101
|
Inaki K, Shibutani T, Maeda N, Eppenberger-Castori S, Nicolet S, Kaneda Y, Koyama K, Qiu Y, Wakita K, Murakami M. Pan-cancer gene expression analysis of tissue microarray using EdgeSeq oncology biomarker panel and a cross-comparison with HER2 and HER3 immunohistochemical analysis. PLoS One 2022; 17:e0274140. [PMID: 36137139 PMCID: PMC9498941 DOI: 10.1371/journal.pone.0274140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022] Open
Abstract
Molecular and protein biomarker profiling are key to oncology drug development. Antibody-drug conjugates (ADCs) directly deliver chemotherapeutic agents into tumor cells based on unique cancer cell biomarkers. A pan-cancer tissue microarray (TMA) data set and gene panel were validated and gene signature analyses were conducted on normal and cancer tissues to refine selection of ADC targets. Correlation of mRNA and protein levels, and human epidermal growth factor receptor (HER) expression patterns were assessed. An EdgeSeq biomarker panel (2862 genes) was used across 8531 samples (23 solid cancer types/subtypes; 16 normal tissues) with an established TMA data set, and immune cell and cell cycle gene signatures were analyzed. Discriminating gene expression signatures were defined based on pathological classification of cancer subtypes. Correlative analyses of HER2 and HER3 mRNA (EdgeSeq) and protein expression (immunohistochemistry [IHC]) were performed and compared with publicly available data (The Cancer Genome Atlas [TCGA]; Cancer Cell Line Encyclopedia [CCLE]). Gene expression patterns among cancer types in the TMA (EdgeSeq) and TCGA (RNA-seq) were similar. EdgeSeq gene signature analyses aligned with the majority of pathological cancer types/subtypes and identified cancer-specific gene expression patterns. TMA IHC H-scores for HER3 varied across cancer types/subtypes. In a few cancer types, HER3 mRNA and protein expression did not align, including lower liver hepatocellular carcinoma IHC H-score, compared with mRNA. Although all TNBC and ovarian cancer subtypes expressed mRNA, some had lower protein expression. This was seen in TMA and TCGA data sets, but not in CCLE. The EdgeSeq TMA data set can expand upon current biomarker data by including cancers not currently in TCGA. The primary analysis of EdgeSeq and IHC comparison suggested a unique protein-level regulation of HER3 in some tumor subtypes and highlights the importance of investigating protein levels of ADC targets in both tumor and normal tissues.
Collapse
Affiliation(s)
- Koichiro Inaki
- Translational Science Department I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
- Translational Research Department, Daiichi Sankyo RD Novare Co., Ltd., Tokyo, Japan
- * E-mail:
| | - Tomoko Shibutani
- Translational Science Department I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
- Translational Research Department, Daiichi Sankyo RD Novare Co., Ltd., Tokyo, Japan
| | - Naoyuki Maeda
- Translational Science Department I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | | | | | - Yuki Kaneda
- Translational Science Department I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Kumiko Koyama
- Translational Science Department I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Yang Qiu
- Global Oncology R&D, Daiichi Sankyo, Inc., Basking Ridge, NJ, United States of America
| | - Kenichi Wakita
- Translational Science Department I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Masato Murakami
- Translational Science Department I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
- Global Oncology R&D, Daiichi Sankyo, Inc., Basking Ridge, NJ, United States of America
| |
Collapse
|
102
|
Zhang D, He C, Guo Y, Li J, Li B, Zhao Y, Yu L, Chang Z, Pei H, Yang M, Li N, Zhang Q, He Y, Pan Y, Zhao ZJ, Zhang C, Chen Y. Efficacy of SCF drug conjugate targeting c-KIT in gastrointestinal stromal tumor. BMC Med 2022; 20:257. [PMID: 35999600 PMCID: PMC9400206 DOI: 10.1186/s12916-022-02465-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Gastrointestinal stromal tumor (GIST) is a rare type of cancer that occurs in the gastrointestinal tract. The majority of GIST cases carry oncogenic forms of KIT, the receptor for stem cell factor (SCF). Small molecule kinase inhibitor imatinib is effective in prolonging the survival of GIST patients by targeting KIT. However, drug resistance often develops during the therapeutic treatment. Here, we produced a SCF-emtansine drug conjugate (SCF-DM1) with favorable drug efficacy towards GIST cells. METHODS Recombinant human SCF (rhSCF) was expressed in E. coli cells and further purified with Ni-NTA Sepharose and Phenyl Sepharose. It was then conjugated with DM1, and the conjugated product SCF-DM1 was evaluated using in vitro cell-based assays and in vivo xenograft mouse model. RESULTS SCF-DM1 was effective in inhibiting imatinib-sensitive and -resistant GIST cell lines and primary tumor cells, with IC50 values of < 30 nM. It induced apoptosis and cell cycle arrest in GIST cells. In xenograft mouse model, SCF-DM1 showed favorable efficacy and safety profiles. CONCLUSIONS rhSCF is a convenient and effective vector for drug delivery to KIT positive GIST cells. SCF-DM1 is an effective drug candidate to treat imatinib-sensitive and -resistant GIST.
Collapse
Affiliation(s)
- Dengyang Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Chunxiao He
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Yao Guo
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Jianfeng Li
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Bo Li
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Yuming Zhao
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Liuting Yu
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Zhiguang Chang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Hanzhong Pei
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Ming Yang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Na Li
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Qi Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Yihang Pan
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| | - Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
103
|
Quintana J, Arboleda D, Hu H, Scott E, Luthria G, Pai S, Parangi S, Weissleder R, Miller MA. Radiation Cleaved Drug-Conjugate Linkers Enable Local Payload Release. Bioconjug Chem 2022; 33:1474-1484. [PMID: 35833631 PMCID: PMC9390333 DOI: 10.1021/acs.bioconjchem.2c00174] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conjugation of therapeutic payloads to biologics including antibodies and albumin can enhance the selectively of drug delivery to solid tumors. However, achieving activity in tumors while avoiding healthy tissues remains a challenge, and payload activity in off-target tissues can cause toxicity for many such drug-conjugates. Here, we address this issue by presenting a drug-conjugate linker strategy that releases an active therapeutic payload upon exposure to ionizing radiation. Localized X-ray irradiation at clinically relevant doses (8 Gy) yields 50% drug (doxorubicin or monomethyl auristatin E, MMAE) release under hypoxic conditions that are traditionally associated with radiotherapy resistance. As proof-of-principle, we apply the approach to antibody- and albumin-drug conjugates and achieve >2000-fold enhanced MMAE cytotoxicity upon irradiation. Overall, this work establishes ionizing radiation as a strategy for spatially localized cancer drug delivery.
Collapse
Affiliation(s)
- Jeremy
M. Quintana
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
| | - David Arboleda
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
| | - Huiyu Hu
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Surgery, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Ella Scott
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
| | - Gaurav Luthria
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
| | - Sara Pai
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Surgery, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Sareh Parangi
- Department
of Surgery, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Ralph Weissleder
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Miles A. Miller
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
104
|
D'Angelo A, Chapman R, Sirico M, Sobhani N, Catalano M, Mini E, Roviello G. An update on antibody-drug conjugates in urothelial carcinoma: state of the art strategies and what comes next. Cancer Chemother Pharmacol 2022; 90:191-205. [PMID: 35953604 PMCID: PMC9402760 DOI: 10.1007/s00280-022-04459-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022]
Abstract
In recent years, considerable progress has been made in increasing the knowledge of tumour biology and drug resistance mechanisms in urothelial cancer. Therapeutic strategies have significantly advanced with the introduction of novel approaches such as immune checkpoint inhibitors and Fibroblast Growth Factor Receptor inhibitors. However, despite these novel agents, advanced urothelial cancer is often still progressive in spite of treatment and correlates with a poor prognosis. The introduction of antibody–drug conjugates consisting of a target-specific monoclonal antibody covalently linked to a payload (cytotoxic agent) is a novel and promising therapeutic strategy. In December 2019, the US Food and Drug Administration (FDA) granted accelerated approval to the nectin-4-targeting antibody–drug conjugate, enfortumab vedotin, for the treatment of advanced or metastatic urothelial carcinomas that are refractory to both immune checkpoint inhibitors and platinum-based treatment. Heavily pre-treated urothelial cancer patients reported a significant, 40% response to enfortumab vedotin while other antibody–drug conjugates are currently still under investigation in several clinical trials. We have comprehensively reviewed the available treatment strategies for advanced urothelial carcinoma and outlined the mechanism of action of antibody–drug conjugate agents, their clinical applications, resistance mechanisms and future strategies for urothelial cancer.
Collapse
Affiliation(s)
- Alberto D'Angelo
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Robert Chapman
- Department of Medicine, Princess Alexandra Hospital NHS Foundation Trust, Harlow, CM20 1QX, UK
| | - Marianna Sirico
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Navid Sobhani
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Martina Catalano
- School of Human Health Sciences, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Enrico Mini
- Department of Health Sciences, University of Florence, vialePieraccini, 6, 50139, Florence, Italy
| | - Giandomenico Roviello
- Department of Health Sciences, University of Florence, vialePieraccini, 6, 50139, Florence, Italy
| |
Collapse
|
105
|
Singh S, Serwer L, DuPage A, Elkins K, Chauhan N, Ravn M, Buchanan F, Wang L, Krimm M, Wong K, Sagert J, Tipton K, Moore SJ, Huang Y, Jang A, Ureno E, Miller A, Patrick S, Duvur S, Liu S, Vasiljeva O, Li Y, Henriques T, Badagnani I, Jeffries S, Schleyer S, Leanna R, Krebber C, Viswanathan S, Desnoyers L, Terrett J, Belvin M, Morgan-Lappe S, Kavanaugh WM, Richardson J. Nonclinical Efficacy and Safety of CX-2029, an Anti-CD71 Probody-Drug Conjugate. Mol Cancer Ther 2022; 21:1326-1336. [PMID: 35666803 PMCID: PMC9662867 DOI: 10.1158/1535-7163.mct-21-0193] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/19/2021] [Accepted: 05/20/2022] [Indexed: 01/07/2023]
Abstract
Probody therapeutics (Pb-Txs) are conditionally activated antibody-drug conjugates (ADCs) designed to remain inactive until proteolytically activated in the tumor microenvironment, enabling safer targeting of antigens expressed in both tumor and normal tissue. Previous attempts to target CD71, a highly expressed tumor antigen, have failed to establish an acceptable therapeutic window due to widespread normal tissue expression. This study evaluated whether a probody-drug conjugate targeting CD71 can demonstrate a favorable efficacy and tolerability profile in preclinical studies for the treatment of cancer. CX-2029, a Pb-Tx conjugated to maleimido-caproyl-valine-citrulline-p-aminobenzyloxycarbonyl-monomethyl auristatin E, was developed as a novel cancer therapeutic targeting CD71. Preclinical studies were performed to evaluate the efficacy and safety of this anti-CD71 PDC in patient-derived xenograft (PDX) mouse models and cynomolgus monkeys, respectively. CD71 expression was detected at high levels by IHC across a broad range of tumor and normal tissues. In vitro, the masked Pb-Tx form of the anti-CD71 PDC displayed a >50-fold reduced affinity for binding to CD71 on cells compared with protease-activated, unmasked anti-CD71 PDC. Potent in vivo tumor growth inhibition (stasis or regression) was observed in >80% of PDX models (28/34) at 3 or 6 mg/kg. Anti-CD71 PDC remained mostly masked (>80%) in circulation throughout dosing in cynomolgus monkeys at 2, 6, and 12 mg/kg and displayed a 10-fold improvement in tolerability compared with an anti-CD71 ADC, which was lethal. Preclinically, anti-CD71 PDC exhibits a highly efficacious and acceptable safety profile that demonstrates the utility of the Pb-Tx platform to target CD71, an otherwise undruggable target. These data support further clinical development of the anti-CD71 PDC CX-2029 as a novel cancer therapeutic.
