101
|
Dühring S, Germerodt S, Skerka C, Zipfel PF, Dandekar T, Schuster S. Host-pathogen interactions between the human innate immune system and Candida albicans-understanding and modeling defense and evasion strategies. Front Microbiol 2015; 6:625. [PMID: 26175718 PMCID: PMC4485224 DOI: 10.3389/fmicb.2015.00625] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/08/2015] [Indexed: 12/13/2022] Open
Abstract
The diploid, polymorphic yeast Candida albicans is one of the most important human pathogenic fungi. C. albicans can grow, proliferate and coexist as a commensal on or within the human host for a long time. However, alterations in the host environment can render C. albicans virulent. In this review, we describe the immunological cross-talk between C. albicans and the human innate immune system. We give an overview in form of pairs of human defense strategies including immunological mechanisms as well as general stressors such as nutrient limitation, pH, fever etc. and the corresponding fungal response and evasion mechanisms. Furthermore, Computational Systems Biology approaches to model and investigate these complex interactions are highlighted with a special focus on game-theoretical methods and agent-based models. An outlook on interesting questions to be tackled by Systems Biology regarding entangled defense and evasion mechanisms is given.
Collapse
Affiliation(s)
- Sybille Dühring
- Department of Bioinformatics, Friedrich-Schiller-University JenaJena, Germany
| | - Sebastian Germerodt
- Department of Bioinformatics, Friedrich-Schiller-University JenaJena, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll InstituteJena, Germany
| | - Peter F. Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll InstituteJena, Germany
- Friedrich-Schiller-University JenaJena, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biozentrum, Universitaet WuerzburgWuerzburg, Germany
| | - Stefan Schuster
- Department of Bioinformatics, Friedrich-Schiller-University JenaJena, Germany
| |
Collapse
|
102
|
Teng MWL, Bowman EP, McElwee JJ, Smyth MJ, Casanova JL, Cooper AM, Cua DJ. IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases. Nat Med 2015; 21:719-29. [PMID: 26121196 DOI: 10.1038/nm.3895] [Citation(s) in RCA: 572] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 05/05/2015] [Indexed: 12/18/2022]
Abstract
The cytokine interleukin-12 (IL-12) was thought to have a central role in T cell-mediated responses in inflammation for more than a decade after it was first identified. Discovery of the cytokine IL-23, which shares a common p40 subunit with IL-12, prompted efforts to clarify the relative contribution of these two cytokines in immune regulation. Ustekinumab, a therapeutic agent targeting both cytokines, was recently approved to treat psoriasis and psoriatic arthritis, and related agents are in clinical testing for a variety of inflammatory disorders. Here we discuss the therapeutic rationale for targeting these cytokines, the unintended consequences for host defense and tumor surveillance and potential ways in which these therapies can be applied to treat additional immune disorders.
Collapse
Affiliation(s)
- Michele W L Teng
- 1] Cancer Immunoregulation and Immunotherapy and Immunology in Cancer and Infection Laboratories, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia. [2] School of Medicine, University of Queensland, Herston, Queensland, Australia
| | | | | | - Mark J Smyth
- 1] Cancer Immunoregulation and Immunotherapy and Immunology in Cancer and Infection Laboratories, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia. [2] School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Jean-Laurent Casanova
- 1] St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA. [2] Howard Hughes Medical Institute, New York, New York, USA. [3] Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Paris, France. [4] Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, Paris, France. [5] Paris Descartes University, Imagine Institute, Paris, France
| | | | - Daniel J Cua
- Merck Research Laboratories, Palo Alto, California, USA
| |
Collapse
|
103
|
Polvi EJ, Li X, O’Meara TR, Leach MD, Cowen LE. Opportunistic yeast pathogens: reservoirs, virulence mechanisms, and therapeutic strategies. Cell Mol Life Sci 2015; 72:2261-87. [PMID: 25700837 PMCID: PMC11113693 DOI: 10.1007/s00018-015-1860-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 12/21/2022]
Abstract
Life-threatening invasive fungal infections are becoming increasingly common, at least in part due to the prevalence of medical interventions resulting in immunosuppression. Opportunistic fungal pathogens of humans exploit hosts that are immunocompromised, whether by immunosuppression or genetic predisposition, with infections originating from either commensal or environmental sources. Fungal pathogens are armed with an arsenal of traits that promote pathogenesis, including the ability to survive host physiological conditions and to switch between different morphological states. Despite the profound impact of fungal pathogens on human health worldwide, diagnostic strategies remain crude and treatment options are limited, with resistance to antifungal drugs on the rise. This review will focus on the global burden of fungal infections, the reservoirs of these pathogens, the traits of opportunistic yeast that lead to pathogenesis, host genetic susceptibilities, and the challenges that must be overcome to combat antifungal drug resistance and improve clinical outcome.
Collapse
Affiliation(s)
- Elizabeth J. Polvi
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 4368, Toronto, ON M5S 1A8 Canada
| | - Xinliu Li
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 4368, Toronto, ON M5S 1A8 Canada
| | - Teresa R. O’Meara
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 4368, Toronto, ON M5S 1A8 Canada
| | - Michelle D. Leach
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 4368, Toronto, ON M5S 1A8 Canada
- Aberdeen Fungal Group, Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 4368, Toronto, ON M5S 1A8 Canada
| |
Collapse
|
104
|
Maher CO, Dunne K, Comerford R, O’Dea S, Loy A, Woo J, Rogers TR, Mulcahy F, Dunne PJ, Doherty DG. Candida albicans Stimulates IL-23 Release by Human Dendritic Cells and Downstream IL-17 Secretion by Vδ1 T Cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:5953-60. [DOI: 10.4049/jimmunol.1403066] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/11/2015] [Indexed: 12/14/2022]
|
105
|
Conti HR, Whibley N, Coleman BM, Garg AV, Jaycox JR, Gaffen SL. Signaling through IL-17C/IL-17RE is dispensable for immunity to systemic, oral and cutaneous candidiasis. PLoS One 2015; 10:e0122807. [PMID: 25849644 PMCID: PMC4388490 DOI: 10.1371/journal.pone.0122807] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/13/2015] [Indexed: 12/14/2022] Open
Abstract
Candida albicans is a commensal fungal microbe of the human orogastrointestinal tract and skin. C. albicans causes multiple forms of disease in immunocompromised patients, including oral, vaginal, dermal and disseminated candidiasis. The cytokine IL-17 (IL-17A) and its receptor subunits, IL-17RA and IL-17RC, are required for protection to most forms of candidiasis. The importance of the IL-17R pathway has been observed not only in knockout mouse models, but also in humans with rare genetic mutations that impact generation of Th17 cells or the IL-17 signaling pathway, including Hyper-IgE Syndrome (STAT3 or TYK2 mutations) or IL17RA or ACT1 gene deficiency. The IL-17 family of cytokines is a distinct subclass of cytokines with unique structural and signaling properties. IL-17A is the best-characterized member of the IL-17 family to date, but far less is known about other IL-17-related cytokines. In this study, we sought to determine the role of a related IL-17 cytokine, IL-17C, in protection against oral, dermal and disseminated forms of C. albicans infection. IL-17C signals through a heterodimeric receptor composed of the IL-17RA and IL-17RE subunits. We observed that IL-17C mRNA was induced following oral C. albicans infection. However, mice lacking IL-17C or IL-17RE cleared C. albicans infections in the oral mucosa, skin and bloodstream at rates similar to WT littermate controls. Moreover, these mice demonstrated similar gene transcription profiles and recovery kinetics as WT animals. These findings indicate that IL-17C and IL-17RE are dispensable for immunity to the forms of candidiasis evaluated, and illustrate a surprisingly limited specificity of the IL-17 family of cytokines with respect to systemic, oral and cutaneous Candida infections.
Collapse
Affiliation(s)
- Heather R. Conti
- University of Pittsburgh, Department of Medicine, Division of Rheumatology & Clinical Immunology, Pittsburgh, PA, United States of America
| | - Natasha Whibley
- University of Pittsburgh, Department of Medicine, Division of Rheumatology & Clinical Immunology, Pittsburgh, PA, United States of America
| | - Bianca M. Coleman
- University of Pittsburgh, Department of Medicine, Division of Rheumatology & Clinical Immunology, Pittsburgh, PA, United States of America
| | - Abhishek V. Garg
- University of Pittsburgh, Department of Medicine, Division of Rheumatology & Clinical Immunology, Pittsburgh, PA, United States of America
| | - Jillian R. Jaycox
- Carnegie Mellon University, Dept. of Biological Sciences, Pittsburgh, PA, United States of America
| | - Sarah L. Gaffen
- University of Pittsburgh, Department of Medicine, Division of Rheumatology & Clinical Immunology, Pittsburgh, PA, United States of America
| |
Collapse
|
106
|
Trautwein-Weidner K, Gladiator A, Nur S, Diethelm P, LeibundGut-Landmann S. IL-17-mediated antifungal defense in the oral mucosa is independent of neutrophils. Mucosal Immunol 2015; 8:221-31. [PMID: 25005360 DOI: 10.1038/mi.2014.57] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/30/2014] [Indexed: 02/04/2023]
Abstract
Interleukin-17 (IL-17)-mediated immunity has emerged as a crucial host defense mechanism against Candida albicans infections in mucosal tissues and the skin. The precise mechanism by which the IL-17 pathway prevents fungal outgrowth has not been clarified. Neutrophils are critical for limiting fungal dissemination and IL-17 is generally thought to act by regulating neutrophil mobilization and trafficking to the site of infection. Using a mouse model of oropharyngeal candidiasis (OPC), we found that strikingly the IL-17 pathway is not required for the neutrophil response to C. albicans. Mice deficient for the IL-17 receptor subunits IL-17 receptor A (IL-17RA) or IL-17RC or mice depleted of IL-17A and IL-17F exhibited a normal granulocyte colony-stimulating factor (G-CSF) and CXC-chemokine response and displayed no defect in neutrophil recruitment or function. Instead, the inability of these mice to clear the fungus was associated with a selective defect in the induction of antimicrobial peptides (AMPs) in the epithelium that resulted in persistent fungal colonization. Importantly, this antifungal mechanism of IL-17A and IL-17F did not extend to the closely related family member IL-17C. Together, these data uncouple IL-17-dependent effector mechanisms from the neutrophil response and reveal a compartmentalization of the antifungal defense in the oral mucosa providing a new understanding of IL-17-mediated mucosal immunity against C. albicans.
