101
|
Boda SK, Thrivikraman G, Panigrahy B, Sarma DD, Basu B. Competing Roles of Substrate Composition, Microstructure, and Sustained Strontium Release in Directing Osteogenic Differentiation of hMSCs. ACS APPLIED MATERIALS & INTERFACES 2017; 9:19389-19408. [PMID: 27617589 DOI: 10.1021/acsami.6b08694] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Strontium releasing bioactive ceramics constitute an important class of biomaterials for osteoporosis treatment. In the present study, we evaluated the synthesis, phase assemblage, and magnetic properties of strontium hexaferrite, SrFe12O19, (SrFe) nanoparticles. On the biocompatibility front, the size- and dose-dependent cytotoxicity of SrFe against human mesenchymal stem cells (hMSCs) were investigated. After establishing their non-toxic nature, we used the strontium hexaferrite nanoparticles (SrFeNPs) in varying amount (x = 0, 10, and 20 wt %) to consolidate bioactive composites with hydroxyapatite (HA) by multi-stage spark plasma sintering (SPS). Rietveld refinement of these spark plasma sintered composites revealed a near complete decomposition of SrFe12O19 to magnetite (Fe3O4) along with a marked increase in the unit cell volume of HA, commensurate with strontium-doped HA. The cytocompatibility of SrHA-Fe composites with hMSCs was assessed using qualitative and quantitative morphological analysis along with phenotypic and genotypic expression for stem cell differentiation. A marked decrease in the stemness of hMSCs, indicated by reduced vimentin expression and acquisition of osteogenic phenotype, evinced by alkaline phosphatase (ALP) and collagen deposition was recorded on SrHA-Fe composites in osteoinductive culture. A significant upregulation of osteogenic marker genes (Runx2, ALP and OPN) was detected in case of the SrHA-Fe composites, whereas OCN and Col IA expression were similarly high for baseline HA. However, matrix mineralization was elevated on SrHA-Fe composites in commensurate with the release of Sr2+ and Fe2+. Summarizing, the current work is the first report of strontium hexaferrite as a non-toxic nanobiomaterial. Also, SrHA-based iron oxide composites can potentially better facilitate bone formation, when compared to pristine HA.
Collapse
Affiliation(s)
- Sunil Kumar Boda
- Laboratory for Biomaterials, Materials Research Centre, §Centre for Nano Science and Engineering, ⊥Solid State and Structural Chemistry Unit, and ∥Centre for Biosystems Science and Engineering, Indian Institute of Science , Bengaluru 560 012, India
| | - Greeshma Thrivikraman
- Laboratory for Biomaterials, Materials Research Centre, §Centre for Nano Science and Engineering, ⊥Solid State and Structural Chemistry Unit, and ∥Centre for Biosystems Science and Engineering, Indian Institute of Science , Bengaluru 560 012, India
| | - Bharati Panigrahy
- Laboratory for Biomaterials, Materials Research Centre, §Centre for Nano Science and Engineering, ⊥Solid State and Structural Chemistry Unit, and ∥Centre for Biosystems Science and Engineering, Indian Institute of Science , Bengaluru 560 012, India
| | - D D Sarma
- Laboratory for Biomaterials, Materials Research Centre, §Centre for Nano Science and Engineering, ⊥Solid State and Structural Chemistry Unit, and ∥Centre for Biosystems Science and Engineering, Indian Institute of Science , Bengaluru 560 012, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, §Centre for Nano Science and Engineering, ⊥Solid State and Structural Chemistry Unit, and ∥Centre for Biosystems Science and Engineering, Indian Institute of Science , Bengaluru 560 012, India
| |
Collapse
|
102
|
Uwaezuoke SN. Vitamin D deficiency and anemia risk in children: a review of emerging evidence. PEDIATRIC HEALTH MEDICINE AND THERAPEUTICS 2017; 8:47-55. [PMID: 29388633 PMCID: PMC5774601 DOI: 10.2147/phmt.s129362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There has been renewed scientific interest in the sequelae of vitamin D deficiency, given the emerging evidence on the diverse biologic functions of vitamin D, besides its fundamental role in bone and mineral metabolism. For the past decade, the evidence in the medical literature pointing to a relationship between anemia risk and vitamin D deficiency has been accumulating. This paper critically reviews the current evidence linking vitamin D deficiency to anemia risk in children. The synthesized evidence indicates that the studies, which were preponderantly conducted among the adult population, not only reported a bidirectional relationship between vitamin D deficiency and anemia but also showed a racial effect. In studies conducted among children, similar results were reported. Although the causal association of vitamin D deficiency with anemia risk (especially iron-deficiency anemia) remains debatable, the noncalcemic actions of the vitamin and its analogs hold prospects for several novel clinical applications. There is, however, unanimity in many reports suggesting that vitamin D deficiency is directly associated with anemia of chronic disease or inflammation. Despite the advances in unraveling the role of vitamin D in iron homeostasis, further research is still required to validate causality in the relationship between vitamin D deficiency and anemia, as well as to determine its optimal dosing, the ideal recipients for therapeutic intervention, and the preferred analogs to administer.