Collapse
Affiliation(s)
- Shweta Singh
- CytomX Therapeutics, Inc, South San Francisco, California
| | - Laura Serwer
- CytomX Therapeutics, Inc, South San Francisco, California
| | - Amy DuPage
- CytomX Therapeutics, Inc, South San Francisco, California
| | - Kristi Elkins
- CytomX Therapeutics, Inc, South San Francisco, California
| | | | | | | | - Leyu Wang
- AbbVie Inc., North Chicago, Illinois
| | - Michael Krimm
- CytomX Therapeutics, Inc, South San Francisco, California
| | - Ken Wong
- CytomX Therapeutics, Inc, South San Francisco, California
| | - Jason Sagert
- CytomX Therapeutics, Inc, South San Francisco, California
| | | | | | - Yuanhui Huang
- CytomX Therapeutics, Inc, South San Francisco, California
| | - Andrew Jang
- CytomX Therapeutics, Inc, South San Francisco, California
| | - Eric Ureno
- CytomX Therapeutics, Inc, South San Francisco, California
| | - Adam Miller
- CytomX Therapeutics, Inc, South San Francisco, California
| | - Sarah Patrick
- CytomX Therapeutics, Inc, South San Francisco, California
| | - Shanti Duvur
- CytomX Therapeutics, Inc, South San Francisco, California
| | - Shouchun Liu
- CytomX Therapeutics, Inc, South San Francisco, California
| | - Olga Vasiljeva
- CytomX Therapeutics, Inc, South San Francisco, California
| | | | | | | | | | - Siew Schleyer
- CytomX Therapeutics, Inc, South San Francisco, California
| | | | - Claus Krebber
- CytomX Therapeutics, Inc, South San Francisco, California
| | | | - Luc Desnoyers
- CytomX Therapeutics, Inc, South San Francisco, California
| | | | - Marcia Belvin
- CytomX Therapeutics, Inc, South San Francisco, California
- Corresponding Author: Marcia Belvin, CytomX Therapeutics, Inc., South San Francisco, CA 94080. Phone: (650)-892-9803; E-mail:
| | | | | | | |
Collapse
|
106
|
Procopiou G, Jackson PJM, di Mascio D, Auer JL, Pepper C, Rahman KM, Fox KR, Thurston DE. DNA sequence-selective G-A cross-linking ADC payloads for use in solid tumour therapies. Commun Biol 2022; 5:741. [PMID: 35906376 PMCID: PMC9338023 DOI: 10.1038/s42003-022-03633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 06/24/2022] [Indexed: 11/11/2022] Open
Abstract
Antibody-Drug Conjugates (ADCs) are growing in importance for the treatment of both solid and haematological malignancies. There is a demand for new payloads with novel mechanisms of action that may offer enhanced therapeutic efficacy, especially in patients who develop resistance. We report here a class of Cyclopropabenzindole-Pyridinobenzodiazepine (CBI-PDD) DNA cross-linking payloads that simultaneously alkylate guanine (G) and adenine (A) bases in the DNA minor groove with a defined sequence selectivity. The lead payload, FGX8-46 (6), produces sequence-selective G-A cross-links and affords cytotoxicity in the low picomolar region across a panel of 11 human tumour cell lines. When conjugated to the antibody cetuximab at an average Drug-Antibody Ratio (DAR) of 2, an ADC is produced with significant antitumour activity at 1 mg/kg in a target-relevant human tumour xenograft mouse model with an unexpectedly high tolerability (i.e., no weight loss observed at doses as high as 45 mg/kg i.v., single dose). A class of Cyclopropabenzindole-Pyridinobenzodiazepine (CBI-PDD) DNA cross-linking payloads, used in Antibody-Drug Conjugates, alkylate guanine and adenine bases in the DNA minor groove with a defined sequence selectivity.
Collapse
Affiliation(s)
- George Procopiou
- Femtogenix, Lawes Open Innovation Hub, Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Paul J M Jackson
- Femtogenix, Lawes Open Innovation Hub, Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Daniella di Mascio
- School of Biological Sciences, Life Sciences Building B85, University of Southampton, Southampton, Hampshire, SO17 1BJ, UK
| | - Jennifer L Auer
- Femtogenix, Lawes Open Innovation Hub, Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Chris Pepper
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK
| | - Khondaker Miraz Rahman
- Femtogenix, Lawes Open Innovation Hub, Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK.,School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Keith R Fox
- School of Biological Sciences, Life Sciences Building B85, University of Southampton, Southampton, Hampshire, SO17 1BJ, UK
| | - David E Thurston
- Femtogenix, Lawes Open Innovation Hub, Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK. .,School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
107
|
Yamashita N, Kufe D. Addiction of Cancer Stem Cells to MUC1-C in Triple-Negative Breast Cancer Progression. Int J Mol Sci 2022; 23:8219. [PMID: 35897789 PMCID: PMC9331006 DOI: 10.3390/ijms23158219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive malignancy with limited treatment options. TNBC progression is associated with expansion of cancer stem cells (CSCs). Few insights are available regarding druggable targets that drive the TNBC CSC state. This review summarizes the literature on TNBC CSCs and the compelling evidence that they are addicted to the MUC1-C transmembrane protein. In normal epithelia, MUC1-C is activated by loss of homeostasis and induces reversible wound-healing responses of inflammation and repair. However, in settings of chronic inflammation, MUC1-C promotes carcinogenesis. MUC1-C induces EMT, epigenetic reprogramming and chromatin remodeling in TNBC CSCs, which are dependent on MUC1-C for self-renewal and tumorigenicity. MUC1-C-induced lineage plasticity in TNBC CSCs confers DNA damage resistance and immune evasion by chronic activation of inflammatory pathways and global changes in chromatin architecture. Of therapeutic significance, an antibody generated against the MUC1-C extracellular domain has been advanced in a clinical trial of anti-MUC1-C CAR T cells and in IND-enabling studies for development as an antibody-drug conjugate (ADC). Agents targeting the MUC1-C cytoplasmic domain have also entered the clinic and are undergoing further development as candidates for advancing TNBC treatment. Eliminating TNBC CSCs will be necessary for curing this recalcitrant cancer and MUC1-C represents a promising druggable target for achieving that goal.
Collapse
Affiliation(s)
- Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
108
|
Intra-Domain Cysteines (IDC), a New Strategy for the Development of Original Antibody Fragment–Drug Conjugates (FDCs). Pharmaceutics 2022; 14:pharmaceutics14081524. [PMID: 35893780 PMCID: PMC9331466 DOI: 10.3390/pharmaceutics14081524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Antibody–drug conjugates (ADCs) derived from a full immunoglobulin-G (IgG) are associated with suboptimal solid-tumor penetration and Fc-mediated toxicities. Antibody fragment–drug conjugates (FDCs) could be an alternative. Nevertheless, innovative solutions are needed to implant cysteines as conjugation sites in the single-chain fragment variable (scFv) format, which is the backbone from which many other antibody formats are built. In addition, the bioconjugation site has the utmost importance to optimize the safety and efficacy of bioconjugates. Our previous intra-tag cysteine (ITC) strategy consisted of introducing a bioconjugation motif at the C-terminal position of the 4D5.2 scFv, but this motif was subjected to proteolysis when the scFv was produced in CHO cells. Considering these data, using three intra-domain cysteine (IDC) strategies, several parameters were studied to assess the impact of different locations of a site-specific bioconjugation motif in the variable domains of an anti-HER2 scFv. In comparison to the ITC strategy, our new IDC strategy allowed us to identify new fragment–drug conjugates (FDCs) devoid of proteolysis and exhibiting enhanced stability profiles, better affinity, and better ability to kill selectively HER2-positive SK-BR-3 cells in vitro at picomolar concentrations. Thus, this work represents an important optimization step in the design of more complex and effective conjugates.
Collapse
|
109
|
Tashima T. Brain Cancer Chemotherapy through a Delivery System across the Blood-Brain Barrier into the Brain Based on Receptor-Mediated Transcytosis Using Monoclonal Antibody Conjugates. Biomedicines 2022; 10:1597. [PMID: 35884906 PMCID: PMC9313144 DOI: 10.3390/biomedicines10071597] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022] Open
Abstract
Advances in pharmacotherapy have brought extraordinary benefits to humanity. However, unmet medical needs in patients remain, particularly in the treatment of central nervous system (CNS) diseases and cancers. CNS drug delivery into the brain across the endothelium is difficult due to the blood-brain barrier (BBB), which is composed mainly of tight junctions and efflux transporters, such as multiple drug resistance 1 (MDR1) (P-glycoprotein). On the other hand, the development of anti-cancer drugs is a challenging task due to their frequent off-target side effects and the complicated mechanisms of cancer pathogenesis and progression. Brain cancer treatment options are surgery, radiation therapy, and chemotherapy. It is difficult to remove all tumor cells, even by surgical removal after a craniotomy. Accordingly, innovative brain cancer drugs are needed. Currently, antibody (Ab) drugs that show high therapeutic effects are often used clinically. Furthermore, antibody-drug conjugates (ADCs), such as trastuzumab deruxtecan, an anti-HER2 (human epidermal receptor 2) ADC with low-molecular cancer drugs through the suitable linker, have been developed. In the case of trastuzumab deruxtecan, it is internalized into cancer cells across the membrane via receptor-mediated endocytosis. Moreover, it is reported that drug delivery into the brain across the BBB was carried out via receptor-mediated transcytosis (RMT), using anti-receptor Abs as a vector against the transferrin receptor (TfR) or insulin receptor (InsR). Thus, anti-TfR ADCs with cancer drugs are promising brain cancer agents due to their precise distribution and low side effects. In this review, I introduce the implementations and potential of brain cancer drug delivery into the brain across the BBB, based on RMT using ADCs.
Collapse
Affiliation(s)
- Toshihiko Tashima
- Tashima Laboratories of Arts and Sciences, 1239-5 Toriyama-cho, Kohoku-ku, Yokohama 222-0035, Japan
| |
Collapse
|
110
|
Zang R, Barth A, Wong H, Marik J, Shen J, Lade J, Grove K, Durk MR, Parrott N, Rudewicz PJ, Zhao S, Wang T, Yan Z, Zhang D. Design and Measurement of Drug Tissue Concentration Asymmetry and Tissue Exposure-Effect (Tissue PK-PD) Evaluation. J Med Chem 2022; 65:8713-8734. [PMID: 35790118 DOI: 10.1021/acs.jmedchem.2c00502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The "free drug hypothesis" assumes that, in the absence of transporters, the steady state free plasma concentrations equal to that at the site of action that elicit pharmacologic effects. While it is important to utilize the free drug hypothesis, exceptions exist that the free plasma exposures, either at Cmax, Ctrough, and Caverage, or at other time points, cannot represent the corresponding free tissue concentrations. This "drug concentration asymmetry" in both total and free form can influence drug disposition and pharmacological effects. In this review, we first discuss options to assess total and free drug concentrations in tissues. Then various drug design strategies to achieve concentration asymmetry are presented. Last, the utilities of tissue concentrations in understanding exposure-effect relationships and translational projections to humans are discussed for several therapeutic areas and modalities. A thorough understanding in plasma and tissue exposures correlation with pharmacologic effects can provide insightful guidance to aid drug discovery.
Collapse
Affiliation(s)
- Richard Zang
- IDEAYA Biosciences, South San Francisco, California 94080, United States
| | - Aline Barth
- Global Blood Therapeutics, South San Francisco, California 94080, United States
| | - Harvey Wong
- The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jan Marik
- Genentech, South San Francisco, California 98080, United States
| | - Jie Shen
- AbbVie, Irvine, California 92612, United States
| | - Julie Lade
- Amgen Inc., South San Francisco, California 94080, United States
| | - Kerri Grove
- Novartis, Emeryville, California 94608, United States
| | - Matthew R Durk
- Genentech, South San Francisco, California 98080, United States
| | - Neil Parrott
- Roche Innovation Centre, Basel CH-4070, Switzerland
| | | | | | - Tao Wang
- Coherus BioSciences, Redwood City, California 94605, United States
| | - Zhengyin Yan
- Genentech, South San Francisco, California 98080, United States
| | - Donglu Zhang
- Genentech, South San Francisco, California 98080, United States
| |
Collapse
|
111
|
Jin Y, Edalatian Zakeri S, Bahal R, Wiemer AJ. New Technologies Bloom Together for Bettering Cancer Drug Conjugates. Pharmacol Rev 2022; 74:680-711. [PMID: 35710136 PMCID: PMC9553120 DOI: 10.1124/pharmrev.121.000499] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drug conjugates, including antibody-drug conjugates, are a step toward realizing Paul Ehrlich's idea from over 100 years ago of a "magic bullet" for cancer treatment. Through balancing selective targeting molecules with highly potent payloads, drug conjugates can target specific tumor microenvironments and kill tumor cells. A drug conjugate consists of three parts: a targeting agent, a linker, and a payload. In some conjugates, monoclonal antibodies act as the targeting agent, but new strategies for targeting include antibody derivatives, peptides, and even small molecules. Linkers are responsible for connecting the payload to the targeting agent. Payloads impact vital cellular processes to kill tumor cells. At present, there are 12 antibody-drug conjugates on the market for different types of cancers. Research on drug conjugates is increasing year by year to solve problems encountered in conjugate design, such as tumor heterogeneity, poor circulation, low drug loading, low tumor uptake, and heterogenous expression of target antigens. This review highlights some important preclinical research on drug conjugates in recent years. We focus on three significant areas: improvement of antibody-drug conjugates, identification of new conjugate targets, and development of new types of drug conjugates, including nanotechnology. We close by highlighting the critical barriers to clinical translation and the open questions going forward. SIGNIFICANCE STATEMENT: The development of anticancer drug conjugates is now focused in three broad areas: improvements to existing antibody drug conjugates, identification of new targets, and development of new conjugate forms. This article focuses on the exciting preclinical studies in these three areas and advances in the technology that improves preclinical development.
