101
|
Nicholas SB. Novel Anti-inflammatory and Anti-fibrotic Agents for Diabetic Kidney Disease-From Bench to Bedside. Adv Chronic Kidney Dis 2021; 28:378-390. [PMID: 34922694 DOI: 10.1053/j.ackd.2021.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/30/2021] [Accepted: 09/17/2021] [Indexed: 02/08/2023]
Abstract
Chronic low-grade inflammation, now coined by the new paradigm as "metaflammation" or "metainflammation", has been linked to chronic kidney disease and its progression. In diabetes, altered metabolism denotes factors associated with the metabolic syndrome and hyperglycemia, among others. The interplay among hyperglycemia, oxidative stress, and inflammation in the pathogenesis of diabetic kidney disease (DKD) has been broadly explored. Identification of mediators of inflammatory processes involving macrophage infiltration, production of inflammasomes, release of cytokines, and activation of pertinent signaling pathways including mitogen-activated protein kinase, Jun N-terminal kinase, Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway (JAK/STAT), and apoptosis signal-regulating kinase 1 signaling mechanisms have enabled the development of therapeutic agents for DKD. This review describes the evidence supporting the contribution of the inflammatory response and fibrotic changes and focuses on selected, novel, promising drugs as well as repurposed drugs that have made it to phase 2, 3, or 4 of clinical trials in adults with type 2 diabetes mellitus and their potential to become an important part of our armamentarium to improve the management of DKD. Importantly, drugs that solely target inflammatory processes may be insufficient to fully optimize care of patients with DKD because of the complex nature of the disease.
Collapse
|
102
|
Shi N, Shi Y, Xu J, Si Y, Yang T, Zhang M, Ng DM, Li X, Xie F. SGLT-2i and Risk of Malignancy in Type 2 Diabetes: A Meta-Analysis of Randomized Controlled Trials. Front Public Health 2021; 9:668368. [PMID: 34164370 PMCID: PMC8215266 DOI: 10.3389/fpubh.2021.668368] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/03/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Currently, the association between sodium-glucose cotransporter 2 inhibitor (SGLT-2i) and malignancy risk has yet to be fully elucidated. This meta-analysis aimed to determine the relationship between SGLT-2i and malignancy risk in type 2 diabetes (T2D) patients. Methods: We searched PubMed, ScienceDirect, EMBASE, Cochrane Central Register of Controlled Trials, and Web of Science to identify randomized controlled trials (RCTs) published up to August 2020 related to T2D patients treated with SGLT-2i vs. placebo or other hypoglycemic agents. The meta-analysis's primary outcome was malignancies' incidence, and the results were evaluated using risk ratio (RR) and 95% confidence interval (CI). Results: We reviewed 76 articles (77 RCTs), comprising 45,162 and 43,811 patients in SGLT-2i and control groups, respectively. Compared with the control group, SGLT-2i had no significant association with augmented overall malignancy risk in T2D patients (RR = 1.05, 95% CI = 0.97–1.14, P = 0.20), but ertugliflozin may upsurge the risk (RR = 1.80, 95% CI = 1.02–3.17, P = 0.04). Compared with active hypoglycemic agents, dapagliflozin may increase (RR = 2.71, 95% CI = 1.46–6.43, P = 0.02) and empagliflozin may decrease (RR = 0.67, 95% CI = 0.45–0.98, P = 0.04) the malignancy risk. Compared with placebo, empagliflozin may exhibit risk increase (RR = 1.25, 95% CI = 1.05–1.49, P = 0.01), primarily in digestive system (RR = 1.48, 95% CI = 0.99–2.21, P = 0.05). Conclusions: Our results proposed that in diverse comparisons, ertugliflozin and dapagliflozin seemed to increase the malignancy risk in T2D patients. Empagliflozin may cause malignancy risk reduction compared with active hypoglycemic agents but increase overall risk primarily in the digestive system compared with placebo. In short, the relationship between SGLT-2i and malignancy in T2D patients remains unclear.