Collapse
Affiliation(s)
| | - A Gladiator
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - S Nur
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - P Diethelm
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | |
Collapse
|
107
|
Abstract
Fungal infections are becoming increasingly prevalent in the human population and contribute to morbidity and mortality in healthy and immunocompromised individuals respectively. Candida albicans is the most commonly encountered fungal pathogen of humans, and is frequently found on the mucosal surfaces of the body. Host defense against C. albicans is dependent upon a finely tuned implementation of innate and adaptive immune responses, enabling the host to neutralise the invading fungus. Central to this protection are the adaptive Th1 and Th17 cellular responses, which are considered paramount to successful immune defense against C. albicans infections, and enable tissue homeostasis to be maintained in the presence of colonising fungi. This review will highlight the recent advances in our understanding of adaptive immunity to Candida albicans infections.
Collapse
Affiliation(s)
- Jonathan P Richardson
- a Mucosal and Salivary Biology Division ; Dental Institute; King's College London ; London , UK
| | | |
Collapse
|
108
|
|
109
|
|
110
|
Smeekens SP, Gresnigt MS, Becker KL, Cheng SC, Netea SA, Jacobs L, Jansen T, van de Veerdonk FL, Williams DL, Joosten LAB, Dinarello CA, Netea MG. An anti-inflammatory property of Candida albicans β-glucan: Induction of high levels of interleukin-1 receptor antagonist via a Dectin-1/CR3 independent mechanism. Cytokine 2014; 71:215-22. [PMID: 25461401 DOI: 10.1016/j.cyto.2014.10.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 09/02/2014] [Accepted: 10/28/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Candida albicans is an opportunistic fungal pathogen that induces strong proinflammatory responses, such as IL-1β production. Much less is known about the induction of immune modulatory cytokines, such as the IL-1 receptor antagonist (IL-1Ra) that is the main natural antagonist of IL-1, by C. albicans. METHODS Peripheral blood mononuclear cells (PBMC) of healthy individuals were stimulated with C. albicans and different components of the fungal cell wall. The role of pathogen recognition receptors (PRRs) for the induction of IL-1β and IL-1Ra was investigated by using specific blockers or in PBMC from Dectin-1 deficient patients. RESULTS C. albicans induced a strong IL-1Ra response, and this induction was primarily induced by the cell-wall component β-glucan. Blocking IL-1Ra significantly increased C. albicans β-glucan hyphae induced IL-1β and IL-6 production. Surprisingly, blocking the β-glucan receptor Dectin-1 or the downstream Syk or Raf-1 pathways only marginally reduced C. albicans-induced IL-1Ra production, while blocking of the complement receptor 3 (CR3), TLR2 or TLR4 had no effect. In line with this, blocking MAP kinases had little effect on Candida-induced IL-1Ra production. PBMC isolated from Dectin-1 deficient patients produced normal IL-1Ra amounts in response to C. albicans stimulation. Interestingly, the IL-1Ra synthesis induced by β-glucan was blocked by inhibitors of the Akt/PI3K pathway. CONCLUSIONS β-glucan of C. albicans induces a strong IL-1Ra response, which is independent of the β-glucan receptors dectin-1 and CR3. These data strongly argue for the existence of an unknown β-glucan receptor that specifically induces an Akt/PI3K-dependent anti-inflammatory IL-1Ra response upon recognition of C. albicans.
Collapse
Affiliation(s)
- Sanne P Smeekens
- Department of Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Nijmegen Institute for Infection, Inflammation, and Immunity (N4i), Nijmegen, The Netherlands
| | - Mark S Gresnigt
- Department of Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Nijmegen Institute for Infection, Inflammation, and Immunity (N4i), Nijmegen, The Netherlands
| | - Katharina L Becker
- Department of Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Nijmegen Institute for Infection, Inflammation, and Immunity (N4i), Nijmegen, The Netherlands
| | - Shih-Chin Cheng
- Department of Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Nijmegen Institute for Infection, Inflammation, and Immunity (N4i), Nijmegen, The Netherlands
| | - Stejara A Netea
- Department of Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Nijmegen Institute for Infection, Inflammation, and Immunity (N4i), Nijmegen, The Netherlands
| | - Liesbeth Jacobs
- Department of Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Nijmegen Institute for Infection, Inflammation, and Immunity (N4i), Nijmegen, The Netherlands
| | - Trees Jansen
- Department of Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Nijmegen Institute for Infection, Inflammation, and Immunity (N4i), Nijmegen, The Netherlands
| | - Frank L van de Veerdonk
- Department of Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Nijmegen Institute for Infection, Inflammation, and Immunity (N4i), Nijmegen, The Netherlands
| | - David L Williams
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, TN, USA
| | - Leo A B Joosten
- Department of Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Nijmegen Institute for Infection, Inflammation, and Immunity (N4i), Nijmegen, The Netherlands
| | - Charles A Dinarello
- Department of Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Department of Medicine, University of Colorado, Denver, CO, USA
| | - Mihai G Netea
- Department of Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Nijmegen Institute for Infection, Inflammation, and Immunity (N4i), Nijmegen, The Netherlands.
| |
Collapse
|
111
|
Drummond RA, Gaffen SL, Hise AG, Brown GD. Innate Defense against Fungal Pathogens. Cold Spring Harb Perspect Med 2014; 5:cshperspect.a019620. [PMID: 25384766 DOI: 10.1101/cshperspect.a019620] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human fungal infections have been on the rise in recent years and proved increasingly difficult to treat as a result of the lack of diagnostics, effective antifungal therapies, and vaccines. Most pathogenic fungi do not cause disease unless there is a disturbance in immune homeostasis, which can be caused by modern medical interventions, disease-induced immunosuppression, and naturally occurring human mutations. The innate immune system is well equipped to recognize and destroy pathogenic fungi through specialized cells expressing a broad range of pattern recognition receptors (PRRs). This review will outline the cells and PRRs required for effective antifungal immunity, with a special focus on the major antifungal cytokine IL-17 and recently characterized antifungal inflammasomes.
Collapse
Affiliation(s)
- Rebecca A Drummond
- Aberdeen Fungal Group, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Sarah L Gaffen
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Amy G Hise
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106 Department of Medicine, Louis Stokes Veterans Affairs Medical Centre, Cleveland, Ohio 44106
| | - Gordon D Brown
- Aberdeen Fungal Group, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| |
Collapse
|
112
|
Abstract
Life-threatening fungal infections have risen sharply in recent years, owing to the advances and intensity of medical care that may blunt immunity in patients. This emerging crisis has created the growing need to clarify immune defense mechanisms against fungi with the ultimate goal of therapeutic intervention. We describe recent insights in understanding the mammalian immune defenses that are deployed against pathogenic fungi. We focus on adaptive immunity to the major medically important fungi and emphasize three elements that coordinate the response: (1) dendritic cells and subsets that are mobilized against fungi in various anatomical compartments; (2) fungal molecular patterns and their corresponding receptors that signal responses and shape the differentiation of T-cell subsets and B cells; and, ultimately (3) the effector and regulatory mechanisms that eliminate these invaders while constraining collateral damage to vital tissue. These insights create a foundation for the development of new, immune-based strategies for prevention or enhanced clearance of systemic fungal diseases.
Collapse
Affiliation(s)
- Akash Verma
- Veterans Affairs Hospital, University of Cincinnati College of Medicine, Cincinnati, Ohio 45220 Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Marcel Wüthrich
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792
| | - George Deepe
- Veterans Affairs Hospital, University of Cincinnati College of Medicine, Cincinnati, Ohio 45220 Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Bruce Klein
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792 Internal Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792 Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792
| |
Collapse
|
113
|
Ma HD, Wang YH, Chang C, Gershwin ME, Lian ZX. The intestinal microbiota and microenvironment in liver. Autoimmun Rev 2014; 14:183-91. [PMID: 25315744 DOI: 10.1016/j.autrev.2014.10.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 10/05/2014] [Indexed: 12/12/2022]
Abstract
The intestinal microbiome plays a significant role in the development of autoimmune diseases, in particular, inflammatory bowel diseases. But the interplay between the intestinal tract and the liver may explain the increased association with autoimmune liver diseases and inflammatory bowel diseases. The gut-liver axis involves multiple inflammatory cell types and cytokines, chemokines and other molecules which lead to the destruction of normal liver architecture. Triggers for the initiation of these events are unclear, but appear to include multiple environmental factors, including pathogenic or even commensal microbial agents. The variation in the gut microbiome has been cited as a major factor in the pathogenesis of autoimmune liver disease and even other autoimmune diseases. The unique positioning of the liver at the juncture of the peripheral circulation and the portal circulation augments the interaction between naïve T cells and other hepatic cells and leads to the disruption in the development of tolerance to commensal bacteria and other environmental agents. Finally, the innate immune system and in particular toll-like receptors play a significant role in the pathogenesis of autoimmune liver disease.