Collapse
Affiliation(s)
- Yiming Jin
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | | | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
112
|
Böhnke N, Berger M, Griebenow N, Rottmann A, Erkelenz M, Hammer S, Berndt S, Günther J, Wengner AM, Stelte-Ludwig B, Mahlert C, Greven S, Dietz L, Jörißen H, Barak N, Bömer U, Hillig RC, Eberspaecher U, Weiske J, Giese A, Mumberg D, Nising CF, Weinmann H, Sommer A. A Novel NAMPT Inhibitor-Based Antibody-Drug Conjugate Payload Class for Cancer Therapy. Bioconjug Chem 2022; 33:1210-1221. [PMID: 35658441 PMCID: PMC9204702 DOI: 10.1021/acs.bioconjchem.2c00178] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inhibition of intracellular nicotinamide phosphoribosyltransferase (NAMPT) represents a new mode of action for cancer-targeting antibody-drug conjugates (ADCs) with activity also in slowly proliferating cells. To extend the repertoire of available effector chemistries, we have developed a novel structural class of NAMPT inhibitors as ADC payloads. A structure-activity relationship-driven approach supported by protein structural information was pursued to identify a suitable attachment point for the linker to connect the NAMPT inhibitor with the antibody. Optimization of scaffolds and linker structures led to highly potent effector chemistries which were conjugated to antibodies targeting C4.4a (LYPD3), HER2 (c-erbB2), or B7H3 (CD276) and tested on antigen-positive and -negative cancer cell lines. Pharmacokinetic studies, including metabolite profiling, were performed to optimize the stability and selectivity of the ADCs and to evaluate potential bystander effects. Optimized NAMPTi-ADCs demonstrated potent in vivo antitumor efficacy in target antigen-expressing xenograft mouse models. This led to the development of highly potent NAMPT inhibitor ADCs with a very good selectivity profile compared with the corresponding isotype control ADCs. Moreover, we demonstrate─to our knowledge for the first time─the generation of NAMPTi payload metabolites from the NAMPTi-ADCs in vitro and in vivo. In conclusion, NAMPTi-ADCs represent an attractive new payload class designed for use in ADCs for the treatment of solid and hematological cancers.
Collapse
Affiliation(s)
- Niels Böhnke
- Bayer AG, Pharmaceuticals, Berlin 13353, Germany
| | | | | | | | | | | | | | | | | | | | | | | | - Lisa Dietz
- Bayer AG, Pharmaceuticals, Wuppertal 42113, Germany
| | | | - Naomi Barak
- Bayer AG, Pharmaceuticals, Berlin 13353, Germany
| | - Ulf Bömer
- Bayer AG, Pharmaceuticals, Berlin 13353, Germany
| | | | | | - Jörg Weiske
- Bayer AG, Pharmaceuticals, Berlin 13353, Germany
| | - Anja Giese
- Bayer AG, Pharmaceuticals, Berlin 13353, Germany
| | | | | | | | | |
Collapse
|
113
|
Islam M, Arlian BM, Pfrengle F, Duan S, Smith SA, Paulson JC. Suppressing Immune Responses Using Siglec Ligand-Decorated Anti-receptor Antibodies. J Am Chem Soc 2022; 144:9302-9311. [PMID: 35593593 DOI: 10.1021/jacs.2c00922] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The sialic acid-binding immunoglobulin-type lectins (Siglecs) are expressed predominantly on white blood cells and participate in immune cell recognition of self. Most Siglecs contain cytoplasmic inhibitory immunoreceptor tyrosine-based inhibitory motifs characteristic of inhibitory checkpoint co-receptors that suppress cell signaling when they are recruited to the immunological synapse of an activating receptor. Antibodies to activatory receptors typically activate immune cells by ligating the receptors on the cell surface. Here, we report that the conjugation of high affinity ligands of Siglecs to antibodies targeting activatory immune receptors can suppress receptor-mediated activation of immune cells. Indeed, B-cell activation by antibodies to the B-cell receptor IgD is dramatically suppressed by conjugation of anti-IgD with high affinity ligands of a B-cell Siglec CD22/Siglec-2. Similarly, degranulation of mast cells induced by antibodies to IgE, which ligate the IgE/FcεR1 receptor complex, is suppressed by conjugation of anti-IgE to high affinity ligands of a mast cell Siglec, CD33/Siglec-3 (CD33L). Moreover, the anti-IgE-CD33L suppresses anti-IgE-mediated systemic anaphylaxis of sensitized humanized mice and prevents anaphylaxis upon subsequent challenge with anti-IgE. The results demonstrate that attachment of ligands of inhibitory Siglecs to anti-receptor antibodies can suppress the activation of immune cells and modulate unwanted immune responses.
Collapse
Affiliation(s)
- Maidul Islam
- Department of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Britni M Arlian
- Department of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Fabian Pfrengle
- Department of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Shiteng Duan
- Department of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Scott A Smith
- Department of Medicine, and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - James C Paulson
- Department of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
114
|
Zong HF, Zhang BH, Zhu JW. Generating a Bispecific Antibody Drug Conjugate Targeting PRLR and HER2 with Improving the Internalization. PHARMACEUTICAL FRONTS 2022. [DOI: 10.1055/s-0042-1749334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
AbstractAntibody drug conjugate (ADC) therapy has become one of the most promising approaches in cancer immunotherapy. The bispecific targeting could improve the specificity, affinity, and internalization of the ADC molecules. Prolactin preceptor (PRLR) and HER2 have crosstalk signaling in breast cancer, and PRLR undergoes a rapid internalization compared with HER2. To improve the efficacy of HER2 ADCs with enhancing the target specificity and internalization, we constructed a PRLR/HER2-targeting bispecific ADC (BsADC). We evaluated the characterization of PRLR × HER2 BsADC from the affinity and internalization, and further assessed its in vitro cytotoxicity in human breast-cancer cell lines (BT474, T47D, and MDA-MB-231) using Cell Count Kit-8 analysis. Our data demonstrated that PRLR × HER2 BsADC kept the affinity to two targeting antigens after conjugating drugs and exhibited higher internalization efficiency in comparison to HER2 ADC. Furthermore, PRLR × HER2 BsADC demonstrated to have superior antitumor activity in human breast cancer in vitro. In conclusion, our findings indicate that it is feasible through increasing the internalization of target antibody to enhance the antitumor activity and therapeutic potential that could be further evaluated in in vivo animal model.
Collapse
Affiliation(s)
- Hui-Fang Zong
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Bao-Hong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jian-Wei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Jecho Institute Co., Ltd., Shanghai, People's Republic of China
| |
Collapse
|
115
|
Canestraro J, Hultcrantz M, Modi S, Hamlin PA, Shoushtari AN, Konner JA, Tew WP, Iyengar NM, Heinemann M, Abramson DH, Francis JH. Refractive Shifts and Changes in Corneal Curvature Associated With Antibody-Drug Conjugates. Cornea 2022; 41:792-801. [PMID: 34839332 PMCID: PMC9106803 DOI: 10.1097/ico.0000000000002934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/28/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Antibody-drug conjugates (ADCs) are a class of cancer drug wherein some are associated with corneal abnormalities, but there is a dearth of published information on refractive shifts in patients receiving ADCs. Here, we evaluated the dynamics of refractive error and keratometry readings in patients with ADC-related keratopathy and microcyst-like epithelial changes (MECs). METHODS This study is a retrospective case series including 58 eyes of 29 patients with ADC-related keratopathy from a single tertiary care cancer referral center (MSKCC). One eye (29 total) was randomly assigned for statistical analysis. In addition, a subset analysis of MEC location-refractive error correlation was performed on 20 eyes. Clinical records including slitlamp examination, indirect ophthalmoscopy, calculated spherical equivalence (SE), keratometry, and visual acuity were recorded at baseline, during, and off treatment. RESULTS A subset analysis of MEC location-refractive error correlation of 20 eyes revealed the following: Peripheral MECs were significantly associated with hyperopic shifts (P value < 0.001) and paracentral/central associated with myopic shifts (P value < 0.001). In the full cohort and on drug, the greatest change in SE from baseline was myopic (68%, as high as -4.75 D) and hyperopic (32%, as much as +3.75 D). Eighty-nine percent had a change in vision from baseline while on drug, but at the 3-month follow-up off drug, SE and vision returned to baseline in 33% and 82% of eyes. CONCLUSIONS Peripheral MECs were significantly associated with hyperopic shifts, and paracentral/central MECs were associated with myopic shifts. While on drug, most eyes had a myopic refractive shift, which corresponded with corneal steepening.
Collapse
Affiliation(s)
- Julia Canestraro
- Ophthalmic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Malin Hultcrantz
- Myeloma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shanu Modi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul A Hamlin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Jason A Konner
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - William P Tew
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Neil M Iyengar
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Murk Heinemann
- Ophthalmic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical Center, New York, NY, USA
| | - David H Abramson
- Ophthalmic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical Center, New York, NY, USA
| | - Jasmine H Francis
- Ophthalmic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical Center, New York, NY, USA
| |
Collapse
|
116
|
Targeting Tumor Cells Overexpressing the Human Epidermal Growth Factor Receptor 3 with Potent Drug Conjugates Based on Affibody Molecules. Biomedicines 2022; 10:biomedicines10061293. [PMID: 35740315 PMCID: PMC9219639 DOI: 10.3390/biomedicines10061293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 12/22/2022] Open
Abstract
Increasing evidence suggests that therapy targeting the human epidermal growth factor receptor 3 (HER3) could be a viable route for targeted cancer therapy. Here, we studied a novel drug conjugate, ZHER3-ABD-mcDM1, consisting of a HER3-targeting affibody molecule, coupled to the cytotoxic tubulin polymerization inhibitor DM1, and an albumin-binding domain for in vivo half-life extension. ZHER3-ABD-mcDM1 showed a strong affinity to the extracellular domain of HER3 (KD 6 nM), and an even stronger affinity (KD 0.2 nM) to the HER3-overexpressing pancreatic carcinoma cell line, BxPC-3. The drug conjugate showed a potent cytotoxic effect on BxPC-3 cells with an IC50 value of 7 nM. Evaluation of a radiolabeled version, [99mTc]Tc-ZHER3-ABD-mcDM1, showed a relatively high rate of internalization, with a 27% internalized fraction after 8 h. Further in vivo evaluation showed that it could target BxPC-3 (pancreatic carcinoma) and DU145 (prostate carcinoma) xenografts in mice, with an uptake peaking at 6.3 ± 0.4% IA/g at 6 h post-injection for the BxPC-3 xenografts. The general biodistribution showed uptake in the liver, lung, salivary gland, stomach, and small intestine, organs known to express murine ErbB3 naturally. The results from the study show that ZHER3-ABD-mcDM1 is a highly potent and selective drug conjugate with the ability to specifically target HER3 overexpressing cells. Further pre-clinical and clinical development is discussed.
Collapse
|
117
|
Awad RM, Meeus F, Ceuppens H, Ertveldt T, Hanssens H, Lecocq Q, Mateusiak L, Zeven K, Valenta H, De Groof TWM, De Vlaeminck Y, Krasniqi A, De Veirman K, Goyvaerts C, D'Huyvetter M, Hernot S, Devoogdt N, Breckpot K. Emerging applications of nanobodies in cancer therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 369:143-199. [PMID: 35777863 DOI: 10.1016/bs.ircmb.2022.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cancer is a heterogeneous disease, requiring treatment tailored to the unique phenotype of the patient's tumor. Monoclonal antibodies (mAbs) and variants thereof have enabled targeted therapies to selectively target cancer cells. Cancer cell-specific mAbs have been used for image-guided surgery and targeted delivery of radionuclides or toxic agents, improving classical treatment strategies. Cancer cell-specific mAbs can further inhibit tumor cell growth or can stimulate immune-mediated destruction of cancer cells, a feature that has also been achieved through mAb-mediated manipulation of immune cells and pathways. Drawbacks of mAbs and their variants, together with the discovery of camelid heavy chain-only antibodies and the many advantageous features of their variable domains, referred to as VHHs, single domain antibodies or nanobodies (Nbs), resulted in the exploration of Nbs as an alternative targeting moiety. We therefore review the state-of-the-art as well as novel exploitation strategies of Nbs for targeted cancer therapy.
Collapse
Affiliation(s)
- Robin Maximilian Awad
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Fien Meeus
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hannelore Ceuppens
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Thomas Ertveldt
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Heleen Hanssens
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Quentin Lecocq
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lukasz Mateusiak
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Katty Zeven
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hana Valenta
- Lab for Nanobiology, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Timo W M De Groof
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yannick De Vlaeminck
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ahmet Krasniqi
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kim De Veirman
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cleo Goyvaerts
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Matthias D'Huyvetter
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sophie Hernot
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
118
|
Cahuzac H, Sallustrau A, Malgorn C, Beau F, Barbe P, Babin V, Dubois S, Palazzolo A, Thai R, Correia I, Lee KB, Garcia-Argote S, Lequin O, Keck M, Nozach H, Feuillastre S, Ge X, Pieters G, Audisio D, Devel L. Monitoring In Vivo Performances of Protein-Drug Conjugates Using Site-Selective Dual Radiolabeling and Ex Vivo Digital Imaging. J Med Chem 2022; 65:6953-6968. [PMID: 35500280 PMCID: PMC9833330 DOI: 10.1021/acs.jmedchem.2c00401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In preclinical models, the development and optimization of protein-drug conjugates require accurate determination of the plasma and tissue profiles of both the protein and its conjugated drug. To this aim, we developed a bioanalytical strategy based on dual radiolabeling and ex vivo digital imaging. By combining enzymatic and chemical reactions, we obtained homogeneous dual-labeled anti-MMP-14 Fabs (antigen-binding fragments) conjugated to monomethyl auristatin E where the protein scaffold was labeled with carbon-14 (14C) and the conjugated drug with tritium (3H). These antibody-drug conjugates with either a noncleavable or a cleavable linker were then evaluated in vivo. By combining liquid scintillation counting and ex vivo dual-isotope radio-imaging, it was possible not only to monitor both components simultaneously during their circulation phase but also to quantify accurately their amount accumulated within the different organs.