Collapse
Affiliation(s)
- Nanjing Shi
- Department of Endocrinology, Affiliated Hangzhou First People' Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yetan Shi
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingsi Xu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuexiu Si
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tong Yang
- Department of Tumor High Intensity Focused Ultrasound Therapy, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Mengting Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | | | - Xiangyuan Li
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fei Xie
- Department of Endocrinology, Ningbo Yinzhou No. 2 Hospital, Ningbo, China
| |
Collapse
|
103
|
SGLT2 inhibitor empagliflozin monotherapy alleviates renal oxidative stress in albino Wistar diabetic rats after myocardial infarction induction. Biomed Pharmacother 2021; 139:111624. [PMID: 33915503 DOI: 10.1016/j.biopha.2021.111624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Acute kidney injury (AKI) is a sudden insult of the kidney that happens within a short period of time, which is associated with poor prognosis in diabetic patients with myocardial infarction (MI). Subclinical AKI is a condition in which tubular damage biomarkers [Neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1(KIM-1)] are positive even in the absence of elevated serum creatinine. Recent studies reported that SGLT-2 inhibitors could protect against subclinical AKI in diabetic patients by elevating the level of β-Hydroxybutyric acid (βOHB). This study aims to examine the reno-protective potential of empagliflozin (EMPA) against MI associated AKI in diabetic rats. Eighty Albino Wistar rats were divided into: (1) nondiabetic sham group (CS), (2) nondiabetic + myocardial infarction group (CM), (3) diabetic + myocardial infarction group (DM) and (4) diabetic + myocardial infarction + empagliflozin group (DME). At the end of the experiment, blood samples and kidneys were collected for biochemical analysis, histopathological, and immunohistochemical studies. After induction of myocardial infarction, there was a significant decrease in serum creatinine and NGAL levels in DME. After EMPA administration, mesangial matrix index and glomerular area were lowered in DME if compared to DM group. As a marker for tubular injury, we used anti-NGAL and anti-KIM-1 immunohistochemistry. Strong positive reaction was noticed in DM group if compared to DME group which showed weak positive reaction. Levels of renal mRNAs [NGAL; KIM-1; Nox-2,4; TLR-2,4; MyD88; TNF- α and IL-1 β, 18] in DME group were reduced significantly compared to DM group. In conclusion, empagliflozin can protect against subclinical acute kidney injury in diabetic albino Wistar rats after myocardial infarction induction, which could improve the clinical outcome of SGLT-2 inhibitors in diabetic patients.
Collapse
|
104
|
Borzouei S, Moghimi H, Zamani A, Behzad M. Changes in T helper cell-related factors in patients with type 2 diabetes mellitus after empagliflozin therapy. Hum Immunol 2021; 82:422-428. [PMID: 33771372 DOI: 10.1016/j.humimm.2021.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/16/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022]
Abstract
The immune factors related to T helper (Th) 1 (T-bet, STAT1, and IFN-γ), Th17 (ROR-γt, STAT3, and IL-17), and Treg (FOXP3, STAT5, and IL-10) cells, and SOCS1/3 and the proliferation of Th cells were investigated in type 2 diabetes mellitus patients before (baseline) and after empagliflozin therapy. A total of 56 patients on metformin and gliclazide were separated into two groups: Group 1 did not receive empagliflozin (EMPA-) and the Group 2 received 10 mg/day of empagliflozin for 6 months (EMPA+). The expressions of T-bet, ROR-γt, FOXP3, STAT1/3/5 and SOCS1/3 were evaluated in CD4+ T cells with real-time PCR. The production of IFN-γ, IL-17, and IL-10 from CD4+ T cells was measured using ELISA. The proliferation of Th cells was assessed with flow cytometry. Six months of empagliflozin therapy significantly reduced the expression of ROR-γt and increased FOXP3 and STAT5 expression, compared to baseline. Production of IL-17 decreased after empagliflozin treatment, while IL-10 was enhanced in the EMPA+ group. Oral administration of empagliflozin or the addition of empagliflozin to the cell cultures diminished the proliferation of Th cells. Empagliflozin showed anti-inflammatory effects on Th cells by decreasing Th17-related factors, reducing proliferation capacity, and increasing Treg cell properties.
Collapse
Affiliation(s)
- Shiva Borzouei
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Social Determinants of Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Moghimi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Zamani
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdi Behzad
- Social Determinants of Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
105
|
Liu Z, Ma X, Ilyas I, Zheng X, Luo S, Little PJ, Kamato D, Sahebkar A, Wu W, Weng J, Xu S. Impact of sodium glucose cotransporter 2 (SGLT2) inhibitors on atherosclerosis: from pharmacology to pre-clinical and clinical therapeutics. Theranostics 2021; 11:4502-4515. [PMID: 33754074 PMCID: PMC7977463 DOI: 10.7150/thno.54498] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/17/2021] [Indexed: 02/06/2023] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are new oral drugs for the therapy of patients with type 2 diabetes mellitus (T2DM). Research in the past decade has shown that drugs of the SGLT2i class, such as empagliflozin, canagliflozin, and dapagliflozin, have pleiotropic effects in preventing cardiovascular diseases beyond their favorable impact on hyperglycemia. Of clinical relevance, recent landmark cardiovascular outcome trials have demonstrated that SGLT2i reduce major adverse cardiovascular events, hospitalization for heart failure, and cardiovascular death in T2DM patients with/without cardiovascular diseases (including atherosclerotic cardiovascular diseases and various types of heart failure). The major pharmacological action of SGLT2i is through inhibiting glucose re-absorption in the kidney and thus promoting glucose excretion. Studies in experimental models of atherosclerosis have shown that SGLT2i ameliorate the progression of atherosclerosis by mechanisms including inhibition of vascular inflammation, reduction in oxidative stress, reversing endothelial dysfunction, reducing foam cell formation and preventing platelet activation. Here, we summarize the anti-atherosclerotic actions and mechanisms of action of SGLT2i, with an aim to emphasize the clinical utility of this class of agents in preventing the insidious cardiovascular complications accompanying diabetes.
