101
|
Gortikov M, Yakubovich E, Wang Z, López-Giráldez F, Tu Y, Townsend JP, Yarden O. Differential Expression of Cell Wall Remodeling Genes Is Part of the Dynamic Phase-Specific Transcriptional Program of Conidial Germination of Trichoderma asperelloides. J Fungi (Basel) 2022; 8:854. [PMID: 36012842 PMCID: PMC9410309 DOI: 10.3390/jof8080854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/19/2022] Open
Abstract
The nature of saprophytic and mycoparasitic hyphal growth of Trichoderma spp. has been studied extensively, yet its initiation via conidial germination in this genus is less well understood. Using near-synchronous germinating cultures of Trichoderma asperelloides, we followed the morphological progression from dormant conidia to initial polar growth to germling formation and to evidence for first branching. We found that the stage-specific transcriptional profile of T. asperelloides is one of the most dynamic described to date: transcript abundance of over 5000 genes-comprising approximately half of the annotated genome-was unremittingly reduced in the transition from dormancy to polar growth. Conversely, after the onset of germination, the transcript abundance of approximately a quarter of the genome was unremittingly elevated during the transition from elongation to initial branching. These changes are a testimony to the substantial developmental events that accompany germination. Bayesian network analysis identified several chitinase- and glucanase-encoding genes as active transcriptional hubs during germination. Furthermore, the expression of specific members of the chitin synthase and glucan elongase families was significantly increased during germination in the presence of Rhizoctonia solani-a known host of the mycoparasite-indicating that host recognition can occur during the early stages of mycoparasite development.
Collapse
Affiliation(s)
- Maggie Gortikov
- Department of Plant Pathology and Microbiology, The RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Elizabeta Yakubovich
- Department of Plant Pathology and Microbiology, The RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06511, USA
| | | | - Yujia Tu
- Department of Mathematics and Computer Science, University of Strasbourg, 67081 Strasbourg, France
| | - Jeffrey P Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06511, USA
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
102
|
Legrifi I, Al Figuigui J, El Hamss H, Lazraq A, Belabess Z, Tahiri A, Amiri S, Barka EA, Lahlali R. Potential for Biological Control of Pythium schmitthenneri Root Rot Disease of Olive Trees ( Olea europaea L.) by Antagonistic Bacteria. Microorganisms 2022; 10:1635. [PMID: 36014053 PMCID: PMC9412840 DOI: 10.3390/microorganisms10081635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Several diseases affect the productivity of olive trees, including root rot disease caused by Pythium genera. Chemical fungicides, which are often used to manage this disease, have harmful side effects on humans as well as environmental components. Biological management is a promising control approach that has shown its great potential as an efficient eco-friendly alternative to treating root rot diseases. In the present study, the antagonistic activity of ten bacterial isolates was tested both in vitro and in planta against Pythium schmitthenneri, the causal agent of olive root rot disease. These bacterial isolates belonging to the genera Alcaligenes, Pantoea, Bacillus, Sphingobacterium, and Stenotrophomonas were chosen for their potential antimicrobial effects against many pathogens. Results of the in vitro confrontation bioassay revealed a high reduction of mycelial growth exceeding 80%. The antifungal effect of the volatile organic compounds (VOCs) was observed for all the isolates, with mycelial inhibition rates ranging from 28.37 to 70.32%. Likewise, the bacterial cell-free filtrates showed important inhibition of the mycelial growth of the pathogen. Overall, their efficacy was substantially affected by the nature of the bacterial strains and their modes of action. A greenhouse test was then carried out to validate the in vitro results. Interestingly, two bacterial isolates, Alcaligenes faecalis ACBC1 and Bacillus amyloliquefaciens SF14, were the most successful in managing the disease. Our findings suggested that these two antagonistic bacterial isolates have promising potential as biocontrol agents of olive root rot disease.
Collapse
Affiliation(s)
- Ikram Legrifi
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Route d’Imouzzer, Fez 30000, Morocco
| | - Jamila Al Figuigui
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Route d’Imouzzer, Fez 30000, Morocco
| | - Hajar El Hamss
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco
| | - Abderrahim Lazraq
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Route d’Imouzzer, Fez 30000, Morocco
| | - Zineb Belabess
- Plant Protection Laboratory, Regional Center of Agricultural Research of Oujda, National Institute of Agricultural Research, Avenue Mohamed VI, BP428 Oujda, Oujda 60000, Morocco
| | - Abdessalem Tahiri
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco
| | - Said Amiri
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco
| | - Essaid Ait Barka
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco
| |
Collapse
|
103
|
Henríquez-Urrutia M, Spanner R, Olivares-Yánez C, Seguel-Avello A, Pérez-Lara R, Guillén-Alonso H, Winkler R, Herrera-Estrella AH, Canessa P, Larrondo LF. Circadian oscillations in Trichoderma atroviride and the role of core clock components in secondary metabolism, development, and mycoparasitism against the phytopathogen Botrytis cinerea. eLife 2022; 11:71358. [PMID: 35950750 PMCID: PMC9427114 DOI: 10.7554/elife.71358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Circadian clocks are important for an individual’s fitness, and recent studies have underlined their role in the outcome of biological interactions. However, the relevance of circadian clocks in fungal–fungal interactions remains largely unexplored. We sought to characterize a functional clock in the biocontrol agent Trichoderma atroviride to assess its importance in the mycoparasitic interaction against the phytopathogen Botrytis cinerea. Thus, we confirmed the existence of circadian rhythms in T. atroviride, which are temperature-compensated and modulated by environmental cues such as light and temperature. Nevertheless, the presence of such molecular rhythms appears to be highly dependent on the nutritional composition of the media. Complementation of a clock null (Δfrq) Neurospora crassa strain with the T. atroviride-negative clock component (tafrq) restored core clock function, with the same period observed in the latter fungus, confirming the role of tafrq as a bona fide core clock component. Confrontation assays between wild-type and clock mutant strains of T. atroviride and B. cinerea, in constant light or darkness, revealed an inhibitory effect of light on T. atroviride’s mycoparasitic capabilities. Interestingly, when confrontation assays were performed under light/dark cycles, T. atroviride’s overgrowth capacity was enhanced when inoculations were at dawn compared to dusk. Deleting the core clock-negative element FRQ in B. cinerea, but not in T. atroviride, was vital for the daily differential phenotype, suggesting that the B. cinerea clock has a more significant influence on the result of this interaction. Additionally, we observed that T. atroviride clock components largely modulate development and secondary metabolism in this fungus, including the rhythmic production of distinct volatile organic compounds (VOCs). Thus, this study provides evidence on how clock components impact diverse aspects of T. atroviride lifestyle and how daily changes modulate fungal interactions and dynamics.
Collapse
Affiliation(s)
- Marlene Henríquez-Urrutia
- Molecular Genetics and Microbiology department, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rebecca Spanner
- Molecular Genetics and Microbiology department, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Consuelo Olivares-Yánez
- Millennium Science Initiative Program, Millennium Institute for Integrative Biology, Santiago, Chile
| | - Aldo Seguel-Avello
- Molecular Genetics and Microbiology department, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Pérez-Lara
- Molecular Genetics and Microbiology department, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hector Guillén-Alonso
- Department of Biotechnology and Biochemistry, Cinvestav Unidad Irapuato, Irapuato, Mexico
| | - Robert Winkler
- Department of Biotechnology and Biochemistry, Cinvestav Unidad Irapuato, Irapuato, Mexico
| | | | - Paulo Canessa
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago, Chile
| | - Luis F Larrondo
- Molecular Genetics and Microbiology department, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
104
|
Joo JH, Hussein KA. Biological Control and Plant Growth Promotion Properties of Volatile Organic Compound-Producing Antagonistic Trichoderma spp. FRONTIERS IN PLANT SCIENCE 2022; 13:897668. [PMID: 35958189 PMCID: PMC9360753 DOI: 10.3389/fpls.2022.897668] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/20/2022] [Indexed: 05/25/2023]
Abstract
Trichoderma is environmentally vital due to their plant growth-promoting effects (such as enhancement of nutrients supply, suppression of plant pathogens, and promotion of plant defense). Biogenic volatile organic compounds (VOCs) are diverse chemical substances emitted by Trichoderma spp. The potential role of VOCs in biological control and plant growth promotion has recently been recognized. Here, the Trichoderma-VOCs' performance for plant growth promotion and suppression of plant pathogens are evaluated. We further investigated VOC emission profiles of T. harzianum using GC-MS. The Trichoderma-VOCs exhibited significant (p < 0.05) antifungal properties against all tested pathogenic fungi. T. atroviride-VOCs showed a decisive inhibition of Alternaria panax, Botrytis cinerea, Cylindrocarpon destructans, and Sclerotinia nivalis. The germinating seeds demonstrated growth enhancement in the presence of Trichoderma-VOCs emitted by different strains. Low levels of cyclopentasiloxane, decamethyl, cyclotetrasiloxane, and octamethyl were found in T. harzianum KNU1 strain whereas cyclopentasiloxane, decamethyl, cyclotetrasiloxane, and octamethyl showed higher emission levels as Si-containing compounds. The results reveal the potentiality of VOCs as a biocontrol resource against deleterious rhizosphere microorganisms and underline the importance of Trichoderma-VOCs emissions in regulating plant growth and development.
Collapse
Affiliation(s)
- Jin Ho Joo
- Soil Biochemistry Lab, Department of Biological Environment, Kangwon National University, Chuncheon, South Korea
| | - Khalid Abdallah Hussein
- Soil Biochemistry Lab, Department of Biological Environment, Kangwon National University, Chuncheon, South Korea
- Botany and Microbiology Department, Faculty of Science, Assiut University, Asyut, Egypt
| |
Collapse
|
105
|
Zhao Y, Chen X, Cheng J, Xie J, Lin Y, Jiang D, Fu Y, Chen T. Application of Trichoderma Hz36 and Hk37 as Biocontrol Agents against Clubroot Caused by Plasmodiophora brassicae. J Fungi (Basel) 2022; 8:jof8080777. [PMID: 35893144 PMCID: PMC9331738 DOI: 10.3390/jof8080777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022] Open
Abstract
Clubroot, a soil-infective disease caused by Plasmodiophora brassicae, is a serious disease affecting cruciferous plants around the world. There is no effective control measure to completely remove this pathogen from fields after infection. Here, we screened and identified two strains (Hz36, Trichoderma guizhouense; Hk37, Trichoderma koningiopsis) of Trichoderma from the gall of clubroot in rapeseed fields with biocontrol potential for clubroot. The fermentation broth of Hz36 could significantly inhibit the germination of resting spores of P. brassicae, and promote the seed germination and root growth of rapeseed. The biocontrol efficiency of Hz36 strain on clubroot for rapeseed and Arabidopsis thaliana was 44.29% and 52.18%, respectively. The qPCR results revealed that strain Hz36 treatment could significantly reduce the content of P. brassicae in root cells, and paraffin section analysis revealed that it could delay the development of P. brassicae. Strain Hk37 showed similar effects to strain Hz36, whose biocontrol efficiency of clubroot could reach 57.30% in rapeseed and 68.01% in A. thaliana. These results indicate that strains Hz36 and Hk37 have the potential for the biocontrol of clubroot.
