 promotes antiviral innate immunity in vivo. Upon influenza airway challenge, Duox1 -/- mice have enhanced mortality, morbidity, and impaired lung viral clearance. Duox1 increases the airway levels of several cytokines (IL-1β, IL-2, CCL1, CCL3, CCL11, CCL19, CCL20, CCL27, CXCL5, and CXCL11), contributes to innate immune cell recruitment, and affects epithelial apoptosis in the airways. In primary human tracheobronchial epithelial cells, OSCN- is generated by LPO using DUOX1-derived H2O2 and inactivates several influenza strains in vitro. We also show that OSCN- diminishes influenza replication and viral RNA synthesis in infected host cells that is inhibited by the H2O2 scavenger catalase. Binding of the influenza virus to host cells and viral entry are both reduced by OSCN- in an H2O2-dependent manner in vitro. OSCN- does not affect the neuraminidase activity or morphology of the influenza virus. Overall, this antiviral function of Duox1 identifies an in vivo role of this gene, defines the steps in the infection cycle targeted by OSCN-, and proposes that boosting this mechanism in vivo can have therapeutic potential in treating viral infections.
Collapse
|
129
|
Ibarra LE. Cellular Trojan horses for delivery of nanomedicines to brain tumors: where do we stand and what is next? Nanomedicine (Lond) 2021; 16:517-522. [PMID: 33634710 DOI: 10.2217/nnm-2021-0034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Luis Exequiel Ibarra
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto, Córdoba 5800, Argentina.,Departamento de Biología Molecular, Facultad de Ciencias Exactas Fisicoquímicas y Naturales, UNRC, Río Cuarto, Córdoba 5800, Argentina
| |
Collapse
|