Collapse
Affiliation(s)
- Zhenghong Liu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaoxuan Ma
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xueying Zheng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sihui Luo
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Peter J. Little
- Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, QLD 4575, Australia
- School of Pharmacy, Pharmacy Australia Centre of Excellence, the University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, the University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Weiming Wu
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
106
|
Sinha B, Datta D, Ghosal S. Meta-analysis of the effects of sodium glucose cotransporter 2 inhibitors in non-alcoholic fatty liver disease patients with type 2 diabetes. JGH Open 2021; 5:219-227. [PMID: 33553659 PMCID: PMC7857274 DOI: 10.1002/jgh3.12473] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
Abstract
Background and Aim Sodium glucose cotransporter 2 inhibitors (SGLT‐2i), by way of their unique mode of action, present an attractive strategy for the treatment of type 2 diabetes and non‐alcoholic fatty liver disease (NAFLD), which often coexist and may lead to severe complications. However, the evidence for treatment with SGLT‐2i is limited to small heterogeneous studies. Therefore, this meta‐analysis was conducted to deduce the effects of SGLT‐2i in NAFLD with type 2 diabetes (T2D). Methods A web‐based search identified nine randomized controlled trials from the Cochrane Library, Embase, and PubMed for this meta‐analysis. The Comprehensive Meta‐Analysis Software version 3 was used to calculate the effect size. Result The outcomes of interest were analyzed from a pooled population of 11 369 patients—7281 on SGLT‐2i and 4088 in the control arm. SGLT‐2i therapy produced a statistically significant improvement in alanine aminotransferase [standardised mean difference (SDM), −0.21, 95% confidence interval (CI), −0.32 to −0.10, P < 0.01], aspartate aminotransferase (Standardised mean difference (SDM), −0.15, 95% CI, −0.24 to −0.07, P < 0.01), and liver fat as measured by proton density fat fraction (SDM, −0.98, 95% CI, −1.53 to −0.44, P < 0.01) in comparison to standard of care or placebo. In addition, there was a significant reduction in glycosylated hemoglobin (SDM, −0.37, 95% CI, −0.60 to −0.14, P < 0.01) and weight (SDM, −0.58, 95% CI, −0.93 to −0.23, P < 0.01) in the SGLT‐2i arm. Conclusion This meta‐analysis provides a convincing signal that SGLT‐2i have a salutary effect on NAFLD in type 2 diabetes (T2D), probably driven by an improvement of glycemia and body weight, which in turn attenuates hepatic inflammation and hepatic fat accumulation.
Collapse
Affiliation(s)
- Binayak Sinha
- Department of Endocrinology, AMRI Hospitals Kolkata India
| | - Debasis Datta
- Department of Hepatology, Fortis Hospital Kolkata India
| | - Samit Ghosal
- Department of Endocrinology, Nightingale Hospital Kolkata India
| |
Collapse
|
107
|
Bertero E, Dudek J, Cochain C, Delgobo M, Ramos G, Gerull B, Higuchi T, Vaeth M, Zernecke A, Frantz S, Hofmann U, Maack C. Immuno-metabolic interfaces in cardiac disease and failure. Cardiovasc Res 2021; 118:37-52. [PMID: 33537710 DOI: 10.1093/cvr/cvab036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/01/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
The interplay between the cardiovascular system, metabolism, and inflammation plays a central role in the pathophysiology of a wide spectrum of cardiovascular diseases, including heart failure. Here, we provide an overview of the fundamental aspects of the interrelation between inflammation and metabolism, ranging from the role of metabolism in immune cell function to the processes how inflammation modulates systemic and cardiac metabolism. Furthermore, we discuss how disruption of this immuno-metabolic interface is involved in the development and progression of cardiovascular disease, with a special focus on heart failure. Finally, we present new technologies and therapeutic approaches that have recently emerged and hold promise for the future of cardiovascular medicine.