Collapse
|
106
|
Potential Role of Biocontrol Agents for Sustainable Management of Fungal Pathogens Causing Canker and Fruit Rot of Pistachio in Italy. Pathogens 2022; 11:pathogens11080829. [PMID: 35894052 PMCID: PMC9394371 DOI: 10.3390/pathogens11080829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Pistachio (Pistacia vera) is an important Mediterranean crop. In Italy, pistachio is cultivated in the southern regions, of which Sicily is the main production area. Recently, the phytopathological situation of this crop has started to be updated, and new diseases have been discovered, studied, and reported. Botryosphaeriaceae spp. and Leptosillia pistaciae are major canker/rot pathogens, and Cytospora pistaciae and Eutypa lata have been reported as minor canker pathogens. In this paper, we evaluated different biological control agents, belonging to Trichoderma asperellum, T. atroviride and T. harzianum, as well as some Bacillus amyloliquefaciens strains, against above-mentioned pathogens. Results of dual culture assays showed that all the biological products, both fungi and bacteria, were able to inhibit the mycelial growth of the pathogens in vitro. Experiments using detached twigs showed no effect of biocontrol agents in reducing infections, except for Neofusicoccum hellenicum treated with T. harzianum T22 and Leptosillia pistaciae treated with B. amyloliquefaciens D747. Results of detached fruit experiments showed an efficacy ranging from 32.5 to 66.9% of all the biological products in reducing the lesions caused by N. mediterraneum. This study provides basic information for future research on biological control of pistachio diseases and future prospects for search of more effective biological control agents for canker diseases than those studied here.
Collapse
|
107
|
Biocontrol of Phytophthora xcambivora on Castanea sativa: Selection of Local Trichoderma spp. Isolates for the Management of Ink Disease. FORESTS 2022. [DOI: 10.3390/f13071065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Ink disease is a devastating disease of chestnut (Castanea sativa) worldwide, caused by Phytophthora species. The only management measures of this disease are chemical and agronomic interventions. This work focuses on the evaluation of the in vitro antagonistic capacity of 20 isolates of Trichoderma spp. selected in a diseased chestnut orchard in Tuscan Apennines (San Godenzo, Italy) for the biocontrol of Phytophthora xcambivora. Each Trichoderma isolate was tested to investigate pathogen inhibition capability by antagonism in dual cultures and antibiosis by secondary metabolites production (diffusible and Volatile Organic Compounds). The six most performing isolates of Trichoderma spp. were further assessed for their aptitude to synthesize chitinase, glucanase and cellulase, and to act as mycoparasite. All six selected isolates displayed the capability to control the pathogen in vitro by synergistically coupling antibiosis and mycoparasitism at different levels regardless of the species they belong to, but rather, in relation to specific features of the single genotypes. In particular, T. hamatum SG18 and T. koningiopsis SG6 displayed the most promising results in pathogen inhibition, thus further investigations are needed to confirm their in vivo efficacy.
Collapse
|
108
|
Nazir N, Badri ZA, Bhat NA, Bhat FA, Sultan P, Bhat TA, Rather MA, Sakina A. Effect of the combination of biological, chemical control and agronomic technique in integrated management pea root rot and its productivity. Sci Rep 2022; 12:11348. [PMID: 35790796 PMCID: PMC9256638 DOI: 10.1038/s41598-022-15580-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Root rot of pea caused by Fusarium spp. is one of the important diseases of pea (Pisum sativum L.). The causal fungus of the disease isolated from naturally infected pea plants was identified as Fusarium solani f. sp. pisi (Jones). Evaluation of four bio agents and nine fungicides was done in vitro against Fusarium solani. Trichoderma harzianum was the most effective bio agent in inhibiting the mycelial growth of F. solani by (82.62%). Carbendazim 50 WP was the most effective fungicide in inhibiting the mycelial growth of F. solani by (91.06%). Carbendazim at the rate of 0.1% and T. harzianum at concentration of 109 cfu when used as seed treatment under field conditions were evaluated along with three planting techniques v.i.z, raised beds, ridges and flat beds. It was found that Carbendazim at the rate of 0.1% when given as seed treatment in raised beds exhibited the lowest disease incidence (10.97%), intensity (2.89%) and the maximum pod yield (89.63 q ha-1) as compared to control.
Collapse
Affiliation(s)
- Nargis Nazir
- Division of Plant Pathology, Faculty of Agriculture, SKUAST- K, Wadura, Sopore, Jammu and Kashmir, 193201, India
| | - Zaffar Afroz Badri
- Krishi Vigyan Kendra Malangpora, Pulwama, Jammu and Kashmir, 192301, India
| | - Nazir Ahmad Bhat
- Mountain Research Centre for Field Crops, Khudwani, Kulgam, Jammu and Kashmir, 192101, India
| | - Farooq Ahmad Bhat
- Division of Plant Pathology, Faculty of Agriculture, SKUAST- K, Wadura, Sopore, Jammu and Kashmir, 193201, India
| | | | - Tashooq Ahmad Bhat
- Division of Food Science and Technology, SKUAST-K, Shalimar, 190025, India.
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries, SKUAST-K, Rangil, Ganderbal, 191201, India
| | | |
Collapse
|
109
|
Álvarez-García S, Manga-Robles A, Encina A, Gutiérrez S, Casquero PA. Novel culture chamber to evaluate in vitro plant-microbe volatile interactions: Effects of Trichoderma harzianum volatiles on wheat plantlets. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111286. [PMID: 35643620 DOI: 10.1016/j.plantsci.2022.111286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/05/2022] [Accepted: 04/10/2022] [Indexed: 06/15/2023]
Abstract
The field of plant-microbe interactions mediated by Biogenic Volatile Organic Compounds (BVOCs) still faces several limitations due to the lack of reliable equipment. We present a novel device designed to evaluate in vitro plant-microbe volatile interactions, the plant-microbe VOC Chamber. It was tested by evaluating the effects exerted on wheat development by volatiles from three Trichoderma harzianum strains, a wild type and two genetically modified strains; one expressing the tri5 gene, which leads to the synthesis and emission of the volatile trichodiene, and the other by silencing the erg1 gene, impairing ergosterol production. The wild type and the erg1-silenced strain enhanced fresh weight and length of the aerial part, but reduced root dry weight. Interestingly, no differences were found between them. Conversely, the tri5-transformant strain reduced root and aerial growth compared to the control and the other strains. No differences were observed regarding chlorophyll fluorescence quantum yield and leaf chlorophyll content, suggesting that the released BVOCs do not interfere with photosynthesis. The plant-microbe VOC Chamber proved to be a simple and reliable method to evaluate the in vitro effects of microbial BVOCs on plant development, perfect for the screening of microorganisms with interesting volatile traits.
Collapse
Affiliation(s)
- Samuel Álvarez-García
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Universidad de León, Avenida Portugal 41, 24071 León, Spain.
| | - Alba Manga-Robles
- Área de Fisiología Vegetal, Dpto. Ingeniería y Ciencias Agrarias. Facultad de Ciencias Biológicas y Ambientales, Universidad de León, E-24071 León, Spain.
| | - Antonio Encina
- Área de Fisiología Vegetal, Dpto. Ingeniería y Ciencias Agrarias. Facultad de Ciencias Biológicas y Ambientales, Universidad de León, E-24071 León, Spain.
| | - Santiago Gutiérrez
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Área de Microbiología, Escuela de Ingeniería Agraria y Forestal, Universidad de León, Campus de Ponferrada, Avenida Astorga s/n, 24401 Ponferrada, Spain.
| | - Pedro A Casquero
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Universidad de León, Avenida Portugal 41, 24071 León, Spain.
| |
Collapse
|
110
|
López-Bucio J, Esparza-Reynoso S, Pelagio-Flores R. Nitrogen availability determines plant growth promotion and the induction of root branching by the probiotic fungus Trichoderma atroviride in Arabidopsis seedlings. Arch Microbiol 2022; 204:380. [PMID: 35680712 DOI: 10.1007/s00203-022-03004-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/02/2022]
Abstract
Plant growth-promoting fungi are integral components of the root microbiome that help the host resist biotic and abiotic stress while improving nutrient acquisition. Trichoderma atroviride is a common inhabitant of the rhizosphere, which establishes a perdurable symbiosis with plants through the emission of volatiles, diffusible compounds, and robust colonization. Currently, little is known on how the environment influences the Trichoderma-plant interaction. In this report, we assessed plant growth and root architectural reconfiguration of Arabidopsis seedlings grown in physical contact with T. atroviride under contrasting nitrate and ammonium availability. The shoot and root biomass accumulation and lateral root formation triggered by the fungus required high nitrogen supplements and involved nitrate reduction via AtNIA1 and NIA2. Ammonium supplementation did not restore biomass production boosted by T. atroviride in nia1nia2 double mutant, but instead fungal inoculation increased nitric oxide accumulation in Arabidopsis primary root tips depending upon nitrate supplements. N deprived seedlings were largely resistant to the effects of nitric oxide donor SNP triggering lateral root formation. T. atroviride enhanced expression of CHL1:GUS in root tips, particularly under high N supplements and required an intact CHL1 nitrate transporter to promote lateral root formation in Arabidopsis seedlings. These data imply that the developmental programs strengthened by Trichoderma and the underlying growth promotion in plants are dependent upon adequate nitrate nutrition and may involve nitric oxide as a second messenger.
Collapse
Affiliation(s)
- José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P., 58030, Morelia, Michoacán, México.
| | - Saraí Esparza-Reynoso
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P., 58030, Morelia, Michoacán, México
| | - Ramón Pelagio-Flores
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Tzintzuntzan 173, Matamoros, C. P., 58240, Morelia, Michoacán, México
| |
Collapse
|
111
|
Tian Y, Zhang D, Cai P, Lin H, Ying H, Hu QN, Wu A. Elimination of Fusarium mycotoxin deoxynivalenol (DON) via microbial and enzymatic strategies: Current status and future perspectives. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
112
|
Degani O, Gordani A, Becher P, Chen A, Rabinovitz O. Crop Rotation and Minimal Tillage Selectively Affect Maize Growth Promotion under Late Wilt Disease Stress. J Fungi (Basel) 2022; 8:jof8060586. [PMID: 35736069 PMCID: PMC9225057 DOI: 10.3390/jof8060586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/15/2022] [Accepted: 05/27/2022] [Indexed: 01/10/2023] Open
Abstract
In recent years, worldwide scientific efforts towards controlling maize late wilt disease (LWD) have focused on eco-friendly approaches that minimize the environmental impact and health risks. This disease is considered to be the most severe threat to maize fields in Israel and Egypt, and a major growth restraint in India, Spain, and Portugal. Today’s most commonly used method for LWD control involving resistant maize genotypes is under constant risk from aggressive pathogen lines. Thus, this study’s objectives were to evaluate the effect of crop rotation and avoiding tillage on restraining the disease. Such an agrotechnical approach will support the continuity of soil mycorrhiza networks, which antagonize the disease’s causal agent, Magnaporthiopsis maydis. The method gained positive results in previous studies, but many knowledge gaps still need to be addressed. To this end, a dual-season study was conducted using the LWD hyper-susceptible maize hybrid, Megaton cv. The trials were performed in a greenhouse and in the field over full dual-growth seasons (wheat or clover as the winter crop followed by maize as the summer crop). In the greenhouse under LWD stress, the results clearly demonstrate the beneficial effect of maize crop rotation with clover and wheat on plant weight (1.4-fold), height (1.1–1.2-fold) and cob yield (1.8–2.4-fold), especially in the no-till soil. The clover-maize growth sequence excels in reducing disease impact (1.7-fold) and pathogen spread in the host tissues (3-fold). Even though the wheat-maize crop cycle was less effective, it still had better results than the commercial mycorrhizal preparation treatment and the uncultivated non-infected soil. The results were slightly different in the field. The clover-maize rotation also achieved the best growth promotion and disease restraint results (2.6-fold increase in healthy plants), but the maize rotation with wheat showed only minor efficiency. Interestingly, pre-cultivating the soil with clover had better results in no-till soil in both experiments. In contrast, the same procedure with wheat had a better impact when tillage was applied. It may be concluded that crop rotation and soil cultivation can be essential in reducing LWD, but other factors may affect this approach’s benefits in commercial field growth.