Collapse
Affiliation(s)
- Samuel N Uwaezuoke
- Department of Paediatrics, College of Medicine, University of Nigeria, Nsukka.,Department of Paediatrics, University of Nigeria Teaching Hospital, Ituku-Ozalla, Nigeria
| |
Collapse
|
103
|
Ke JY, Cen WJ, Zhou XZ, Li YR, Kong WD, Jiang JW. Iron overload induces apoptosis of murine preosteoblast cells via ROS and inhibition of AKT pathway. Oral Dis 2017; 23:784-794. [PMID: 28248443 DOI: 10.1111/odi.12662] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 01/03/2023]
Affiliation(s)
- J-Y Ke
- Department of Stomatology; The First Affiliated Hospital of Jinan University; Guangzhou China
- Department of Orthodontics; Foshan Chancheng Stomatological Hospital; Foshan China
| | - W-J Cen
- Department of Stomatology; The First Affiliated Hospital of Jinan University; Guangzhou China
- Department of Stomatology; Guangzhou Development District Hospital; Guangzhou China
| | - X-Z Zhou
- Department of Stomatology; The First Affiliated Hospital of Jinan University; Guangzhou China
| | - Y-R Li
- Department of Orthodontics; Foshan Chancheng Stomatological Hospital; Foshan China
| | - W-D Kong
- Department of Stomatology; The First Affiliated Hospital of Jinan University; Guangzhou China
| | - J-W Jiang
- Department of Biochemistry; Medical College; Jinan University; Guangzhou China
| |
Collapse
|
104
|
Claro da Silva T, Hiller C, Gai Z, Kullak-Ublick GA. Vitamin D3 transactivates the zinc and manganese transporter SLC30A10 via the Vitamin D receptor. J Steroid Biochem Mol Biol 2016; 163:77-87. [PMID: 27107558 DOI: 10.1016/j.jsbmb.2016.04.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 03/15/2016] [Accepted: 04/13/2016] [Indexed: 01/11/2023]
Abstract
Vitamin D3 regulates genes critical for human health and its deficiency is associated with an increased risk for osteoporosis, cancer, diabetes, multiple sclerosis, hypertension, inflammatory and immunological diseases. To study the impact of vitamin D3 on genes relevant for the transport and metabolism of nutrients and drugs, we employed next-generation sequencing (NGS) and analyzed global gene expression of the human-derived Caco-2 cell line treated with 500nM vitamin D3. Genes involved in neuropeptide signaling, inflammation, cell adhesion and morphogenesis were differentially expressed. Notably, genes implicated in zinc, manganese and iron homeostasis were largely increased by vitamin D3 treatment. An ∼10-fold increase in ceruloplasmin and ∼4-fold increase in haptoglobin gene expression suggested a possible association between vitamin D and iron homeostasis. SLC30A10, the gene encoding the zinc and manganese transporter ZnT10, was the chiefly affected transporter, with ∼15-fold increase in expression. SLC30A10 is critical for zinc and manganese homeostasis and mutations in this gene, resulting in impaired ZnT10 function or expression, cause manganese intoxication, with Parkinson-like symptoms. Our NGS results were validated by real-time PCR in Caco-2 cells, as well as in duodenal biopsies taken from healthy human subjects treated with 0.5μg vitamin D3 daily for 10 days. In addition to increasing gene expression of SLC30A10 and the positive control TRPV6, vitamin D3 also increased ZnT10 protein expression, as indicated by Western blot and cytofluorescence. In silico identification of potential vitamin D responsive elements (VDREs) in the 5'-flanking region of the SLC30A10 promoter and dual-luciferase reporter assay showed enhanced promoter activity in the presence of vitamin D receptor (VDR) and retinoid X receptor (RXR) constructs, as well as vitamin D3, but not when one of these factors was absent. Electrophoretic mobility shift assay (EMSA) and competition EMSA revealed binding of select sequences, namely, nt -1623/-1588 and nt -1758/-1723 relative to the transcription start site, to VDR-containing nuclear extracts. In conclusion, we have shown that vitamin D3 transactivates the SLC30A10 gene in a VDR-dependent manner, resulting in increased ZnT10 protein expression. Because SLC30A10 is highly expressed in the small intestine, it is possible that the control of zinc and manganese systemic levels is regulated by vitamin D3 in the intestine. Zinc, manganese and vitamin D are important for bone metabolism and brain health. Future examination of a possible role for supplementation or chelation of zinc and manganese, alongside vitamin D3 administration, will further our understanding of its potential benefit in the treatment of specific illnesses, such as osteoporosis and Parkinson's disease.