Collapse
Affiliation(s)
- Hong-Di Ma
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Yin-Hu Wang
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA 95616, USA.
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA 95616, USA.
| | - Zhe-Xiong Lian
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; Innovation Center for Cell Biology, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China.
| |
Collapse
|
114
|
Conti HR, Peterson AC, Brane L, Huppler AR, Hernández-Santos N, Whibley N, Garg AV, Simpson-Abelson MR, Gibson GA, Mamo AJ, Osborne LC, Bishu S, Ghilardi N, Siebenlist U, Watkins SC, Artis D, McGeachy MJ, Gaffen SL. Oral-resident natural Th17 cells and γδ T cells control opportunistic Candida albicans infections. ACTA ACUST UNITED AC 2014; 211:2075-84. [PMID: 25200028 PMCID: PMC4172215 DOI: 10.1084/jem.20130877] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Conti et al. show that IL-17 is produced by tongue-resident populations of γδ T cells and nTh17 cells in response to oropharyngeal candidiasis in mice. Oropharyngeal candidiasis (OPC) is an opportunistic fungal infection caused by Candida albicans. OPC is frequent in HIV/AIDS, implicating adaptive immunity. Mice are naive to Candida, yet IL-17 is induced within 24 h of infection, and susceptibility is strongly dependent on IL-17R signaling. We sought to identify the source of IL-17 during the early innate response to candidiasis. We show that innate responses to Candida require an intact TCR, as SCID, IL-7Rα−/−, and Rag1−/− mice were susceptible to OPC, and blockade of TCR signaling by cyclosporine induced susceptibility. Using fate-tracking IL-17 reporter mice, we found that IL-17 is produced within 1–2 d by tongue-resident populations of γδ T cells and CD3+CD4+CD44hiTCRβ+CCR6+ natural Th17 (nTh17) cells, but not by TCR-deficient innate lymphoid cells (ILCs) or NK cells. These cells function redundantly, as TCR-β−/− and TCR-δ−/− mice were both resistant to OPC. Whereas γδ T cells were previously shown to produce IL-17 during dermal candidiasis and are known to mediate host defense at mucosal surfaces, nTh17 cells are poorly understood. The oral nTh17 population expanded rapidly after OPC, exhibited high TCR-β clonal diversity, and was absent in Rag1−/−, IL-7Rα−/−, and germ-free mice. These findings indicate that nTh17 and γδ T cells, but not ILCs, are key mucosal sentinels that control oral pathogens.
Collapse
Affiliation(s)
- Heather R Conti
- Division of Rheumatology and Clinical Immunology, and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Department of Immunology, and Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261
| | - Alanna C Peterson
- Division of Rheumatology and Clinical Immunology, and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Department of Immunology, and Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261
| | - Lucas Brane
- Division of Rheumatology and Clinical Immunology, and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Department of Immunology, and Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261
| | - Anna R Huppler
- Department of Infectious Diseases, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224
| | - Nydiaris Hernández-Santos
- Division of Rheumatology and Clinical Immunology, and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Department of Immunology, and Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261
| | - Natasha Whibley
- Division of Rheumatology and Clinical Immunology, and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Department of Immunology, and Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261
| | - Abhishek V Garg
- Division of Rheumatology and Clinical Immunology, and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Department of Immunology, and Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261
| | - Michelle R Simpson-Abelson
- Division of Rheumatology and Clinical Immunology, and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Department of Immunology, and Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261
| | - Gregory A Gibson
- Division of Rheumatology and Clinical Immunology, and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Department of Immunology, and Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261
| | - Anna J Mamo
- Division of Rheumatology and Clinical Immunology, and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Department of Immunology, and Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261
| | - Lisa C Osborne
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Shrinivas Bishu
- Division of Rheumatology and Clinical Immunology, and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Department of Immunology, and Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261
| | - Nico Ghilardi
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Ulrich Siebenlist
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852
| | - Simon C Watkins
- Division of Rheumatology and Clinical Immunology, and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Department of Immunology, and Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261
| | - David Artis
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Mandy J McGeachy
- Division of Rheumatology and Clinical Immunology, and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Department of Immunology, and Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261 Division of Rheumatology and Clinical Immunology, and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Department of Immunology, and Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Department of Immunology, and Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261 Division of Rheumatology and Clinical Immunology, and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Department of Immunology, and Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
115
|
Mannan induces ROS-regulated, IL-17A-dependent psoriasis arthritis-like disease in mice. Proc Natl Acad Sci U S A 2014; 111:E3669-78. [PMID: 25136095 DOI: 10.1073/pnas.1405798111] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Psoriasis (Ps) and psoriasis arthritis (PsA) are poorly understood common diseases, induced by unknown environmental factors, affecting skin and articular joints. A single i.p. exposure to mannan from Saccharomyces cerevisiae induced an acute inflammation in inbred mouse strains resembling human Ps and PsA-like disease, whereas multiple injections induced a relapsing disease. Exacerbation of disease severity was observed in mice deficient for generation of reactive oxygen species (ROS). Interestingly, restoration of ROS production, specifically in macrophages, ameliorated both skin and joint disease. Neutralization of IL-17A, mainly produced by γδ T cells, completely blocked disease symptoms. Furthermore, mice depleted of granulocytes were resistant to disease development. In contrast, certain acute inflammatory mediators (C5, Fcγ receptor III, mast cells, and histamine) and adaptive immune players (αβ T and B cells) were redundant in disease induction. Hence, we propose that mannan-induced activation of macrophages leads to TNF-α secretion and stimulation of local γδ T cells secreting IL-17A. The combined action of activated macrophages and IL-17A produced in situ drives neutrophil infiltration in the epidermis and dermis of the skin, leading to disease manifestations. Thus, our finding suggests a new mechanism triggered by exposure to exogenous microbial components, such as mannan, that can induce and exacerbate Ps and PsA.
Collapse
|
116
|
The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol 2014; 14:405-16. [PMID: 24854590 DOI: 10.1038/nri3684] [Citation(s) in RCA: 440] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The body is host to a wide variety of microbial communities from which the immune system protects us and that are important for the normal development of the immune system and for the maintenance of healthy tissues and physiological processes. Investigators have mostly focused on the bacterial members of these communities, but fungi are increasingly being recognized to have a role in defining these communities and to interact with immune cells. In this Review, we discuss what is currently known about the makeup of fungal communities in the body and the features of the immune system that are particularly important for interacting with fungi at these sites.
Collapse
|
117
|
Rodríguez-Cerdeira C, Lopez-Bárcenas A, Sánchez-Blanco B, Arenas R. The role of IL-33 in host response to Candida albicans. ScientificWorldJournal 2014; 2014:340690. [PMID: 25136658 PMCID: PMC4130336 DOI: 10.1155/2014/340690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Interleukin (IL) 33 is a recently identified pleiotropic cytokine that influences the activity of multiple cell types and orchestrates complex innate and adaptive immune responses. METHODS We performed an extensive review of the literature published between 2005 and 2013 on IL-33 and related cytokines, their functions, and their regulation of the immune system following Candida albicans colonization. Our literature review included cross-references from retrieved articles and specific data from our own studies. RESULTS IL-33 (IL-1F11) is a recently identified member of the IL-1 family of cytokines. Accumulating evidence suggests a pivotal role of the IL-33/ST2 axis in host immune defense against fungal pathogens, including C. albicans. IL-33 induces a Th2-type inflammatory response and activates both innate and adaptive immunity. Studies in animal models have shown that Th2 inflammatory responses have a beneficial role in immunity against gastrointestinal and systemic infections by Candida spp. CONCLUSIONS This review summarizes the most important clinical studies and case reports describing the beneficial role of IL-33 in immunity and host defense mechanisms against pathogenic fungi. The finding that the IL-33/ST2 axis is involved in therapeutic target has implications for the prevention and treatment of inflammatory diseases, including acute or chronic candidiasis.
Collapse
Affiliation(s)
- C. Rodríguez-Cerdeira
- Department of Dermatology, Hospital do Meixoeiro (CHUVI) and University of Vigo, C/Meixoeiro S/N, Vigo, 36200 Galicia, Spain
| | - A. Lopez-Bárcenas
- Department of Dermatology, Hospital General Dr. Manuel Gea González, Calzada de Tlalpan 4800, Tlalpan, 14000 México City, DF, Mexico
| | - B. Sánchez-Blanco
- Department of Emergency, CHUVI, Hospital do Meixoeiro (CHUVI), C/Meixoeiro S/N, Vigo, 36200 Galicia, Spain
| | - R. Arenas
- Department of Dermatology (Section of Mycology), Hospital General Dr. Manuel Gea González, Calzada de Tlalpan 4800, Tlalpan, 14000 México City, DF, Mexico
| |
Collapse
|
118
|
Whitney PG, Bär E, Osorio F, Rogers NC, Schraml BU, Deddouche S, LeibundGut-Landmann S, Reis e Sousa C. Syk signaling in dendritic cells orchestrates innate resistance to systemic fungal infection. PLoS Pathog 2014; 10:e1004276. [PMID: 25033445 PMCID: PMC4102599 DOI: 10.1371/journal.ppat.1004276] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/11/2014] [Indexed: 12/21/2022] Open
Abstract
Host protection from fungal infection is thought to ensue in part from the activity of Syk-coupled C-type lectin receptors and MyD88-coupled toll-like receptors in myeloid cells, including neutrophils, macrophages and dendritic cells (DCs). Given the multitude of cell types and receptors involved, elimination of a single pathway for fungal recognition in a cell type such as DCs, primarily known for their ability to prime T cell responses, would be expected to have little effect on innate resistance to fungal infection. Here we report that this is surprisingly not the case and that selective loss of Syk but not MyD88 in DCs abrogates innate resistance to acute systemic Candida albicans infection in mice. We show that Syk expression by DCs is necessary for IL-23p19 production in response to C. albicans, which is essential to transiently induce GM-CSF secretion by NK cells that are recruited to the site of fungal replication. NK cell-derived-GM-CSF in turn sustains the anti-microbial activity of neutrophils, the main fungicidal effectors. Thus, the activity of a single kinase in a single myeloid cell type orchestrates a complex series of molecular and cellular events that underlies innate resistance to fungal sepsis.