Collapse
Affiliation(s)
- Ofir Degani
- Plant Sciences Department, Migal–Galilee Research Institute, Tarshish 2, Kiryat Shmona 11016, Israel; (A.G.); (P.B.); (O.R.)
- Faculty of Sciences, Tel-Hai College, Upper Galilee, Tel-Hai 12210, Israel;
- Correspondence: or ; Tel.: +972-54-678-0114
| | - Asaf Gordani
- Plant Sciences Department, Migal–Galilee Research Institute, Tarshish 2, Kiryat Shmona 11016, Israel; (A.G.); (P.B.); (O.R.)
- Faculty of Sciences, Tel-Hai College, Upper Galilee, Tel-Hai 12210, Israel;
| | - Paz Becher
- Plant Sciences Department, Migal–Galilee Research Institute, Tarshish 2, Kiryat Shmona 11016, Israel; (A.G.); (P.B.); (O.R.)
- Faculty of Sciences, Tel-Hai College, Upper Galilee, Tel-Hai 12210, Israel;
| | - Assaf Chen
- Faculty of Sciences, Tel-Hai College, Upper Galilee, Tel-Hai 12210, Israel;
- Soil, Water, and Environment Department, Migal–Galilee Research Institute, Tarshish 2, Kiryat Shmona 11016, Israel
| | - Onn Rabinovitz
- Plant Sciences Department, Migal–Galilee Research Institute, Tarshish 2, Kiryat Shmona 11016, Israel; (A.G.); (P.B.); (O.R.)
| |
Collapse
|
113
|
Abbas A, Mubeen M, Zheng H, Sohail MA, Shakeel Q, Solanki MK, Iftikhar Y, Sharma S, Kashyap BK, Hussain S, del Carmen Zuñiga Romano M, Moya-Elizondo EA, Zhou L. Trichoderma spp. Genes Involved in the Biocontrol Activity Against Rhizoctonia solani. Front Microbiol 2022; 13:884469. [PMID: 35694310 PMCID: PMC9174946 DOI: 10.3389/fmicb.2022.884469] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/27/2022] [Indexed: 11/15/2022] Open
Abstract
Rhizoctonia solani is a pathogen that causes considerable harm to plants worldwide. In the absence of hosts, R. solani survives in the soil by forming sclerotia, and management methods, such as cultivar breeding, crop rotations, and fungicide sprays, are insufficient and/or inefficient in controlling R. solani. One of the most challenging problems facing agriculture in the twenty-first century besides with the impact of global warming. Environmentally friendly techniques of crop production and improved agricultural practices are essential for long-term food security. Trichoderma spp. could serve as an excellent example of a model fungus to enhance crop productivity in a sustainable way. Among biocontrol mechanisms, mycoparasitism, competition, and antibiosis are the fundamental mechanisms by which Trichoderma spp. defend against R. solani, thereby preventing or obstructing its proliferation. Additionally, Trichoderma spp. induce a mixed induced systemic resistance (ISR) or systemic acquired resistance (SAR) in plants against R. solani, known as Trichoderma-ISR. Stimulation of every biocontrol mechanism involves Trichoderma spp. genes responsible for encoding secondary metabolites, siderophores, signaling molecules, enzymes for cell wall degradation, and plant growth regulators. Rhizoctonia solani biological control through genes of Trichoderma spp. is summarized in this paper. It also gives information on the Trichoderma-ISR in plants against R. solani. Nonetheless, fast-paced current research on Trichoderma spp. is required to properly utilize their true potential against diseases caused by R. solani.
Collapse
Affiliation(s)
- Aqleem Abbas
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mustansar Mubeen
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Hongxia Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Muhammad Aamir Sohail
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qaiser Shakeel
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Manoj Kumar Solanki
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Yasir Iftikhar
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
- *Correspondence: Yasir Iftikhar,
| | - Sagar Sharma
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Brijendra Kumar Kashyap
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, India
| | - Sarfaraz Hussain
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | - Lei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Lei Zhou,
| |
Collapse
|
114
|
Huang JH, Zeng FJ, Guo JF, Huang JY, Lin HC, Lo CT, Chou WM. Purification, identification and characterization of Nag2 N-acetylglucosaminidase from Trichoderma virens strain mango. BOTANICAL STUDIES 2022; 63:14. [PMID: 35578140 PMCID: PMC9110600 DOI: 10.1186/s40529-022-00344-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND N-acetylglucosaminidase (NAGase) could liberate N-acetylglucosamine (GlcNAc) from GlcNAc-containing oligosaccharides. Trichoderma spp. is an important source of chitinase, particularly NAGase for industrial use. nag1 and nag2 genes encoding NAGase, are found in the genome in Trichoderma spp. The deduced Nag1 and Nag2 shares ~ 55% homology in Trichoderma virens. Most studies were focus on Nag1 and nag1 previously. RESULTS The native NAGase (TvmNAG2) was purified to homogeneity with molecular mass of ~ 68 kDa on SDS-PAGE analysis, and identified as Nag2 by MALDI/MS analysis from an isolate T. virens strain mango. RT-PCR analyses revealed that only nag2 gene was expressed in liquid culture of T. virens, while both of nag1 and nag2 were expressed in T. virens cultured on the plates. TvmNAG2 was thermally stable up to 60 °C for 2 h, and the optimal pH and temperature were 5.0 and 60-65 °C, respectively, using p-nitrophenyl-N-acetyl-β-D-glucosaminide (pNP-NAG) as substrate. The hydrolytic product of colloidal chitin by TvmNAG2 was suggested to be GlcNAc based on TLC analyses. Moreover, TvmNAG2 possesses antifungal activity, inhibiting the mycelium growth of Sclerotium rolfsii. And it was resistant to the proteolysis by papain and trypsin. CONCLUSIONS The native Nag2, TvmNAG2 was purified and identified from T. virens strain mango, as well as enzymatic properties. To our knowledge, it is the first report with the properties of native Trichoderma Nag2.
Collapse
Affiliation(s)
- Jheng-Hua Huang
- Department of Biotechnology, National Formosa University, Yunlin, 632 Taiwan, ROC
| | - Feng-Jin Zeng
- Department of Biotechnology, National Formosa University, Yunlin, 632 Taiwan, ROC
| | - Jhe-Fu Guo
- Department of Biotechnology, National Formosa University, Yunlin, 632 Taiwan, ROC
| | - Jian-Yuan Huang
- Department of Biotechnology, National Formosa University, Yunlin, 632 Taiwan, ROC
| | - Hua-Chian Lin
- Department of Biotechnology, National Formosa University, Yunlin, 632 Taiwan, ROC
| | - Chaur-Tsuen Lo
- Department of Biotechnology, National Formosa University, Yunlin, 632 Taiwan, ROC
| | - Wing-Ming Chou
- Department of Biotechnology, National Formosa University, Yunlin, 632 Taiwan, ROC
| |
Collapse
|
115
|
Biological Control of the Cucumber Downy Mildew Pathogen Pseudoperonospora cubensis. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050410] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cucumber downy mildew (CDM) is a destructive plant disease caused by the air-borne oomycete pathogen Pseudoperonospora cubensis. CDM causes severe yield reduction of cucumber and significant economic losses. Biocontrol is a promising method to control CDM with the advantage of being beneficial to sustainable agricultural development. However, until now, no reviews of biocontrol of CDM have been reported. The objective of this review is to more comprehensively understand the biocontrol of CDM. In this review, the biological characteristics of P. cubensis are introduced, and strategies for screening biocontrol agents to suppress CDM are recommended. Then the current biocontrol agents, including fungi such as Trichoderma and biocontrol bacteria such as Bacillus, which possess the ability to control CDM, and their control characteristics and ability against CDM are also summarized. The potential mechanisms by which these biocontrol agents prevent CDM are discussed. Finally, several suggestions for future research on the biocontrol of CDM are provided.
Collapse
|
116
|
Rao Y, Zeng L, Jiang H, Mei L, Wang Y. Trichoderma atroviride LZ42 releases volatile organic compounds promoting plant growth and suppressing Fusarium wilt disease in tomato seedlings. BMC Microbiol 2022; 22:88. [PMID: 35382732 PMCID: PMC8981656 DOI: 10.1186/s12866-022-02511-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/30/2022] [Indexed: 11/17/2022] Open
Abstract
Background The promotion of plant growth and suppression of plant disease using beneficial microorganisms is considered an alternative to the application of chemical fertilizers or pesticides in the field. Results A coconut-scented antagonistic Trichoderma strain LZ42, previously isolated from Ganoderma lucidum-cultivated soil, was investigated for biostimulatory and biocontrol functions in tomato seedlings. Morphological and phylogenetic analyses suggested that strain LZ42 is closely related to T. atroviride. Tomato seedlings showed increased aerial and root dry weights in greenhouse trials after treatment with T. atroviride LZ42 formulated in talc, indicating the biostimulatory function of this fungus. T. atroviride LZ42 effectively suppressed Fusarium wilt disease in tomato seedlings, with an 82.69% control efficiency, which is similar to that of the carbendazim treatment. The volatile organic compounds (VOCs) emitted by T. atroviride LZ42 were found to affect the primary root growth direction and promote the root growth of tomato seedlings in root Y-tube olfactometer assays. The fungal VOCs from T. atroviride LZ42 were observed to significantly inhibit F. oxysporum in a sandwiched Petri dish assay. SPME–GC–MS analysis revealed several VOCs emitted by T. atroviride LZ42; the dominant compound was tentatively identified as 6-pentyl-2H-pyran-2-one (6-PP). The VOC 6-PP exhibited a stronger ability to influence the direction of the primary roots of tomato seedlings but not the length of the primary roots. The inhibitory effect of 6-PP on F. oxysporum was the highest among the tested pure VOCs, showing a 50% effective concentration (EC50) of 5.76 μL mL−1 headspace. Conclusions Trichoderma atroviride LZ42, which emits VOCs with multiple functions, is a promising agent for the biostimulation of vegetable plants and integrated management of Fusarium wilt disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02511-3.