Collapse
Affiliation(s)
- Héloïse Cahuzac
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, (France)
| | - Antoine Sallustrau
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, (France)
| | - Carole Malgorn
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, (France)
| | - Fabrice Beau
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, (France)
| | - Peggy Barbe
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, (France)
| | - Victor Babin
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, (France)
| | - Steven Dubois
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, (France)
| | - Alberto Palazzolo
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, (France)
| | - Robert Thai
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, (France)
| | - Isabelle Correia
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Ki Baek Lee
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston 1825 Pressler St, Houston TX 77030
| | - Sébastien Garcia-Argote
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, (France)
| | - Olivier Lequin
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Mathilde Keck
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, (France)
| | - Hervé Nozach
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, (France)
| | - Sophie Feuillastre
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, (France)
| | - Xin Ge
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston 1825 Pressler St, Houston TX 77030
| | - Gregory Pieters
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, (France)
| | - Davide Audisio
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, (France)
| | - Laurent Devel
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, (France),
| |
Collapse
|
119
|
Evans R, Thurber GM. Design of high avidity and low affinity antibodies for in situ control of antibody drug conjugate targeting. Sci Rep 2022; 12:7677. [PMID: 35538109 PMCID: PMC9090802 DOI: 10.1038/s41598-022-11648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/25/2022] [Indexed: 11/19/2022] Open
Abstract
Antibody-Drug Conjugates (ADCs) have rapidly expanded in the clinic, with 7 new approvals in 3 years. For solid tumors, high doses of ADCs improve tissue penetration and efficacy. These doses are enabled by lower drug-to-antibody ratios and/or co-administration of unconjugated antibody carrier doses to avoid payload toxicity. While effective for highly expressed targets, these strategies may not maintain efficacy with lower target expression. To address this issue, a carrier dose that adjusts binding in situ according to cellular expression was designed using computational modeling. Previous studies demonstrated that coadministration of unconjugated antibody with the corresponding ADC at an 8:1 ratio improves ADCs efficacy in high HER2 expressing tumors. By designing a High Avidity, Low Affinity (HALA) carrier antibody, ADC binding is partially blocked in high expression cells, improving tissue penetration. In contrast, the HALA antibody cannot compete with the ADC in low expressing cells, allowing ADC binding to the majority of receptors. Thus, the amount of competition from the carrier dose automatically adjusts to expression levels, allowing tailored competition between different patients/metastases. The computational model highlights two dimensionless numbers, the Thiele modulus and a newly defined competition number, to design an optimal HALA antibody carrier dose for any target.
Collapse
Affiliation(s)
- Reginald Evans
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI, 48109, USA
| | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI, 48109, USA. .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA. .,Rogel Cancer Center, University of Michigan Medicine, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
120
|
Procopio-Melino R, Kotch FW, Prashad AS, Gomes JM, Wang W, Arve B, Dawdy A, Chen L, Sperry J, Hosselet C, He T, Kriz R, Lin L, Marquette K, Tchistiakova L, Somers W, Rouse JC, Zhong X. Cysteine metabolic engineering and selective disulfide reduction produce superior antibody-drug-conjugates. Sci Rep 2022; 12:7262. [PMID: 35508689 PMCID: PMC9068625 DOI: 10.1038/s41598-022-11344-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/18/2022] [Indexed: 11/30/2022] Open
Abstract
Next-generation site-specific cysteine-based antibody–drug-conjugates (ADCs) broaden therapeutic index by precise drug-antibody attachments. However, manufacturing such ADCs for clinical validation requires complex full reduction and reoxidation processes, impacting product quality. To overcome this technical challenge, we developed a novel antibody manufacturing process through cysteine (Cys) metabolic engineering in Chinese hamster ovary cells implementing a unique cysteine-capping technology. This development enabled a direct conjugation of drugs after chemoselective-reduction with mild reductant tris(3-sulfonatophenyl)phosphine. This innovative platform produces clinical ADC products with superior quality through a simplified manufacturing process. This technology also has the potential to integrate Cys-based site-specific conjugation with other site-specific conjugation methodologies to develop multi-drug ADCs and exploit multi-mechanisms of action for effective cancer treatments.
Collapse
Affiliation(s)
- Renée Procopio-Melino
- BioProcess R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA, 01810, USA
| | - Frank W Kotch
- BioProcess R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 875 Chesterfield Parkway West, Chesterfield, MO, 63017, USA.
| | - Amar S Prashad
- BioProcess R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 875 Chesterfield Parkway West, Chesterfield, MO, 63017, USA.,Pearl River Laboratories Inc, 401 North Middletown Road, Pearl River, NY, 10965, USA
| | - Jose M Gomes
- BioProcess R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA, 01810, USA.
| | - Wenge Wang
- BioProcess R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA, 01810, USA
| | - Bo Arve
- BioProcess R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 875 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Andrew Dawdy
- Analytical R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 875 Chesterfield Parkway West, Chesterfield, MO, 63017, USA.
| | - Lawrence Chen
- Analytical R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA, 01810, USA
| | - Justin Sperry
- Analytical R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 875 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Christine Hosselet
- Vaccine Research, Pfizer Worldwide R&D, 401 North Middletown Road, Pearl River, NY, 10965, USA
| | - Tao He
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA, 02139, USA.,JOINN Biologics US Inc., 2600 Hilltop Dr., Richmond, CA, 94806, USA
| | - Ronald Kriz
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA, 02139, USA
| | - Laura Lin
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA, 02139, USA
| | - Kimberly Marquette
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA, 02139, USA
| | - Lioudmila Tchistiakova
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA, 02139, USA
| | - Will Somers
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA, 02139, USA
| | - Jason C Rouse
- Analytical R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA, 01810, USA
| | - Xiaotian Zhong
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA, 02139, USA.
| |
Collapse
|
121
|
Schuster S, Juhász É, Halmos G, Neundorf I, Gennari C, Mező G. Development and Biochemical Characterization of Self-Immolative Linker Containing GnRH-III-Drug Conjugates. Int J Mol Sci 2022; 23:ijms23095071. [PMID: 35563462 PMCID: PMC9105102 DOI: 10.3390/ijms23095071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 12/10/2022] Open
Abstract
The human gonadotropin releasing hormone (GnRH-I) and its sea lamprey analogue GnRH-III specifically bind to GnRH receptors on cancer cells and can be used as targeting moieties for targeted tumor therapy. Considering that the selective release of drugs in cancer cells is of high relevance, we were encouraged to develop cleavable, self-immolative GnRH-III-drug conjugates which consist of a p-aminobenzyloxycarbonlyl (PABC) spacer between a cathepsin B-cleavable dipeptide (Val-Ala, Val-Cit) and the classical anticancer drugs daunorubicin (Dau) and paclitaxel (PTX). Alongside these compounds, non-cleavable GnRH-III-drug conjugates were also synthesized, and all compounds were analyzed for their antiproliferative activity. The cleavable GnRH-III bioconjugates revealed a growth inhibitory effect on GnRH receptor-expressing A2780 ovarian cancer cells, while their activity was reduced on Panc-1 pancreatic cancer cells exhibiting a lower GnRH receptor level. Moreover, the antiproliferative activity of the non-cleavable counterparts was strongly reduced. Additionally, the efficient cleavage of the Val-Ala linker and the subsequent release of the drugs could be verified by lysosomal degradation studies, while radioligand binding studies ensured that the GnRH-III-drug conjugates bound to the GnRH receptor with high affinity. Our results underline the high value of GnRH-III-based homing devices and the application of cathepsin B-cleavable linker systems for the development of small molecule drug conjugates (SMDCs).
Collapse
Affiliation(s)
- Sabine Schuster
- Faculty of Science, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary;
- ELKH-ELTE Research Group of Peptide Chemistry, Faculty of Science, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Éva Juhász
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Gábor Halmos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary;
| | - Ines Neundorf
- Department of Chemistry, Institute of Biochemistry, University of Cologne, 50674 Cologne, Germany;
| | - Cesare Gennari
- Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milano, Italy;
| | - Gábor Mező
- Faculty of Science, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary;
- ELKH-ELTE Research Group of Peptide Chemistry, Faculty of Science, Eötvös Loránd University, 1117 Budapest, Hungary
- Correspondence: ; Tel.: +36-1-372-2500
| |
Collapse
|
122
|
Klug LR, Khosroyani HM, Kent JD, Heinrich MC. New treatment strategies for advanced-stage gastrointestinal stromal tumours. Nat Rev Clin Oncol 2022; 19:328-341. [PMID: 35217782 PMCID: PMC11488293 DOI: 10.1038/s41571-022-00606-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 02/06/2023]
Abstract
When gastrointestinal stromal tumour (GIST), the most common form of sarcoma, was first recognized as a distinct pathological entity in the 1990s, patients with advanced-stage disease had a very poor prognosis owing to a lack of effective medical therapies. The discovery of KIT mutations as the first and most prevalent drivers of GIST and the subsequent development of the first KIT tyrosine kinase inhibitor (TKI), imatinib, revolutionized the treatment of patients with this disease. We can now identify the driver mutation in 99% of patients with GIST via molecular diagnostic testing, and therapies have been developed to treat many, but not all, molecular subtypes of the disease. At present, seven drugs are approved by the FDA for the treatment of advanced-stage GIST (imatinib, sunitinib, regorafenib, ripretinib, avapritinib, larotrectinib and entrectinib), all of which are TKIs. Although these agents can be very effective for treating certain GIST subtypes, challenges remain and new therapeutic approaches are needed. In this Review, we discuss the molecular subtypes of GIST and the evolution of current treatments, as well as their therapeutic limitations. We also highlight emerging therapeutic approaches that might overcome clinical challenges through novel strategies predicated on the biological features of the distinct GIST molecular subtypes.
Collapse
Affiliation(s)
- Lillian R Klug
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Homma M Khosroyani
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jason D Kent
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Michael C Heinrich
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
123
|
Stump B. Click Bioconjugation - Modifying Proteins using Click-Like Chemistry. Chembiochem 2022; 23:e202200016. [PMID: 35491526 DOI: 10.1002/cbic.202200016] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/27/2022] [Indexed: 11/11/2022]
Abstract
Bioconjugation is dealing with the chemical modification of proteins. The reactions used exploit either the intrinsic chemical reactivity of the biomolecule or introduce functionalities that can then be subsequently reacted without interfering with other functional groups of the biological entity. Perfectly selective, high yielding chemical transformations are needed that can be run in aqueous environment at mild pH conditions. Requirements that have an obvious overlap with the definition of click chemistry. This review shows a selection of successfully applied click-type reactions in bioconjugation as well as some recent developments to broaden the chemical toolbox to meet the challenge of a selective, bioorthogonal modification of biomolecules.
Collapse
Affiliation(s)
- Bernhard Stump
- Lonza AG: Lonza Ltd, Bioconjugates, Rottenstr, 3930, Visp, SWITZERLAND
| |
Collapse
|
124
|
De SK. Tisotumab vedotin; First FDA Approved Antibody-drug Conjugate for Cervical Cancer. Anticancer Agents Med Chem 2022; 22:2808-2810. [DOI: 10.2174/1871520622666220421095240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 11/22/2022]
|
125
|
Vène E, Jarnouen K, Ribault C, Vlach M, Verres Y, Bourgeois M, Lepareur N, Cammas-Marion S, Loyer P. Circumsporozoite Protein of Plasmodium berghei- and George Baker Virus A-Derived Peptides Trigger Efficient Cell Internalization of Bioconjugates and Functionalized Poly(ethylene glycol)-b-poly(benzyl malate)-Based Nanoparticles in Human Hepatoma Cells. Pharmaceutics 2022; 14:pharmaceutics14040804. [PMID: 35456637 PMCID: PMC9028075 DOI: 10.3390/pharmaceutics14040804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 02/04/2023] Open
Abstract
In order to identify the peptides, selected from the literature, that exhibit the strongest tropism towards human hepatoma cells, cell uptake assays were performed using biotinylated synthetic peptides bound to fluorescent streptavidin or engrafted onto nanoparticles (NPs), prepared from biotin-poly(ethylene glycol)-block-poly(benzyl malate) (Biot-PEG-b-PMLABe) via streptavidin bridging. Two peptides, derived from the circumsporozoite protein of Plasmodium berghei- (CPB) and George Baker (GB) Virus A (GBVA10-9), strongly enhanced the endocytosis of both streptavidin conjugates and NPs in hepatoma cells, compared to primary human hepatocytes and non-hepatic cells. Unexpectedly, the uptake of CPB- and GBVA10-9 functionalized PEG-b-PMLABe-based NPs by hepatoma cells involved, at least in part, the peptide binding to apolipoproteins, which would promote NP’s interactions with cell membrane receptors of HDL particles. In addition, CPB and GBVA10-9 peptide–streptavidin conjugates favored the uptake by hepatoma cells over that of the human macrophages, known to strongly internalize nanoparticles by phagocytosis. These two peptides are promising candidate ligands for targeting hepatocellular carcinomas.
