101
|
Loss of CD11b exacerbates murine complement-mediated tubulointerstitial nephritis. PLoS One 2014; 9:e92051. [PMID: 24632830 PMCID: PMC3954915 DOI: 10.1371/journal.pone.0092051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 02/18/2014] [Indexed: 12/22/2022] Open
Abstract
Acute complement activation occurs in the tubulointerstitium (TI) of kidneys transplanted from Crry−/−C3−/− mice into complement-sufficient wildtype mice, followed by marked inflammatory cell infiltration, tubular damage and interstitial fibrosis. We postulated iC3b-CD11b interactions were critical in this TI nephritis model. We transplanted Crry−/−C3−/− mouse kidneys into CD11b−/− and wildtype C57BL/6 mice. Surprisingly, there was greater inflammation in Crry−/−C3−/− kidneys in CD11b−/− recipients compared to those in wildtype hosts. Kidneys in CD11b−/− recipients had large numbers of CD11b−Ly6ChiCCR2hiF4/80+ cells consistent with inflammatory (M1) macrophages recruited from circulating monocytes of the host CD11b−/− animal. There was also an expanded population of CD11b+CD11c+Ly6C−F4/80hi cells. Since these cells were CD11b+, they must have originated from the transplanted kidney; their surface protein expression and appearance within the kidney were consistent with the intrinsic renal mononuclear cellular population. These cells were markedly expanded relative to all relevant controls, including the contralateral donor kidney and Crry−/−C3−/− mouse kidneys in CD11b+/+ wildtype recipients. Direct evidence for their in situ proliferation was the presence of nuclear Ki67 and PCNA in CD11b+F4/80+ cells. Thus, in this experimental model in which there is unrestricted C3 activation, CD11b+ monocytes limit their own infiltration into the kidney and prevent proliferation of endogenous mononuclear cells. This suggests a role for outside-in iC3b-CD11b signals in limiting intrinsic organ inflammation.
Collapse
|
102
|
Liu S, Xing T, Sheng T, Yang S, Huang L, Peng Z, Sun X. The reduction rate of serum C3 following liver transplantation is an effective predictor of non-anastomotic strictures. Hepatol Int 2014. [DOI: 10.1007/s12072-014-9524-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
103
|
Osthoff M, Trendelenburg M. Impact of mannose-binding lectin deficiency on radiocontrast-induced renal dysfunction. BIOMED RESEARCH INTERNATIONAL 2013; 2013:962695. [PMID: 24386641 PMCID: PMC3872394 DOI: 10.1155/2013/962695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/26/2013] [Indexed: 12/17/2022]
Abstract
Contrast-induced nephropathy (CIN) is the third leading cause of acute renal failure in hospitalized patients. Endothelial dysfunction, renal medullary ischemia, and tubular toxicity are regarded as the most important factors in the pathogenesis of CIN. Mannose-binding lectin (MBL), a pattern recognition protein of the lectin pathway of complement, has been found to aggravate and mediate tissue damage during experimental renal ischemia/reperfusion (I/R) injury which was alleviated by inhibition with C1 inhibitor, a potent MBL, and lectin pathway inhibitor. In this paper, we highlight the potential role of MBL in the pathogenesis of human CIN. In experimental I/R models, MBL was previously found to induce tubular cell death independent of the complement system. In addition, after binding to vascular endothelial cells, MBL and its associated serine proteases were able to trigger a proinflammatory reaction and contribute to endothelial dysfunction. In humans, urinary MBL was increased after administration of contrast media and in individuals with CIN. Moreover, individuals with normal/high MBL levels were at increased risk to develop radiocontrast-induced renal dysfunction. Hence, MBL and the lectin pathway seem to be a promising target given that a licensed, powerful, human recombinant inhibitor exits to be added to the scarce armamentarium currently available for prophylaxis of CIN.
Collapse
Affiliation(s)
- Michael Osthoff
- Department of Infectious Diseases, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Marten Trendelenburg
- Laboratory of Clinical Immunology, Department of Biomedicine, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
- Clinic for Internal Medicine, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| |
Collapse
|
104
|
Abstract
Acute kidney injury is a common and severe clinical problem. Patients who develop acute kidney injury are at increased risk of death despite supportive measures such as hemodialysis. Research in recent years has shown that tissue inflammation is central to the pathogenesis of renal injury, even after nonimmune insults such as ischemia/reperfusion and toxins. Examination of clinical samples and preclinical models has shown that activation of the complement system is a critical cause of acute kidney injury. Furthermore, complement activation within the injured kidney is a proximal trigger of many downstream inflammatory events within the renal parenchyma that exacerbate injury to the kidney. Complement activation also may account for the systemic inflammatory events that contribute to remote organ injury and patient mortality. Complement inhibitory drugs have now entered clinical use and may provide an important new therapeutic approach for patients suffering from, or at high risk of developing, acute kidney injury.
Collapse
Affiliation(s)
- James W McCullough
- Department of Medicine, University of Colorado Denver School of Medicine, Aurora, CO
| | | | | |
Collapse
|
105
|
Zaferani A, Talsma D, Richter MKS, Daha MR, Navis GJ, Seelen MA, van den Born J. Heparin/heparan sulphate interactions with complement--a possible target for reduction of renal function loss? Nephrol Dial Transplant 2013; 29:515-22. [PMID: 23880790 DOI: 10.1093/ndt/gft243] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Current management of end-stage renal failure is based on renal replacement therapy by dialysis or transplantation. Increased occurrence of renal failure in both native and transplanted kidneys indicates a need for novel therapies to stop or limit the progression of the disease. Acute kidney injury and proteinuria are major risk factors in the development of renal failure. In this regard, innate immunity plays an important role in the pathogenesis of renal diseases in both native and transplanted kidneys. The complement system is a major humoral part of innate defense. Next to the well-known complement activators, quite a number of the complement factors react with proteoglycans (PGs) both on cellular membranes and in the extracellular compartment. Therefore, these interactions might serve as targets for intervention. In this review, the current knowledge of interactions between PGs and complement is reviewed, and additionally the options for interference in the progression of renal disease are discussed.
Collapse
Affiliation(s)
- Azadeh Zaferani
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
106
|
Hu X, Holers VM, Thurman JM, Schoeb TR, Ramos TN, Barnum SR. Therapeutic inhibition of the alternative complement pathway attenuates chronic EAE. Mol Immunol 2013; 54:302-8. [PMID: 23337717 PMCID: PMC3602149 DOI: 10.1016/j.molimm.2012.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 12/14/2012] [Indexed: 12/13/2022]
Abstract
Previous studies from our laboratory using complement-mutant mice demonstrated that the alternative pathway is the dominant activation pathway responsible for complement-mediated pathology in demyelinating disease. Using a well-characterized inhibitory monoclonal antibody (mAb 1379) directed against mouse factor B, we assessed the therapeutic value of inhibiting the alternative complement pathway in experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. Administration of anti-factor B antibody to mice prior to the onset of clinical signs of active EAE had no affect on the onset or acute phase of disease, but significantly attenuated the chronic phase of disease resulting in reduced cellular infiltration, inflammation and demyelination in antibody-treated mice. Attenuation of the chronic phase of disease was long lasting even though antibody administration was terminated shortly after disease onset. Chronic disease was also attenuated in transferred EAE when anti-factor B antibody was administered before or after disease onset. Similar levels of disease attenuation were observed in transferred EAE using MOG-specific encephalitogenic T cells. These studies demonstrate the therapeutic potential for inhibition of factor B in the chronic phase of demyelinating disease, where treatment options are limited.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Complement Factor B/classification
- Complement Pathway, Alternative/drug effects
- Complement Pathway, Alternative/immunology
- Complement System Proteins/immunology
- Demyelinating Diseases/immunology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Inflammation/immunology
- Mice
- Mice, Inbred C57BL
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Xianzhen Hu
- Department of Microbiology, University of Alabama at Birmingham, 845 19th St. S., Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
107
|
Akhtar M, Henderson T, Sutherland A, Vogel T, Friend P. Novel Approaches to Preventing Ischemia-Reperfusion Injury During Liver Transplantation. Transplant Proc 2013; 45:2083-92. [DOI: 10.1016/j.transproceed.2013.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 04/23/2013] [Indexed: 12/25/2022]
|
108
|
Abstract
C3a and C5a (also called anaphylatoxins) are inflammatory peptides generated during complement activation. They do not only play important roles in innate immunity through the initiation and regulation of inflammatory responses, but also significantly influence adaptive immune responses. Organ transplantation triggers an initial inflammatory response and subsequent to the specific immune response (also called the alloimmune response), both of which contribute to graft rejection. Emerging evidence suggests that anaphylatoxins, particularly C5a, are significantly involved in both inflammatory and alloimmune responses following organ transplantation, thus influencing graft outcome. This review will provide the information on our current understanding of the roles for anaphylatoxins in ischemia-reperfusion injury, graft rejection, and transplant tolerance, and the therapeutic potential of targeting anaphylatoxin receptors in organ transplantation.