Collapse
Affiliation(s)
- Yuxin Rao
- College of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Hangzhou, 311300, China
| | - Linzhou Zeng
- College of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Hangzhou, 311300, China
| | - Hong Jiang
- College of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Hangzhou, 311300, China
| | - Li Mei
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, 311300, China
| | - Yongjun Wang
- College of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
117
|
Struck C, Rüsch S, Strehlow B. Control Strategies of Clubroot Disease Caused by Plasmodiophora brassicae. Microorganisms 2022; 10:620. [PMID: 35336194 PMCID: PMC8949847 DOI: 10.3390/microorganisms10030620] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/17/2022] [Accepted: 03/11/2022] [Indexed: 12/04/2022] Open
Abstract
The clubroot disease caused by the soil-borne pathogen Plasmodiophora brassicae is one of the most important diseases of cruciferous crops worldwide. As with many plant pathogens, the spread is closely related to the cultivation of suitable host plants. In addition, temperature and water availability are crucial determinants for the occurrence and reproduction of clubroot disease. Current global changes are contributing to the widespread incidence of clubroot disease. On the one hand, global trade and high prices are leading to an increase in the cultivation of the host plant rapeseed worldwide. On the other hand, climate change is improving the living conditions of the pathogen P. brassicae in temperate climates and leading to its increased occurrence. Well-known ways to control efficiently this disease include arable farming strategies: growing host plants in wide crop rotations, liming the contaminated soils, and using resistant host plants. Since chemical control of the clubroot disease is not possible or not ecologically compatible, more and more alternative control options are being investigated. In this review, we address the challenges for its control, with a focus on biological control options.
Collapse
Affiliation(s)
- Christine Struck
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Satower Str. 48, 18059 Rostock, Germany;
| | - Stefanie Rüsch
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Satower Str. 48, 18059 Rostock, Germany;
| | - Becke Strehlow
- Faculty of Agriculture and Food Sciences, University of Applied Sciences Neubrandenburg, Brodaer Str. 2, 17033 Neubrandenburg, Germany;
| |
Collapse
|
118
|
Li Y, Jiang S, Jiang J, Gao C, Qi X, Zhang L, Sun S, Dai Y, Fan X. Synchronized Efficacy and Mechanism of Alkaline Fertilizer and Biocontrol Fungi for Fusariumoxysporum f. sp. cubense Tropical Race 4. J Fungi (Basel) 2022; 8:jof8030261. [PMID: 35330263 PMCID: PMC8953788 DOI: 10.3390/jof8030261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
The purpose of this study was to determine the effect and mechanism of alkaline fertilizer, bio-control fungi, and their synergistic application on control of Fusarium Tr4 incidence. Synchronized use of the alkaline fertilizer and biocontrol fungi eliminates rhizome browning and reduces the incidence rate of banana Fusarium wilt. The incidence of yellow leaves (ratio of yellow leaf to total leaf) and disease index in +Foc Tr4 CF treatment were the same (65%), while incidence of yellow leaves and disease index in +Foc Tr4 AFBCF were 31% and 33%, respectively. Under the stress of Foc Tr4 infection, the synergistic utilization of the alkaline fertilizer and biocontrol fungi would raise the activities of peroxidase, catalase and superoxide dismutase in banana roots. The root activity of banana was also increased. As a result, the banana height and stem diameter increments, shoot and root dry weight, accumulation of N, P and K in banana plants had been increased. The efficacy of the synergistic application of alkaline fertilizer and biocontrol fungi was not only reducing Foc Tr4 pathogen colonization and distribution in banana plants, but also preventing tylosis formation in vascular vessel effectively. Therefore, the normal transport of water and nutrients between underground and aboveground is ensured.
Collapse
Affiliation(s)
- Yuanqiong Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (S.J.); (J.J.); (C.G.); (X.Q.); (L.Z.); (S.S.); (Y.D.)
- R&D Center of Environment Friendly Fertilizer Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Shuting Jiang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (S.J.); (J.J.); (C.G.); (X.Q.); (L.Z.); (S.S.); (Y.D.)
- R&D Center of Environment Friendly Fertilizer Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Jiaquan Jiang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (S.J.); (J.J.); (C.G.); (X.Q.); (L.Z.); (S.S.); (Y.D.)
- R&D Center of Environment Friendly Fertilizer Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Chengxiang Gao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (S.J.); (J.J.); (C.G.); (X.Q.); (L.Z.); (S.S.); (Y.D.)
- R&D Center of Environment Friendly Fertilizer Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Xiuxiu Qi
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (S.J.); (J.J.); (C.G.); (X.Q.); (L.Z.); (S.S.); (Y.D.)
- R&D Center of Environment Friendly Fertilizer Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Lidan Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (S.J.); (J.J.); (C.G.); (X.Q.); (L.Z.); (S.S.); (Y.D.)
- R&D Center of Environment Friendly Fertilizer Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Shaolong Sun
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (S.J.); (J.J.); (C.G.); (X.Q.); (L.Z.); (S.S.); (Y.D.)
- R&D Center of Environment Friendly Fertilizer Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Yinhai Dai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (S.J.); (J.J.); (C.G.); (X.Q.); (L.Z.); (S.S.); (Y.D.)
- R&D Center of Environment Friendly Fertilizer Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Xiaolin Fan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (S.J.); (J.J.); (C.G.); (X.Q.); (L.Z.); (S.S.); (Y.D.)
- R&D Center of Environment Friendly Fertilizer Science and Technology, South China Agricultural University, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
119
|
Tamizi AA, Mat-Amin N, Weaver JA, Olumakaiye RT, Akbar MA, Jin S, Bunawan H, Alberti F. Genome Sequencing and Analysis of Trichoderma (Hypocreaceae) Isolates Exhibiting Antagonistic Activity against the Papaya Dieback Pathogen, Erwinia mallotivora. J Fungi (Basel) 2022; 8:246. [PMID: 35330248 PMCID: PMC8949440 DOI: 10.3390/jof8030246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 01/13/2023] Open
Abstract
Erwinia mallotivora, the causal agent of papaya dieback disease, is a devastating pathogen that has caused a tremendous decrease in Malaysian papaya export and affected papaya crops in neighbouring countries. A few studies on bacterial species capable of suppressing E. mallotivora have been reported, but the availability of antagonistic fungi remains unknown. In this study, mycelial suspensions from five rhizospheric Trichoderma isolates of Malaysian origin were found to exhibit notable antagonisms against E. mallotivora during co-cultivation. We further characterised three isolates, Trichoderma koningiopsis UKM-M-UW RA5, UKM-M-UW RA6, and UKM-M-UW RA3a, that showed significant growth inhibition zones on plate-based inhibition assays. A study of the genomes of the three strains through a combination of Oxford nanopore and Illumina sequencing technologies highlighted potential secondary metabolite pathways that might underpin their antimicrobial properties. Based on these findings, the fungal isolates are proven to be useful as potential biological control agents against E. mallotivora, and the genomic data opens possibilities to further explore the underlying molecular mechanisms behind their antimicrobial activity, with potential synthetic biology applications.
Collapse
Affiliation(s)
- Amin-Asyraf Tamizi
- Agri-Omics and Bioinformatics Programme, Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute Headquarters (MARDI), Serdang 43400, Selangor, Malaysia; (A.-A.T.); (N.M.-A.)
| | - Noriha Mat-Amin
- Agri-Omics and Bioinformatics Programme, Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute Headquarters (MARDI), Serdang 43400, Selangor, Malaysia; (A.-A.T.); (N.M.-A.)
| | - Jack A. Weaver
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK; (J.A.W.); (R.T.O.); (S.J.)
| | - Richard T. Olumakaiye
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK; (J.A.W.); (R.T.O.); (S.J.)
| | - Muhamad Afiq Akbar
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia;
| | - Sophie Jin
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK; (J.A.W.); (R.T.O.); (S.J.)
| | - Hamidun Bunawan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia;
| | - Fabrizio Alberti
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK; (J.A.W.); (R.T.O.); (S.J.)
| |
Collapse
|
120
|
Tyśkiewicz R, Nowak A, Ozimek E, Jaroszuk-Ściseł J. Trichoderma: The Current Status of Its Application in Agriculture for the Biocontrol of Fungal Phytopathogens and Stimulation of Plant Growth. Int J Mol Sci 2022; 23:2329. [PMID: 35216444 PMCID: PMC8875981 DOI: 10.3390/ijms23042329] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Rhizosphere filamentous fungi of the genus Trichoderma, a dominant component of various soil ecosystem mycobiomes, are characterized by the ability to colonize plant roots. Detailed knowledge of the properties of Trichoderma, including metabolic activity and the type of interaction with plants and other microorganisms, can ensure its effective use in agriculture. The growing interest in the application of Trichoderma results from their direct and indirect biocontrol potential against a wide range of soil phytopathogens. They act through various complex mechanisms, such as mycoparasitism, the degradation of pathogen cell walls, competition for nutrients and space, and induction of plant resistance. With the constant exposure of plants to a variety of pathogens, especially filamentous fungi, and the increased resistance of pathogens to chemical pesticides, the main challenge is to develop biological protection alternatives. Among non-pathogenic microorganisms, Trichoderma seems to be the best candidate for use in green technologies due to its wide biofertilization and biostimulatory potential. Most of the species from the genus Trichoderma belong to the plant growth-promoting fungi that produce phytohormones and the 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme. In the present review, the current status of Trichoderma is gathered, which is especially relevant in plant growth stimulation and the biocontrol of fungal phytopathogens.
Collapse
Affiliation(s)
- Renata Tyśkiewicz
- Analytical Laboratory, Łukasiewicz Research Network–New Chemical Syntheses Institute, Aleja Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland
| | - Artur Nowak
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Science, Maria-Curie Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (E.O.); (J.J.-Ś.)
| | - Ewa Ozimek
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Science, Maria-Curie Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (E.O.); (J.J.-Ś.)
| | - Jolanta Jaroszuk-Ściseł
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Science, Maria-Curie Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (E.O.); (J.J.-Ś.)
| |
Collapse
|
121
|
Plant-Microbe Interaction in Sustainable Agriculture: The Factors That May Influence the Efficacy of PGPM Application. SUSTAINABILITY 2022. [DOI: 10.3390/su14042253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The indiscriminate use of chemical fertilizers and pesticides has caused considerable environmental damage over the years. However, the growing demand for food in the coming years and decades requires the use of increasingly productive and efficient agriculture. Several studies carried out in recent years have shown how the application of plant growth-promoting microbes (PGPMs) can be a valid substitute for chemical industry products and represent a valid eco-friendly alternative. However, because of the complexity of interactions created with the numerous biotic and abiotic factors (i.e., environment, soil, interactions between microorganisms, etc.), the different formulates often show variable effects. In this review, we analyze the main factors that influence the effectiveness of PGPM applications and some of the applications that make them a useful tool for agroecological transition.