Collapse
Affiliation(s)
- Elise Vène
- Institut NUMECAN (Nutrition Metabolisms and Cancer), Inserm, UMR-S 1241, INRAE UMR-A 1341, Univ Rennes, F-35000 Rennes, France; (E.V.); (K.J.); (C.R.); (M.V.); (Y.V.)
- Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU Rennes, F-35033 Rennes, France
| | - Kathleen Jarnouen
- Institut NUMECAN (Nutrition Metabolisms and Cancer), Inserm, UMR-S 1241, INRAE UMR-A 1341, Univ Rennes, F-35000 Rennes, France; (E.V.); (K.J.); (C.R.); (M.V.); (Y.V.)
| | - Catherine Ribault
- Institut NUMECAN (Nutrition Metabolisms and Cancer), Inserm, UMR-S 1241, INRAE UMR-A 1341, Univ Rennes, F-35000 Rennes, France; (E.V.); (K.J.); (C.R.); (M.V.); (Y.V.)
| | - Manuel Vlach
- Institut NUMECAN (Nutrition Metabolisms and Cancer), Inserm, UMR-S 1241, INRAE UMR-A 1341, Univ Rennes, F-35000 Rennes, France; (E.V.); (K.J.); (C.R.); (M.V.); (Y.V.)
- INRAE, Institut AGRO, PEGASE UMR 1348, F-35590 Saint-Gilles, France
| | - Yann Verres
- Institut NUMECAN (Nutrition Metabolisms and Cancer), Inserm, UMR-S 1241, INRAE UMR-A 1341, Univ Rennes, F-35000 Rennes, France; (E.V.); (K.J.); (C.R.); (M.V.); (Y.V.)
| | - Mickaël Bourgeois
- CRCINA, Inserm, CNRS, Université de Nantes, F-44000 Nantes, France;
- ARRONAX Cyclotron, F-44817 Saint Herblain, France
| | - Nicolas Lepareur
- Institut NUMECAN (Nutrition Metabolisms and Cancer), Inserm, UMR-S 1241, INRAE UMR-A 1341, Univ Rennes, F-35000 Rennes, France; (E.V.); (K.J.); (C.R.); (M.V.); (Y.V.)
- Comprehensive Cancer Center Eugène Marquis, F-35000 Rennes, France
- Correspondence: (N.L.); (S.C.-M.); (P.L.)
| | - Sandrine Cammas-Marion
- Institut NUMECAN (Nutrition Metabolisms and Cancer), Inserm, UMR-S 1241, INRAE UMR-A 1341, Univ Rennes, F-35000 Rennes, France; (E.V.); (K.J.); (C.R.); (M.V.); (Y.V.)
- Institut des Sciences Chimiques de Rennes (ISCR), Ecole Nationale Supérieure de Chimie de Rennes, CNRS UMR 6226, University of Rennes, F-35042 Rennes, France
- Correspondence: (N.L.); (S.C.-M.); (P.L.)
| | - Pascal Loyer
- Institut NUMECAN (Nutrition Metabolisms and Cancer), Inserm, UMR-S 1241, INRAE UMR-A 1341, Univ Rennes, F-35000 Rennes, France; (E.V.); (K.J.); (C.R.); (M.V.); (Y.V.)
- Correspondence: (N.L.); (S.C.-M.); (P.L.)
| |
Collapse
|
126
|
Chia CSB. A Patent Review on FDA-Approved Antibody-Drug Conjugates, Their Linkers and Drug Payloads. ChemMedChem 2022; 17:e202200032. [PMID: 35384350 DOI: 10.1002/cmdc.202200032] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/22/2022] [Indexed: 12/30/2022]
Abstract
Antibody-drug conjugates (ADCs) have emerged as a promising class of biologics since the first approval of Gemtuzumab ozogamicin in 2000. Compared to small molecule drugs, ADCs are structurally much more complex as they comprise of an antibody conjugated to cytotoxic payloads by specially-designed linkers. Correspondingly, the ADC patent landscape is also much more complex. This review collates and discusses the patents protecting ADCs approved by the FDA up to 31 December 2021, with particular emphasis on their linker and cytotoxin payload technologies.
Collapse
Affiliation(s)
- C S Brian Chia
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos #08-01, 138670, Singapore, Singapore
| |
Collapse
|
127
|
Targeting breast cancer resistance protein (BCRP/ABCG2): Functional inhibitors and expression modulators. Eur J Med Chem 2022; 237:114346. [DOI: 10.1016/j.ejmech.2022.114346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 12/16/2022]
|
128
|
Casazza A, Van Helleputte L, Van Renterghem B, Pokreisz P, De Geest N, De Petrini M, Janssens T, Pellens M, Diricx M, Riera-Domingo C, Wozniak A, Mazzone M, Schöffski P, Defert O, Reyns G, Kindt N. PhAc-ALGP-Dox, a Novel Anticancer Prodrug with Targeted Activation and Improved Therapeutic Index. Mol Cancer Ther 2022; 21:568-581. [PMID: 35149549 PMCID: PMC9377749 DOI: 10.1158/1535-7163.mct-21-0518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/13/2021] [Accepted: 02/08/2022] [Indexed: 01/07/2023]
Abstract
Clinical use of doxorubicin (Dox) is limited by cumulative myelo- and cardiotoxicity. This research focuses on the detailed characterization of PhAc-ALGP-Dox, a targeted tetrapeptide prodrug with a unique dual-step activation mechanism, designed to circumvent Dox-related toxicities and is ready for upcoming clinical investigation. Coupling Dox to a phosphonoacetyl (PhAc)-capped tetrapeptide forms the cell-impermeable, inactive compound, PhAc-ALGP-Dox. After extracellular cleavage by tumor-enriched thimet oligopeptidase-1 (THOP1), a cell-permeable but still biologically inactive dipeptide-conjugate is formed (GP-Dox), which is further processed intracellularly to Dox by fibroblast activation protein-alpha (FAPα) and/or dipeptidyl peptidase-4 (DPP4). In vitro, PhAc-ALGP-Dox is effective in various 2D- and 3D-cancer models, while showing improved safety toward normal epithelium, hematopoietic progenitors, and cardiomyocytes. In vivo, these results translate into a 10-fold higher tolerability and 5-fold greater retention of Dox in the tumor microenvironment compared with the parental drug. PhAc-ALGP-Dox demonstrates 63% to 96% tumor growth inhibition in preclinical models, an 8-fold improvement in efficacy in patient-derived xenograft (PDX) models, and reduced metastatic burden in a murine model of experimental lung metastasis, improving survival by 30%. The current findings highlight the potential clinical benefit of PhAc-ALGP-Dox, a targeted drug-conjugate with broad applicability, favorable tissue biodistribution, significantly improved tolerability, and tumor growth inhibition at primary and metastatic sites in numerous solid tumor models.
Collapse
Affiliation(s)
- Andrea Casazza
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | | | - Britt Van Renterghem
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Peter Pokreisz
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | - Natalie De Geest
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | - Marzia De Petrini
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | - Tom Janssens
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | - Marijke Pellens
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | - Marjan Diricx
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | - Carla Riera-Domingo
- Laboratory of Tumor Inflammation and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium.,Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Agnieszka Wozniak
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium.,Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Patrick Schöffski
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium.,Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Olivier Defert
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | - Geert Reyns
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium
| | - Nele Kindt
- CoBioRes NV, Campus Gasthuisberg University of Leuven, Leuven, Belgium.,Corresponding Author: Nele Kindt, CoBioRes NV, Campus Gasthuisberg, CDG, bus 913 Herestraat 49, Leuven, Flanders B-3000, Belgium. E-mail:
| |
Collapse
|
129
|
Collyer SE, Stack GD, Walsh JJ. Selective delivery of clinically approved tubulin binding agents through covalent conjugation to an active targeting moiety. Curr Med Chem 2022; 29:5179-5211. [DOI: 10.2174/0929867329666220401105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
The efficacy and tolerability of tubulin binding agents are hampered by their low specificity for cancer cells, like most clinically used anticancer agents. To improve specificity, tubulin binding agents have been covalently conjugated to agents which target cancer cells to give actively targeted drug conjugates. These conjugates are designed to increase uptake of the drug by cancer cells, while having limited uptake by normal cells thereby improving efficacy and tolerability.
Approaches used include attachment to small molecules, polysaccharides, peptides, proteins and antibodies that exploit the overexpression of receptors for these substances. Antibody targeted strategies have been the most successful to date with six such examples having gained clinical approval. Many other conjugate types, especially those targeting the folate receptor, have shown promising efficacy and toxicity profiles in pre-clinical models and in early-stage clinical studies. Presented herein is a discussion of the success or otherwise of the recent strategies used to form these actively targeted conjugates.
Collapse
Affiliation(s)
- Samuel E. Collyer
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| | - Gary D. Stack
- Department of Nursing and Healthcare, Technological University of the Shannon: Midlands Midwest, Athlone, Ireland
| | - John J. Walsh
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
130
|
ABCs of ADCs in Management of Relapsed/refractory diffuse large B-cell lymphoma. Blood Rev 2022; 56:100967. [DOI: 10.1016/j.blre.2022.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/19/2022]
|
131
|
Forsythe NL, Tan MF, Maynard HD. Diazido macrocyclic sulfates as a platform for the synthesis of sequence-defined polymers for antibody drug conjugates. Chem Sci 2022; 13:3888-3893. [PMID: 35432892 PMCID: PMC8966716 DOI: 10.1039/d1sc06242e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/06/2022] [Indexed: 11/21/2022] Open
Abstract
To improve the efficacy of antibody drug conjugates (ADCs), there has been significant focus on increasing the drug-to-antibody ratio (DAR) in order to deliver more payload. However, due to the hydrophobicity of many cytotoxics, highly-loaded conjugates often have lower physicochemical stability and poorer pharmacokinetic outcomes, requiring the development of new hydrophilic linkers. Herein, we report a platform for the preparation of functional, sequence-defined polymers for conjugation to antibodies. We demonstrate the successful synthesis of novel diazido macrocyclic sulfate monomers of varied size ranging from 4 to 7 ethylene glycol repeat units. These monomers were then successively ring-opened to produce sequence-defined polymers that contained either 4 or 6 azides for post-synthesis functionalization. Given the hydrophilic ethylene glycol backbone and chemically defined nature of the polymers, we envisioned this as a useful strategy in the preparation of highly-loaded ADCs. To demonstrate this, we prepared a model polymer-fluorophore scaffold composed of 4 coumarin molecules and conjugated it to Herceptin. We fully characterized the conjugate via mass spectrometry, which yielded a polymer-to-antibody ratio of 6.6, translating to a total of 26 fluorophores conjugated to the antibody at the inter-chain disulfides. We believe this technology to not only be a meaningful contribution to the field of sequence-defined polymers and conjugates, but also as a general and tunable platform for drug delivery.
Collapse
Affiliation(s)
- Neil L Forsythe
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California Los Angeles California 90095-1569 USA
| | - Mikayla F Tan
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California Los Angeles California 90095-1569 USA
| | - Heather D Maynard
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California Los Angeles California 90095-1569 USA
| |
Collapse
|
132
|
Lee T, Kim JH, Kwon SJ, Seo JW, Park SH, Kim J, Jin J, Hong JH, Kang HJ, Sharma C, Choi JH, Chung SJ. Site-Selective Antibody-Drug Conjugation by a Proximity-Driven S to N Acyl Transfer Reaction on a Therapeutic Antibody. J Med Chem 2022; 65:5751-5759. [PMID: 35319890 DOI: 10.1021/acs.jmedchem.2c00084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Immunoglobulin Gs (IgGs) contain many Lys and Cys residues, which results in an unwanted complex product mixture with conventional drug conjugation methods. We selectively acylated the ε-NH2 of K248 on trastuzumab using an IgG Fc-binding peptide (FcBP) equipped with a 5-norbornene-2-carboxylic acid thioester (AbClick-1). AbClick-1 locates its thioester close to the ε-NH2 of K248 while binding to trastuzumab. Consequently, the thioester underwent proximity-driven selective acylation of ε-NH2 through an S to N acyl transfer reaction. Furthermore, N-tert-butyl maleimide accelerated the cross-linking reaction with an approximately 95% yield of the desired product by scavenging the byproduct (FcBP-SH). Only K248 was modified selectively with the 5-norbornene-2-carbonyl group, which was further modified by click reaction to afford an antibody-drug conjugate (ADC) with two drugs per antibody. The resulting ADCs showed remarkable in vitro and in vivo anticancer activity. Our results demonstrate that a thioester is a promising chemical entity for proximity-driven site-selective conjugation of antibodies.