Collapse
Affiliation(s)
- Paul G. Whitney
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London, United Kingdom
| | - Eva Bär
- Institute of Microbiology, ETH Zurich, Zürich, Switzerland
| | - Fabiola Osorio
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London, United Kingdom
| | - Neil C. Rogers
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London, United Kingdom
| | - Barbara U. Schraml
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London, United Kingdom
| | - Safia Deddouche
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London, United Kingdom
| | | | - Caetano Reis e Sousa
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London, United Kingdom
| |
Collapse
|
119
|
Jourabchi N, Adelzadeh L, Wu J. The risk of deep fungal infections during biologic therapy for psoriasis. J Eur Acad Dermatol Venereol 2014; 28:1277-85. [DOI: 10.1111/jdv.12508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 03/10/2014] [Indexed: 12/01/2022]
Affiliation(s)
- N. Jourabchi
- Department of Dermatology; Johns Hopkins University School of Medicine; Baltimore MD USA
- David Geffen School of Medicine at UCLA; Los Angeles CA USA
| | - L. Adelzadeh
- David Geffen School of Medicine at UCLA; Los Angeles CA USA
| | - J.J. Wu
- Department of Dermatology; Kaiser Permanente Los Angeles Medical Center; Los Angeles CA USA
| |
Collapse
|
120
|
Adami S, Cavani A, Rossi F, Girolomoni G. The Role of Interleukin-17A in Psoriatic Disease. BioDrugs 2014; 28:487-97. [DOI: 10.1007/s40259-014-0098-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
121
|
Abstract
Multiple forms of candidiasis are clinically important in humans. Established murine models of disseminated, oropharyngeal, vaginal, and cutaneous candidiasis caused by Candida albicans are described in this unit. Detailed materials and methods for C. albicans growth and detection are also described.
Collapse
Affiliation(s)
- Heather R Conti
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anna R Huppler
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Natasha Whibley
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
122
|
Lynde CW, Poulin Y, Vender R, Bourcier M, Khalil S. Interleukin 17A: toward a new understanding of psoriasis pathogenesis. J Am Acad Dermatol 2014; 71:141-50. [PMID: 24655820 DOI: 10.1016/j.jaad.2013.12.036] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/18/2013] [Accepted: 12/20/2013] [Indexed: 12/14/2022]
Abstract
Molecular and cellular understanding of psoriasis pathogenesis has evolved considerably over the last 30 years beginning in the early 1980s when psoriasis was thought to be a skin disease driven by keratinocyte hyperproliferation. During the next 20 years, the role of the immune system and T-helper (Th) cells in psoriasis pathogenesis was recognized. The presence of the interleukin (IL)-12 cytokine in psoriatic lesions led to the postulate that psoriasis is mediated by Th1 cells. Recent evidence has revealed a role for Th17 cells, and other immune cells, as proximal regulators of psoriatic skin inflammation. IL-17A, the principal effector cytokine of Th17 cells, stimulates keratinocytes to produce chemokines, cytokines, and other proinflammatory mediators thereby enabling IL-17A to bridge the innate and adaptive immune systems to sustain chronic inflammation. This model underlies the rationale for inhibiting IL-17A signaling as a potential therapeutic approach to disrupt the psoriatic inflammatory loop. Several monoclonal antibodies that inhibit the IL-17 pathway are in clinical development. These agents exhibit promising clinical efficacy and tolerability profiles including immunohistochemical improvement in psoriatic plaques. Results from clinical trials with IL-17 pathway inhibitors are refining our understanding of psoriasis pathogenesis and may provide a new therapeutic approach for patients with moderate to severe psoriasis.
Collapse
Affiliation(s)
| | - Yves Poulin
- Centre de Recherche Dermatologique du Quebec Metropolitain, Quebec City, Quebec, Canada
| | | | | | - Sam Khalil
- Novartis Pharmaceuticals, Montreal, Quebec, Canada
| |
Collapse
|
123
|
Behnsen J, Jellbauer S, Wong CP, Edwards RA, George MD, Ouyang W, Raffatellu M. The cytokine IL-22 promotes pathogen colonization by suppressing related commensal bacteria. Immunity 2014; 40:262-73. [PMID: 24508234 PMCID: PMC3964146 DOI: 10.1016/j.immuni.2014.01.003] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 11/27/2013] [Indexed: 12/16/2022]
Abstract
Interleukin-22 (IL-22) is highly induced in response to infections with a variety of pathogens, and its main functions are considered to be tissue repair and host defense at mucosal surfaces. Here we showed that IL-22 has a unique role during infection in that its expression suppressed the intestinal microbiota and enhanced the colonization of a pathogen. IL-22 induced the expression of antimicrobial proteins, including lipocalin-2 and calprotectin, which sequester essential metal ions from microbes. Because Salmonella enterica ser. Typhimurium can overcome metal ion starvation mediated by lipocalin-2 and calprotectin via alternative pathways, IL-22 boosted its colonization of the inflamed intestine by suppressing commensal Enterobacteriaceae, which are susceptible to the antimicrobial proteins. Thus, IL-22 tipped the balance between pathogenic and commensal bacteria in favor of a pathogen. Taken together, IL-22 induction can be exploited by pathogens to suppress the growth of their closest competitors, thereby enhancing pathogen colonization of mucosal surfaces.
Collapse
Affiliation(s)
- Judith Behnsen
- Department of Microbiology, University of California, Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697, USA
| | - Stefan Jellbauer
- Department of Microbiology, University of California, Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697, USA
| | - Christina P Wong
- Department of Microbiology, University of California, Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697, USA
| | - Robert A Edwards
- Institute for Immunology, University of California, Irvine, Irvine, CA 92697, USA; Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Michael D George
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA
| | - Wenjun Ouyang
- Department of Immunology, Genentech, South San Francisco, CA 94080, USA
| | - Manuela Raffatellu
- Department of Microbiology, University of California, Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
124
|
Parlet CP, Waldschmidt TJ, Schlueter AJ. Chronic ethanol feeding induces subset loss and hyporesponsiveness in skin T cells. Alcohol Clin Exp Res 2014; 38:1356-64. [PMID: 24512045 DOI: 10.1111/acer.12358] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/27/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND Chronic alcoholism is associated with increased incidence and severity of cutaneous infection. Skin-resident T cells orchestrate numerous immunological functions that are critically involved in both tissue homeostasis and cutaneous immunity. The impact of chronic ethanol (EtOH) exposure on skin T cells has not previously been examined; given their important role in maintaining the immune barrier function of the skin further study is warranted. METHODS Mice were administered EtOH in the drinking water for 12 to 16 weeks. Flow cytometry was used to evaluate impact of EtOH feeding on skin T cell numbers, rates of proliferation, and apoptosis as well as activation marker expression and cytokine production after ex vivo stimulation. RESULTS Chronic EtOH feeding caused a baseline reduction in dendritic epidermal T cell (DETC) numbers that corresponded with reduced expression of the activation marker JAML following phorbol 12-myristate 13-acetate (PMA)/ionomycin stimulation. Chronic EtOH feeding did not alter total numbers of dermal T cells, but specific subset loss was observed in Foxp3(+) regulatory T cells (Tregs) as well as CD3hi, Vγ3(+) and CD3int, Vγ3(-) dermal γδ T cells. EtOH-induced dysfunction in the latter population, which represents prototypical interleukin-17 (IL-17)-producing dermal γδT17s, was made evident by diminished IL-17 production following anti-CD3 stimulation. Additionally, the capacity of lymph node γδ T cells to produce IL-17 following anti-CD3 and PMA/ionomycin stimulation was impaired by chronic EtOH feeding. CONCLUSIONS Chronic EtOH feeding induced defects in both numbers and function of multiple skin T cell subsets. The decreased density and poor responsiveness of DETCs and γδT17 cells in particular would be expected to compromise immune effector mechanisms necessary to maintain a protective barrier and restrict pathogen invasion. These findings demonstrate the sensitivity of skin T cells to EtOH and provide new mechanisms to help explain the propensity of alcoholics to suffer skin infection.