Collapse
|
122
|
Akbar M, Haroon U, Ali M, Tahir K, Chaudhary HJ, Munis MFH. Mycosynthesized Fe
2
O
3
nanoparticles diminish brown rot of apple whilst maintaining composition and pertinent organoleptic properties. J Appl Microbiol 2022; 132:3735-3745. [DOI: 10.1111/jam.15483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/19/2022] [Accepted: 02/04/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Mahnoor Akbar
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid‐i‐Azam University Islamabad Pakistan
| | - Urooj Haroon
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid‐i‐Azam University Islamabad Pakistan
| | - Musrat Ali
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid‐i‐Azam University Islamabad Pakistan
| | - Kinza Tahir
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid‐i‐Azam University Islamabad Pakistan
| | - Hassan Javed Chaudhary
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid‐i‐Azam University Islamabad Pakistan
| | | |
Collapse
|
123
|
Yassin MT, Mostafa AAF, Al-Askar AA. In vitro antagonistic activity of Trichoderma spp. against fungal pathogens causing black point disease of wheat. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2029327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohamed Taha Yassin
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | | |
Collapse
|
124
|
Microbial interaction mediated programmed cell death in plants. 3 Biotech 2022; 12:43. [PMID: 35096500 PMCID: PMC8761208 DOI: 10.1007/s13205-021-03099-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/26/2021] [Indexed: 02/03/2023] Open
Abstract
Food demand of growing population can only be met by finding solutions for sustaining the crop yield. The understanding of basic mechanisms employed by microorganisms for the establishment of parasitic relationship with plants is a complex phenomenon. Symbionts and biotrophs are dependent on living hosts for completing their life cycle, whereas necrotrophs utilize dead cells for their growth and establishment. Hemibiotrophs as compared to other microbes associate themselves with plants in two phase's, viz. early bio-phase and later necro-phase. Plants and microbes interact with each other using receptors present on host cell surface and elicitors (PAMPs and effectors) produced by microbes. Plant-microbe interaction either leads to compatible or incompatible reaction. In response to various biotic and abiotic stress factors, plant undergoes programmed cell death which restricts the growth of biotrophs or hemibiotrophs while necrotrophs as an opportunist starts growing on dead tissue for their own benefit. PCD regulation is an outcome of plant-microbe crosstalk which entirely depends on various biochemical events like generation of reactive oxygen species, nitric oxide, ionic efflux/influx, CLPs, biosynthesis of phytohormones, phytoalexins, polyamines and certain pathogenesis-related proteins. This phenomenon mostly occurs in resistant and non-host plants during invasion of pathogenic microbes. The compatible or incompatible host-pathogen interaction depends upon the presence or absence of host plant resistance and pathogenic race. In addition to host-pathogen interaction, the defense induction by beneficial microbes must also be explored and used to the best of its potential. This review highlights the mechanism of microbe- or symbiont-mediated PCD along with defense induction in plants towards symbionts, biotrophs, necrotrophs and hemibiotrophs. Here we have also discussed the possible use of beneficial microbes in inducing systemic resistance in plants against pathogenic microbes.
Collapse
|
125
|
Coulibaly AE, Pakora GA, Ako ABA, Amari GELND, N’Guessan CA, Kouabenan A, Kone D, Djaman JA. Diversity of Sclerotium rolfsii antagonist fungi isolated from soils of the rhizosphere of tomato crops and identification of some antifungal compounds. Heliyon 2022; 8:e08943. [PMID: 35243065 PMCID: PMC8857420 DOI: 10.1016/j.heliyon.2022.e08943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/29/2021] [Accepted: 02/08/2022] [Indexed: 11/03/2022] Open
Abstract
Sclerotium rolfsii Sacc. the causative agent of white rot is one of the destructive pathogens of nightshade crops. In Côte d'Ivoire, this fungal pathogen constitutes a major constraint for the cultivation of tomato (Solanum lycopersicum) with 41.01% crop losses in humid forest areas. Controlling this fungus with synthetic chemicals can be effective, but harmful to human health and the environment. The use of biological control agents could be an alternative approach to control S. rolfsii. In this perspective, the objective of this work was to select fungi from the rhizosphere of tomato crops capable of inhibiting the growth of S. rolfsii. To do this, 153 fungi were isolated from the rhizosphere and from direct confrontation tests 10 fungi whose antagonistic power of S. rolfsii varied between 27 and 60% were selected. Molecular identification (ITS) of these antagonist fungi revealed that the isolates belonged to the genera Talaromyces sp. (n = 4), Trichoderma sp. (n = 3), Penicillium sp. (n = 2) and Clonostachys sp. (n = 1). Among these fungi, Talaromyces purpureogenus and Talaromyces assiutensis were able to diffuse compounds in agar capable of inhibiting the growth of S. rolfsii. The chemical study of these 2 fungi made it possible to identify mitorubrin and mitorubrinol produced by T. purpureogenus and spiculisporic acid produced by T. assiutensis. Mitorubrin and mitorubrinol had inhibitory activities of 100 and 70% at 10 mg/mL, respectively, whereas spiculisporic acid showed moderate inhibition of 38 at 20 mg/mL of the growth of S. rolfsii; however, its abundant production by the fungus could be an advantage in the control of this phytopathogen. Isolated from the same biotope as S. rolfsii, T. purpureogenus and T. assiutensis represent favorable candidates for the biological control against S. rolfsii.
Collapse
|
126
|
Olowe OM, Nicola L, Asemoloye MD, Akanmu AO, Babalola OO. Trichoderma: Potential bio-resource for the management of tomato root rot diseases in Africa. Microbiol Res 2022; 257:126978. [DOI: 10.1016/j.micres.2022.126978] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/27/2022]
|
127
|
Kappel L, Kosa N, Gruber S. The Multilateral Efficacy of Chitosan and Trichoderma on Sugar Beet. J Fungi (Basel) 2022; 8:137. [PMID: 35205892 PMCID: PMC8879458 DOI: 10.3390/jof8020137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
The majority of all fungal formulations contain Trichoderma spp., making them effective biological control agents for agriculture. Chitosan, one of the most effective natural biopolymers, was also reported as a plant resistance enhancer and as a biocide against a variety of plant pathogens. An in vitro three-way interaction assay of T. atroviride, chitosan, and important plant pathogens (such as Cercospora beticola and Fusarium oxysporum) revealed a synergistic effect on fungistasis. Furthermore, chitosan coating on Beta vulgaris ssp. vulgaris seeds positively affected the onset and efficiency of germination. We show that priming with T. atroviride spores or chitosan leads to the induced expression of a pathogenesis-related gene (PR-3), but only supplementation of chitosan led to significant upregulation of phytoalexin synthesis (PAL) and oxidative stress-related genes (GST) as a defense response. Repeated foliar application of either agent promoted growth, triggered defense reactions, and reduced incidence of Cercospora leaf spot (CLS) disease in B. vulgaris. Our data suggest that both agents are excellent candidates to replace or assist common fungicides in use. Chitosan triggered the systemic resistance and had a biocidal effect, while T. atroviride mainly induced stress-related defense genes in B. vulgaris. We assume that both agents act synergistically across different signaling pathways, which could be of high relevance for their combinatorial and thus beneficial application on field.
Collapse
Affiliation(s)
- Lisa Kappel
- Department of Microbiology, University of Innsbruck, 6020 Innsbruck, Austria;
- Department of Bioengineering, FH Campus Wien, University of Applied Sciences, 1190 Vienna, Austria;
| | - Nicole Kosa
- Department of Bioengineering, FH Campus Wien, University of Applied Sciences, 1190 Vienna, Austria;
| | - Sabine Gruber
- Department of Microbiology, University of Innsbruck, 6020 Innsbruck, Austria;
- Department of Bioengineering, FH Campus Wien, University of Applied Sciences, 1190 Vienna, Austria;
| |
Collapse
|
128
|
Ayed S, Bouhaouel I, Jebari H, Hamada W. Use of Biostimulants: Towards Sustainable Approach to Enhance Durum Wheat Performances. PLANTS (BASEL, SWITZERLAND) 2022; 11:133. [PMID: 35009136 PMCID: PMC8747104 DOI: 10.3390/plants11010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
The use of biostimulant (BS) holds a promising and environmental-friendly innovation to address current needs of sustainable agriculture. The aim of the present study is twofold: (i) assess the potential of durum wheat seed coating with microbial BS ('Panoramix', Koppert), a mix of Bacillus spp., Trichoderma spp., and endomycorrhiza, compared to two chemical products ('Spectro' and 'Mycoseeds') through germination bioassay, pot and field trials under semi-arid conditions, and (ii) identify the most effective method of BS supply ('seed coating', 'foliar spray', and 'seed coating + foliar spray') under field conditions. For this purpose, three modern durum wheat cultivars were tested. 'Panoramix' was the most efficient treatment and enhanced all germination (germination rate, and coleoptile and radicle length), physiological (relative water content, chlorophyll content, and leaf area), and agro-morphological (plant height, biomass, seed number per spike, thousand kernel weight, and grain yield) attributes. Unexpectedly, the individual application of 'Panoramix' showed better performance than the combined treatment 'Panoramix + Spectro'. Considering the physiological and agro-morphological traits, the combined method 'seed coating + foliar spray' displayed the best results. Principal component analysis confirmed the superiority of 'Panoramix' treatment or 'seed coating + foliar spray' method. Among tested durum wheat cultivars, 'Salim' performed better especially under 'Panoramix' treatment, but in some case 'Karim' valorized better this BS showing the highest increase rates. Based on these study outcomes, 'Panoramix' might be used as promising sustainable approach to stimulate durum wheat performance.
Collapse
Affiliation(s)
- Sourour Ayed
- Field Crops Laboratory, LR20-INRAT-02, National Agricultural Research Institute of Tunisia, University of Carthage, Ariana 2049, Tunisia;
| | - Imen Bouhaouel
- Genetics and Cereal Breeding Laboratory, LR14AGR01, National Agronomic Institute of Tunisia, University of Carthage, Tunis 1082, Tunisia; (I.B.); (W.H.)
| | - Hayet Jebari
- Field Crops Laboratory, LR20-INRAT-02, National Agricultural Research Institute of Tunisia, University of Carthage, Ariana 2049, Tunisia;
| | - Walid Hamada
- Genetics and Cereal Breeding Laboratory, LR14AGR01, National Agronomic Institute of Tunisia, University of Carthage, Tunis 1082, Tunisia; (I.B.); (W.H.)
| |
Collapse
|
129
|
Subramaniam S, Zainudin NAIM, Aris A, Hasan ZAE. Role of Trichoderma in Plant Growth Promotion. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
130
|
Genome-Mediated Methods to Unravel the Native Biogeographical Diversity and Biosynthetic Potential of Trichoderma for Plant Health. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
131
|
Management of Salinity Stress by the Application of Trichoderma. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
132
|
Control Strategies to Cope with Late Wilt of Maize. Pathogens 2021; 11:pathogens11010013. [PMID: 35055961 PMCID: PMC8779732 DOI: 10.3390/pathogens11010013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 02/04/2023] Open
Abstract
Control of maize late wilt disease (LWD) has been at the forefront of research efforts since the discovery of the disease in the 1960s. The disease has become a major economic restraint in highly affected areas such as Egypt and Israel, and is of constant concern in other counties. LWD causes dehydration and collapsing at a late stage of maize cultivation, starting from the male flowering phase. The disease causal agent, Magnaporthiopsis maydis, is a seed- and soil-borne phytoparasitic fungus, penetrating the roots at sprouting, colonizing the vascular system without external symptoms, and spreading upwards in the xylem, eventually blocking the water supply to the plant’s upperparts. Nowadays, the disease’s control relies mostly on identifying and developing resistant maize cultivars. Still, host resistance can be limited because M. maydis undergoes pathogenic variations, and virulent strains can eventually overcome the host immunity. This alarming status is driving researchers to continue to seek other control methods. The current review will summarize the various strategies tested over the years to minimize the disease damage. These options include agricultural (crop rotation, cover crop, no-till, flooding the land before sowing, and balanced soil fertility), physical (solar heating), allelochemical, biological, and chemical interventions. Some of these methods have shown promising success, while others have contributed to our understanding of the disease development and the environmental and host-related factors that have shaped its outcome. The most updated global knowledge about LWD control will be presented, and knowledge gaps and future aims will be discussed.