Collapse
Affiliation(s)
- Tatiana Claro da Silva
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Switzerland.
| | - Christian Hiller
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Switzerland.
| | - Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Switzerland.
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Switzerland.
| |
Collapse
|
105
|
Eckert E, Lu L, Unsworth LD, Chen L, Xie J, Xu R. Biophysical and in vitro absorption studies of iron chelating peptide from barley proteins. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.06.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
106
|
Xie W, Lorenz S, Dolder S, Hofstetter W. Extracellular Iron is a Modulator of the Differentiation of Osteoclast Lineage Cells. Calcif Tissue Int 2016; 98:275-83. [PMID: 26615413 DOI: 10.1007/s00223-015-0087-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 11/13/2015] [Indexed: 01/28/2023]
Abstract
Osteoclasts originate from the hematopoietic stem cell and share a differentiation pathway with the cells of the monocyte/macrophage lineages. Development and activation of osteoclasts, and as a consequence regulation of bone resorption, depend on two growth factors: macrophage colony-stimulating factor and receptor activator of NF-κB ligand. Furthermore, cell development and activity are modulated by a microenvironment composed of cytokines and growth factors and of the extracellular matrix. Membrane transporters are a means for cells to interact with their environment. Within this study, the expression of proteins regulating cellular iron homeostasis in osteoclast-like cells grown from bone marrow-derived progenitors was compared to the expression of this set of proteins by monocyte/macrophage lineage cells. In differentiating osteoclasts, levels of transcripts encoding transferrin receptor 1 and divalent metal transporter 1 (Slc11A2) were increased, while levels of transcripts encoding ferroportin (Slc40A1) and natural resistance-associated macrophage protein 1 (Slc11A1) were decreased. Supplementation of the culture media with exogenous iron led to an increase in the proliferation of osteoclast progenitor cells and to the expression of a macrophage-like phenotype, while the development of osteoclasts was reduced. Upon transfer of mature OC onto a CaP substrate, iron depletion of the medium with the Fe(3+)-chelator Deferoxamine Mesylate decreased CaP dissolution by ~30 %, which could be restored by addition of exogenous iron. During the 24 h of the assay, no effects were observed on total TRAP activity. The data demonstrate transcriptional regulation of the components of cellular iron transporters during OC development and suggests that iron homeostasis may contribute to fine-tuning of the RANKL-induced OC development.
Collapse
Affiliation(s)
- Wenjie Xie
- Bone Biology & Orthopaedic Research, Department Clinical Research, University of Bern, Murtenstrasse 35, 3010, Bern, Switzerland
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sebastian Lorenz
- City Hospital Triemli Zurich, Institute for Laboratory Medicine, Zurich, Switzerland
| | - Silvia Dolder
- Bone Biology & Orthopaedic Research, Department Clinical Research, University of Bern, Murtenstrasse 35, 3010, Bern, Switzerland
| | - Willy Hofstetter
- Bone Biology & Orthopaedic Research, Department Clinical Research, University of Bern, Murtenstrasse 35, 3010, Bern, Switzerland.
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland.
| |
Collapse
|
107
|
Abstract
The regulation of phosphate metabolism as an influence on bone homeostasis is profound. Recent advances in understanding the systemic control of Fibroblast growth factor-23 (FGF23) has uncovered novel effectors of endocrine feedback loops for calcium, phosphate, and vitamin D balance that interact with 'traditional' feedback loops for mineral metabolism. Not only are these findings re-shaping research studying phosphate handling and skeletal interactions, they have provided new therapeutic interventions. Emerging data support that the control of FGF23 production in bone and its circulating concentrations is a multi-layered process, with some influences affecting FGF23 transcription and some post-translational modification of the secreted, bioactive protein. Additionally, the actions of FGF23 on its target tissues via its co-receptor αKlotho, are subject to regulatory events just coming to light. The recent findings of systemic influences on circulating FGF23 and the downstream manifestations on bone homeostasis will be reviewed herein.
Collapse
Affiliation(s)
- Erica L Clinkenbeard
- Department of Medical and Molecular Genetics, Division of Molecular Genetics and Gene Therapy, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Kenneth E White
- Department of Medical and Molecular Genetics, Division of Molecular Genetics and Gene Therapy, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
108
|
Baeza-Richer C, Arroyo-Pardo E, Blanco-Rojo R, Toxqui L, Remacha A, Vaquero MP, López-Parra AM. Genetic contribution to iron status: SNPs related to iron deficiency anaemia and fine mapping of CACNA2D3 calcium channel subunit. Blood Cells Mol Dis 2015; 55:273-80. [DOI: 10.1016/j.bcmd.2015.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 12/13/2022]
|