Collapse
|
109
|
Fuquay R, Renner B, Kulik L, McCullough JW, Amura C, Strassheim D, Pelanda R, Torres R, Thurman JM. Renal ischemia-reperfusion injury amplifies the humoral immune response. J Am Soc Nephrol 2013; 24:1063-72. [PMID: 23641055 DOI: 10.1681/asn.2012060560] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Renal transplant recipients who experience delayed graft function have increased risks of rejection and long-term graft failure. Ischemic damage is the most common cause of delayed graft function, and although it is known that tissue inflammation accompanies renal ischemia, it is unknown whether renal ischemia affects the production of antibodies by B lymphocytes, which may lead to chronic humoral rejection and allograft failure. Here, mice immunized with a foreign antigen 24-96 hours after renal ischemia-reperfusion injury developed increased levels of antigen-specific IgG1 compared with sham-treated controls. This amplified IgG1 response did not follow unilateral ischemia, and it did not occur in response to a T-independent antigen. To test whether innate immune activation in the kidney after ischemia affects the systemic immune response to antigen, we repeated the immunization experiment using mice deficient in factor B that lack a functional alternative pathway of complement. Renal ischemia-reperfusion injury did not cause amplification of the antigen-specific antibodies in these mice, suggesting that the increased immune response requires a functional alternative pathway of complement. Taken together, these data suggest that ischemic renal injury leads to a rise in antibody production, which may be harmful to renal allografts, possibly explaining a mechanism underlying the link between delayed graft function and long-term allograft failure.
Collapse
Affiliation(s)
- Richard Fuquay
- Division of Renal Disease and Hypertension, University of Colorado Denver Health Science Center, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Thurman JM, Kulik L, Orth H, Wong M, Renner B, Sargsyan SA, Mitchell LM, Hourcade DE, Hannan JP, Kovacs JM, Coughlin B, Woodell AS, Pickering MC, Rohrer B, Holers VM. Detection of complement activation using monoclonal antibodies against C3d. J Clin Invest 2013; 123:2218-30. [PMID: 23619360 DOI: 10.1172/jci65861] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 02/21/2013] [Indexed: 12/21/2022] Open
Abstract
During complement activation the C3 protein is cleaved, and C3 activation fragments are covalently fixed to tissues. Tissue-bound C3 fragments are a durable biomarker of tissue inflammation, and these fragments have been exploited as addressable binding ligands for targeted therapeutics and diagnostic agents. We have generated cross-reactive murine monoclonal antibodies against human and mouse C3d, the final C3 degradation fragment generated during complement activation. We developed 3 monoclonal antibodies (3d8b, 3d9a, and 3d29) that preferentially bind to the iC3b, C3dg, and C3d fragments in solution, but do not bind to intact C3 or C3b. The same 3 clones also bind to tissue-bound C3 activation fragments when injected systemically. Using mouse models of renal and ocular disease, we confirmed that, following systemic injection, the antibodies accumulated at sites of C3 fragment deposition within the glomerulus, the renal tubulointerstitium, and the posterior pole of the eye. To detect antibodies bound within the eye, we used optical imaging and observed accumulation of the antibodies within retinal lesions in a model of choroidal neovascularization (CNV). Our results demonstrate that imaging methods that use these antibodies may provide a sensitive means of detecting and monitoring complement activation-associated tissue inflammation.
Collapse
Affiliation(s)
- Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Miwa T, Sato S, Gullipalli D, Nangaku M, Song WC. Blocking properdin, the alternative pathway, and anaphylatoxin receptors ameliorates renal ischemia-reperfusion injury in decay-accelerating factor and CD59 double-knockout mice. THE JOURNAL OF IMMUNOLOGY 2013; 190:3552-9. [PMID: 23427256 DOI: 10.4049/jimmunol.1202275] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Complement is implicated in the pathogenesis of ischemia-reperfusion injury (IRI). The activation pathway(s) and effector(s) of complement in IRI may be organ specific and remain to be fully characterized. We previously developed a renal IRI model in decay-accelerating factor (DAF) and CD59 double-knockout (DAF(-/-)CD59(-/-)) mice. In this study, we used this model to dissect the pathway(s) by which complement is activated in renal IRI and to evaluate whether C3aR- or C5aR-mediated inflammation or the membrane attack complex was pathogenic. We crossed DAF(-/-)CD59(-/-) mice with mice deficient in various complement components or receptors including C3, C4, factor B (fB), factor properdin (fP), mannose-binding lectin, C3aR, C5aR, or Ig and assessed renal IRI in the resulting mutant strains. We found that deletion of C3, fB, fP, C3aR, or C5aR significantly ameliorated renal IRI in DAF(-/-)CD59(-/-) mice, whereas deficiency of C4, Ig, or mannose-binding lectin had no effect. Treatment of DAF(-/-)CD59(-/-) mice with an anti-C5 mAb reduced renal IRI to a greater degree than did C5aR deficiency. We also generated and tested a function-blocking anti-mouse fP mAb and showed it to ameliorate renal IRI when given to DAF(-/-)CD59(-/-) mice 24 h before, but not 4 or 8 h after, ischemia/reperfusion. These results suggest that complement is activated via the alternative pathway during the early phase of reperfusion, and both anaphylatoxin-mediated inflammation and the membrane attack complex contribute to tissue injury. Further, they demonstrate a critical role for properdin and support its therapeutic targeting in renal IRI.
Collapse
Affiliation(s)
- Takashi Miwa
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
112
|
The role of complement component 3 (C3) in differentiation of myeloid-derived suppressor cells. Blood 2013; 121:1760-8. [PMID: 23299310 DOI: 10.1182/blood-2012-06-440214] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) play an important role in the regulation of the immune response. MDSC expansion occurs in many circumstances, including cancer, inflammation, stresses, and transplant tolerance. Liver transplants in mice are spontaneously accepted, but hepatocyte transplants are acutely rejected, suggesting the immunoregulatory activities of liver nonparenchymal cells. We have reported that hepatic stellate cells (HpSCs), the stromal cells in the liver, are immensely immunosuppressive and can effectively protect islet transplants via induction of MDSCs. The present study shows that the addition of HpSCs into dendritic cell (DC) culture promoted development of MDSCs, instead of DCs, which was highly dependent on complement component 3 (C3) from HpSCs. The C3(-/-) HpSCs lost their ability to induce MDSCs and, consequently, failed to protect the cotransplanted islet allografts. HpSCs produced complement activation factor B and factor D which then enhanced C3 cleavage to activation products iC3b and C3d. Addition of exogenous iC3b, but not C3d, into the DC culture led to the differentiation of MDSCs with potent immune-inhibitory function. These findings provide novel mechanistic insights into the differentiation of myeloid cells mediated by local tissue cells, and may assist in the development of MDSC-based therapy in clinical settings.
Collapse
|
113
|
Farrar CA, Asgari E, Schwaeble WJ, Sacks SH. Which pathways trigger the role of complement in ischaemia/reperfusion injury? Front Immunol 2012; 3:341. [PMID: 23181062 PMCID: PMC3500775 DOI: 10.3389/fimmu.2012.00341] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/25/2012] [Indexed: 01/04/2023] Open
Abstract
Investigations into the role of complement in ischemia/reperfusion (I/R) injury have identified common effector mechanisms that depend on the production of C5a and C5b-9 through the cleavage of C3. These studies have also defined an important role for C3 synthesized within ischemic kidney. Less clear however is the mechanism of complement activation that leads to the cleavage of C3 in ischemic tissues and to what extent the potential trigger mechanisms are organ dependent - an important question which informs the development of therapies that are more selective in their ability to limit the injury, yet preserve the other functions of complement where possible. Here we consider recent evidence for each of the three major pathways of complement activation (classical, lectin, and alternative) as mediators of I/R injury, and in particular highlight the role of lectin molecules that increasingly seem to underpin the injury in different organ models and in addition reveal unusual routes of complement activation that contribute to organ damage.