Collapse
|
133
|
Malik MS, Haider S, Rehman A, Rehman SU, Jamil M, Naz I, Anees M. Biological control of fungal pathogens of tomato (Lycopersicon esculentum) by chitinolytic bacterial strains. J Basic Microbiol 2021; 62:48-62. [PMID: 34893989 DOI: 10.1002/jobm.202100512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/09/2021] [Accepted: 11/27/2021] [Indexed: 01/09/2023]
Abstract
The need to increase food production and to reduce the pollution caused by synthetic chemicals has led to a search for biocontrol agents against plant pathogens. In the present study, a total of 37 chitinolytic bacteria were isolated from the rhizospheric soil of tomatoes using a chitin agar medium. In vitro bacterial isolates, that is, TD9, TD11, TD15, and TD24 showed strong antagonistic and enzymatic activities against Rhizoctonia (8%-55%), Fusarium (31%-48%), Colletotrichum (24%-49%), and Aspergillus on a dual culture plate and enzyme assay. Furthermore, these putative antagonistic bacterial isolates were identified as Pantoea agglomerans (TD9), Bacillus subtilis (TD11), Bacillus cereus (TD15 and TD24) using 16S rRNA sequence analysis. Additionally, in culture filtrate in vivo assay, the isolates TD11 and TD15 inhibited the growth of Rhizoctonia solani about 40% and Fusarium oxysporum about 80%. However, in the pot trials, these two bacterial isolates (TD11 and TD15) considerably suppressed the disease rate in tomatoes caused by Fusarium and Rhizoctonia fungal species. Moreover, it was concluded that B. subtilis (TD11) was found to be the most promising putative biocontrol agent, inhibiting the fungal diseases of tomatoes by 50% and showing versatile antagonistic potential.
Collapse
Affiliation(s)
- Muhammad Saqib Malik
- Department of Microbiology, Kohat University of Science & Technology, Kohat, Pakistan
| | - Shabeer Haider
- Department of Microbiology, Kohat University of Science & Technology, Kohat, Pakistan
| | - Abdul Rehman
- Department of Microbiology, Kohat University of Science & Technology, Kohat, Pakistan
| | | | - Muhammad Jamil
- Department of Biotechnology & Genetic Engineering, Kohat University of Science & Technology, Kohat, Pakistan
| | - Iffat Naz
- Department of Biology, Scientific Unit, Deanship of Educational Services, Qassim University, Buraidah, Qassim, Kingdom of Saudi Arabia (KSA)
| | - Muhammad Anees
- Department of Microbiology, Kohat University of Science & Technology, Kohat, Pakistan
| |
Collapse
|
134
|
Trehalose: A mycogenic cell wall elicitor elicit resistance against leaf spot disease of broccoli and acts as a plant growth regulator. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 32:e00690. [PMID: 34987982 PMCID: PMC8711064 DOI: 10.1016/j.btre.2021.e00690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/08/2021] [Accepted: 11/19/2021] [Indexed: 12/16/2022]
Abstract
Mycogenic cell wall elicitor was isolated from trichoderma atroviride. The isolated elicitor was identified as trehalose by LC-MS analysis. Seed priming with elicitor enhanced early germination and vigour. Primed plants induced resistance against leaf spot disease of brocolli. Trehalose sugar act as a bio-stimulant for growth promotion and plant defence.
Elicitors are biochemicals, and the cell wall-derived elicitors from fungi can trigger defence mechanisms in plants by increasing the phytoalexin accumulation when they encounter the pathogens. The main objective of this research was to purify and characterize a cell wall elicitor from Trichoderma atroviride (TaCWE) and evaluate the seed priming effect of that elicitor for inducing systemic resistance in broccoli plants against leaf spot disease. Amongst the tested TaCWE concentrations of the seed priming (5, 10, & 25 mg ml−1), 10.0 mg ml−1 showed significantly (P < 0.05) improved early emergence, the rate of germination at 94%, and observed seedling vigour of 2601. Also, elicitor (10 mg ml−1) treatment alone induced 57% plant protection. On the contrary, the elicitor treated and pathogen inoculated plants induced a notable 72% protection against leaf spot disease of broccoli caused by A. brassicicola. Thus, the primed seeds with elicitor showed induced disease resistance and plant growth promotion. The prominent molecule present in the purified extracted cell wall elicitor is confirmed as trehalose. The AFM analysis indicated the trehalose length and width as 10.16 µm and 2.148 µm, respectively. FTIR chromatogram further confirmed trehalose in abundance with traces of carbon, hydrogen, nitrogen, oxygen, and LC-MS profile with a single peak eluted with a retention time of 3.78 min. The findings of this study contribute to understanding better the role of trehalose, a biogenic cell-wall elicitor that can induce systemic resistance against leaf spot disease and regulate plant growth in the broccoli plants.
Collapse
|
135
|
Huang Z, Liu B, Yin Y, Liang F, Xie D, Han T, Liu Y, Yan B, Li Q, Huang Y, Liu Q. Impact of biocontrol microbes on soil microbial diversity in ginger (Zingiber officinale Roscoe). PEST MANAGEMENT SCIENCE 2021; 77:5537-5546. [PMID: 34390303 DOI: 10.1002/ps.6595] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Bacteria are the most diverse and abundant group of soil organisms that influence plant growth and health. Bacillus and Trichoderma are commonly used as biological control agents (BCA) that directly or indirectly act on soil bacteria. Therefore, it is essential to understand how the applied microbes impact the indigenous microbial community before exploring their activity in the control of soilborne diseases. RESULTS MiSeq sequencing of the 16S rRNA gene was used to decipher the shift of rhizosphere bacterial community in ginger (Zingiber officinale Roscoe) treated with Bacillus subtilus and Trichoderma harzianum at different concentrations. The dominant phyla in treated and nontreated samples were Proteobacteria, Actinobacteria, Acidobacteria and comprised up to 54.7% of the total sequences. There were significant differences between BCA treated and nontreated samples in the bacteria community. BCA treated plants presented higher bacterial diversity than nontreated and higher dosage of BCA had a larger impact on rhizosphere microbiota, but the 'dose-response relationship' varied in different bacterial groups. Potential biomarkers at genus level were found, such as RB41, Pseudomonas, Nitrospira, Candidatus_Udaeobacter. CONCLUSION The combined use of Bacillus subtilus and Trichoderma harzianum could alter bacterial community structure and diversity in rhizosphere soil. BCA-microbes interactions as well as soil microbial ecology should be noticed in plant disease management. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhiqiang Huang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shang Hai, China
| | - Bowen Liu
- Natural Plant Application and Metabolic Regulation Centre, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Yin
- Department of Sichuan Agriculture, Station for Plant Protection, Chengdu, China
| | - Fang Liang
- Division of Research and Development, Chengdu Tepu Biotech Co Ltd, Chengdu, China
| | - Deshan Xie
- Division of Research and Development, Chengdu Tepu Biotech Co Ltd, Chengdu, China
| | - Tiantian Han
- Division of Research and Development, Chengdu Tepu Biotech Co Ltd, Chengdu, China
| | - Yongzeng Liu
- Division of Research and Development, Chengdu Tepu Biotech Co Ltd, Chengdu, China
| | - Bin Yan
- Division of Research and Development, Chengdu Tepu Biotech Co Ltd, Chengdu, China
| | - Qian Li
- Natural Plant Application and Metabolic Regulation Centre, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Huang
- Natural Plant Application and Metabolic Regulation Centre, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Division of Research and Development, Chengdu Tepu Biotech Co Ltd, Chengdu, China
| | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shang Hai, China
| |
Collapse
|
136
|
Ahmed HFA, Seleiman MF, Al-Saif AM, Alshiekheid MA, Battaglia ML, Taha RS. Biological Control of Celery Powdery Mildew Disease Caused by Erysiphe heraclei DC In Vitro and In Vivo Conditions. PLANTS (BASEL, SWITZERLAND) 2021; 10:2342. [PMID: 34834704 PMCID: PMC8623452 DOI: 10.3390/plants10112342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The present study aimed to investigate the potentiality of certain biocontrol agents, namely Bacillus subtilis, B. pumilus, B. megaterium, Pseudomonas fluorescens, Serratia marcescens, Trichoderma album, T. harzianum and T. viride, as well as the synthetic fungicide difenoconazole to control celery powdery mildew caused by Erysiphe heraclei DC, in vitro (against conidia germination and germ tube length of E. heraclei) and in vivo (against disease severity and AUDPC). In vitro, it was found that the antifungal activity of the tested biocontrol agents significantly reduced the germination percentage of the conidia and germ tube length of the pathogen. The reduction in conidia germination ranged between 88.2% and 59.6% as a result of the treatment with B. subtilis and T. album, respectively compared with 97.1% by the synthetic fungicide difenoconazole. Moreover, the fungicide achieved the highest reduction in germ tube length (92.5%) followed by B. megaterium (82.0%), while T. album was the least effective (62.8%). Spraying celery plants with the tested biocontrol agents in the greenhouse significantly reduced powdery mildew severity, as well as the area under the disease progress curve (AUDPC), after 7, 14, 21 and 28 days of application. In this regard, B. subtilis was the most efficient followed by B. pumilus, S. marcescens and B. megaterium, with 80.1, 74.4, 73.2 and 70.5% reductions in disease severity, respectively. In AUDPC, reductions of those microorganisms were 285.3, 380.9, 396.7 and 431.8, respectively, compared to 1539.1 in the control treatment. On the other hand, the fungicide difenoconazole achieved maximum efficacy in reducing disease severity (84.7%) and lowest AUDPC (219.3) compared to the other treatments. In the field, all the applied biocontrol agents showed high efficiency in suppressing powdery mildew on celery plants, with a significant improvement in growth and yield characteristics. In addition, they caused an increase in the concentration of leaf pigments, and the activities of defense-related enzymes such as peroxidase (PO) and polyphenol oxidase (PPO) and total phenol content (TPC). In conclusion, the results showed the possibility of using tested biocontrol agents as eco-friendly alternatives to protect celery plants against powdery mildew.
Collapse
Affiliation(s)
- Hamada F. A. Ahmed
- Department of Ornamental, Medicinal and Aromatic Plant Diseases, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza P.O. Box 12619, Egypt;
| | - Mahmoud F. Seleiman
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | - Adel M. Al-Saif
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | - Maha A. Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | | | - Ragab S. Taha
- Botany Department, Faculty of Agriculture, Beni-Suef University, Beni Suef 62521, Egypt;
| |
Collapse
|
137
|
Efficacy of biological, chemical and cultural practices for the management of foot and root rot disease of black cumin. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
138
|
Evolution of Fusarium Head Blight Management in Wheat: Scientific Perspectives on Biological Control Agents and Crop Genotypes Protocooperation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11198960] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Over the past century, the economically devastating Fusarium Head Blight (FHB) disease has persistently ravished small grain cereal crops worldwide. Annually, losses globally are in the billions of United States dollars (USD), with common bread wheat and durum wheat accounting for a major portion of these losses. Since the unforgettable FHB epidemics of the 1990s and early 2000s in North America, different management strategies have been employed to treat this disease. However, even with some of the best practices including chemical fungicides and innovative breeding technological advances that have given rise to a spectrum of moderately resistant cultivars, FHB still remains an obstinate problem in cereal farms globally. This is in part due to several constraints such as the Fusarium complex of species and the struggle to develop and employ methods that can effectively combat more than one pathogenic line or species simultaneously. This review highlights the last 100 years of major FHB epidemics in the US and Canada, as well as the evolution of different management strategies, and recent progress in resistance and cultivar development. It also takes a look at protocooperation between specific biocontrol agents and cereal genotypes as a promising tool for combatting FHB.