Collapse
Affiliation(s)
- Edoardo Bertero
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Germany
| | - Jan Dudek
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Germany
| | - Clement Cochain
- Institute of Experimental Biomedicine, University Hospital Würzburg, Germany.,Comprehensive Heart Failure Center (CHFC), Würzburg, Germany
| | - Murilo Delgobo
- Comprehensive Heart Failure Center (CHFC), Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Germany
| | - Gustavo Ramos
- Comprehensive Heart Failure Center (CHFC), Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Germany
| | - Brenda Gerull
- Department of Internal Medicine I, University Hospital Würzburg, Germany.,Department of Cardiovascular Genetics, CHFC, University Hospital Würzburg, Germany
| | - Takahiro Higuchi
- Comprehensive Heart Failure Center (CHFC), Würzburg, Germany.,Department of Nuclear Medicine, University Hospital Würzburg, Germany
| | - Martin Vaeth
- Institute of Systems Immunology, Julius-Maximilians University Würzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Germany
| | - Stefan Frantz
- Comprehensive Heart Failure Center (CHFC), Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Germany
| | - Ulrich Hofmann
- Comprehensive Heart Failure Center (CHFC), Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Germany
| |
Collapse
|
108
|
Ideishi A, Suematsu Y, Tashiro K, Morita H, Kuwano T, Tomita S, Nakai K, Miura SI. Combination of Linagliptin and Empagliflozin Preserves Cardiac Systolic Function in an Ischemia-Reperfusion Injury Mice With Diabetes Mellitus. Cardiol Res 2021; 12:91-97. [PMID: 33738012 PMCID: PMC7935637 DOI: 10.14740/cr1194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/10/2020] [Indexed: 01/11/2023] Open
Abstract
Background Sodium-glucose co-transporter 2 inhibitor (SGLT2i) and dipeptidyl peptidase 4 inhibitor (DPP4i) are oral hypoglycemic agents. Although SGLT2i has been shown having the beneficial effects on heart failure in basic and clinical studies, the combined effects of SGLT2i and DPP4i have not been established well. We investigated the effects of SGLT2i and DPP4i against diabetes mice model of myocardial ischemia-reperfusion injury. Methods Streptozotocin-induced diabetic C57BL/6J mice were divided into control (vehicle), empagliflozin (30 mg/kg/day), linagliptin (3 mg/kg/day) and combination (30 mg/kg/day and 3 mg/kg/day, respectively) groups. After 7 days of drug administration, 30 min of myocardial ischemia was performed. We investigated body weight, heart weight, blood glucose, and cardiac functions by pressure-volume Millar catheter followed by 28 days of additional drug administration. Results Blood glucose levels, body weight, and heart weight were not significantly different between the groups. In Millar catheter analysis, left ventricular volume at the peak left ventricular ejection rate which is one of the cardiac systolic parameters in combination group was significantly preserved than that in control (P = 0.036). The cardiac index in the combination group tended to be preserved compared to that in the control (P = 0.06). The pathological fibrotic area in the left ventricle in the combination group also tended to be smaller (P = 0.08). Conclusions Combination therapy with linagliptin and empagliflozin preserved cardiac systolic function on the diabetes mice model of myocardial ischemia-reperfusion injury independent of blood glucose levels.
Collapse
Affiliation(s)
- Akihito Ideishi
- Department of Cardiology, Fukuoka University School of Medicine, 7-45-1, Nanakuma, Jonan-ku, Fukuoka, Japan.,Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan.,These authors were equally contributed as first authors
| | - Yasunori Suematsu
- Department of Cardiology, Fukuoka University School of Medicine, 7-45-1, Nanakuma, Jonan-ku, Fukuoka, Japan.,These authors were equally contributed as first authors
| | - Kohei Tashiro
- Department of Cardiology, Fukuoka University School of Medicine, 7-45-1, Nanakuma, Jonan-ku, Fukuoka, Japan
| | - Hidetaka Morita
- Department of Cardiology, Fukuoka University School of Medicine, 7-45-1, Nanakuma, Jonan-ku, Fukuoka, Japan
| | - Takashi Kuwano
- Department of Cardiology, Fukuoka University School of Medicine, 7-45-1, Nanakuma, Jonan-ku, Fukuoka, Japan
| | - Sayo Tomita
- Department of Cardiology, Fukuoka University School of Medicine, 7-45-1, Nanakuma, Jonan-ku, Fukuoka, Japan
| | - Kanji Nakai
- Department of Cardiology, Fukuoka University School of Medicine, 7-45-1, Nanakuma, Jonan-ku, Fukuoka, Japan
| | - Shin-Ichiro Miura
- Department of Cardiology, Fukuoka University School of Medicine, 7-45-1, Nanakuma, Jonan-ku, Fukuoka, Japan.,Department of Cardiology, Fukuoka University Nishijin Hospital, Fukuoka, Japan
| |
Collapse
|
109
|
D'Marco L, Morillo V, Gorriz JL, Suarez MK, Nava M, Ortega Á, Parra H, Villasmil N, Rojas-Quintero J, Bermúdez V. SGLT2i and GLP-1RA in Cardiometabolic and Renal Diseases: From Glycemic Control to Adipose Tissue Inflammation and Senescence. J Diabetes Res 2021; 2021:9032378. [PMID: 34790827 PMCID: PMC8592766 DOI: 10.1155/2021/9032378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022] Open
Abstract
Background. Over the last few years, the use of sodium-glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide 1 receptor agonists (GLP-1RA) has increased substantially in medical practice due to their documented benefits in cardiorenal and metabolic health. In this sense, and in addition to being used for glycemic control in diabetic patients, these drugs also have other favorable effects such as weight loss and lowering blood pressure, and more recently, they have been shown to have cardio and renoprotective effects with anti-inflammatory properties. Concerning the latter, the individual or associated use of these antihyperglycemic agents has been linked with a decrease in proinflammatory cytokines and with an improvement in the inflammatory profile in chronic endocrine-metabolic diseases. Hence, these drugs have been positioned as first-line therapy in the management of diabetes and its multiple comorbidities, such as obesity, which has been associated with persistent inflammatory states that induce dysfunction of the adipose tissue. Moreover, other frequent comorbidities in long-standing diabetic patients are chronic complications such as diabetic kidney disease, whose progression can be slowed by SGLT2i and/or GLP-1RA. The neuroendocrine and immunometabolism mechanisms underlying adipose tissue inflammation in individuals with diabetes and cardiometabolic and renal diseases are complex and not fully understood. Summary. This review intends to expose the probable molecular mechanisms and compile evidence of the synergistic or additive anti-inflammatory effects of SGLT2i and GLP-1RA and their potential impact on the management of patients with obesity and cardiorenal compromise.