Collapse
Affiliation(s)
- Corey P Parlet
- Department of Pathology and Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | | | | |
Collapse
|
125
|
Kara EE, Comerford I, Fenix KA, Bastow CR, Gregor CE, McKenzie DR, McColl SR. Tailored immune responses: novel effector helper T cell subsets in protective immunity. PLoS Pathog 2014; 10:e1003905. [PMID: 24586147 PMCID: PMC3930558 DOI: 10.1371/journal.ppat.1003905] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Differentiation of naïve CD4⁺ cells into functionally distinct effector helper T cell subsets, characterised by distinct "cytokine signatures," is a cardinal strategy employed by the mammalian immune system to efficiently deal with the rapidly evolving array of pathogenic microorganisms encountered by the host. Since the T(H)1/T(H)2 paradigm was first described by Mosmann and Coffman, research in the field of helper T cell biology has grown exponentially with seven functionally unique subsets having now been described. In this review, recent insights into the molecular mechanisms that govern differentiation and function of effector helper T cell subsets will be discussed in the context of microbial infections, with a focus on how these different helper T cell subsets orchestrate immune responses tailored to combat the nature of the pathogenic threat encountered.
Collapse
Affiliation(s)
- Ervin E. Kara
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Iain Comerford
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kevin A. Fenix
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Cameron R. Bastow
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Carly E. Gregor
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Duncan R. McKenzie
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Shaun R. McColl
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
126
|
Marinoni B, Ceribelli A, Massarotti MS, Selmi C. The Th17 axis in psoriatic disease: pathogenetic and therapeutic implications. AUTOIMMUNITY HIGHLIGHTS 2014; 5:9-19. [PMID: 26000152 PMCID: PMC4389010 DOI: 10.1007/s13317-013-0057-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/05/2013] [Indexed: 02/06/2023]
Abstract
Psoriasis and psoriatic arthritis represent two paradigmatic conditions characterized by chronic inflammation and possibly autoimmunity, despite the absence of known serum autoantibodies. The two diseases, albeit strongly correlated from clinical, genetic, and epidemiogical standpoints, manifest significant differences in terms of etiology and pathogenetic mechanisms. Nonetheless, Th17 cells appear crucial to both diseases, and IL23 is the cytokine involved in determining the fate of naive CD4+ cells to differentiate into a pathogenic phenotype. This basic experimental observation led to a clear understanding of the immune dysfunction causing psoriasis and psoriatic arthritis but, more importantly, also led to new therapeutic approaches. In recent years, monoclonal antibodies directed to IL12/IL23 (ustekinumab) or IL17 (secukinumab, ixekizumab, brodalumab) are being investigated or have proven to be beneficial for patients with psoriatic disease, thus further supporting the view that Th17 cells play a pivotal role in disease onset and perpetuation. These most recent reports indeed represent significant developments that may allow overcoming the TNFα pathway as the major therapeutic target in chronic inflammation.
Collapse
Affiliation(s)
- Beatrice Marinoni
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Rozzano, Milan Italy
- Biometra Department, University of Milan, Milan, Italy
| | - Angela Ceribelli
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Rozzano, Milan Italy
- Biometra Department, University of Milan, Milan, Italy
| | - Marco S. Massarotti
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Rozzano, Milan Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Rozzano, Milan Italy
- Biometra Department, University of Milan, Milan, Italy
- Division of Rheumatology, Allergy and Clinical Immunology, Genome and Biomedical Sciences Facility, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA 95616 USA
| |
Collapse
|
127
|
Eidenschenk C, Rutz S, Liesenfeld O, Ouyang W. Role of IL-22 in microbial host defense. Curr Top Microbiol Immunol 2014; 380:213-36. [PMID: 25004820 DOI: 10.1007/978-3-662-43492-5_10] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interleukin (IL)-22 is a member of the IL-10 family of cytokines, which, besides IL-10, contains seven additional cytokines. Although the founding member IL-10 is an important immunoregulatory cytokine that represses both innate and adaptive immunity, the other family members preferentially target epithelial cells and enhance innate host defense mechanisms against various pathogens such as bacteria, yeast, and viruses. Based on their functions, the IL-10 family can be further divided into three subgroups, IL-10 itself, the IL-20 subfamily, and the IFNλ subfamily. IL-22 is the best-studied member of the IL-20 subfamily, and exemplifies the diverse biological effects of this subfamily. IL-22 elicits various innate immune responses from epithelial cells and is essential for host defense against several invading pathogens, including Citrobacter rodentium and Klebsiella pneumonia. IL-22 also protects tissue integrity and maintains the mucosal homeostasis. On the other hand, IL-22 is a proinflammatory cytokine with the capacity to amplify inflammatory responses, which might result in tissue damage, e.g., the IL-22-dependent necrosis of the small intestine during Toxoplasma gondii infection.
Collapse
Affiliation(s)
- Celine Eidenschenk
- Department of Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA,
| | | | | | | |
Collapse
|
128
|
Wang X, Ouyang W. Interleukin-22: A Bridge Between Epithelial Innate Host Defense and Immune Cells. CYTOKINE FRONTIERS 2014. [PMCID: PMC7120444 DOI: 10.1007/978-4-431-54442-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Interleukin-22 (IL-22), an IL-10 family cytokine, is produced by various leukocytes. The receptor of IL-22, however, is preferentially detected on peripheral tissue epithelial cells. IL-22 functions as a unique messenger from immune system to tissue epithelial cells and to regulate homeostasis of epithelia. IL-22 is able to directly enhance antimicrobial defense mechanisms in epithelial cells and to facilitate epithelial barrier repair and wound healing process. It, therefore, possesses an irreplaceable role in host defense against certain pathogens that specifically invade epithelial cells. In addition, IL-22 can help to preserve the integrity and homeostasis of various epithelial organs during infection or inflammation. The importance of its tissue-protective function is manifested in many inflammatory situations such as inflammatory bowel diseases (IBD) and hepatitis. On the other hand, as a cytokine, IL-22 is capable of induction of proinflammatory responses, especially in synergy with other cytokines. Consequently, IL-22 contributes to pathogenesis of certain inflammatory diseases for example psoriasis.
Collapse
|
129
|
Abstract
Interleukin-22 (IL-22) is a key effector molecule that is produced by activated T cells, including T helper 22 (TH22) cells, TH17 cells and TH1 cells, as well as subsets of innate lymphoid cells. Although IL-22 can act synergistically with IL-17 or tumour necrosis factor, some important functions of IL-22 are unique to this cytokine. Data obtained over the past few years indicate that the IL-22-IL-22 receptor subunit 1 (IL-22R1) system has a high potential clinical relevance in psoriasis, ulcerative colitis, graft-versus-host disease, certain infections and tumours, as well as in liver and pancreas damage. This Review highlights current knowledge of the biology of the IL-22-IL-22R1 system, its role in inflammation, tissue protection, regeneration and antimicrobial defence, as well as the positive and potentially negative consequences of its therapeutic modulation.
Collapse
Affiliation(s)
- Robert Sabat
- 1] Interdisciplinary Group of Molecular Immunopathology, Institute of Medical Immunology, Department of Dermatology and Allergy, University Medicine Charité, Charitéplatz 1, D-10117 Berlin, Germany. [2] Research Center Immunosciences, University Hospital Charité, Hessische Strasse 3-4, D-10115 Berlin, Germany
| | - Wenjun Ouyang
- Department of Immunology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | - Kerstin Wolk
- 1] Interdisciplinary Group of Molecular Immunopathology, Institute of Medical Immunology, Department of Dermatology and Allergy, University Medicine Charité, Charitéplatz 1, D-10117 Berlin, Germany. [2] Research Center Immunosciences, University Hospital Charité, Hessische Strasse 3-4, D-10115 Berlin, Germany
| |
Collapse
|
130
|
Jia L, Wu C. The biology and functions of Th22 cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 841:209-30. [PMID: 25261209 DOI: 10.1007/978-94-017-9487-9_8] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
T helper (Th) cells develop from naïve CD4(+) T cells under lineage-specific culture conditions and are nominated by their lineage-specific cytokines. Th22 cells, new players in adoptive immune responses, are identified by the production of interleukin (IL)-22. Plenty of observations are obtained over the past few years indicating that IL-22 is produced by activated T cells including Th22 cells, Th17 cells, Th1 cells, innate lymphoid cells and some nonlymphocytes. IL-22 functions synergistically with IL-17 or tumor necrosis factor (TNF), however, it plays different roles by IL-22/IL-22 receptor signal transductions in pathologic processes, including inflammations, autoimmunity, tumor, and digestive organs damages. In this chapter, we focus on the biology of IL-22, the generation and regulation of Th22 cells, the possible signal pathways that involved in the functions of Th22 cells, as well as the relationship between Th22 cells and various diseases.