Collapse
Affiliation(s)
- Conrad A. Farrar
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, King’s College London School of Medicine at Guy’s, King’s College and St Thomas’ HospitalsLondon, UK
| | - Elham Asgari
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, King’s College London School of Medicine at Guy’s, King’s College and St Thomas’ HospitalsLondon, UK
| | - Wilhelm J. Schwaeble
- Department of Infection, Immunity, and Inflammation, Leicester UniversityLeicester, UK
| | - Steven H. Sacks
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, King’s College London School of Medicine at Guy’s, King’s College and St Thomas’ HospitalsLondon, UK
| |
Collapse
|
114
|
Gorsuch WB, Chrysanthou E, Schwaeble WJ, Stahl GL. The complement system in ischemia-reperfusion injuries. Immunobiology 2012; 217:1026-33. [PMID: 22964228 PMCID: PMC3439809 DOI: 10.1016/j.imbio.2012.07.024] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 01/19/2023]
Abstract
Tissue injury and inflammation following ischemia and reperfusion of various organs have been recognized for many years. Many reviews have been written over the last several decades outlining the role of complement in ischemia/reperfusion injury. This short review provides a current state of the art knowledge on the complement pathways activated, complement components involved and a review of the clinical biologics/inhibitors used in the clinical setting of ischemia/reperfusion. This is not a complete review of the complement system in ischemia and reperfusion injury but will give the reader an updated view point of the field, potential clinical use of complement inhibitors, and the future studies needed to advance the field.
Collapse
Affiliation(s)
- William B Gorsuch
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
115
|
Abstract
The complement cascade is a major contributor to the innate immune response. It has now been well accepted that complement plays a critical role in hyperacute rejection and acute antibody-mediated rejection of transplanted organ. There is also increasing evidence that complement proteins contribute to the pathogenesis of organ ischemia-reperfusion injury, and even to cell-mediated rejection. Furthermore, the chemoattractants C3a and C5a and the terminal membrane attack complex that are generated by complement activation can directly or indirectly mediate tissue injury and trigger adaptive immune responses. Here, we review recent findings concerning the role of complement in graft ischemia-reperfusion injury, antibody-mediated rejection and accommodation, and cell-mediated rejection. We also discuss the current status of complement intervention therapies in clinical transplantation and describe potential new therapeutic strategies for clinical application.
Collapse
Affiliation(s)
- Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | | | | |
Collapse
|
116
|
Osthoff M, Piezzi V, Klima T, Christ A, Marana I, Hartwiger S, Breidthardt T, Marenzi G, Trendelenburg M, Mueller C. Impact of mannose-binding lectin deficiency on radiocontrast-induced renal dysfunction: a post-hoc analysis of a multicenter randomized controlled trial. BMC Nephrol 2012; 13:99. [PMID: 22938690 PMCID: PMC3471006 DOI: 10.1186/1471-2369-13-99] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 08/27/2012] [Indexed: 01/20/2023] Open
Abstract
Background Local renal ischemia is regarded as an important factor in the development of contrast-induced nephropathy (CIN). Mannose-binding lectin (MBL) is involved in the tissue damage during experimental ischemia/reperfusion injury of the kidneys. The aim of the present study was to investigate the association of MBL deficiency with radiocontrast-induced renal dysfunction in a large prospective cohort. Methods 246 patients with advanced non–dialysis-dependent renal dysfunction who underwent radiographic contrast procedures were included in the study. Baseline serum MBL levels were analyzed according to the occurrence of a creatinine-based (increase of ≥0.5 mg/dL or ≥25% within 48 hours) or cystatin C-based (increase of ≥10% within 24 hours) CIN. Results The incidence of creatinine-based and cystatin C-based CIN was 6.5% and 24%, respectively. MBL levels were not associated with the occurrence of creatinine-based CIN. However, patients that experienced a cystatin C increase of ≥10% showed significantly higher MBL levels than patients with a rise of <10% (median 2885 (IQR 1193–4471) vs. 1997 (IQR 439–3504)ng/mL, p = 0.01). In logistic regression analysis MBL deficiency (MBL levels≤500 ng/ml) was identified as an inverse predictor of a cystatin C increase ≥10% (OR 0.34, 95% CI 0.15-0.8, p = 0.01). Conclusion MBL deficiency was associated with a reduced radiocontrast-induced renal dysfunction as reflected by the course of cystatin C. Our findings support a possible role of MBL in the pathogenesis of CIN.
Collapse
Affiliation(s)
- Michael Osthoff
- Laboratory of Clinical Immunology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Błogowski W, Dołęgowska B, Sałata D, Budkowska M, Domański L, Starzyńska T. Clinical analysis of perioperative complement activity during ischemia/reperfusion injury following renal transplantation. Clin J Am Soc Nephrol 2012; 7:1843-51. [PMID: 22904122 DOI: 10.2215/cjn.02200312] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES The complement cascade seems to be an important mediator modulating renal ischemia/reperfusion injury. This study analyzed whether significant changes occur in the levels of a terminal panel of complement molecules (C3a, C5a, and C5b-9/membrane attack complex) during the early phase of human kidney allograft reperfusion and evaluated the potential association of these changes with clinical post-transplant graft function in kidney transplant recipients. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Seventy-five renal transplant recipients undergoing transplantation between 2004 and 2006 were enrolled in the study and divided into early, slow, and delayed graft function groups. Blood samples were collected perioperatively during consecutive minutes of allograft reperfusion from the renal vein. Levels of complement molecules were measured using ELISA. RESULTS Analysis revealed no significant changes in C3a and C5a levels throughout reperfusion. The main complement molecule that was significantly associated with post-transplant graft function was C5b-9/membrane attack complex; throughout the reperfusion period, perioperative levels of C5b-9/membrane attack complex were around two to three times higher in delayed graft function patients than early and slow graft function individuals (P<0.005). In addition, C5b-9/membrane attack complex levels had a relatively high clinical sensitivity and specificity (70%-87.5%) for the prediction of early and long-term (1 year) post-transplant allograft function. CONCLUSIONS This clinical study supports a role for the complement cascade in delayed graft function development. However, additional studies are needed to elucidate the exact mechanisms responsible for this phenomenon. In addition, perioperative measurements of C5b-9/membrane attack complex are highlighted as promising potential clinical markers of post-transplant renal allograft function.
Collapse
Affiliation(s)
- Wojciech Błogowski
- Department of Gastroenterology, Pomeranian Medical University, Szczecin, Poland.
| | | | | | | | | | | |
Collapse
|
118
|
Kaczorowski DJ, Scott MJ, Pibris JP, Afrazi A, Nakao A, Edmonds RD, Kim S, Kwak JH, Liu Y, Fan J, Billiar TR. Mammalian DNA is an endogenous danger signal that stimulates local synthesis and release of complement factor B. Mol Med 2012; 18:851-60. [PMID: 22526919 DOI: 10.2119/molmed.2012.00011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 04/19/2012] [Indexed: 11/06/2022] Open
Abstract
Complement factor B plays a critical role in ischemic tissue injury and autoimmunity. Factor B is dynamically synthesized and released by cells outside of the liver, but the molecules that trigger local factor B synthesis and release during endogenous tissue injury have not been identified. We determined that factor B is upregulated early after cold ischemia-reperfusion in mice, using a heterotopic heart transplant model. These data suggested upregulation of factor B by damage-associated molecular patterns (DAMPs), but multiple common DAMPs did not induce factor B in RAW264.7 mouse macrophages. However, exogenous DNA induced factor B mRNA and protein expression in RAW cells in vitro, as well as in peritoneal and alveolar macrophages in vivo. To determine the cellular mechanisms involved in DNA-induced factor B upregulation we then investigated the role of multiple known DNA receptors or binding partners. We stimulated peritoneal macrophages from wild-type (WT), toll-like receptor 9 (TLR9)-deficient, receptor for advanced glycation end products (RAGE)⁻/⁻ and myeloid differentiation factor 88 (MyD88)⁻/⁻ mice, or mouse macrophages deficient in high-mobility group box proteins (HMGBs), DNA-dependent activator of interferon-regulatory factors (DAI) or absent in melanoma 2 (AIM2), with DNA in the presence or absence of lipofection reagent. Reverse transcription-polymerase chain reaction, Western blotting and immunocytochemical analysis were employed for analysis. Synthesis of factor B was independent of TLR9, RAGE, DAI and AIM2, but was dependent on HMGBs, MyD88, p38 and NF-κB. Our data therefore show that mammalian DNA is an endogenous molecule that stimulates factor B synthesis and release from macrophages via HMGBs, MyD88, p38 and NF-κB signaling. This activation of the immune system likely contributes to damage following sterile injury such as hemorrhagic shock and ischemia-reperfusion.