Collapse
Affiliation(s)
- Luis D'Marco
- Hospital Clínico Universitario de Valencia, INCLIVA, Valencia 46010, Spain
- CEU Cardenal Herrera University, Valencia 46115, Spain
| | - Valery Morillo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - José Luis Gorriz
- Hospital Clínico Universitario de Valencia, INCLIVA, Valencia 46010, Spain
| | - María K. Suarez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Manuel Nava
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Ángel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Heliana Parra
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Nelson Villasmil
- School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Joselyn Rojas-Quintero
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 77054, USA
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080002, Colombia
| |
Collapse
|
110
|
Chewcharat A, Prasitlumkum N, Thongprayoon C, Bathini T, Medaura J, Vallabhajosyula S, Cheungpasitporn W. Efficacy and Safety of SGLT-2 Inhibitors for Treatment of Diabetes Mellitus among Kidney Transplant Patients: A Systematic Review and Meta-Analysis. Med Sci (Basel) 2020; 8:E47. [PMID: 33213078 PMCID: PMC7712903 DOI: 10.3390/medsci8040047] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The objective of this systematic review was to evaluate the efficacy and safety profiles of sodium-glucose co-transporter 2 (SGLT-2) inhibitors for treatment of diabetes mellitus (DM) among kidney transplant patients. METHODS We conducted electronic searches in Medline, Embase, Scopus, and Cochrane databases from inception through April 2020 to identify studies that investigated the efficacy and safety of SGLT-2 inhibitors in kidney transplant patients with DM. Study results were pooled and analyzed utilizing random-effects model. RESULTS Eight studies with 132 patients (baseline estimated glomerular filtration rate (eGFR) of 64.5 ± 19.9 mL/min/1.73m2) treated with SGLT-2 inhibitors were included in our meta-analysis. SGLT-2 inhibitors demonstrated significantly lower hemoglobin A1c (HbA1c) (WMD = -0.56% [95%CI: -0.97, -0.16]; p = 0.007) and body weight (WMD = -2.16 kg [95%CI: -3.08, -1.24]; p < 0.001) at end of study compared to baseline level. There were no significant changes in eGFR, serum creatinine, urine protein creatinine ratio, and blood pressure. By subgroup analysis, empagliflozin demonstrated a significant reduction in body mass index (BMI) and body weight. Canagliflozin revealed a significant decrease in HbA1C and systolic blood pressure. In terms of safety profiles, fourteen patients had urinary tract infection. Only one had genital mycosis, one had acute kidney injury, and one had cellulitis. There were no reported cases of euglycemic ketoacidosis or acute rejection during the treatment. CONCLUSION Among kidney transplant patients with excellent kidney function, SGLT-2 inhibitors for treatment of DM are effective in lowering HbA1C, reducing body weight, and preserving kidney function without reporting of serious adverse events, including euglycemic ketoacidosis and acute rejection.
Collapse
Affiliation(s)
- Api Chewcharat
- Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Cambridge, MA 02138, USA
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Charat Thongprayoon
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Tarun Bathini
- Department of Internal Medicine, University of Arizona, Tuscon, AZ 85721, USA;
| | - Juan Medaura
- Department of Internal Medicine, Division of Nephrology, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Saraschandra Vallabhajosyula
- Section of Interventional Cardiology, Department of Medicine, Division of Cardiovascular Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Wisit Cheungpasitporn
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
- Department of Internal Medicine, Division of Nephrology, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| |
Collapse
|
111
|
Bray JJH, Foster-Davies H, Stephens JW. A systematic review examining the effects of sodium-glucose cotransporter-2 inhibitors (SGLT2is) on biomarkers of inflammation and oxidative stress. Diabetes Res Clin Pract 2020; 168:108368. [PMID: 32800932 DOI: 10.1016/j.diabres.2020.108368] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/22/2020] [Accepted: 08/06/2020] [Indexed: 12/25/2022]
Abstract
AIMS Sodium-glucose cotransporter-2 inhibitors (SGLT2is) have a protective cardiorenal effect in type 2 diabetes. This systematic review examines the effects of SGLT2is on clinical biomarkers of inflammation and oxidative stress. METHODS A search of Medline, Embase, Web of Science, and The Cochrane Library was performed examining changes in selected clinical biomarkers for inflammation: c-reactive protein (CRP), adiponectin, interleukin-6 (IL6), tumour necrosis factor-alpha (TNF-α), and oxidative stress: 8-iso-prostaglandin F2α (8-iso-PGF2α) and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Quality of evidence was evaluated using the GRADEpro tool and risk of bias was assessed using the Cochrane RoB 2 and ROBINS-I tools. RESULTS A total of 23 (15 randomised, 8 observational) heterogeneously-designed clinical studies were identified (1654 patients, 24 weeks median follow-up). Consistent reductions were observed for CRP (10/12 studies), IL6 (5/5 studies), TNFα (3/4 studies), 8-iso-PGF2α (3/4 studies) and 8-OHdG (2/2 studies), and a consistent increase in adiponectin (6/8 studies). Change in serum CRP following SGLT2is appear to be independent of change in HbA1c and other study design and clinically relevant variables. CONCLUSIONS There is heterogeneous, yet consistent data supporting the beneficial effects of SLGT2is on inflammatory and oxidative stress. Change in serum CRP appears to be independent of change in HbA1c.