Collapse
Affiliation(s)
- Lei Jia
- Key Laboratory of Tropical Disease Control Research of Ministry of Education, Zhongshan School of Medicine, Institute of Immunology, Sun Yat-Sen University, 74th, Zhongshan 2nd Road, Guangzhou, 510080, China
| | | |
Collapse
|
131
|
Gladiator A, LeibundGut-Landmann S. Innate lymphoid cells: new players in IL-17-mediated antifungal immunity. PLoS Pathog 2013; 9:e1003763. [PMID: 24348243 PMCID: PMC3861514 DOI: 10.1371/journal.ppat.1003763] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
132
|
Nlrp-3-driven interleukin 17 production by γδT cells controls infection outcomes during Staphylococcus aureus surgical site infection. Infect Immun 2013; 81:4478-89. [PMID: 24082072 DOI: 10.1128/iai.01026-13] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent work has identified T cells and the cytokines they produce as important correlates of immune protection during Staphylococcus aureus infections through the ability of these T cells to regulate local neutrophil responses. However, the specific T-cell subsets that are involved in coordinating protection at distinct sites of infection remains to be established. In this study, we identify for the first time an important role for γδT cells in controlling S. aureus surgical site infection (SSI). γδT cells are recruited to the wound site following S. aureus challenge, where they represent the primary source of interleukin 17 (IL-17), with a small contribution from other non-γδT cells. The IL-17 response is entirely dependent upon IL-1 receptor signaling. Using IL-17 receptor-deficient mice, we demonstrate that IL-17 is required to control bacterial clearance during S. aureus SSI. However, we demonstrate a strain-dependent requirement for γδT cells in this process due to the differential abilities of individual strains to activate IL-1β production. IL-1β processing relies upon activation of the Nlrp3 inflammasome complex, and we demonstrate that Nlrp3-deficient and IL-1 receptor-deficient mice have an impaired ability to control S. aureus SSI due to reduced production of IL-17 by γδT cells at the site of infection. Given that IL-17 has been identified as an important correlate of immune protection during S. aureus infection, it is vital that the unique cellular sources of this cytokine and mechanisms inducing its activation are identified at distinct sites of infection. Our study demonstrates that while IL-17 may be critically important for mediating immune protection during S. aureus SSI, the relative contribution of γδT cells to these protective effects may be strain dependent.
Collapse
|
133
|
Papp KA, Griffiths CEM, Gordon K, Lebwohl M, Szapary PO, Wasfi Y, Chan D, Hsu MC, Ho V, Ghislain PD, Strober B, Reich K. Long-term safety of ustekinumab in patients with moderate-to-severe psoriasis: final results from 5 years of follow-up. Br J Dermatol 2013; 168:844-54. [PMID: 23301632 DOI: 10.1111/bjd.12214] [Citation(s) in RCA: 293] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Long-term safety evaluations of biologics are needed to inform patient management decisions. OBJECTIVES To evaluate the safety of ustekinumab in patients with moderate-to-severe psoriasis treated for up to 5 years. METHODS Safety data were pooled from four studies of ustekinumab for psoriasis. Rates of adverse events (AEs), serious AEs (SAEs) and AEs of interest [infections, nonmelanoma skin cancers (NMSCs), other malignancies and major adverse cardiovascular events (MACE)] per 100 patient-years (PY) of follow-up were analysed by ustekinumab dose (45 or 90 mg) and by year of follow-up (years 1-5) to evaluate the dose response and impact of cumulative exposure. Observed rates of overall mortality and other malignancies were compared with those expected in the general U.S. population. RESULTS Analyses included 3117 patients (8998 PY) who received one or more doses of ustekinumab, with 1482 patients treated for ≥4 years (including 838 patients ≥5 years). At year 5, event rates (45 mg, 90 mg, respectively) for overall AEs (242·6, 225·3), SAEs (7·0, 7·2), serious infections (0·98, 1·19), NMSCs (0·64, 0·44), other malignancies (0·59, 0·61) and MACE (0·56, 0·36) were comparable between dose groups. Year-to-year variability was observed, but no increasing trend was evident. Rates of overall mortality and other malignancies were comparable with those expected in the general U.S. population. CONCLUSIONS No dose-related or cumulative toxicity was observed with increasing duration of ustekinumab exposure for up to 5 years. Rates of AEs reported in ustekinumab psoriasis trials are generally comparable with those reported for other biologics approved for the treatment of moderate-to-severe psoriasis.
Collapse
Affiliation(s)
- K A Papp
- Probity Medical Research, 135 Union Street East, Waterloo, ON N2J1C4, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Katt J, Schwinge D, Schoknecht T, Quaas A, Sobottka I, Burandt E, Becker C, Neurath MF, Lohse AW, Herkel J, Schramm C. Increased T helper type 17 response to pathogen stimulation in patients with primary sclerosing cholangitis. Hepatology 2013; 58:1084-93. [PMID: 23564624 DOI: 10.1002/hep.26447] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 04/04/2013] [Indexed: 12/12/2022]
Abstract
UNLABELLED T helper (Th)17 cells are important for host defense against bacteria and fungi, but are also involved in the pathogenesis of autoimmune diseases. In primary sclerosing cholangitis (PSC), bile fluid is frequently colonized with pathogens and its strong association with inflammatory bowel disease suggests the contribution of pathogen responses to disease pathogenesis. Interleukin (IL)-17A, the signature cytokine of Th17 cells, was recently described to promote inflammation and fibrosis within the liver. Therefore, we investigated Th17 immune response to pathogens in patients with PSC. Bile fluid was obtained by endoscopic retrograde cholangiography, and bacterial and fungal species grew in the majority of samples. In addition, bacterial RNA was stained in liver sections using 16sRNA fluorescence in situ hybridization and was detected in the portal tracts in 12 of 13 tested PSC patients. Bacteria grown from patients' bile fluid were then used to stimulate peripheral blood mononuclear cells (PBMCs) and to assess their Th17 response. Compared to healthy controls or primary biliary cirrhosis patients, PBMCs from PSC patients manifested significantly higher frequencies of Th17 and Th1/Th17 cells after pathogen stimulation. The highest frequencies of Th17 cells were detected after stimulation with Candida albicans, a pathogen that has been linked to disease progression. Immunohistochemically, IL-17A-expressing lymphocytes were detected within the periductal areas of PSC patients. Th17 induction was also noted after stimulation of Toll-like receptor 5 or 7, but not of other pattern recognition receptors tested, pointing to signaling pathways potentially involved in Th17 induction in PSC. CONCLUSION We demonstrate an increased Th17 response to microbial stimulation in patients with PSC. These data should prompt further studies investigating the link between pathogen responses, inflammation, and fibrosis in patients with PSC.
Collapse
Affiliation(s)
- Janosch Katt
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Hernández-Santos N, Huppler AR, Peterson AC, Khader SA, McKenna KC, Gaffen SL. Th17 cells confer long-term adaptive immunity to oral mucosal Candida albicans infections. Mucosal Immunol 2013; 6:900-10. [PMID: 23250275 PMCID: PMC3608691 DOI: 10.1038/mi.2012.128] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 11/13/2012] [Indexed: 02/04/2023]
Abstract
Oropharyngeal candidiasis (OPC) is an opportunistic infection caused by Candida albicans. Despite its prevalence, little is known about C. albicans-specific immunity in the oral mucosa. Vaccines against Candida generate both T helper type 1 (Th1) and Th17 responses, and considerable evidence implicates interleukin (IL)-17 in immunity to OPC. However, IL-17 is also produced by innate immune cells that are remarkably similar to Th17 cells, expressing the same markers and localizing to similar mucosal sites. To date, the relative contribution(s) of Th1, Th17, and innate IL-17-producing cells in OPC have not been clearly defined. Here, we sought to determine the nature and function of adaptive T-cell responses to OPC, using a new recall infection model. Mice subjected to infection and re-challenge with Candida mounted a robust and stable antigen-specific IL-17 response in CD4+ but not CD8+ T cells. There was little evidence for Th1 or Th1/Th17 responses. The Th17 response promoted accelerated fungal clearance, and Th17 cells could confer protection in Rag1-/- mice upon adoptive transfer. Surprisingly, CD4 deficiency did not cause OPC but was instead associated with compensatory IL-17 production by Tc17 and CD3+CD4-CD8- cells. Therefore, classic CD4+Th17 cells protect from OPC but can be compensated by other IL-17-producing cells in CD4-deficient hosts.
Collapse
Affiliation(s)
| | - Anna R. Huppler
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh
| | - Alanna C. Peterson
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh
| | | | | | - Sarah L. Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh,Correspondence: Division of Rheumatology & Clinical Immunology, BST S703, 3500 Terrace St, Pittsburgh PA 15261, USA. 412-383-8903, Fax: 412-383-8864,
| |
Collapse
|
136
|
Ishida H, Imai T, Suzue K, Hirai M, Taniguchi T, Yoshimura A, Iwakura Y, Okada H, Suzuki T, Shimokawa C, Hisaeda H. IL-23 protection against Plasmodium berghei infection in mice is partially dependent on IL-17 from macrophages. Eur J Immunol 2013; 43:2696-706. [PMID: 23843079 DOI: 10.1002/eji.201343493] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/20/2013] [Accepted: 07/05/2013] [Indexed: 12/31/2022]
Abstract
Although IL-12 is believed to contribute to protective immune responses, the role played by IL-23 (a member of the IL-12 family) in malaria is elusive. Here, we show that IL-23 is produced during infection with Plasmodium berghei NK65. Mice deficient in IL-23 (p19KO) had higher parasitemia and died earlier than wild-type (WT) controls. Interestingly, p19KO mice had lower numbers of IL-17-producing splenic cells than their WT counterparts. Furthermore, mice deficient in IL-17 (17KO) suffered higher parasitemia than the WT controls, indicating that IL-23-mediated protection is dependent on induction of IL-17 during infection. We found that macrophages were responsible for IL-17 production in response to IL-23. We observed a striking reduction in splenic macrophages in the p19KO and 17KO mice, both of which became highly susceptible to infection. Thus, IL-17 appears to be crucial for maintenance of splenic macrophages. Adoptive transfer of macrophages into macrophage-depleted mice confirmed that macrophage-derived IL-17 is required for macrophage accumulation and parasite eradication in the recipient mice. We also found that IL-17 induces CCL2/7, which recruit macrophages. Our findings reveal a novel protective mechanism whereby IL-23, IL-17, and macrophages reduce the severity of infection with blood-stage malaria parasites.