Collapse
Affiliation(s)
- David J Kaczorowski
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, PA, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Complement activation and toll-like receptor-2 signaling contribute to cytokine production after renal ischemia/reperfusion. Mol Immunol 2012; 52:249-57. [PMID: 22750071 DOI: 10.1016/j.molimm.2012.05.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 05/29/2012] [Accepted: 05/31/2012] [Indexed: 12/23/2022]
Abstract
The innate immune system causes tissue inflammation and injury after renal ischemia/reperfusion (I/R). The complement system is activated on ischemic tubular epithelial cells (TECs) and induces the cells to produce pro-inflammatory chemokines. TECs also express toll-like receptors (TLRs)-2 and -4. Signaling through the TLRs induces TECs to produce a variety of chemokines, some of which can also be induced by complement activation fragments. We sought to determine whether the effects of complement activation and TLR signaling in TECs are redundant, or whether additive protection can be achieved by blocking both of these innate immune systems. To confirm that the complement system, TLR-2 signaling, and TLR-4 signaling induce production of a similar repertoire of inflammatory chemokines, we stimulated TECs with complement sufficient serum or with TLR-2 and TLR-4 ligands in vitro. We found that all three of these stimuli induce TECs to produce KC, MIP-2, IL-6, and TNF-α, and that there was a trend toward greater production of KC in cells exposed to two stimuli. Based upon these results, we hypothesized that mice deficient in both complement activation and TLR-2 signaling would demonstrate greater protection from I/R than mice deficient only in the complement system. To test this hypothesis we induced ischemic acute kidney injury (AKI) in wild-type mice, mice with targeted deletion of complement factor B (fB(-/-) mice), or mice with targeted deletion of factor B and TLR-2 (fB(-/-)TLR2(-/-) mice). Surprisingly, we found that fB(-/-)TLR2(-/-) mice developed more severe injury than those with single deficiency of factor B. Our results indicate that blockade of the complement system may be more protective than simultaneous blockade of both the complement system and TLR-2 in ischemic AKI.
Collapse
|
120
|
Therapeutic regulation of complement in patients with renal disease - where is the promise? Clin Nephrol 2012; 77:413-23. [PMID: 22551888 PMCID: PMC4407337 DOI: 10.5414/cn107220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Numerous renal diseases are characterized by complement activation within the kidney, and several lines of evidence implicate complement activation as an important part of the pathogenesis of these diseases. Investigators have long anticipated that complement inhibitors would be important and effective therapies for renal diseases. Eculizumab is a monoclonal antibody to the complement protein C5 that has now been administered to patients with several types of renal disease. The apparent efficacy of this agent may herald a new era in the treatment of renal disease, but many questions about the optimal use of therapeutic complement inhibitors remain. Herein we review the rationale for using complement inhibitors in patients with renal disease and discuss several drugs and approaches that are currently under development.
Collapse
|
121
|
Abstract
The complement system is a key element of the innate immune system, and the production of complement components can be divided into central (hepatic) and peripheral compartments. Essential complement components such as C3 are produced in both of these compartments, but until recently the functional relevance of the peripheral synthesis of complement was unclear. Here, we review recent findings showing that local peripheral synthesis of complement in a transplanted organ is required for the immediate response of the donor organ to tissue stress and for priming alloreactive T cells that can mediate transplant rejection. We also discuss recent insights into the role of complement in antibody-mediated rejection, and we examine how new treatment strategies that take into account the separation of central and peripheral production of complement are expected to make a difference to transplant outcome.
Collapse
|
122
|
Abstract
Reperfusion of an organ following prolonged ischemia instigates the pro-inflammatory and pro-coagulant response of ischemia / reperfusion (IR) injury. IR injury is a wide-spread pathology, observed in many clinically relevant situations, including myocardial infarction, stroke, organ transplantation, sepsis and shock, and cardiovascular surgery on cardiopulmonary bypass. Activation of the classical, alternative, and lectin complement pathways and the generation of the anaphylatoxins C3a and C5a lead to recruitment of polymorphonuclear leukocytes, generation of radical oxygen species, up-regulation of adhesion molecules on the endothelium and platelets, and induction of cytokine release. Generalized or pathway-specific complement inhibition using protein-based drugs or low-molecular-weight inhibitors has been shown to significantly reduce tissue injury and improve outcome in numerous in-vitro, ex-vivo, and in-vivo models. Despite the obvious benefits in experimental research, only few complement inhibitors, including C1-esterase inhibitor, anti-C5 antibody, and soluble complement receptor 1, have made it into clinical trials of IR injury. The results are mixed, and the next objectives should be to combine knowledge and experience obtained in the past from animal models and channel future work to translate this into clinical trials in surgical and interventional reperfusion therapy as well as organ transplantation.
Collapse
Affiliation(s)
- Yara Banz
- Institute of Pathology, University of Bern, Switzerland
| | | |
Collapse
|
123
|
Abstract
Acute kidney injury (AKI) is the leading cause of nephrology consultation and is associated with high mortality rates. The primary causes of AKI include ischemia, hypoxia, or nephrotoxicity. An underlying feature is a rapid decline in glomerular filtration rate (GFR) usually associated with decreases in renal blood flow. Inflammation represents an important additional component of AKI leading to the extension phase of injury, which may be associated with insensitivity to vasodilator therapy. It is suggested that targeting the extension phase represents an area potential of treatment with the greatest possible impact. The underlying basis of renal injury appears to be impaired energetics of the highly metabolically active nephron segments (i.e., proximal tubules and thick ascending limb) in the renal outer medulla, which can trigger conversion from transient hypoxia to intrinsic renal failure. Injury to kidney cells can be lethal or sublethal. Sublethal injury represents an important component in AKI, as it may profoundly influence GFR and renal blood flow. The nature of the recovery response is mediated by the degree to which sublethal cells can restore normal function and promote regeneration. The successful recovery from AKI depends on the degree to which these repair processes ensue and these may be compromised in elderly or chronic kidney disease (CKD) patients. Recent data suggest that AKI represents a potential link to CKD in surviving patients. Finally, earlier diagnosis of AKI represents an important area in treating patients with AKI that has spawned increased awareness of the potential that biomarkers of AKI may play in the future.
Collapse
Affiliation(s)
- David P Basile
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | | | | |
Collapse
|
124
|
van der Pol P, Schlagwein N, van Gijlswijk DJ, Berger SP, Roos A, Bajema IM, de Boer HC, de Fijter JW, Stahl GL, Daha MR, van Kooten C. Mannan-binding lectin mediates renal ischemia/reperfusion injury independent of complement activation. Am J Transplant 2012; 12:877-87. [PMID: 22225993 DOI: 10.1111/j.1600-6143.2011.03887.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ischemia/reperfusion injury (IRI) remains a major problem in renal transplantation. Clinical studies have identified that high serum levels of Mannan-binding lectin (MBL), the initiator of the lectin pathway of complement activation, are associated with inferior renal allograft survival. Using a rat model, we identified an entirely novel role for MBL in mediating renal IRI. Therapeutic inhibition of MBL was protective against kidney dysfunction, tubular damage, neutrophil and macrophage accumulation, and expression of proinflammatory cytokines and chemokines. Following reperfusion, exposure of tubular epithelial cells to circulation-derived MBL resulted in internalization of MBL followed by the rapid induction of tubular epithelial cell death. Interestingly, this MBL-mediated tubular injury was completely independent of complement activation since attenuation of complement activation was not protective against renal IRI. Our identification that MBL-mediated cell death precedes complement activation strongly suggests that exposure of epithelial cells to MBL immediately following reperfusion is the primary culprit of tubular injury. In addition, also human tubular epithelial cells in vitro were shown to be susceptible to the cytotoxic effect of human MBL. Taken together, these data reveal a crucial role for MBL in the early pathophysiology of renal IRI and identify MBL as a novel therapeutic target in kidney transplantation.