Collapse
Affiliation(s)
- TaeJin Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seoburo, Jangangu, Suwon 16419, Republic of Korea.,AbTis Company Ltd., A-815, Suwon Venture Valley II, 142-10, Saneop-ro156beon-gil, Gwonseon-gu, Suwon, Gyeonggi-do 16648, Republic of Korea
| | - Ju Hwan Kim
- AbTis Company Ltd., A-815, Suwon Venture Valley II, 142-10, Saneop-ro156beon-gil, Gwonseon-gu, Suwon, Gyeonggi-do 16648, Republic of Korea
| | - Se Jeong Kwon
- School of Pharmacy, Sungkyunkwan University, 2066 Seoburo, Jangangu, Suwon 16419, Republic of Korea.,AbTis Company Ltd., A-815, Suwon Venture Valley II, 142-10, Saneop-ro156beon-gil, Gwonseon-gu, Suwon, Gyeonggi-do 16648, Republic of Korea
| | - Jin Woo Seo
- School of Pharmacy, Sungkyunkwan University, 2066 Seoburo, Jangangu, Suwon 16419, Republic of Korea.,AbTis Company Ltd., A-815, Suwon Venture Valley II, 142-10, Saneop-ro156beon-gil, Gwonseon-gu, Suwon, Gyeonggi-do 16648, Republic of Korea
| | - Sun Hee Park
- School of Pharmacy, Sungkyunkwan University, 2066 Seoburo, Jangangu, Suwon 16419, Republic of Korea.,AbTis Company Ltd., A-815, Suwon Venture Valley II, 142-10, Saneop-ro156beon-gil, Gwonseon-gu, Suwon, Gyeonggi-do 16648, Republic of Korea
| | - Jinyoung Kim
- Biocenter, Gyeonggido Business and Science Accelerator, Suwon 16229, Republic of Korea
| | - Jonghwa Jin
- Department of Convergence Technical Support, New Drug Development Center, 123 Osongsaengmyeng-ro, Cheongju, Chungbuk 28160, Republic of Korea
| | - Ji Hye Hong
- Department of Convergence Technical Support, New Drug Development Center, 123 Osongsaengmyeng-ro, Cheongju, Chungbuk 28160, Republic of Korea
| | - Hyo Jin Kang
- AbTis Company Ltd., A-815, Suwon Venture Valley II, 142-10, Saneop-ro156beon-gil, Gwonseon-gu, Suwon, Gyeonggi-do 16648, Republic of Korea
| | - Chiranjeev Sharma
- Department of Biopharmaceutical Convergence, Graduate School, Sungkyunkwan University, 2066 Seoburo, Jangangu, Suwon 16419, Republic of Korea
| | - Ji Hoon Choi
- School of Pharmacy, Sungkyunkwan University, 2066 Seoburo, Jangangu, Suwon 16419, Republic of Korea
| | - Sang J Chung
- School of Pharmacy, Sungkyunkwan University, 2066 Seoburo, Jangangu, Suwon 16419, Republic of Korea.,AbTis Company Ltd., A-815, Suwon Venture Valley II, 142-10, Saneop-ro156beon-gil, Gwonseon-gu, Suwon, Gyeonggi-do 16648, Republic of Korea.,Department of Biopharmaceutical Convergence, Graduate School, Sungkyunkwan University, 2066 Seoburo, Jangangu, Suwon 16419, Republic of Korea
| |
Collapse
|
133
|
Skrzypczak N, Przybylski P. Structural diversity and biological relevance of benzenoid and atypical ansamycins and their congeners. Nat Prod Rep 2022; 39:1678-1704. [PMID: 35262153 DOI: 10.1039/d2np00004k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 2011 to 2021The structural division of ansamycins, including those of atypical cores and different lengths of the ansa chains, is presented. Recently discovered benzenoid and atypical ansamycin scaffolds are presented in relation to their natural source and biosynthetic routes realized in bacteria as well as their muta and semisynthetic modifications influencing biological properties. To better understand the structure-activity relationships among benzenoid ansamycins structural aspects together with mechanisms of action regarding different targets in cells, are discussed. The most promising directions for structural optimizations of benzenoid ansamycins, characterized by predominant anticancer properties, were discussed in view of their potential medical and pharmaceutical applications. The bibliography of the review covers mainly years from 2011 to 2021.
Collapse
Affiliation(s)
- Natalia Skrzypczak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| |
Collapse
|
134
|
Wang Y, Xie F, Liu L, Xu X, Fan S, Zhong W, Zhou X. Development of applicable thiol-linked antibody-drug conjugates with improved stability and therapeutic index. Drug Deliv 2022; 29:754-766. [PMID: 35244495 PMCID: PMC8933021 DOI: 10.1080/10717544.2022.2039807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Maleimides are typically applicable for coupling with reactive thiol moieties of antibodies in antibody–drug conjugates (ADCs) via the thiol-Michael click chemistry. Even so, the thiosuccinimide group produced in ADCs is unstable under physiological conditions, which is a unresolved issue in the ADC industry that can cause serious off-target toxicity. Committed to solving the stability defects of traditional thiosuccinimide-containing ADCs, we explored a series of linkers based on the ring-opening hydrolysates of thiosuccinimide. Meanwhile, a type of linkers based on maleamic methyl ester were used to conjugate the popular monomethyl auristatin E to an anti-HER2 antibody to generate the target ADCs, which enhances the stability and do not need to change the structure of the ideal stable metabolite of traditional ADCs. In vivo studies demonstrate that our preferred ADC mil40-12b not only has better efficacy than traditional ADCs but also exhibits better safety parameters in mice. For example, complete tumor regression can still be achieved even when the dose is halved (2.5 mg/kg), and the maximum tolerable dose is increased by 40 mg/kg. This strategy is expected to provide an applicable tool for the construction of thiol-linked ADCs with improved therapeutic index.
Collapse
Affiliation(s)
- Yanming Wang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Fei Xie
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Lianqi Liu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xin Xu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Shiyong Fan
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinbo Zhou
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
135
|
Ungaro A, Tucci M, Audisio A, Di Prima L, Pisano C, Turco F, Delcuratolo MD, Di Maio M, Scagliotti GV, Buttigliero C. Antibody-Drug Conjugates in Urothelial Carcinoma: A New Therapeutic Opportunity Moves from Bench to Bedside. Cells 2022; 11:803. [PMID: 35269424 PMCID: PMC8909578 DOI: 10.3390/cells11050803] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
Significant progress has been achieved over the last decades in understanding the biology and mechanisms of tumor progression in urothelial carcinoma (UC). Although the therapeutic landscape has dramatically changed in recent years with the introduction of immune checkpoint inhibitors, advanced UC is still associated with rapidly progressing disease and poor survival. The increasing knowledge of the pathogenesis and molecular pathways underlying cancer development and progression is leading the introduction of target therapies, such as the recently approved FGFR inhibitor Erdafitinib, or the anti-nectin 4 antibody drug-conjugate Enfortumab vedotin. Antibody drug conjugates represent an innovative therapeutic approach that allows the combination of a tar get-specific monoclonal antibody covalently conjugated via a linker to a cytotoxic agent (payload). UC is a perfect candidate for this therapeutic approach since it is particularly enriched in antigen expression on its surface and each specific antigen can represent a potential therapeutic target. In this review we summarize the mechanism of action of ADCs, their applications in localized and metastatic UC, the main mechanisms of resistance, and future perspectives for their use in clinical practice.
Collapse
Affiliation(s)
- Antonio Ungaro
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10124 Turin, Italy; (A.U.); (A.A.); (L.D.P.); (C.P.); (F.T.); (M.D.D.); (G.V.S.)
| | - Marcello Tucci
- Department of Medical Oncology, Cardinal Massaia Hospital, 14100 Asti, Italy;
| | - Alessandro Audisio
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10124 Turin, Italy; (A.U.); (A.A.); (L.D.P.); (C.P.); (F.T.); (M.D.D.); (G.V.S.)
| | - Lavinia Di Prima
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10124 Turin, Italy; (A.U.); (A.A.); (L.D.P.); (C.P.); (F.T.); (M.D.D.); (G.V.S.)
| | - Chiara Pisano
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10124 Turin, Italy; (A.U.); (A.A.); (L.D.P.); (C.P.); (F.T.); (M.D.D.); (G.V.S.)
| | - Fabio Turco
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10124 Turin, Italy; (A.U.); (A.A.); (L.D.P.); (C.P.); (F.T.); (M.D.D.); (G.V.S.)
| | - Marco Donatello Delcuratolo
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10124 Turin, Italy; (A.U.); (A.A.); (L.D.P.); (C.P.); (F.T.); (M.D.D.); (G.V.S.)
| | - Massimo Di Maio
- Department of Oncology, University of Turin, A.O. Ordine Mauriziano, 10124 Turin, Italy;
| | - Giorgio Vittorio Scagliotti
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10124 Turin, Italy; (A.U.); (A.A.); (L.D.P.); (C.P.); (F.T.); (M.D.D.); (G.V.S.)
| | - Consuelo Buttigliero
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10124 Turin, Italy; (A.U.); (A.A.); (L.D.P.); (C.P.); (F.T.); (M.D.D.); (G.V.S.)
| |
Collapse
|
136
|
Koster KL, Huober J, Joerger M. New antibody-drug conjugates (ADCs) in breast cancer—an overview of ADCs recently approved and in later stages of development. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:27-36. [PMID: 36046357 PMCID: PMC9400777 DOI: 10.37349/etat.2022.00069] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/24/2022] [Indexed: 12/30/2022] Open
Abstract
Antibody-drug conjugates (ADCs) have changed the treatment of breast cancer (BC) in more recent years. BC is a heterogenous group of malignancies with a broad range of histopathological characteristics. ADCs represent a class of therapeutics that combines an antigen-specific antibody backbone bound to a potent cytotoxic agent (the payload), via a linker, contributing to an improved therapeutic index. Currently, three ADCs received approval by the US Food and Drug Administration (FDA) and are in routine clinical use in different treatment settings; many more ADCs are in earlier and later stages of development, and their future approval will improve treatment options for patients with advanced but potentially also early-stage BC over time. Just recently, the results of three phase 3 trials (ASCENT, TULIP, and DESTINY-Breast03) evaluating sacituzumab govitecan (SG), trastuzumab duocarmazine, and trastuzumab deruxtecan (T-DXd) in different treatment settings were presented and showed promising results. This overview focuses on the newer ADCs, including T-DXd and SG, their pharmacology, mechanisms of action, and relevant studies. In addition, the latest results from trials investigating some newer ADCs, in further stages of development are presented.
Collapse
Affiliation(s)
- Kira-Lee Koster
- Medical Oncology and Hematology, Cantonal Hospital, CH-9000 St. Gallen, Switzerland
| | - Jens Huober
- Breast Center, Cantonal Hospital, CH-9000 St. Gallen, Switzerland
| | - Markus Joerger
- Medical Oncology and Hematology, Cantonal Hospital, CH-9000 St. Gallen, Switzerland
| |
Collapse
|
137
|
Bivalent EGFR-Targeting DARPin-MMAE Conjugates. Int J Mol Sci 2022; 23:ijms23052468. [PMID: 35269611 PMCID: PMC8909960 DOI: 10.3390/ijms23052468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is a validated tumor marker overexpressed in various cancers such as squamous cell carcinoma (SSC) of the head and neck and gliomas. We constructed protein-drug conjugates based on the anti-EGFR Designed Ankyrin Repeat Protein (DARPin) E01, and compared the bivalent DARPin dimer (DD1) and a DARPin-Fc (DFc) to the monomeric DARPin (DM) and the antibody derived scFv425-Fc (scFvFc) in cell culture and a mouse model. The modular conjugation system, which was successfully applied for the preparation of protein-drug and -dye conjugates, uses bio-orthogonal protein-aldehyde generation by the formylglycine-generating enzyme (FGE). The generated carbonyl moiety is addressed by a bifunctional linker with a pyrazolone for a tandem Knoevenagel reaction and an azide for strain-promoted azide-alkyne cycloaddition (SPAAC). The latter reaction with a PEGylated linker containing a dibenzocyclooctyne (DBCO) for SPAAC and monomethyl auristatin E (MMAE) as the toxin provided the stable conjugates DD1-MMAE (drug-antibody ratio, DAR = 2.0) and DFc-MMAE (DAR = 4.0) with sub-nanomolar cytotoxicity against the human squamous carcinoma derived A431 cells. In vivo imaging of Alexa Fluor 647-dye conjugates in A431-xenografted mice bearing subcutaneous tumors as the SCC model revealed unspecific binding of bivalent DARPins to the ubiquitously expressed EGFR. Tumor-targeting was verified 6 h post-injection solely for DD1 and scFvFc. The total of four administrations of 6.5 mg/kg DD1-MMAE or DFc-MMAE twice weekly did not cause any sequela in mice. MMAE conjugates showed no significant anti-tumor efficacy in vivo, but a trend towards increased necrotic areas (p = 0.2213) was observed for the DD1-MMAE (n = 5).