Collapse
Affiliation(s)
- Jonathan J H Bray
- Department of Diabetes & Endocrinology, Morriston Hospital, Swansea SA6 6NL, United Kingdom.
| | - Harri Foster-Davies
- Department of Diabetes & Endocrinology, Morriston Hospital, Swansea SA6 6NL, United Kingdom
| | - Jeffrey W Stephens
- Department of Diabetes & Endocrinology, Morriston Hospital, Swansea SA6 6NL, United Kingdom; Diabetes Research Group, School of Medicine, Swansea University, Swansea SA2 8PP, United Kingdom
| |
Collapse
|
112
|
Mayr F, Möller G, Garscha U, Fischer J, Rodríguez Castaño P, Inderbinen SG, Temml V, Waltenberger B, Schwaiger S, Hartmann RW, Gege C, Martens S, Odermatt A, Pandey AV, Werz O, Adamski J, Stuppner H, Schuster D. Finding New Molecular Targets of Familiar Natural Products Using In Silico Target Prediction. Int J Mol Sci 2020; 21:E7102. [PMID: 32993084 PMCID: PMC7582679 DOI: 10.3390/ijms21197102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/01/2022] Open
Abstract
Natural products comprise a rich reservoir for innovative drug leads and are a constant source of bioactive compounds. To find pharmacological targets for new or already known natural products using modern computer-aided methods is a current endeavor in drug discovery. Nature's treasures, however, could be used more effectively. Yet, reliable pipelines for the large-scale target prediction of natural products are still rare. We developed an in silico workflow consisting of four independent, stand-alone target prediction tools and evaluated its performance on dihydrochalcones (DHCs)-a well-known class of natural products. Thereby, we revealed four previously unreported protein targets for DHCs, namely 5-lipoxygenase, cyclooxygenase-1, 17β-hydroxysteroid dehydrogenase 3, and aldo-keto reductase 1C3. Moreover, we provide a thorough strategy on how to perform computational target predictions and guidance on using the respective tools.
Collapse
Affiliation(s)
- Fabian Mayr
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (F.M.); (V.T.); (B.W.); (S.S.); (H.S.)
| | - Gabriele Möller
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; (G.M.); (J.A.)
| | - Ulrike Garscha
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, Germany; (U.G.); (J.F.)
| | - Jana Fischer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, Germany; (U.G.); (J.F.)
| | - Patricia Rodríguez Castaño
- Pediatric Endocrinology, Diabetology and Metabolism, University Children’s Hospital Bern, Freiburgstrasse 15, 3010 Bern, Switzerland; (P.R.C.); (A.V.P.)
- Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Silvia G. Inderbinen
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; (S.G.I.); (A.O.)
| | - Veronika Temml
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (F.M.); (V.T.); (B.W.); (S.S.); (H.S.)
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (F.M.); (V.T.); (B.W.); (S.S.); (H.S.)
| | - Stefan Schwaiger
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (F.M.); (V.T.); (B.W.); (S.S.); (H.S.)
| | - Rolf W. Hartmann
- Helmholtz Institute of Pharmaceutical Research Saarland (HIPS), Department for Drug Design and Optimization, Campus E8.1, 66123 Saarbrücken, Germany;
- Saarland University, Pharmaceutical and Medicinal Chemistry, Campus E8.1, 66123 Saarbrücken, Germany
| | - Christian Gege
- University of Heidelberg, Institute of Pharmacy and Molecular Biotechnology (IPMB), Medicinal Chemistry, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany;
| | - Stefan Martens
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via Mach 1, 38010 San Michele all’Adige, Italy;
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; (S.G.I.); (A.O.)
| | - Amit V. Pandey
- Pediatric Endocrinology, Diabetology and Metabolism, University Children’s Hospital Bern, Freiburgstrasse 15, 3010 Bern, Switzerland; (P.R.C.); (A.V.P.)
- Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany;
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; (G.M.); (J.A.)
- Lehrstuhl für Experimentelle Genetik, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85356 Freising-Weihenstephan, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (F.M.); (V.T.); (B.W.); (S.S.); (H.S.)
| | - Daniela Schuster
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University Salzburg, Strubergasse 21, 5020 Salzburg, Austria
- Institute of Pharmacy/Pharmaceutical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
113
|
Pal R, Banerjee M. Comment on "Is the type of diabetes treatment relevant to outcome of COVID-19?". J Diabetes 2020; 12:705-707. [PMID: 32459882 PMCID: PMC7283857 DOI: 10.1111/1753-0407.13069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 05/22/2020] [Indexed: 11/28/2022] Open
Affiliation(s)
- Rimesh Pal
- Department of EndocrinologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Mainak Banerjee
- Department of EndocrinologyInstitute of Post Graduate Medical Education and ResearchKolkataIndia
| |
Collapse
|
114
|
De Pascalis A, Cianciolo G, Capelli I, Brunori G, La Manna G. SGLT2 inhibitors, sodium and off-target effects: an overview. J Nephrol 2020; 34:673-680. [PMID: 32870494 DOI: 10.1007/s40620-020-00845-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/14/2020] [Indexed: 01/31/2023]
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are a relatively new class of antidiabetic drugs that in addition to emerging as an effective antihyperglycemic treatment have been shown to improve, in several trials, both renal and cardiovascular outcomes. In consideration of the renal site of action and the associated osmotic diuresis, a negative sodium balance has been postulated during SGLT2i administration. Actually, sodium and water depletion may contribute to some positive actions of SGLT2i but evidence is far from being conclusive and the real physiologic effects of SGLT2i on sodium remain largely unknown. Indeed, no study has yet investigated how SGLT2i change sodium balance in the long term and especially the pathways through which the natriuretic effect is expressed. Furthermore, several experimental studies have recently identified different pathways, not directly linked to tubular sodium handling, which could contribute to the renal and cardiovascular benefits associated with SGLT2i. This paper will review the evidence of SGLT2i action on sodium transporters, their off-target effects and their potential role on kidney protection.
Collapse
Affiliation(s)
- Antonio De Pascalis
- Nephrology, Dialysis and Renal Transplantation Unit, Vito Fazzi Hospital, Lecce, Italy.
| | - Giuseppe Cianciolo
- Nephrology, Dialysis and Renal Transplant Unit, Department of Experimental Diagnostic and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Irene Capelli
- Nephrology, Dialysis and Renal Transplant Unit, Department of Experimental Diagnostic and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | | | - Gaetano La Manna
- Nephrology, Dialysis and Renal Transplant Unit, Department of Experimental Diagnostic and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
115
|
Cianciolo G, De Pascalis A, Gasperoni L, Tondolo F, Zappulo F, Capelli I, Cappuccilli M, La Manna G. The Off-Target Effects, Electrolyte and Mineral Disorders of SGLT2i. Molecules 2020; 25:molecules25122757. [PMID: 32549243 PMCID: PMC7355461 DOI: 10.3390/molecules25122757] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022] Open
Abstract
The sodium-glucose cotransporter 2 inhibitors (SGLT2i) are a relatively new class of antidiabetic drugs that, in addition to emerging as an effective hypoglycemic treatment, have been shown to improve, in several trials, both renal and cardiovascular outcomes. In consideration of the renal site of action and the associated osmotic diuresis, a negative sodium balance has been postulated during SGLT2i administration. Although it is presumable that sodium and water depletion may contribute to some positive actions of SGLT2i, evidence is far from being conclusive and the real physiologic effects of SGLT2i on sodium remain largely unknown. Indeed, no study has yet investigated how SGLT2i change sodium balance in the long term and especially the pathways through which the natriuretic effect is expressed. Furthermore, recently, several experimental studies have identified different pathways, not directly linked to tubular sodium handling, which could contribute to the renal and cardiovascular benefits associated with SGLT2i. These compounds may also modulate urinary chloride, potassium, magnesium, phosphate, and calcium excretion. Some changes in electrolyte homeostasis are transient, whereas others may persist, suggesting that the administration of SGLT2i may affect mineral and electrolyte balances in exposed subjects. This paper will review the evidence of SGLT2i action on sodium transporters, their off-target effects and their potential role on kidney protection as well as their influence on electrolytes and mineral homeostasis.