Collapse
Affiliation(s)
- P van der Pol
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Toll-like receptors in ischaemia and its potential role in the pathophysiology of muscle damage in critical limb ischaemia. Cardiol Res Pract 2012; 2012:121237. [PMID: 22454775 PMCID: PMC3290818 DOI: 10.1155/2012/121237] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/04/2011] [Indexed: 12/20/2022] Open
Abstract
Toll-like receptors (TLRs) are key receptors of the innate immune system which are expressed on immune and nonimmune cells. They are activated by both pathogen-associated molecular patterns and endogenous ligands. Activation of TLRs culminates in the release of proinflammatory cytokines, chemokines, and apoptosis. Ischaemia and ischaemia/reperfusion (I/R) injury are associated with significant inflammation and tissue damage. There is emerging evidence to suggest that TLRs are involved in mediating ischaemia-induced damage in several organs. Critical limb ischaemia (CLI) is the most severe form of peripheral arterial disease (PAD) and is associated with skeletal muscle damage and tissue loss; however its pathophysiology is poorly understood. This paper will underline the evidence implicating TLRs in the pathophysiology of cerebral, renal, hepatic, myocardial, and skeletal muscle ischaemia and I/R injury and discuss preliminary data that alludes to the potential role of TLRs in the pathophysiology of skeletal muscle damage in CLI.
Collapse
|
126
|
Rosner MH, Ronco C, Okusa MD. The Role of Inflammation in the Cardio-Renal Syndrome: A Focus on Cytokines and Inflammatory Mediators. Semin Nephrol 2012; 32:70-8. [DOI: 10.1016/j.semnephrol.2011.11.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
127
|
Takeda K, Thurman JM, Tomlinson S, Okamoto M, Shiraishi Y, Ferreira VP, Cortes C, Pangburn MK, Holers VM, Gelfand EW. The critical role of complement alternative pathway regulator factor H in allergen-induced airway hyperresponsiveness and inflammation. THE JOURNAL OF IMMUNOLOGY 2011; 188:661-7. [PMID: 22174452 DOI: 10.4049/jimmunol.1101813] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation of the alternative pathway of complement plays a critical role in the development of allergen-induced airway hyperresponsiveness (AHR) and inflammation in mice. Endogenous factor H, a potent inhibitor of the alternative pathway, is increased in the airways of sensitized and challenged mice, but its role in regulating inflammation or AHR has been unknown. We found that blocking the tissue-binding function of factor H with a competitive antagonist increased complement activation and tissue inflammation after allergen challenge of sensitized mice. Conversely, administration of a fusion protein that contains the iC3b/C3d binding region of complement receptor 2 linked to the inhibitory region of factor H, a molecule directly targeting complement-activating surfaces, protected mice in both primary and secondary challenge models of AHR and lung inflammation. Thus, although endogenous factor H does play a role in limiting the development of AHR, strategies to deliver the complement-regulatory region of factor H specifically to the site of inflammation provide greater protection than that afforded by endogenous regulators. Such an agent may be an effective therapy for the treatment of asthma.
Collapse
Affiliation(s)
- Katsuyuki Takeda
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Kinsey GR, Okusa MD. Pathogenesis of acute kidney injury: foundation for clinical practice. Am J Kidney Dis 2011; 58:291-301. [PMID: 21530035 PMCID: PMC3144267 DOI: 10.1053/j.ajkd.2011.02.385] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 02/01/2011] [Indexed: 01/09/2023]
Abstract
The pathogenesis of acute kidney injury (AKI) is complex, involving such factors as vasoconstriction, leukostasis, vascular congestion, cell death, and abnormal immune modulators and growth factors. Many targeted clinical therapies have failed, are inconclusive, or have yet to be tested. Given the complexity of the pathogenesis of AKI, it may be naive to expect that one therapeutic intervention would have success. Some examples of detrimental processes that can be blocked in preclinical models to improve kidney function and survival are apoptotic cell death in tubular epithelial cells, complement-mediated immune system activation, and impairment of cellular homeostasis and metabolism. Modalities with the potential to decrease morbidity and mortality in patients with AKI include vasodilators, growth factors, anti-inflammatory agents, and cell-based therapies. Pharmacologic agents that target these diverse pathways are being used clinically for other indications. Using combinatorial approaches in future clinical trials may improve our ability to prevent and treat AKI.
Collapse
Affiliation(s)
- Gilbert R Kinsey
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, 22908, USA
| | | |
Collapse
|
129
|
Immunopathogenesis of ischemia/reperfusion-associated tissue damage. Clin Immunol 2011; 141:3-14. [PMID: 21839685 DOI: 10.1016/j.clim.2011.07.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 07/07/2011] [Indexed: 02/08/2023]
Abstract
Ischemia/reperfusion (IR) instigates a complex array of inflammatory events which result in damage to the local tissue. IR-related organ damage occurs invariably in several clinical conditions including trauma, organ transplantation, autoimmune diseases and revascularization procedures. We critically review available pre-clinical experimental information on the role of immune response in the expression of tissue damage following IR. Distinct elements of the innate and adaptive immune response are involved in the expression of tissue injury. Interventions such as prevention of binding of natural antibody to antigen expressed on the surface of ischemia-conditioned cells, inhibition of the ensuing complement activation, modulation of Toll-like receptors, B or T cell depletion and blockade of inflammatory cytokines and chemokines limit IR injury in preclinical studies. Clinical trials that will determine the therapeutic value of each approach is needed.
Collapse
|
130
|
Pushpakumar SB, Perez-Abadia G, Soni C, Wan R, Todnem N, Patibandla PK, Fensterer T, Zhang Q, Barker JH, Maldonado C. Enhancing complement control on endothelial barrier reduces renal post-ischemia dysfunction. J Surg Res 2011; 170:e263-70. [PMID: 21816416 DOI: 10.1016/j.jss.2011.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 04/25/2011] [Accepted: 06/07/2011] [Indexed: 11/16/2022]
Abstract
BACKGROUND Excessive complement activation is an integral part of ischemia and reperfusion (IR) injury (IRI) of organs. In kidney transplantation, the pathologic consequence of IRI and complement activation can lead to delayed graft function, which in turn is associated with acute rejection. Previous strategies to reduce complement-induced IRI required systemic administration of agents, which can lead to increased susceptibility to infections/immune diseases. The objective of this study was to determine whether an increase in complement control defenses of rat kidney endothelium reduces IRI. We hypothesized that increased complement control on the endothelial barrier reduces IR-mediated complement activation and reduces kidney dysfunction. MATERIALS AND METHODS Fischer 344 rats underwent left kidney ischemia for 45 min and treatment with a novel fusogenic lipid vesicle (FLVs) delivery system to decorate endothelial cells with vaccinia virus complement control protein (VCP), followed by reperfusion for 24 h. Assessment included renal function by serum creatinine and urea, myeloperoxidase assay for neutrophil infiltration, histopathology, and quantification of C3 production in kidneys. RESULTS Animals in which the kidney endothelium was bolstered by FLVs+VCP treatment had better renal function with a significant reduction in serum creatinine compared with vehicle controls (P < 0.05). Also, C3 production was significantly reduced (P < 0.05) in treated animals compared with vehicle controls. CONCLUSION Increasing complement control at the endothelial barrier with FLVs+VCP modulates complement activation/production during the first 24 h, reducing renal dysfunction following IRI.