Collapse
|
138
|
Bianchini G, Arpino G, Biganzoli L, Lonardi S, Puglisi F, Santini D, Lambertini M, Pappagallo G. Emetogenicity of Antibody-Drug Conjugates (ADCs) in Solid Tumors with a Focus on Trastuzumab Deruxtecan: Insights from an Italian Expert Panel. Cancers (Basel) 2022; 14:cancers14041022. [PMID: 35205771 PMCID: PMC8870408 DOI: 10.3390/cancers14041022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Four antibody-drug conjugates (ADCs) are approved for the treatment of solid tumors, improving the therapeutic index. Despite their high selectivity, nausea and vomiting are the most frequently observed side effects. A deeper understanding of the potential risk for nausea and vomiting is crucial, as they can affect patients’ quality of life and treatment adherence. Prophylaxis with the potential combination of antiemetic therapy with complementary non-pharmacological approaches are even more important, considering that ADC therapies are generally given continuously until disease progression or the occurrence of toxicities. Abstract In the past decade, nine antibody-drug conjugates (ADCs) have been approved for the treatment of various tumors, four of which specifically for solid malignancies. ADCs deliver the cytotoxic payload to the cancer site, thereby improving chemotherapy efficacy while reducing systemic drug exposure and toxicity. With their high selectivity, ADCs are associated with a manageable side-effect profile, with nausea and vomiting being among the most frequent toxicities, although this may vary according to the respective ADC and the associated payload. Information about the emetic risk of the new ADC compounds is limited. Three virtual focus groups of Italian oncologists were held to raise awareness on the importance of an antiemetic prophylaxis regimen to prevent and mitigate ADC-associated emesis and its sequelae. After reviewing published evidence and guidelines, the three expert panels shared their experience on the early use of ADCs gained through the participation in specific clinical trials and their clinical practice. The following issues were discussed: antiemetic therapy during trastuzumab deruxtecan treatment, with a protocol adopted at the San Raffaele Hospital (Milan, Italy); the use of steroids; the management of anticipatory nausea during trastuzumab deruxtecan therapy; nutritional counselling; and effective doctor–patient communication. The experts acknowledged that recommendations should be drug-specific, and formulated opinion-based advice intended to guide physicians in their daily practice until further evidence emerges.
Collapse
Affiliation(s)
- Giampaolo Bianchini
- Department of Medical Oncology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- School of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Correspondence: ; Tel.: +39-02-2643-3169
| | - Grazia Arpino
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Laura Biganzoli
- Medical Oncology Department, Department of Oncology, Hospital Santo Stefano, 59100 Prato, Italy;
| | - Sara Lonardi
- Oncology Unit 3, Department of Oncology, Veneto Institute of Oncology IRCCS, 35128 Padova, Italy;
| | - Fabio Puglisi
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy;
- Department of Medical Oncology, Unit of Medical Oncology and Cancer Prevention, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Daniele Santini
- Medical Oncology, University Campus Bio-Medico, 00128 Roma, Italy;
| | - Matteo Lambertini
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, 16132 Genova, Italy;
- Department of Medical Oncology, UOC Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Giovanni Pappagallo
- School of Clinical Methodology, IRCCS “Sacro Cuore-Don Calabria” Hospital, 37024 Negrar di Valpolicella, Italy;
| |
Collapse
|
139
|
Sheyi R, de la Torre BG, Albericio F. Linkers: An Assurance for Controlled Delivery of Antibody-Drug Conjugate. Pharmaceutics 2022; 14:pharmaceutics14020396. [PMID: 35214128 PMCID: PMC8874516 DOI: 10.3390/pharmaceutics14020396] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
As one of the major therapeutic options for cancer treatment, chemotherapy has limited selectivity against cancer cells. Consequently, this therapeutic strategy offers a small therapeutic window with potentially high toxicity and thus limited efficacy of doses that can be tolerated by patients. Antibody-drug conjugates (ADCs) are an emerging class of anti-cancer therapeutic drugs that can deliver highly cytotoxic molecules directly to cancer cells. To date, twelve ADCs have received market approval, with several others in clinical stages. ADCs have become a powerful class of therapeutic agents in oncology and hematology. ADCs consist of recombinant monoclonal antibodies that are covalently bound to cytotoxic chemicals via synthetic linkers. The linker has a key role in ADC outcomes because its characteristics substantially impact the therapeutic index efficacy and pharmacokinetics of these drugs. Stable linkers and ADCs can maintain antibody concentration in blood circulation, and they do not release the cytotoxic drug before it reaches its target, thus resulting in minimum off-target effects. The linkers used in ADC development can be classified as cleavable and non-cleavable. The former, in turn, can be grouped into three types: hydrazone, disulfide, or peptide linkers. In this review, we highlight the various linkers used in ADC development and their design strategy, release mechanisms, and future perspectives.
Collapse
Affiliation(s)
- Rotimi Sheyi
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Beatriz G. de la Torre
- Kwazulu-Natal Research Innovation and Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
- Correspondence: (B.G.d.l.T.); (F.A.); Tel.: +27-614-047-528 (B.G.d.l.T.); +27-6140-09144 (F.A.)
| | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa;
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
- Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (B.G.d.l.T.); (F.A.); Tel.: +27-614-047-528 (B.G.d.l.T.); +27-6140-09144 (F.A.)
| |
Collapse
|
140
|
Mohamed Amar IA, Huvelle S, Douez E, Letast S, Henrion S, Viaud-Massuard MC, Aubrey N, Allard-Vannier E, Joubert N, Denevault-Sabourin C. Dual intra- and extracellular release of monomethyl auristatin E from a neutrophil elastase-sensitive antibody-drug conjugate. Eur J Med Chem 2022; 229:114063. [PMID: 34974337 DOI: 10.1016/j.ejmech.2021.114063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 11/04/2022]
Abstract
Antibody-drug conjugates (ADCs) are targeted therapies, mainly used in oncology, consisting in a three-component molecular architecture combining a highly potent drug conjugated via a linker onto a monoclonal antibody (mAb), designed for the selective delivery of the drug to the tumor site. The linker is a key component, defining the ADC stability and mechanism of action, and particularly the drug release strategy. In this study, we have developed and synthesized a cleavable linker, which possesses an Asn-Pro-Val (NPV) sequence sensitive to the human neutrophil elastase (HNE), overexpressed in the tumor microenvironment. This linker permitted the site-specific conjugation of the cell-permeable drug, monomethyl auristatin E (MMAE), onto trastuzumab, using a disulfide re-bridging technology. The resulting ADC was then evaluated in vitro. This conjugate demonstrated retained antigen (Ag) binding affinity and exhibited high subnanomolar potency against Ag-positive tumor cells after internalization, suggesting an intracellular mechanism of linker cleavage. While no internalization and cytotoxic activity of this ADC was observed on Ag-negative cells in classical conditions, the supplementation of exogenous HNE permitted to restore a nanomolar activity on these cells, suggesting an extracellular mechanism of drug release in these conditions. This in vitro proof of concept tends to prove that the NPV sequence could allow a dual intra- and extracellular mechanism of drug release. This work represents a first step in the design of original ADCs with a new dual intra- and extracellular drug delivery system and opens the way to further experimentations to evaluate their full potential in vivo.
Collapse
Affiliation(s)
| | - Steve Huvelle
- EA 7501 GICC, Team IMT, University of Tours, F-37032, Tours, France
| | - Emmanuel Douez
- EA 6295 NMNS, University of Tours, F-37200, Tours, France
| | - Stéphanie Letast
- EA 7501 GICC, Team IMT, University of Tours, F-37032, Tours, France
| | - Sylvain Henrion
- EA 7501 GICC, Team IMT, University of Tours, F-37032, Tours, France
| | | | - Nicolas Aubrey
- UMR 1282 ISP, Team BioMAP, University of Tours-INRAE, F-37200, Tours, France
| | | | - Nicolas Joubert
- EA 7501 GICC, Team IMT, University of Tours, F-37032, Tours, France.
| | | |
Collapse
|
141
|
Antibody–Drug Conjugates as an Emerging Therapy in Oncodermatology. Cancers (Basel) 2022; 14:cancers14030778. [PMID: 35159045 PMCID: PMC8833781 DOI: 10.3390/cancers14030778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Currently, the therapeutic arsenal to fight cancers is extensive. Among these, antibody–drug conjugates (ADCs) consist in an antibody linked to a cytotoxic agent, allowing a specific delivery to tumor cells. ADCs are an emerging class of therapeutics, with twelve FDA- and EMA-approved drugs for hematological and solid cancers. In recent years, tremendous progress has been observed in therapeutic approaches for advanced skin cancer patients. ADCs appear as an emerging therapeutic option in oncodermatology. After providing an overview of ADC design and development, the goal of this article is to review the potential ADC indications in the field of oncodermatology. Abstract Antibody–drug conjugates (ADCs) are an emerging class of therapeutics, with twelve FDA- and EMA-approved drugs for hematological and solid cancers. Such drugs consist in a monoclonal antibody linked to a cytotoxic agent, allowing a specific cytotoxicity to tumor cells. In recent years, tremendous progress has been observed in therapeutic approaches for advanced skin cancer patients. In this regard, targeted therapies (e.g., kinase inhibitors) or immune checkpoint-blocking antibodies outperformed conventional chemotherapy, with proven benefit to survival. Nevertheless, primary and acquired resistances as well as adverse events remain limitations of these therapies. Therefore, ADCs appear as an emerging therapeutic option in oncodermatology. After providing an overview of ADC design and development, the goal of this article is to review the potential ADC indications in the field of oncodermatology.
Collapse
|
142
|
Park H, Otte A, Park K. Evolution of drug delivery systems: From 1950 to 2020 and beyond. J Control Release 2022; 342:53-65. [PMID: 34971694 PMCID: PMC8840987 DOI: 10.1016/j.jconrel.2021.12.030] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 02/03/2023]
Abstract
Modern drug delivery technology began in 1952 with the advent of the Spansule® sustained-release capsule technology, which can deliver a drug for 12 h after oral administration through an initial immediate dose followed by the remaining released gradually. Until the 1980s, oral and transdermal formulations providing therapeutic durations up to 24 h for small molecules dominated the drug delivery field and the market. The introduction of Lupron Depot® in 1989 opened the door for long-acting injectables and implantables, extending the drug delivery duration from days to months and occasionally years. Notably, the new technologies allowed long-term delivery of peptide and protein drugs, although limited to parenteral administration. The introduction of the first PEGylated protein, Adagen®, in 1990 marked the new era of PEGylation, resulting in Doxil® (doxorubicin in PEGylated liposome) in 1995, Movantik® (PEGylated naloxone - naloxegol) in 2014, and Onpattro® (Patisiran - siRNA in PEGylated lipid nanoparticle) in 2018. Drug-polymer complexes were introduced, e.g., InFed® (iron-dextran complex injection) in 1974 and Abraxane® (paclitaxel-albumin complex) in 2005. In 2000, both Mylotarg™ (antibody-drug conjugate - gemtuzumab ozogamicin) and Rapamune® (sirolimus nanocrystal formulation) were introduced. The year 2000 also marked the launching of the National Nanotechnology Initiative by the U.S. government, which was soon followed by the rest of the world. Extensive work on nanomedicine, particularly formulations designed to escape from endosomes after being taken by tumor cells, along with PEGylation technology, ultimately resulted in the timely development of lipid nanoparticle formulations for COVID-19 vaccine delivery in 2020. While the advances in drug delivery technologies for the last seven decades are breathtaking, they are only the tip of an iceberg of technologies that have yet to be utilized in an approved formulation or even to be discovered. As life expectancy continues to increase, more people require long-term care for various diseases. Filling the current and future unmet needs requires innovative drug delivery technologies to overcome age-old familiar hurdles, e.g., improving water-solubility of poorly soluble drugs, overcoming biological barriers, and developing more efficient long-acting depot formulations. The lessons learned from the past are essential assets for developing future drug delivery technologies implemented into products. As the development of COVID-19 vaccines demonstrated, meeting the unforeseen crisis of the uncertain future requires continuous cumulation of failures (as learning experiences), knowledge, and technologies. Conscious efforts of supporting diversified research topics in the drug delivery field are urgently needed more than ever.