Collapse
Affiliation(s)
- Giuseppe Cianciolo
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, 40100 Bologna, Italy; (G.C.); (L.G.); (F.T.); (F.Z.); (I.C.); (M.C.)
| | | | - Lorenzo Gasperoni
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, 40100 Bologna, Italy; (G.C.); (L.G.); (F.T.); (F.Z.); (I.C.); (M.C.)
| | - Francesco Tondolo
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, 40100 Bologna, Italy; (G.C.); (L.G.); (F.T.); (F.Z.); (I.C.); (M.C.)
| | - Fulvia Zappulo
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, 40100 Bologna, Italy; (G.C.); (L.G.); (F.T.); (F.Z.); (I.C.); (M.C.)
| | - Irene Capelli
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, 40100 Bologna, Italy; (G.C.); (L.G.); (F.T.); (F.Z.); (I.C.); (M.C.)
| | - Maria Cappuccilli
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, 40100 Bologna, Italy; (G.C.); (L.G.); (F.T.); (F.Z.); (I.C.); (M.C.)
| | - Gaetano La Manna
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, 40100 Bologna, Italy; (G.C.); (L.G.); (F.T.); (F.Z.); (I.C.); (M.C.)
- Correspondence: ; Tel.: +39-051-214-3255; Fax: +39-051-340-871
| |
Collapse
|
116
|
Lopaschuk GD, Verma S. Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: A State-of-the-Art Review. JACC Basic Transl Sci 2020; 5:632-644. [PMID: 32613148 PMCID: PMC7315190 DOI: 10.1016/j.jacbts.2020.02.004] [Citation(s) in RCA: 535] [Impact Index Per Article: 107.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/20/2022]
Abstract
Recent clinical trials have shown that sodium glucose co-transport 2 (SGLT2) inhibitors have dramatic beneficial cardiovascular outcomes. These include a reduced incidence of cardiovascular death and heart failure hospitalization in people with and without diabetes, and those with and without prevalent heart failure. The actual mechanism(s) responsible for these beneficial effects are not completely clear. Several potential theses have been proposed to explain the cardioprotective effects of SGLT2 inhibition, which include diuresis/natriuresis, blood pressure reduction, erythropoiesis, improved cardiac energy metabolism, inflammation reduction, inhibition of the sympathetic nervous system, prevention of adverse cardiac remodeling, prevention of ischemia/reperfusion injury, inhibition of the Na+/H+-exchanger, inhibition of SGLT1, reduction in hyperuricemia, increasing autophagy and lysosomal degradation, decreasing epicardial fat mass, increasing erythropoietin levels, increasing circulating pro-vascular progenitor cells, decreasing oxidative stress, and improving vascular function. The strengths and weaknesses of these proposed mechanisms are reviewed in an effort to try to synthesize and prioritize the mechanisms as they relate to clinical event reduction.
Collapse
Affiliation(s)
- Gary D. Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, Li Ka Shing Knowledge Institute of St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
117
|
Patoulias D, Papadopoulos C, Stavropoulos K, Zografou I, Doumas M, Karagiannis A. Prognostic value of arterial stiffness measurements in cardiovascular disease, diabetes, and its complications: The potential role of sodium-glucose co-transporter-2 inhibitors. J Clin Hypertens (Greenwich) 2020; 22:562-571. [PMID: 32058679 PMCID: PMC8029715 DOI: 10.1111/jch.13831] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus (T2DM) constitutes a global pandemic, representing the 7th cause of death worldwide. Morbidity and mortality of patients with T2DM are gradually increasing, while prevalence of cardiovascular disease (CVD) among these patients is almost 14% greater compared to the general population. Arterial stiffness is nowadays a valuable biomarker of CVD and a promising treatment target in specific patient groups, including those suffering from T2DM. Despite that fact, design of the available studies cannot prove causal relationship. Recently, a new antidiabetic drug class, namely sodium-glucose co-transporter-2 (SGLT-2) inhibitors, has attracted scientific interest, due to their multiple, beneficial, pleiotropic effects, especially those focused on CVD. There is limited relevant literature concerning the effects of SGLT-2 inhibitors on arterial stiffness, while retrieved results might be considered as conflicting. The aim of the present review article is to summarize acquired knowledge regarding the prognostic role of arterial stiffness in T2DM, along with the presentation of retrieved data on the potential role of SGLT-2 inhibitors.
Collapse
Affiliation(s)
- Dimitrios Patoulias
- Second Propedeutic Department of Internal MedicineGeneral Hospital “Hippokration”Aristotle University of ThessalonikiThessalonikiGreece
| | - Christodoulos Papadopoulos
- Third Department of CardiologyGeneral Hospital “Hippokration”Aristotle University of ThessalonikiThessalonikiGreece
| | - Konstantinos Stavropoulos
- Second Propedeutic Department of Internal MedicineGeneral Hospital “Hippokration”Aristotle University of ThessalonikiThessalonikiGreece
| | - Ioanna Zografou
- Second Propedeutic Department of Internal MedicineGeneral Hospital “Hippokration”Aristotle University of ThessalonikiThessalonikiGreece
| | - Michael Doumas
- Second Propedeutic Department of Internal MedicineGeneral Hospital “Hippokration”Aristotle University of ThessalonikiThessalonikiGreece
- Veterans Affair Medical CenterGeorge Washington UniversityWashingtonDCUSA
| | - Asterios Karagiannis
- Second Propedeutic Department of Internal MedicineGeneral Hospital “Hippokration”Aristotle University of ThessalonikiThessalonikiGreece
| |
Collapse
|