Collapse
Affiliation(s)
- Sathnur B Pushpakumar
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Raedler H, Vieyra MB, Leisman S, Lakhani P, Kwan W, Yang M, Johnson K, Faas SJ, Tamburini P, Heeger PS. Anti-complement component C5 mAb synergizes with CTLA4Ig to inhibit alloreactive T cells and prolong cardiac allograft survival in mice. Am J Transplant 2011; 11:1397-406. [PMID: 21668627 PMCID: PMC3128644 DOI: 10.1111/j.1600-6143.2011.03561.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
While activation of serum complement mediates antibody-initiated vascular allograft injury, increasing evidence indicates that complement also functions as a modulator of alloreactive T cells. We tested whether blockade of complement activation at the C5 convertase step affects T cell-mediated cardiac allograft rejection in mice. The anti-C5 mAb BB5.1, which prevents the formation of C5a and C5b, synergized with subtherapeutic doses of CTLA4Ig to significantly prolong the survival of C57BL/6 heart grafts that were transplanted into naive BALB/c recipients. Anti-C5 mAb treatment limited the induction of donor-specific IFNγ-producing T cell alloimmunity without inducing Th2 or Th17 immunity in vivo and inhibited primed T cells from responding to donor antigens in secondary mixed lymphocyte responses. Additional administration of anti-C5 mAb to the donor prior to graft recovery further prolonged graft survival and concomitantly reduced both the in vivo trafficking of primed T cells into the transplanted allograft and decreased expression of T cell chemoattractant chemokines within the graft. Together these results support the novel concept that C5 blockade can inhibit T cell-mediated allograft rejection through multiple mechanisms, and suggest that C5 blockade may constitute a viable strategy to prevent and/or treat T cell-mediated allograft rejection in humans.
Collapse
Affiliation(s)
- H Raedler
- Division of Nephrology, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Renner B, Ferreira VP, Cortes C, Goldberg R, Ljubanovic D, Pangburn MK, Pickering MC, Tomlinson S, Holland-Neidermyer A, Strassheim D, Holers VM, Thurman JM. Binding of factor H to tubular epithelial cells limits interstitial complement activation in ischemic injury. Kidney Int 2011; 80:165-73. [PMID: 21544060 PMCID: PMC3133686 DOI: 10.1038/ki.2011.115] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Factor H is a regulator of the alternative pathway of complement, and genetic studies have shown that patients with mutations in factor H are at increased risk for several types of renal disease. Pathogenic activation of the alternative pathway in acquired diseases, such as ischemic acute kidney injury, suggests that native factor H has a limited capacity to control the alternative pathway in the kidney. Here we found that an absolute deficiency of factor H produced by gene deletion prevented complement activation on tubulointerstitial cells after ischemia/reperfusion (I/R) injury, likely because alternative pathway proteins were consumed in the fluid phase. In contrast, when fluid-phase regulation by factor H was maintained while the interaction of factor H with cell surfaces was blocked by a recombinant inhibitor protein, complement activation after renal I/R increased. Finally, a recombinant form of factor H, specifically targeted to sites of C3 deposition, reduced complement activation in the tubulointerstitium after ischemic injury. Thus, although factor H does not fully prevent activation of the alternative pathway of complement on ischemic tubules, its interaction with the tubule epithelial cell surface is critical for limiting complement activation and attenuating renal injury after ischemia.
Collapse
Affiliation(s)
- Brandon Renner
- Department of Medicine, University of Colorado Denver School of Medicine, Aurora, CO
| | - Viviana P. Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo Health Science Campus, Toledo, OH
| | - Claudio Cortes
- Department of Medical Microbiology and Immunology, University of Toledo Health Science Campus, Toledo, OH
| | - Ryan Goldberg
- Department of Medicine, University of Colorado Denver School of Medicine, Aurora, CO
| | - Danica Ljubanovic
- Department of Pathology, University Hospital Dubrava, Zagreb, Croatia
| | - Michael K. Pangburn
- Department of Biochemistry, University of Texas Health Science Center, Tyler, TX
| | - Matthew C. Pickering
- Molecular Genetics and Rheumatology Section, Faculty of Medicine, Imperial College, Hammersmith Campus, London, UK
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | | | - Derek Strassheim
- Department of Medicine, University of Colorado Denver School of Medicine, Aurora, CO
| | - V. Michael Holers
- Department of Medicine, University of Colorado Denver School of Medicine, Aurora, CO
| | - Joshua M. Thurman
- Department of Medicine, University of Colorado Denver School of Medicine, Aurora, CO
| |
Collapse
|
133
|
Early interleukin 6 production by leukocytes during ischemic acute kidney injury is regulated by TLR4. Kidney Int 2011; 80:504-15. [PMID: 21633411 DOI: 10.1038/ki.2011.140] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Although leukocytes infiltrate the kidney during ischemic acute kidney injury (AKI) and release interleukin 6 (IL6), their mechanism of activation is unknown. Here, we tested whether Toll-like receptor 4 (TLR4) on leukocytes mediated this activation by interacting with high-mobility group protein B1 (HMGB1) released by renal cells as a consequence of ischemic kidney injury. We constructed radiation-induced bone marrow chimeras using C3H/HeJ and C57BL/10ScNJ strains of TLR4 (-/-) mice and their respective TLR4 (+/+) wild-type counterparts and studied them at 4 h after an ischemic insult. Leukocytes adopted from TLR4 (+/+) mice infiltrated the kidneys of TLR4 (-/-) mice, and TLR4 (-/-) leukocytes infiltrated the kidneys of TLR4 (+/+) mice but caused little functional renal impairment in each case. Maximal ischemic AKI required both radiosensitive leukocytes and radioresistant renal parenchymal and endothelial cells from TLR4 (+/+) mice. Only TLR4 (+/+) leukocytes produced IL6 in vivo and in response to HMGB1 in vitro. Thus, following infiltration of the injured kidney, leukocytes produce IL6 when their TLR4 receptors interact with HMGB1 released by injured renal cells. This underscores the importance of TLR4 in the pathogenesis of ischemic AKI.
Collapse
|
134
|
Schwaeble WJ, Lynch NJ, Clark JE, Marber M, Samani NJ, Ali YM, Dudler T, Parent B, Lhotta K, Wallis R, Farrar CA, Sacks S, Lee H, Zhang M, Iwaki D, Takahashi M, Fujita T, Tedford CE, Stover CM. Targeting of mannan-binding lectin-associated serine protease-2 confers protection from myocardial and gastrointestinal ischemia/reperfusion injury. Proc Natl Acad Sci U S A 2011; 108:7523-8. [PMID: 21502512 PMCID: PMC3088599 DOI: 10.1073/pnas.1101748108] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Complement research experienced a renaissance with the discovery of a third activation route, the lectin pathway. We developed a unique model of total lectin pathway deficiency, a mouse strain lacking mannan-binding lectin-associated serine protease-2 (MASP-2), and analyzed the role of MASP-2 in two models of postischemic reperfusion injury (IRI). In a model of transient myocardial IRI, MASP-2-deficient mice had significantly smaller infarct volumes than their wild-type littermates. Mice deficient in the downstream complement component C4 were not protected, suggesting the existence of a previously undescribed lectin pathway-dependent C4-bypass. Lectin pathway-mediated activation of C3 in the absence of C4 was demonstrated in vitro and shown to require MASP-2, C2, and MASP-1/3. MASP-2 deficiency also protects mice from gastrointestinal IRI, as do mAb-based inhibitors of MASP-2. The therapeutic effects of MASP-2 inhibition in this experimental model suggest the utility of anti-MASP-2 antibody therapy in reperfusion injury and other lectin pathway-mediated disorders.
Collapse
Affiliation(s)
- Wilhelm J Schwaeble
- Department of Infection, University of Leicester, Leicester LE1 9HN, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Damman J, Daha MR, van Son WJ, Leuvenink HG, Ploeg RJ, Seelen MA. Crosstalk between complement and Toll-like receptor activation in relation to donor brain death and renal ischemia-reperfusion injury. Am J Transplant 2011; 11:660-9. [PMID: 21446970 DOI: 10.1111/j.1600-6143.2011.03475.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two central pathways of innate immunity, complement and Toll-like receptors (TLRs), play an important role in the pathogenesis of renal injury inherent to kidney transplantation. Recent findings indicate close crosstalk between complement and TLR signaling pathways. It is suggested that mitogen activated protein kinases (MAPKs) might be the key molecules linking both the complement and TLR pathways together. Complement and TLRs are important mediators of renal ischemia-reperfusion injury (IRI). Besides IRI, complement C3 can also be upregulated and activated in the kidney before transplantation as a direct result of brain death (BD) in the donor. This local upregulation and activation of complement in the donor kidney has been proven to be detrimental for renal allograft outcome. Also TLR4 and several of its major ligands are upregulated by donor BD compared to living donors. Important and in line with the observations above, kidney transplant recipients have a benefit when receiving a kidney from a TLR4 Asp299Gly/Thr399Ile genotypic donor. The role of complement and TLRs and crosstalk between these two innate immune systems in relation to renal injury during donor BD and ischemia-reperfusion are focus of this review. Future strategies to target complement and TLR activation in kidney transplantation are considered.