Collapse
Affiliation(s)
- Haesun Park
- Akina, Inc., West Lafayette, IN 47906, United States of America
| | - Andrew Otte
- Purdue University, Departments of Biomedical Engineering and Pharmaceutics, West Lafayette, IN 47907, United States of America
| | - Kinam Park
- Akina, Inc., West Lafayette, IN 47906, United States of America; Purdue University, Departments of Biomedical Engineering and Pharmaceutics, West Lafayette, IN 47907, United States of America.
| |
Collapse
|
143
|
Yi S, Wei S, Wu Q, Wang H, Yao Z. Azaphilones as Activation‐Free Primary‐Amine‐Specific Bioconjugation Reagents for Peptides, Proteins and Lipids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shandong Yi
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing Jiangsu 210023 China
| | - Siyuan Wei
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing Jiangsu 210023 China
| | - Qingsong Wu
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing Jiangsu 210023 China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing Jiangsu 210023 China
| | - Zhu‐Jun Yao
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing Jiangsu 210023 China
| |
Collapse
|
144
|
Li SS, Zhang CM, Wu JD, Liu C, Liu ZP. A branched small molecule-drug conjugate nanomedicine strategy for the targeted HCC chemotherapy. Eur J Med Chem 2022; 228:114037. [PMID: 34883290 DOI: 10.1016/j.ejmech.2021.114037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022]
Abstract
Off-target toxicity is one of the main challenges faced by anticancer chemotherapeutics. For tumor targeted and precision chemotherapy, we take the advantages of the ligand directed tumor active targeting of small molecule drug conjugates (SMDCs) and the passive tumor targeting of nanoparticles via the enhanced penetration and retention (EPR) effects, put forward a branched small molecule drug conjugate (BSMDC) nanomedicine design concept. In a proof of concept, we used pentaerythritol as the branched moiety, galactosamine (GalN) as the hepatocellular carcinoma (HCC) directing ligands, PTX as a payload, and a stearoyl moiety as the amphiphilic property adjusting group, designed and synthesized BSMDC 1 and prepared its NPs. In cellular level, the BSMDC 1 NPs targeted asialoglycoprotein receptor (ASGPR)-overexpressing HepG2 cells, were effectively taken up in the cells and released in tumor microenvironments, inhibited the HepG2 cell proliferation, arrested HepG2 cell in G2/M phase and induced tumor cell apoptosis. In HepG2 xenograft nude mice, the BSMDC 1 NPs were high specific to target the tumor and demonstrated a higher antitumor efficiency than BSMDC 1, having no apparent influences on mice body weights and major organs, supporting our BSMDC nanomedicine design concept. Therefore, this new strategy may find applications for cancer targeted and precision chemotherapy.
Collapse
Affiliation(s)
- Sha-Sha Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Cheng-Mei Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Jing-De Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Chao Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China.
| | - Zhao-Peng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China.
| |
Collapse
|
145
|
Lerchen HG, Stelte-Ludwig B, Kopitz C, Heroult M, Zubov D, Willuda J, Schlange T, Kahnert A, Wong H, Izumi R, Hamdy A. A Small Molecule–Drug Conjugate (SMDC) Consisting of a Modified Camptothecin Payload Linked to an αVß3 Binder for the Treatment of Multiple Cancer Types. Cancers (Basel) 2022; 14:cancers14020391. [PMID: 35053556 PMCID: PMC8773721 DOI: 10.3390/cancers14020391] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/07/2021] [Accepted: 01/04/2022] [Indexed: 12/27/2022] Open
Abstract
To improve tumor selectivity of cytotoxic agents, we designed VIP236, a small molecule–drug conjugate consisting of an αVβ3 integrin binder linked to a modified camptothecin payload (VIP126), which is released by the enzyme neutrophil elastase (NE) in the tumor microenvironment (TME). The tumor targeting and pharmacokinetics of VIP236 were studied in tumor-bearing mice by in vivo near-infrared imaging and by analyzing tumor and plasma samples. The efficacy of VIP236 was investigated in a panel of cancer cell lines in vitro, and in MX-1, NCI-H69, and SW480 murine xenograft models. Imaging studies with the αVβ3 binder demonstrated efficient tumor targeting. Administration of VIP126 via VIP236 resulted in a 10-fold improvement in the tumor/plasma ratio of VIP126 compared with VIP126 administered alone. Unlike SN38, VIP126 is not a substrate of P-gp and BCRP drug transporters. VIP236 presented strong cytotoxic activity in the presence of NE. VIP236 treatment resulted in tumor regressions and very good tolerability in all in vivo models tested. VIP236 represents a novel approach for delivering a potent cytotoxic agent by utilizing αVβ3 as a targeting moiety and NE in the TME to release the VIP126 payload—designed for high permeability and low efflux—directly into the tumor stroma.
Collapse
Affiliation(s)
- Hans-Georg Lerchen
- Vincerx Pharma GmbH, 40789 Monheim am Rhein, Germany;
- Correspondence: ; Tel.: +49-157-31993091
| | | | | | - Melanie Heroult
- Crop Science Division, Bayer AG, 65926 Frankfurt am Main, Germany;
| | - Dmitry Zubov
- Pharmaceuticals R&D, Bayer AG, 42096 Wuppertal, Germany; (D.Z.); (T.S.); (A.K.)
| | - Joerg Willuda
- Pharmaceuticals R&D, Bayer AG, 13353 Berlin, Germany;
| | - Thomas Schlange
- Pharmaceuticals R&D, Bayer AG, 42096 Wuppertal, Germany; (D.Z.); (T.S.); (A.K.)
| | - Antje Kahnert
- Pharmaceuticals R&D, Bayer AG, 42096 Wuppertal, Germany; (D.Z.); (T.S.); (A.K.)
| | - Harvey Wong
- Vincerx Pharma Inc., Palo Alto, CA 94306, USA; (H.W.); (R.I.); (A.H.)
| | - Raquel Izumi
- Vincerx Pharma Inc., Palo Alto, CA 94306, USA; (H.W.); (R.I.); (A.H.)
| | - Ahmed Hamdy
- Vincerx Pharma Inc., Palo Alto, CA 94306, USA; (H.W.); (R.I.); (A.H.)
| |
Collapse
|
146
|
Faust A, Bäumer N, Schlütermann A, Becht M, Greune L, Geyer C, Rüter C, Margeta R, Wittmann L, Dersch P, Lenz G, Berdel WE, Bäumer S. Tumorzellspezifisches Targeting von Ibrutinib: Einführung von elektrostatischen Antikörper‐Inhibitor‐Konjugaten (AiCs). Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202109769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Andreas Faust
- European Institute for Molecular Imaging Universität Münster Waldeyerstr. 15 48159 Münster Deutschland
- Interdisziplinäres Zentrum für Klinische Forschung (IZKF) Universität Münster Albert-Schweitzer Campus 1 48149 Münster Deutschland
| | - Nicole Bäumer
- Medizinische Klinik A, Hämatologie/Onkologie Universitätsklinikum Münster Albert-Schweitzer Campus 1 48149 Münster Deutschland
- Interdisziplinäres Zentrum für Klinische Forschung (IZKF) Universität Münster Albert-Schweitzer Campus 1 48149 Münster Deutschland
| | - Alina Schlütermann
- Medizinische Klinik A, Hämatologie/Onkologie Universitätsklinikum Münster Albert-Schweitzer Campus 1 48149 Münster Deutschland
| | - Manuel Becht
- Medizinische Klinik A, Hämatologie/Onkologie Universitätsklinikum Münster Albert-Schweitzer Campus 1 48149 Münster Deutschland
| | - Lilo Greune
- Institut für Infektiologie Zentrum für Molekulare Biologie der Entzündung (ZMBE) Universität Münster Von-Esmarch-Str. 56 48149 Münster Deutschland
| | - Christiane Geyer
- Institut für Klinische Radiologie Universitätsklinikum Münster Albert-Schweitzer Campus 1 48149 Münster Deutschland
| | - Christian Rüter
- Institut für Infektiologie Zentrum für Molekulare Biologie der Entzündung (ZMBE) Universität Münster Von-Esmarch-Str. 56 48149 Münster Deutschland
| | - Renato Margeta
- European Institute for Molecular Imaging Universität Münster Waldeyerstr. 15 48159 Münster Deutschland
| | - Lisa Wittmann
- Medizinische Klinik A, Hämatologie/Onkologie Universitätsklinikum Münster Albert-Schweitzer Campus 1 48149 Münster Deutschland
| | - Petra Dersch
- Institut für Infektiologie Zentrum für Molekulare Biologie der Entzündung (ZMBE) Universität Münster Von-Esmarch-Str. 56 48149 Münster Deutschland
| | - Georg Lenz
- Medizinische Klinik A, Hämatologie/Onkologie Universitätsklinikum Münster Albert-Schweitzer Campus 1 48149 Münster Deutschland
| | - Wolfgang E. Berdel
- Medizinische Klinik A, Hämatologie/Onkologie Universitätsklinikum Münster Albert-Schweitzer Campus 1 48149 Münster Deutschland
| | - Sebastian Bäumer
- Medizinische Klinik A, Hämatologie/Onkologie Universitätsklinikum Münster Albert-Schweitzer Campus 1 48149 Münster Deutschland
- Interdisziplinäres Zentrum für Klinische Forschung (IZKF) Universität Münster Albert-Schweitzer Campus 1 48149 Münster Deutschland
| |
Collapse
|
147
|
Qiu Z, Wu Y, Lan K, Wang S, Yu H, Wang Y, Wang C, Cao S. Cytotoxic compounds from marine actinomycetes: Sources, Structures and Bioactivity. ACTA MATERIA MEDICA 2022; 1:445-475. [PMID: 36588746 PMCID: PMC9802659 DOI: 10.15212/amm-2022-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Marine actinomycetes produce a substantial number of natural products with cytotoxic activity. The strains of actinomycetes were isolated from different sources like fishes, coral, sponges, seaweeds, mangroves, sediments etc. These cytotoxic compounds can be categorized briefly into four classes: polyketides, non-ribosomal peptides and hybrids, isoprenoids and hybrids, and others, among which majority are polyketides (146). Twenty two out of the 254 compounds showed potent cytotoxicity with IC50 values at ng/mL or nM level. This review highlights the sources, structures and antitumor activity of 254 natural products isolated from marine actinomycetes, which were new when they were reported from 1989 to 2020.
Collapse
Affiliation(s)
- Ziyan Qiu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Yinshuang Wu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Kunyan Lan
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Shiyi Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Huilin Yu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Yufei Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Cong Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China,Correspondence: (C.W.); (S.C.)
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, 200 W. Kawili St., Hilo, HI 96720, USA,Correspondence: (C.W.); (S.C.)
| |
Collapse
|
148
|
Pharmaceutical Nanotechnology. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_10-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
149
|
Yadav A, Singh S, Sohi H, Dang S. Advances in Delivery of Chemotherapeutic Agents for Cancer Treatment. AAPS PharmSciTech 2021; 23:25. [PMID: 34907501 DOI: 10.1208/s12249-021-02174-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/29/2021] [Indexed: 12/31/2022] Open
Abstract
Presently, most of the treatment strategies for cancer are focused on the surgical removal of cancerous tumors, along with physical and chemical treatment such as radiotherapy and chemotherapy, respectively. The primary issue associated with these methods is the inhibition of normal cell growth and serious side effects associated with systemic toxicity. The traditional chemotherapeutics which were delivered systemically were inadequate and had serious dose limiting side effects. Recent advances in the development of chemotherapeutics have simultaneously paved the way for efficient targeted drug delivery. Despite the advances in the field of oncogenic drugs, several limitations remain, such as early blood clearance, acquired resistance against cytotoxic agents, toxicity associated with chemotherapeutics, and site-specific drug delivery. Hence, this review article focuses on the recent scientific advancements made in different types of drug delivery systems, including, organic nanocarriers (polymers, albumins, liposomes, and micelles), inorganic nanocarriers (mesoporous silica nanoparticles, gold nanoparticles, platinum nanoparticles, and carbon nanotubes), aptamers, antibody-drug conjugates, and peptides. These targeted drug delivery approaches offer numerous advantages such as site-specific drug delivery, minimal toxicity, better bioavailability, and an increased overall efficacy of the chemotherapeutics. Graphical abstract.
Collapse
|
150
|
Fatima SW, Khare SK. Benefits and challenges of antibody drug conjugates as novel form of chemotherapy. J Control Release 2021; 341:555-565. [PMID: 34906604 DOI: 10.1016/j.jconrel.2021.12.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022]
Abstract
Antibody drug conjugates (ADCs) are an emerging therapeutic modality for targeted cancer treatment. They represent the unique amalgamation of chemotherapy and immunotherapy. ADCs comprise of monoclonal antibodies linked with drugs (payloads) through a chemical linker designed to deliver the cytotoxic moiety to the cancer cells. The present paper is a review of recent clinical advances of each component of ADCs (antibody/linker/payload) and how the individual component influences the activity of ADCs. The review discusses opportunities for improving ADCs efficiency and ways to have a better antibody-based molecular platform, which could substantially increase chemotherapy outcomes. This review casts an outlook on how ADCs enhancement in terms of their pharmacokinetics, therapeutic indexes and safety profiles can overcome the prevailing challenges like drug resistance in cancer treatment. A novel strategy of augmenting antibodies with nanoparticles anticipates a huge success in terms of targeted delivery of drugs in several diseases. Antibody conjugated nanoparticles (ACNPs) are a very promising strategy for the cutting-edge development of chemo/immunotherapies for efficient delivery of payloads at the targeted cancer cells. The avenues of a high drug to antibody ratio (DAR) owing to the selection of broad chemotherapy payloads, regulating drug release eliciting higher avidity of ACNPs over ADCs will be the modern immunotherapeutics. ACNPs carry immense potential to mark a paradigm shift in cancer chemotherapy that may be a substitute for ADCs.
Collapse
Affiliation(s)
- Syeda Warisul Fatima
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sunil K Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|