Collapse
Affiliation(s)
- Hidekazu Ishida
- Department of Parasitology, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
IL-17 in the rheumatologist's line of sight. BIOMED RESEARCH INTERNATIONAL 2013; 2013:295132. [PMID: 23984335 PMCID: PMC3741932 DOI: 10.1155/2013/295132] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/27/2013] [Indexed: 12/18/2022]
Abstract
Over the past decades, the identification of several new cytokines, including interleukin (IL)-17 and IL-23, and of new T helper cell subsets, including Th17 cells, has changed the vision of immunological processes. The IL-17/Th17 pathway plays a critical role during the development of inflammation and autoimmunity, and targeting this pathway has become an attractive strategy for a number of diseases. This review aims to describe the effects of IL-17 in the joint and its roles in the development of autoimmune and inflammatory arthritis. Furthermore, biotherapies targeting directly or indirectly IL-17 in inflammatory rheumatisms will be developed.
Collapse
|
138
|
Iliev ID, Underhill DM. Striking a balance: fungal commensalism versus pathogenesis. Curr Opin Microbiol 2013; 16:366-73. [PMID: 23756050 DOI: 10.1016/j.mib.2013.05.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/09/2013] [Accepted: 05/13/2013] [Indexed: 02/06/2023]
Abstract
The environment is suffused with nearly countless types of fungi, and our immune systems must be tuned to cope with constant exposure to them. In addition, it is becoming increasingly clear that many surfaces of our bodies are colonized with complex populations of fungi (the mycobiome) in the same way that they are colonized with complex populations of bacteria. The immune system must tolerate colonization with commensal fungi but defend against fungal invasion. Truly life-threatening fungal infections are common only when this balance is disrupted through, for example, profound immunosuppression or genetic mutation. Recent studies have begun to shed light on how this balance is established and maintained, and suggest future studies on the role of fungi in homeostatic conditions.
Collapse
Affiliation(s)
- Iliyan D Iliev
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | | |
Collapse
|
139
|
Ivanov S, Renneson J, Fontaine J, Barthelemy A, Paget C, Fernandez EM, Blanc F, De Trez C, Van Maele L, Dumoutier L, Huerre MR, Eberl G, Si-Tahar M, Gosset P, Renauld JC, Sirard JC, Faveeuw C, Trottein F. Interleukin-22 reduces lung inflammation during influenza A virus infection and protects against secondary bacterial infection. J Virol 2013; 87:6911-24. [PMID: 23596287 PMCID: PMC3676141 DOI: 10.1128/jvi.02943-12] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 04/04/2013] [Indexed: 12/30/2022] Open
Abstract
Interleukin-22 (IL-22) has redundant, protective, or pathogenic functions during autoimmune, inflammatory, and infectious diseases. Here, we addressed the potential role of IL-22 in host defense and pathogenesis during lethal and sublethal respiratory H3N2 influenza A virus (IAV) infection. We show that IL-22, as well as factors associated with its production, are expressed in the lung tissue during the early phases of IAV infection. Our data indicate that retinoic acid receptor-related orphan receptor-γt (RORγt)-positive αβ and γδ T cells, as well as innate lymphoid cells, expressed enhanced Il22 transcripts as early as 2 days postinfection. During lethal or sublethal IAV infections, endogenous IL-22 played no role in the control of IAV replication and in the development of the IAV-specific CD8(+) T cell response. During lethal infection, where wild-type (WT) mice succumbed to severe pneumonia, the lack of IL-22 did not accelerate or delay IAV-associated pathogenesis and animal death. In stark contrast, during sublethal IAV infection, IL-22-deficient animals had enhanced lung injuries and showed a lower airway epithelial integrity relative to WT littermates. Of importance, the protective effect of endogenous IL-22 in pulmonary damages was associated with a more controlled secondary bacterial infection. Indeed, after challenge with Streptococcus pneumoniae, IAV-experienced Il22(-/-) animals were more susceptible than WT controls in terms of survival rate and bacterial burden in the lungs. Together, IL-22 plays no major role during lethal influenza but is beneficial during sublethal H3N2 IAV infection, where it limits lung inflammation and subsequent bacterial superinfections.
Collapse
Affiliation(s)
- Stoyan Ivanov
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Joelle Renneson
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Josette Fontaine
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Adeline Barthelemy
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Christophe Paget
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Elodie Macho Fernandez
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Fany Blanc
- Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale, U874, Paris, France
| | - Carl De Trez
- Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laurye Van Maele
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Laure Dumoutier
- Ludwig Institute for Cancer Research, Université Catholique de Louvain, Brussels
| | - Michel-René Huerre
- Institut Pasteur, Paris, France
- Unite de Recherche et d'Expertise Histotechnologie et Pathologie, Paris, France
| | - Gérard Eberl
- Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, URA 1961, Paris, France
| | - Mustapha Si-Tahar
- Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale, U874, Paris, France
| | - Pierre Gosset
- Hopital Saint Vincent, Groupe Hospitalier de l'Institut Catholique de Lille, Université Catholique de Lille, Lille, France
| | | | - Jean Claude Sirard
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Christelle Faveeuw
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - François Trottein
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| |
Collapse
|
140
|
Cypowyj S, Picard C, Maródi L, Casanova JL, Puel A. Immunity to infection in IL-17-deficient mice and humans. Eur J Immunol 2013; 42:2246-54. [PMID: 22949323 DOI: 10.1002/eji.201242605] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mice with defective IL-17 immunity display a broad vulnerability to various infectious agents at diverse mucocutaneous surfaces. In humans, the study of patients with various primary immunodeficiencies, including autosomal dominant hyper-IgE syndrome caused by dominant-negative STAT3 mutations and autosomal recessive autoimmune polyendocrinopathy syndrome type 1 caused by null mutations in AIRE, has suggested that IL-17A, IL-17F and/or IL-22 are essential for mucocutaneous immunity to Candida albicans. This hypothesis was confirmed by the identification of rare patients with chronic mucocutaneous candidiasis (CMC) due to autosomal recessive IL-17RA deficiency and autosomal dominant IL-17F deficiency. Heterozygosity for gain-of-function mutations in STAT1 in additional patients with CMC was recently shown to inhibit the development of IL-17 T cells. Although the infectious phenotype of patients with CMC and inborn errors of IL-17 immunity remains to be finely delineated, it appears that human IL-17A and IL-17F display redundancy for protective immunity in natural conditions that is not seen in their mouse orthologs in experimental conditions.
Collapse
Affiliation(s)
- Sophie Cypowyj
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| | | | | | | | | |
Collapse
|
141
|
Gladiator A, Wangler N, Trautwein-Weidner K, LeibundGut-Landmann S. Cutting Edge: IL-17–Secreting Innate Lymphoid Cells Are Essential for Host Defense against Fungal Infection. THE JOURNAL OF IMMUNOLOGY 2012; 190:521-5. [DOI: 10.4049/jimmunol.1202924] [Citation(s) in RCA: 290] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
142
|
McGeachy MJ, McSorley SJ. Microbial-induced Th17: superhero or supervillain? THE JOURNAL OF IMMUNOLOGY 2012; 189:3285-91. [PMID: 22997231 DOI: 10.4049/jimmunol.1201834] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Th17 cells are an effector lineage of CD4 T cells that can contribute to protection against microbial pathogens and to the development of harmful autoimmune and inflammatory conditions. An increasing number of studies suggests that Th17 cells play an important protective role in mobilizing host immunity to extracellular and intracellular microbial pathogens, such as Candida and Salmonella. Furthermore, the generation of Th17 cells is heavily influenced by the normal microbial flora, highlighting the complex interplay among harmless microbes, pathogens, and host immunity in the regulation of pathogen-specific Th17 responses. In this article, we review the current understanding of microbe-induced Th17 cells in the context of infectious and inflammatory disease.
Collapse
Affiliation(s)
- Mandy J McGeachy
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
143
|
Chiu HY, Cheng YP, Tsai TF. T helper type 17 in psoriasis: From basic immunology to clinical practice. DERMATOL SIN 2012. [DOI: 10.1016/j.dsi.2012.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
144
|
Langley RG, Papp K, Gottlieb AB, Krueger GG, Gordon KB, Williams D, Valdes J, Setze C, Strober B. Safety results from a pooled analysis of randomized, controlled phase II and III clinical trials and interim data from an open-label extension trial of the interleukin-12/23 monoclonal antibody, briakinumab, in moderate to severe psoriasis. J Eur Acad Dermatol Venereol 2012; 27:1252-61. [PMID: 23157612 DOI: 10.1111/j.1468-3083.2012.04705.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Anti-interleukin-12/23 treatment (anti-IL-12/23) has recently demonstrated significant efficacy for moderate to severe psoriasis, yet potential safety signals warrant further investigation. OBJECTIVES Expand safety findings for the anti-IL-12/23, briakinumab, beyond individual phase II and III clinical trials. METHODS Safety data pooled from five phase II and III clinical trials (parent studies) and an open-label extension study (OLE), through 22 October 2010; patients with ≥ 1 dose of briakinumab in a parent study or the OLE are included. All parent study briakinumab treatment groups were combined with the OLE population, which received 100-mg briakinumab every 4 weeks. Adverse events (AEs) were collected from the first dose of briakinumab, whether in a parent study or the OLE, through 45 days post-last dose. RESULTS Two thousand five hundred and twenty patients (4704 patient-years drug exposure) received ≥ 1 dose of briakinumab during the interim period: 5.6% withdrew due to AEs. Serious infections occurred in 1.3% and malignancies in 2.6% (including 1.0% basal cell carcinoma, 0.8% squamous cell carcinoma). Twenty-seven major adverse cardiovascular events (MACE) occurred, seven in one parent study and 20 in the OLE (incidence = 0.57 events/100 PY). Four cardiovascular risk factors were retrospectively found to be significant predictors for MACE during briakinumab exposure: history of cardiovascular disease, diabetes, body mass index (≥ 30) and baseline blood pressure (systolic ≥ 140 or diastolic ≥ 90). CONCLUSIONS Pooled briakinumab safety results from five parent studies and an OLE suggest increased rates of infections, malignancies and MACE, and that patients receiving anti-IL-12/23 treatment for moderate to severe psoriasis should be monitored for these potential safety signals.