Collapse
Affiliation(s)
- Jeffrey Damman
- Surgery Nephrology, University Medical Center Groningen, Groningen, The Netherlands Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
136
|
Wu QQ, Wang Y, Senitko M, Meyer C, Wigley WC, Ferguson DA, Grossman E, Chen J, Zhou XJ, Hartono J, Winterberg P, Chen B, Agarwal A, Lu CY. Bardoxolone methyl (BARD) ameliorates ischemic AKI and increases expression of protective genes Nrf2, PPARγ, and HO-1. Am J Physiol Renal Physiol 2011; 300:F1180-92. [PMID: 21289052 DOI: 10.1152/ajprenal.00353.2010] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ischemic acute kidney injury (AKI) triggers expression of adaptive (protective) and maladaptive genes. Agents that increase expression of protective genes should provide a therapeutic benefit. We now report that bardoxolone methyl (BARD) ameliorates ischemic murine AKI as assessed by both renal function and pathology. BARD may exert its beneficial effect by increasing expression of genes previously shown to protect against ischemic AKI, NF-E2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor-γ (PPARγ), and heme oxygenase 1 (HO-1). Although we found that BARD alone or ischemia-reperfusion alone increased expression of these genes, the greatest increase occurred after the combination of both ischemia-reperfusion and BARD. BARD had a different mode of action than other agents that regulate PPARγ and Nrf2. Thus we report that BARD regulates PPARγ, not by acting as a ligand but by increasing the amount of PPARγ mRNA and protein. This should increase ligand-independent effects of PPARγ. Similarly, BARD increased Nrf2 mRNA; this increased Nrf2 protein by mechanisms in addition to the prolongation of Nrf2 protein half-life previously reported. Finally, we localized expression of these protective genes after ischemia and BARD treatment. Using double-immunofluorescence staining for CD31 and Nrf2 or PPARγ, we found increased Nrf2 and PPARγ on glomerular endothelia in the cortex; Nrf2 was also present on cortical peritubular capillaries. In contrast, HO-1 was localized to different cells, i.e., tubules and interstitial leukocytes. Although Nrf2-dependent increases in HO-1 have been described, our data suggest that BARD's effects on tubular and leukocyte HO-1 during ischemic AKI may be Nrf2 independent. We also found that BARD ameliorated cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Qing Qing Wu
- Department of Internal Medicine, Nephrology Division, UT Southwestern Medical Center, Dallas, TX 75390-8856, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
van der Pol P, Roos A, Berger SP, Daha MR, van Kooten C. Natural IgM antibodies are involved in the activation of complement by hypoxic human tubular cells. Am J Physiol Renal Physiol 2011; 300:F932-40. [PMID: 21289051 DOI: 10.1152/ajprenal.00509.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) has a major impact on graft survival after transplantation. Renal proximal tubular epithelial cells (PTEC) located at the corticomedullary zone are relatively susceptible to IRI and have been identified as one of the main targets of complement activation. Studies in mice have shown an important role for the alternative pathway of complement activation in renal IRI. However, it is unclear whether experimental data obtained in mice can be extrapolated to humans. Therefore, we developed an in vitro model to induce hypoxia-reoxygenation in human and mouse PTEC and studied the role of the different pathways of complement activation. Exposure of human PTEC to hypoxia followed by reoxygenation in human serum resulted in extensive complement activation. Inhibition studies using different complement inhibitors revealed no involvement of the alternative or lectin pathway of complement activation by hypoxic human PTEC. In contrast, complement activation by hypoxic murine PTEC was shown to be exclusively dependent on the alternative pathway. Hypoxic human PTEC induced classic pathway activation, supported by studies in C1q-depleted serum and the use of blocking antibodies to C1q. The activation of the classic pathway was mediated by IgM through interaction with modified phosphomonoesters exposed on hypoxic PTEC. Studies with different human sera showed a strong correlation between IgM binding to hypoxic human PTEC and the degree of complement activation. These results demonstrate important species-specific differences in complement activation by hypoxic PTEC and provide clues for directed complement inhibition strategies in the treatment and prevention of IRI in the human kidney.
Collapse
Affiliation(s)
- Pieter van der Pol
- Dept. of Nephrology, Leiden Univ. Medical Center, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
138
|
MnTMPyP, a superoxide dismutase/catalase mimetic, decreases inflammatory indices in ischemic acute kidney injury. Inflamm Res 2010; 60:299-307. [PMID: 21153678 DOI: 10.1007/s00011-010-0268-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 08/18/2010] [Accepted: 10/04/2010] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE This study investigates the effect of a superoxide dismutase mimetic, MnTMPyP, on pro- and anti-inflammatory cytokines in acute renal ischemia-reperfusion (IR). MATERIALS AND TREATMENT Male Sprague-Dawley rats underwent bilateral clamping of the renal arteries for 45 min followed by 1, 4, or 24 h of reperfusion. A subset of animals was treated with MnTMPyP (5 mg/kg, i.p.) or saline. Porcine proximal tubular epithelial cells were ATP-depleted for 4 h followed by recovery for 2 h. METHODS Cytokines were analyzed by ELISA, and ED1(+) macrophages and CD8(+) T lymphocytes by immunohistochemistry. Statistical analysis was performed using ANOVA. RESULTS MnTMPyP attenuated the IR-mediated increase in serum creatinine and circulating levels of interleukin (IL)-2 following 24 h of reperfusion. Furthermore, treatment attenuated increases in tissue levels of tumor necrosis factor (TNF)-α, IL-2, IL-4, and IL-13. MnTMPyP partially prevented the IR-induced infiltration of ED1(+) macrophages and CD8(+) T lymphocytes in the kidney. ATP depletion-recovery of porcine proximal tubular epithelial cells resulted in decreased IL-6 and IL-10 levels, and MnTMPyP partially restored these cytokines. CONCLUSIONS These results show that MnTMPyP is partially effective in reducing inflammation associated with renal IR and that reactive oxygen species play a role in modulating both pro- and anti-inflammatory pathways in acute kidney injury.
Collapse
|
139
|
Complement alternative pathway acts as a positive feedback amplification of neutrophil activation. Blood 2010; 117:1340-9. [PMID: 21063021 DOI: 10.1182/blood-2010-05-283564] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Complement alternative pathway plays an important, but not clearly understood, role in neutrophil-mediated diseases. We here show that neutrophils themselves activate complement when stimulated by cytokines or coagulation-derived factors. In whole blood, tumor necrosis factor/formyl-methionyl-leucyl-phenylalanine or phorbol myristate acetate resulted in C3 fragments binding on neutrophils and monocytes, but not on T cells. Neutrophils, stimulated by tumor necrosis factor, triggered the alternative pathway on their surface in normal and C2-depleted, but not in factor B-depleted serum and on incubation with purified C3, factors B and D. This occurred independently of neutrophil proteases, oxidants, or apoptosis. Neutrophil-secreted properdin was detected on the cell surface and could focus "in situ" the alternative pathway activation. Importantly, complement, in turn, led to further activation of neutrophils, with enhanced CD11b expression and oxidative burst. Complement-induced neutrophil activation involved mostly C5a and possibly C5b-9 complexes, detected on tumor necrosis factor- and serum-activated neutrophils. In conclusion, neutrophil stimulation by cytokines results in an unusual activation of autologous complement by healthy cells. This triggers a new amplification loop in physiologic innate immunity: Neutrophils activate the alternative complement pathway and release C5 fragments, which further amplify neutrophil proinflammatory responses. This mechanism, possibly required for effective host defense, may be relevant to complement involvement in neutrophil-mediated diseases.