Collapse
|
139
|
Rush TA, Shrestha HK, Gopalakrishnan Meena M, Spangler MK, Ellis JC, Labbé JL, Abraham PE. Bioprospecting Trichoderma: A Systematic Roadmap to Screen Genomes and Natural Products for Biocontrol Applications. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:716511. [PMID: 37744103 PMCID: PMC10512312 DOI: 10.3389/ffunb.2021.716511] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 09/26/2023]
Abstract
Natural products derived from microbes are crucial innovations that would help in reaching sustainability development goals worldwide while achieving bioeconomic growth. Trichoderma species are well-studied model fungal organisms used for their biocontrol properties with great potential to alleviate the use of agrochemicals in agriculture. However, identifying and characterizing effective natural products in novel species or strains as biological control products remains a meticulous process with many known challenges to be navigated. Integration of recent advancements in various "omics" technologies, next generation biodesign, machine learning, and artificial intelligence approaches could greatly advance bioprospecting goals. Herein, we propose a roadmap for assessing the potential impact of already known or newly discovered Trichoderma species for biocontrol applications. By screening publicly available Trichoderma genome sequences, we first highlight the prevalence of putative biosynthetic gene clusters and antimicrobial peptides among genomes as an initial step toward predicting which organisms could increase the diversity of natural products. Next, we discuss high-throughput methods for screening organisms to discover and characterize natural products and how these findings impact both fundamental and applied research fields.
Collapse
Affiliation(s)
- Tomás A. Rush
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
| | - Him K. Shrestha
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | | | - Margaret K. Spangler
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - J. Christopher Ellis
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
| | - Jesse L. Labbé
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Paul E. Abraham
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
140
|
Poštić D, Štrbanović R, Tabaković M, Popović T, Ćirić A, Banjac N, Trkulja N, Stanisavljević R. Germination and the Initial Seedling Growth of Lettuce, Celeriac and Wheat Cultivars after Micronutrient and a Biological Application Pre-Sowing Seed Treatment. PLANTS 2021; 10:plants10091913. [PMID: 34579445 PMCID: PMC8466355 DOI: 10.3390/plants10091913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022]
Abstract
Seed treatments with zinc, boron, biostimulant Coveron and MIX (zinc + boron + Coveron) were applied to three lettuce and three celeriac cultivars. Seeds of three wheat cultivars were treated under laboratory conditions with Trichoderma harzianum and eight Bacillus spp. Seed germination, seedling growth, and the presence of the following pathogens were determined: Fusarium sp., Alternaria sp., Penicillium sp., and Mucor sp. The Coveron treatment was the most effective on lettuce seeds tested in the germination cabinet. Seed germination was higher by 4% than in the control. Alternatively, germination of seeds treated with boron in the greenhouse was higher by 12% than in the control. The Coveron treatment had the highest effect on the shoot length, which was greater by 0.7 and 2.1 cm in the germination cabinet and the greenhouse, respectively. This treatment was also the most effective on the root length. Zn, B, and MIX treatments increased celeriac seed germination by 14% in the germination cabinet. The Zn treatment was the most efficient on seeds tested in the greenhouse. The germination was higher by 15%. A significant cultivar × treatment interaction was determined in both observed species under both conditions. The maximum effect on wheat seed germination (8%) was achieved with the T. harzianum treatment in the Salazar cultivar. A significant interdependence (p ≤ 0.01 to p ≤ 0.001) was established between seed germination and the seedling growth. The interrelationship between seed germination and pathogens of all cultivars was negative.
Collapse
Affiliation(s)
- Dobrivoj Poštić
- Institute for Plant Protection and Environment, 11040 Belgrade, Serbia; (D.P.); (R.Š.); (T.P.); (N.T.)
| | - Ratibor Štrbanović
- Institute for Plant Protection and Environment, 11040 Belgrade, Serbia; (D.P.); (R.Š.); (T.P.); (N.T.)
| | | | - Tatjana Popović
- Institute for Plant Protection and Environment, 11040 Belgrade, Serbia; (D.P.); (R.Š.); (T.P.); (N.T.)
| | - Ana Ćirić
- Institute for Biological Research Siniša Stanković—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (A.Ć.); (N.B.)
| | - Nevena Banjac
- Institute for Biological Research Siniša Stanković—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (A.Ć.); (N.B.)
| | - Nenad Trkulja
- Institute for Plant Protection and Environment, 11040 Belgrade, Serbia; (D.P.); (R.Š.); (T.P.); (N.T.)
| | - Rade Stanisavljević
- Institute for Plant Protection and Environment, 11040 Belgrade, Serbia; (D.P.); (R.Š.); (T.P.); (N.T.)
- Correspondence:
| |
Collapse
|
141
|
Punja ZK. Emerging diseases of Cannabis sativa and sustainable management. PEST MANAGEMENT SCIENCE 2021; 77:3857-3870. [PMID: 33527549 PMCID: PMC8451794 DOI: 10.1002/ps.6307] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/12/2021] [Accepted: 02/01/2021] [Indexed: 05/12/2023]
Abstract
Cultivation of cannabis plants (Cannabis sativa L., marijuana) has taken place worldwide for centuries. In Canada, legalization of cannabis in October 2018 for the medicinal and recreational markets has spurned interest in large-scale growing. This increased production has seen a rise in the incidence and severity of plant pathogens, causing a range of previously unreported diseases. The objective of this review is to highlight the important diseases currently affecting the cannabis and hemp industries in North America and to discuss various mitigation strategies. Progress in molecular diagnostics for pathogen identification and determining inoculum sources and methods of pathogen spread have provided useful insights. Sustainable disease management approaches include establishing clean planting stock, modifying environmental conditions to reduce pathogen development, implementing sanitation measures, and applying fungal and bacterial biological control agents. Fungicides are not currently registered for use and hence there are no published data on their efficacy. The greatest challenge remains in reducing microbial loads (colony-forming units) on harvested inflorescences (buds). Contaminating microbes may be introduced during the cultivation and postharvest phases, or constitute resident endophytes. Failure to achieve a minimum threshold of microbes deemed to be safe for utilization of cannabis products can arise from conventional and organic cultivation methods, or following applications of beneficial biocontrol agents. The current regulatory process for approval of cannabis products presents a challenge to producers utilizing biological control agents for disease management. © 2021 The Author. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Zamir K Punja
- Department of Biological SciencesSimon Fraser UniversityBurnabyBCCanada
| |
Collapse
|
142
|
In vitro and in silico approach of fungal growth inhibition by Trichoderma asperellum HbGT6-07 derived volatile organic compounds. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
143
|
Gutiérrez-Moreno K, Ruocco M, Monti MM, de la Vega OM, Heil M. Context-Dependent Effects of Trichoderma Seed Inoculation on Anthracnose Disease and Seed Yield of Bean ( Phaseolus vulgaris): Ambient Conditions Override Cultivar-Specific Differences. PLANTS 2021; 10:plants10081739. [PMID: 34451784 PMCID: PMC8400414 DOI: 10.3390/plants10081739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/28/2021] [Accepted: 08/01/2021] [Indexed: 12/22/2022]
Abstract
Root colonizing Trichoderma fungi can stimulate plant immunity, but net effects are strain × cultivar-specific and changing ambient conditions further contribute to variable outcomes. Here, we used four Trichoderma spp. to inoculate seeds of four common bean (Phaseolus vulgaris) cultivars and explored in three different experimental setups the effects on fungal anthracnose after leaf inoculation with Colletotrichum lindemuthianum. Plants growing in pots with field soil under greenhouse conditions exhibited the highest and those in the open field the lowest overall levels of disease. Among 48 Trichoderma strain × bean cultivar × setup combinations, Trichoderma-inoculation enhanced disease in six and decreased disease in ten cases, but with the exception of T. asperellum B6-inoculated Negro San Luis beans, the strain × cultivar-specific effects on anthracnose severity differed among the setups, and anthracnose severity did not predict seed yield in the open field. In the case of Flor de Mayo beans, Trichoderma even reduced yield in anthracnose-free field plots, although this effect was counterbalanced in anthracnose-infected plots. We consider our work as a case study that calls for stronger emphasis on field experiments in the early phases of screenings of Trichoderma inoculants as plant biostimulants.
Collapse
Affiliation(s)
- Karina Gutiérrez-Moreno
- Laboratorio de Ecología de Plantas, Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados (CINVESTAV)—Unidad Irapuato, 36824 Irapuato, Mexico;
| | - Michelina Ruocco
- Institute for Sustainable Plant Protection, National Research Council (CNR-IPSP), Via Università 133, 80055 Portici, Italy;
- Correspondence: (M.R.); (M.H.)
| | - Maurilia Maria Monti
- Institute for Sustainable Plant Protection, National Research Council (CNR-IPSP), Via Università 133, 80055 Portici, Italy;
| | - Octavio Martínez de la Vega
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados (CINVESTAV)—Unidad de Genómica Avanzada, 36824 Irapuato, Mexico;
| | - Martin Heil
- Laboratorio de Ecología de Plantas, Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados (CINVESTAV)—Unidad Irapuato, 36824 Irapuato, Mexico;
- Correspondence: (M.R.); (M.H.)
| |
Collapse
|
144
|
Araniti F, Landi M, Laudicina VA, Abenavoli MR. Secondary Metabolites and Eco-Friendly Techniques for Agricultural Weed/Pest Management. PLANTS 2021; 10:plants10071418. [PMID: 34371621 PMCID: PMC8309274 DOI: 10.3390/plants10071418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Fabrizio Araniti
- Dipartimento di Scienze Agrarie e Ambientali—Produzione, Territorio, Agroenergia, Università Statale di Milano, Via Celoria n°2, 20133 Milano, Italy
- Correspondence:
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | - Vito Armando Laudicina
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy;
| | - Maria Rosa Abenavoli
- Dipartimento Agraria, Università Mediterranea di Reggio Calabria, Località Feo di Vito SNC, 89124 Reggio Calabria, Italy;
| |
Collapse
|
145
|
Mawar R, Manjunatha BL, Kumar S. Commercialization, Diffusion and Adoption of Bioformulations for Sustainable Disease Management in Indian Arid Agriculture: Prospects and Challenges. CIRCULAR ECONOMY AND SUSTAINABILITY 2021; 1:1367-1385. [PMID: 34888568 PMCID: PMC8272838 DOI: 10.1007/s43615-021-00089-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/28/2021] [Indexed: 11/25/2022]
Abstract
Trichoderma spp. is one of the most popular genus of fungi commercially available as a plant growth promoting fungus (PGPF) and biological control agent. More than 80 species of Trichoderma are reported in the literature. However T. asperellum, T. harzianum, T. viride, and T. virens are most commonly utilized as biocontrol agents. Studies were initiated to explore the potential of biocontrol agents in order to develop a cost effective and practical management strategy. Analysis of large number of soil samples collected from western parts of the region led to isolation of native biocontrol agents viz., Trichoderma harzianum, Aspergillus versicolor, and Bacillus firmus from different agricultural systems. These biocontrol agents have proved their antagonistic ability in laboratory tests and field trials. In India, two species of Trichoderma i.e., T. viride and T. harzianum are commercially registered for usage against soil borne plant pathogens mostly as a seed treatment or soil application. There are published scientific papers on the efficacy of T. asperellum and T. virens in India for suppressing pathogens but these are not yet registered under Central Insecticide Board and Registration Committee (CIB & RC). This review article focuses on the uses, commercialization and adoption issues of various fungal and bacterial consortium products in sustainable disease management.