Collapse
Affiliation(s)
- R G Langley
- Dalhousie University, Halifax, NS, Canada Probity Medical Research, Waterloo, ON, Canada Tufts Medical Centre, Boston, MA, USA University of Utah Health Sciences Centre, Salt Lake City, UT, USA Northwestern University, Evanston, IL, USA Abbott Laboratories, Abbott Park, IL, USA University of Connecticut School of Medicine, Farmington, CT, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Zhong B, Liu X, Wang X, Chang SH, Liu X, Wang A, Reynolds JM, Dong C. Negative regulation of IL-17-mediated signaling and inflammation by the ubiquitin-specific protease USP25. Nat Immunol 2012; 13:1110-7. [PMID: 23042150 PMCID: PMC3477275 DOI: 10.1038/ni.2427] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/21/2012] [Indexed: 01/12/2023]
Abstract
Interleukin 17 (IL-17) plays an important role in infection and autoimmunity; how it signals remains poorly understood. In this study, we identified ubiquitin-specific protease 25 (USP25) as a negative regulator of IL-17-mediated signaling and inflammation. Overexpression of USP25 inhibited IL-17-triggered signaling, while USP25 deficiency resulted in increased phosphorylation of IκBα and Jnk, increased expression of chemokines and cytokines as well as prolonged half-life of Cxcl1 mRNA following IL-17 treatment. Consistently, Usp25-/- mice exhibited increased sensitivity to IL-17-dependent inflammation and autoimmunity in vivo. Mechanistically, IL-17 stimulation induced the association of USP25 with TRAF5 and TRAF6 and USP25 induced removal of Act1-mediated K63-linked ubiquitination in TRAF5 and TRAF6. Thus, our results demonstrate that USP25 is a deubiquitinating enzyme (DUB) that negatively regulates IL-17-triggered signaling.
Collapse
Affiliation(s)
- Bo Zhong
- Department of Immunology and Center for Inflammation and Cancer, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Abstract
Our understanding of immunity to fungal pathogens has advanced considerably in recent years. Particularly significant have been the parallel discoveries in the C-type lectin receptor family and the Th effector arms of immunity, especially Th17 cells and their signature cytokine, IL-17. Many of these studies have focused on the most common human fungal pathogen, Candida albicans, which is typically a commensal microbe in healthy individuals but causes various disease manifestations in immunocompromised hosts, ranging from mild mucosal infections to lethal disseminated disease. Here, we discuss emerging fundamental discoveries with C. albicans that have informed our overall molecular understanding of fungal immunity. In particular, we focus on the importance of pattern recognition receptor-mediated fungal recognition and subsequent IL-17 responses in host defense against mucosal candidiasis. In light of these recent advances, we also discuss the implications for anticytokine biologic therapy and vaccine development.
Collapse
|
147
|
Mintz-Cole RA, Gibson AM, Bass SA, Budelsky AL, Reponen T, Hershey GKK. Dectin-1 and IL-17A suppress murine asthma induced by Aspergillus versicolor but not Cladosporium cladosporioides due to differences in β-glucan surface exposure. THE JOURNAL OF IMMUNOLOGY 2012; 189:3609-17. [PMID: 22962686 DOI: 10.4049/jimmunol.1200589] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
There is considerable evidence supporting a role for mold exposure in the pathogenesis and expression of childhood asthma. Aspergillus versicolor and Cladosporium cladosporioides are common molds that have been implicated in asthma. In a model of mold-induced asthma, mice were repeatedly exposed to either A. versicolor or C. cladosporioides spores. The two molds induced distinct phenotypes, and this effect was observed in both BALB/c and C57BL/6 strains. C. cladosporioides induced robust airway hyperresponsiveness (AHR), eosinophilia, and a predominately Th2 response, whereas A. versicolor induced a strong Th17 response and neutrophilic inflammation, but very mild AHR. Neutralization of IL-17A resulted in strong AHR and eosinophilic inflammation following A. versicolor exposure. In Dectin-1-deficient mice, A. versicolor exposure resulted in markedly attenuated IL-17A and robust AHR compared with wild-type mice. In contrast, C. cladosporioides induced AHR and eosinophilic inflammation independent of IL-17A and Dectin-1. A. versicolor, but not C. cladosporioides, spores had increased exposure of β-glucans on their surface and were able to bind Dectin-1. Thus, the host response to C. cladosporioides was IL-17A- and Dectin-1-independent, whereas Dectin-1- and IL-17A-dependent pathways were protective against the development of asthma after exposure to A. versicolor.
Collapse
Affiliation(s)
- Rachael A Mintz-Cole
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | |
Collapse
|
148
|
Huppler AR, Bishu S, Gaffen SL. Mucocutaneous candidiasis: the IL-17 pathway and implications for targeted immunotherapy. Arthritis Res Ther 2012; 14:217. [PMID: 22838497 PMCID: PMC3580547 DOI: 10.1186/ar3893] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
IL-17 and related cytokines are direct and indirect targets of selective immunosuppressive agents for the treatment of autoimmune diseases and other diseases of pathologic inflammation. Insights into the potential adverse effects of IL-17 blockade can be drawn from the experience of patients with deficiencies in the IL-17 pathway. A unifying theme of susceptibility to mucocutaneous candidiasis is seen in both mice and humans with a variety of genetic defects that converge on this pathway. Mucocutaneous candidiasis is a superficial infection of mucosal, nail or skin surfaces usually caused by the fungal pathogen Candida albicans. The morbidity of the disease includes significant pain, weight loss and secondary complications, including carcinoma and aneurysms. This review describes the known human diseases associated with chronic mucocutaneous candidiasis (CMC) as well as the known and proposed connections to IL-17 signaling. The human diseases include defects in IL-17 signaling due to autoantibodies (AIRE deficiency), receptor mutations (IL-17 receptor mutations) or mutations in the cytokine genes (IL17F and IL17A). Hyper-IgE syndrome is characterized by elevated serum IgE, dermatitis and recurrent infections, including CMC due to impaired generation of IL-17-producing Th17 cells. Mutations in STAT1, IL12B and IL12RB1 result in CMC secondary to decreased IL-17 production through different mechanisms. Dectin-1 defects and CARD9 defects result in susceptibility to C. albicans because of impaired host recognition of the pathogen and subsequent impaired generation of IL-17-producing T cells. Thus, recent discoveries of genetic predisposition to CMC have driven the recognition of the role of IL-17 in protection from mucosal fungal infection and should guide counseling and management of patients treated with pharmacologic IL-17 blockade.
Collapse
|
149
|
The emerging role of IL-17 in the pathogenesis of psoriasis: preclinical and clinical findings. J Invest Dermatol 2012; 133:17-26. [PMID: 22673731 DOI: 10.1038/jid.2012.194] [Citation(s) in RCA: 325] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although the histological changes seen in psoriasis have long been well characterized, the underlying cellular and molecular mechanisms have only begun to be elucidated over the past 20 years. Proinflammatory factors such as tumor necrosis factor (TNF)-α have a central role in psoriasis pathogenesis, and many T-helper 1 (Th1) cytokines and messenger RNAs are elevated in psoriatic lesions. IL-17A, IL-17F, and other Th17 cell-derived cytokines have been shown in murine models to induce features that mimic human psoriasis. This review focuses on the emerging biology of the IL-17 cytokine family in psoriasis, and on the molecular and genetic information gained from animal models and human clinical studies that confirm IL-17 as a crucial proinflammatory cytokine in psoriasis. Expression of IL-17A, IL-17C, and IL-17F is strikingly increased in psoriatic lesions, and successful therapy is associated with restoration of the expression of a wide range of genes (including effector molecules downstream of IL-17 such as cytokines, chemokines, and antimicrobial peptides) to near-normal levels. Therapeutic agents in development that target IL-17 are discussed, and an emerging model of the key role of IL-17 in the pathogenesis of psoriasis is presented.
Collapse
|
150
|
LeibundGut-Landmann S, Wüthrich M, Hohl TM. Immunity to fungi. Curr Opin Immunol 2012; 24:449-58. [PMID: 22613091 DOI: 10.1016/j.coi.2012.04.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 04/30/2012] [Indexed: 01/21/2023]
Abstract
The global increase in fungal disease burden, the emergence of novel pathogenic fungi, and the lack of fungal vaccines have focused intense interest in elucidating immune defense mechanisms against fungi. Recent studies in animal models and in humans identify an integrated role for C-type lectin and Toll-like receptor signaling in activating innate and adaptive responses that control medically relevant fungi. Beyond the critical role of phagocytes in host defense, the generation and balance of specific T helper subsets contributes to sterilizing immunity. These advances form a basis for the development of fungal vaccines and immune-based therapeutic adjuncts.
Collapse
|