Collapse
Affiliation(s)
- Ritu Mawar
- ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan 342003 India
| | - B. L. Manjunatha
- ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan 342003 India
| | - Sanjeev Kumar
- Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur, Madhya Pradesh 482004 India
| |
Collapse
|
146
|
Saia S, Corrado G, Vitaglione P, Colla G, Bonini P, Giordano M, Stasio ED, Raimondi G, Sacchi R, Rouphael Y. An Endophytic Fungi-Based Biostimulant Modulates Volatile and Non-Volatile Secondary Metabolites and Yield of Greenhouse Basil ( Ocimum basilicum L.) through Variable Mechanisms Dependent on Salinity Stress Level. Pathogens 2021; 10:797. [PMID: 34201640 PMCID: PMC8308794 DOI: 10.3390/pathogens10070797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Accepted: 06/22/2021] [Indexed: 01/12/2023] Open
Abstract
Salinity in water and soil is one of the major environmental factors limiting the productivity of agronomic and horticultural crops. In basil (Ocimum basilicum L., Lamiaceae) and other Ocimum species, information on the plant response to mild salinity levels, often induced by the irrigation or fertigation systems, is scarce. In the present work, we tested the effectiveness of a microbial-based biostimulant containing two strains of arbuscular mycorrhiza fungi (AMF) and Trichoderma koningii in sustaining greenhouse basil yield traits, subjected to two mild salinity stresses (25 mM [low] and 50 mM [high] modulated by augmenting the fertigation osmotic potential with NaCl) compared to a non-stressed control. The impact of salinity stress was further appraised in terms of plant physiology, morphological ontogenesis and composition in polyphenols and volatile organic compounds (VOC). As expected, increasing the salinity of the solution strongly depressed the plant yield, nutrient uptake and concentration, reduced photosynthetic activity and leaf water potential, increased the Na and Cl and induced the accumulation of polyphenols. In addition, it decreased the concentration of Eucalyptol and β-Linalool, two of its main essential oil constituents. Irrespective of the salinity stress level, the multispecies inoculum strongly benefited plant growth, leaf number and area, and the accumulation of Ca, Mg, B, p-coumaric and chicoric acids, while it reduced nitrate and Cl concentrations in the shoots and affected the concentration of some minor VOC constituents. The benefits derived from the inoculum in term of yield and quality harnessed different mechanisms depending on the degree of stress. under low-stress conditions, the inoculum directly stimulated the photosynthetic activity after an increase of the Fe and Mn availability for the plants and induced the accumulation of caffeic and rosmarinic acids. under high stress conditions, the inoculum mostly acted directly on the sequestration of Na and the increase of P availability for the plant, moreover it stimulated the accumulation of polyphenols, especially of ferulic and chicoric acids and quercetin-rutinoside in the shoots. Notably, the inoculum did not affect the VOC composition, thus suggesting that its activity did not interact with the essential oil biosynthesis. These results clearly indicate that beneficial inocula constitute a valuable tool for sustaining yield and improving or sustaining quality under suboptimal water quality conditions imposing low salinity stress on horticultural crops.
Collapse
Affiliation(s)
- Sergio Saia
- Department Veterinary Sciences, University of Pisa, via delle Piagge 2, 56129 Pisa, Italy
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Paolo Bonini
- NGAlab, La Riera de Gaia, 43762 Tarragona, Spain
| | - Maria Giordano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Emilio Di Stasio
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Giampaolo Raimondi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Raffaele Sacchi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| |
Collapse
|
147
|
Favre-Godal Q, Schwob P, Lecoultre N, Hofstetter V, Gourguillon L, Riffault-Valois L, Lordel-Madeleine S, Gindro K, Choisy P. Plant-microbe features of Dendrobium fimbriatum (Orchidaceae) fungal community. Symbiosis 2021. [DOI: 10.1007/s13199-021-00786-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
148
|
Oszust K, Pylak M, Frąc M. Trichoderma-Based Biopreparation with Prebiotics Supplementation for the Naturalization of Raspberry Plant Rhizosphere. Int J Mol Sci 2021; 22:ijms22126356. [PMID: 34198606 PMCID: PMC8232080 DOI: 10.3390/ijms22126356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022] Open
Abstract
The number of raspberry plants dying from a sudden outbreak of gray mold, verticillium wilt, anthracnosis, and phytophthora infection has increased in recent times, leading to crop failure. The plants suffer tissue collapse and black roots, symptoms similar to a Botrytis-Verticillium-Colletotrichum-Phytophthora disease complex. A sizeable number of fungal isolates were acquired from the root and rhizosphere samples of wild raspberries from different locations. Subsequent in vitro tests revealed that a core consortium of 11 isolates of selected Trichoderma spp. was the most essential element for reducing in phytopathogen expansion. For this purpose, isolates were characterized by the efficiency of their antagonistic properties against Botrytis, Verticillium, Colletotrichum and Phytophthora isolates and with hydrolytic properties accelerating the decomposition of organic matter in the soil and thus making nutrients available to plants. Prebiotic additive supplementation with a mixture of adonitol, arabitol, erythritol, mannitol, sorbitol, and adenosine was proven in a laboratory experiment to be efficient in stimulating the growth of Trichoderma isolates. Through an in vivo pathosystem experiment, different raspberry naturalization-protection strategies (root inoculations and watering with native Trichoderma isolates, applied separately or simultaneously) were tested under controlled phytotron conditions. The experimental application of phytopathogens attenuated raspberry plant and soil properties, while Trichoderma consortium incorporation exhibited a certain trend of improving these features in terms of a short-term response, depending on the pathosystem and naturalization strategy. What is more, a laboratory-scale development of a biopreparation for the naturalization of the raspberry rhizosphere based on the Trichoderma consortium was proposed in the context of two application scenarios. The first was a ready-to-use formulation to be introduced while planting (pellets, gel). The second was a variant to be applied with naturalizing watering (soluble powder).
Collapse
|
149
|
Degani O, Rabinovitz O, Becher P, Gordani A, Chen A. Trichoderma longibrachiatum and Trichoderma asperellum Confer Growth Promotion and Protection against Late Wilt Disease in the Field. J Fungi (Basel) 2021; 7:jof7060444. [PMID: 34199413 PMCID: PMC8229153 DOI: 10.3390/jof7060444] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
Late wilt disease (LWD) of maize, caused by Magnaporthiopsis maydis, is considered a major threat to commercial fields in Israel, Egypt, Spain, and India. Today's control methods include chemical and agronomical intervention but rely almost solely on resistant maize cultivars. In recent years, LWD research focused on eco-friendly biological approaches to restrain the pathogen. The current study conducted during two growing seasons explores the potential of three Trichoderma species as bioprotective treatments against LWD. These species excelled in preliminary assays performed previously under controlled conditions and were applied here in the field by directly adding them to each seed with the sowing. In the first field experiment, Trichoderma longibrachiatum successfully rescued the plants' growth indices (weight and height) compared to T. asperelloides and the non-treated control. However, it had no positive effect on yield and disease progression. In the subsequent season, this Trichoderma species was tested against T. asperellum, an endophyte isolated from susceptible maize cultivar. This experiment was conducted during a rainy autumn season, which probably led to a weak disease burst. Under these conditions, the plants in all treatment groups were vivid and had similar growth progression and yields. Nevertheless, a close symptoms inspection revealed that the T. longibrachiatum treatment resulted in a two-fold reduction in the lower stem symptoms and a 1.4-fold reduction in the cob symptoms at the end of the seasons. T. asperellum achieved 1.6- and 1.3-fold improvement in these parameters, respectively. Quantitative Real-time PCR tracking of the pathogen in the host plants' first internode supported the symptoms' evaluation, with 3.1- and 4.9-fold lower M. maydis DNA levels in the two Trichoderma treatments. In order to induce LWD under the autumn's less favorable conditions, some of the plots in each treatment were inoculated additionally, 20 days after sowing, by stabbing the lower stem section near the ground with a wooden toothpick dipped in M. maydis mycelia. This infection method overrides the Trichoderma roots protection and almost abolishes the biocontrol treatments' protective achievements. This study suggests a biological Trichoderma-based protective layer that may have significant value in mild cases of LWD.
Collapse
Affiliation(s)
- Ofir Degani
- Migal Galilee Research Institute, Tarshish 2, Kiryat Shmona 11016, Israel; (O.R.); (P.B.); (A.G.); (A.C.)
- Faculty of Sciences, Tel-Hai College, Upper Galilee, Tel-Hai 12210, Israel
- Correspondence: or ; Tel.: +972-54-678-0114
| | - Onn Rabinovitz
- Migal Galilee Research Institute, Tarshish 2, Kiryat Shmona 11016, Israel; (O.R.); (P.B.); (A.G.); (A.C.)
| | - Paz Becher
- Migal Galilee Research Institute, Tarshish 2, Kiryat Shmona 11016, Israel; (O.R.); (P.B.); (A.G.); (A.C.)
- Faculty of Sciences, Tel-Hai College, Upper Galilee, Tel-Hai 12210, Israel
| | - Asaf Gordani
- Migal Galilee Research Institute, Tarshish 2, Kiryat Shmona 11016, Israel; (O.R.); (P.B.); (A.G.); (A.C.)
- Faculty of Sciences, Tel-Hai College, Upper Galilee, Tel-Hai 12210, Israel
| | - Assaf Chen
- Migal Galilee Research Institute, Tarshish 2, Kiryat Shmona 11016, Israel; (O.R.); (P.B.); (A.G.); (A.C.)
- Faculty of Sciences, Tel-Hai College, Upper Galilee, Tel-Hai 12210, Israel
| |
Collapse
|
150
|
Bio-controller Effect of Four Native Strains of Trichoderma spp., on Phytophthora capsici in Manzano Chili (Capsicum pubescens) in Puebla-Mexico. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.2.58] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Diversity of the different types of chilies in Mexico has been scarcely studied, and a large variety have been found to be, such as Manzano chili. Root rot caused by oomycete Phytophthora capsici is a severe disease that affects Manzano chili production in Mexico, detracted from its production and quality. The use of biological control agents such as Trichodermanative’s species, represents an efficient alternative to reduce losses and control the disease. For this reason, the objective of the present investigation was to evaluate the antagonistic effect in vitro and in vivo of four native strains of Trichoderma spp., on Phytophthora capsici in seedlings of Manzano chili from Puebla-Mexico was evaluated. Dual culture technique was used to determine the percentage of inhibition of radial growth (PICR) of the PC-A strain of P. capsici. Analysis of the percentage of germination was also carried out, as well as the incidence of root rot at 20 days after inoculation with the pathogen (dai) in the nursery. T. harzianum strain presented the highest PICR (42.86%) of antagonistic level in vitro and class I in the Bell scale, in addition, it obtained 88% germination in the nursery and 10% mortality at 20 dai, higher than the other native strains of Trichoderma. The bio-controlling effect of strains of Trichoderma spp., offers an effective alternative for root necrosis caused by P. capsici in the cultivation of Manzano chili in Puebla-Mexico.
Collapse
|