Collapse
|
140
|
Qiao F, Atkinson C, Kindy MS, Shunmugavel A, Morgan BP, Song H, Tomlinson S. The alternative and terminal pathways of complement mediate post-traumatic spinal cord inflammation and injury. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:3061-70. [PMID: 20952585 DOI: 10.2353/ajpath.2010.100158] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Complement is implicated in the inflammatory response and the secondary neuronal damage that occurs after traumatic spinal cord injury (SCI). Complement can be activated by the classical, lectin, or alternative pathways, all of which share a common terminal pathway that culminates in formation of the cytolytic membrane attack complex (MAC). Here, we investigated the role of the alternative and terminal complement pathways in SCI. Mice deficient in the alternative pathway protein factor B (fB) were protected from traumatic SCI in terms of reduced tissue damage and demyelination, reduced inflammatory cell infiltrate, and improved functional recovery. In a clinically relevant paradigm, treatment of mice with an anti-fB mAb resulted in similarly improved outcomes. These improvements were associated with decreased C3 and fB deposition. On the other hand, deficiency of CD59, an inhibitor of the membrane attack complex, resulted in significantly increased injury and impaired functional recovery compared to wild-type mice. Increased injury in CD59-deficient mice was associated with increased MAC deposition, while levels of C3 and fB were unaffected. These data indicate key roles for the alternative and terminal complement pathways in the pathophysiology of SCI. Considering a previous study demonstrating an important role for the classical pathway in promoting SCI, it is likely that the alternative pathway plays a critical role in amplifying classical pathway initiated complement activation.
Collapse
Affiliation(s)
- Fei Qiao
- Department of Microbiology and Immunology, Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | |
Collapse
|
141
|
Renner B, Strassheim D, Amura CR, Kulik L, Ljubanovic D, Glogowska MJ, Takahashi K, Carroll MC, Holers VM, Thurman JM. B cell subsets contribute to renal injury and renal protection after ischemia/reperfusion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:4393-400. [PMID: 20810984 PMCID: PMC3133676 DOI: 10.4049/jimmunol.0903239] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ischemia/reperfusion (I/R) triggers a robust inflammatory response within the kidney. Numerous components of the immune system contribute to the resultant renal injury, including the complement system. We sought to identify whether natural Abs bind to the postischemic kidney and contribute to complement activation after I/R. We depleted peritoneal B cells in mice by hypotonic shock. Depletion of the peritoneal B cells prevented the deposition of IgM within the glomeruli after renal I/R and attenuated renal injury after I/R. We found that glomerular IgM activates the classical pathway of complement, but it does not cause substantial deposition of C3 within the kidney. Furthermore, mice deficient in classical pathway proteins were not protected from injury, indicating that glomerular IgM does not cause injury through activation of the classical pathway. We also subjected mice deficient in all mature B cells (μMT mice) to renal I/R and found that they sustained worse renal injury than wild-type controls. Serum IL-10 levels were lower in the μMT mice. Taken together, these results indicate that natural Ab produced by peritoneal B cells binds within the glomerulus after renal I/R and contributes to functional renal injury. However, nonperitoneal B cells attenuate renal injury after I/R, possibly through the production of IL-10.
Collapse
Affiliation(s)
- Brandon Renner
- Department of Medicine, University of Colorado Health Sciences Center, Denver, CO
| | - Derek Strassheim
- Department of Medicine, University of Colorado Health Sciences Center, Denver, CO
| | - Claudia R. Amura
- Department of Medicine, University of Colorado Health Sciences Center, Denver, CO
| | - Liudmila Kulik
- Department of Medicine, University of Colorado Health Sciences Center, Denver, CO
| | - Danica Ljubanovic
- Department of Pathology, University Hospital Dubrava, Zagreb, Croatia
| | | | - Kazue Takahashi
- Program of Developmental Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Michael C. Carroll
- CBR Institute of Biomedical Research Inc., Harvard Medical School, Boston, MA
| | - V. Michael Holers
- Department of Medicine, University of Colorado Health Sciences Center, Denver, CO
| | - Joshua M. Thurman
- Department of Medicine, University of Colorado Health Sciences Center, Denver, CO
| |
Collapse
|
142
|
Renner B, Coleman K, Goldberg R, Amura C, Holland-Neidermyer A, Pierce K, Orth HN, Molina H, Ferreira VP, Cortes C, Pangburn MK, Holers VM, Thurman JM. The complement inhibitors Crry and factor H are critical for preventing autologous complement activation on renal tubular epithelial cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:3086-94. [PMID: 20675597 PMCID: PMC3133690 DOI: 10.4049/jimmunol.1000111] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Congenital and acquired deficiencies of complement regulatory proteins are associated with pathologic complement activation in several renal diseases. To elucidate the mechanisms by which renal tubular epithelial cells (TECs) control the complement system, we examined the expression of complement regulatory proteins by the cells. We found that Crry is the only membrane-bound complement regulator expressed by murine TECs, and its expression is concentrated on the basolateral surface. Consistent with the polarized localization of Crry, less complement activation was observed when the basolateral surface of TECs was exposed to serum than when the apical surface was exposed. Furthermore, greater complement activation occurred when the basolateral surface of TECs from Crry(-/-)fB(-/-) mice was exposed to normal serum compared with TECs from wild-type mice. Complement activation on the apical and basolateral surfaces was also greater when factor H, an alternative pathway regulatory protein found in serum, was blocked from interacting with the cells. Finally, we injected Crry(-/-)fB(-/-) and Crry(+/+)fB(-/-) mice with purified factor B (an essential protein of the alternative pathway). Spontaneous complement activation was seen on the tubules of Crry(-/-)fB(-/-) mice after injection with factor B, and the mice developed acute tubular injury. These studies indicate that factor H and Crry regulate complement activation on the basolateral surface of TECs and that factor H regulates complement activation on the apical surface. However, congenital deficiency of Crry or reduced expression of the protein on the basolateral surface of injured cells permits spontaneous complement activation and tubular injury.
Collapse
Affiliation(s)
- Brandon Renner
- Department of Medicine, University of Colorado Denver School of Medicine, Denver, CO
| | - Kathrin Coleman
- Department of Medicine, University of Colorado Denver School of Medicine, Denver, CO
| | - Ryan Goldberg
- Department of Medicine, University of Colorado Denver School of Medicine, Denver, CO
| | - Claudia Amura
- Department of Medicine, University of Colorado Denver School of Medicine, Denver, CO
| | | | - Kathryn Pierce
- Department of Medicine, University of Colorado Denver School of Medicine, Denver, CO
| | - Heather N. Orth
- Department of Medicine, University of Colorado Denver School of Medicine, Denver, CO
| | - Hector Molina
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Viviana P. Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo Health Science Campus, Toledo, OH
| | - Claudio Cortes
- Department of Medical Microbiology and Immunology, University of Toledo Health Science Campus, Toledo, OH
| | - Michael K. Pangburn
- Department of Biochemistry, University of Texas Health Sciences Center, Tyler, TX
| | - V. Michael Holers
- Department of Medicine, University of Colorado Denver School of Medicine, Denver, CO
| | - Joshua M. Thurman
- Department of Medicine, University of Colorado Denver School of Medicine, Denver, CO
| |
Collapse
|
143
|
Tchepeleva SN, Thurman JM, Ruff K, Perkins SJ, Morel L, Boackle SA. An allelic variant of Crry in the murine Sle1c lupus susceptibility interval is not impaired in its ability to regulate complement activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:2331-9. [PMID: 20660348 PMCID: PMC3073420 DOI: 10.4049/jimmunol.1000783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Sle1c subinterval on distal murine chromosome 1 confers loss of tolerance to chromatin. Cr2, which encodes complement receptors 1 and 2 (CR1/CR2; CD35/CD21), is a strong candidate gene for lupus susceptibility within this interval based on structural and functional alterations in its protein products. CR1-related protein/gene Y (Crry) lies 10 kb from Cr2 and encodes a ubiquitously expressed complement regulatory protein that could also play a role in the pathogenesis of systemic lupus erythematosus. Crry derived from B6.Sle1c congenic mice migrated at a higher m.w. by SDS-PAGE compared with B6 Crry, as a result of differential glycosylation. A single-nucleotide polymorphism in the first short consensus repeat of Sle1c Crry introduced a novel N-linked glycosylation site likely responsible for this structural alteration. Five additional single-nucleotide polymorphisms in the signal peptide and short consensus repeat 1 of Sle1c Crry were identified. However, the cellular expression of B6 and B6.Sle1c Crry and their ability to regulate the classical pathway of complement were not significantly different. Although soluble Sle1c Crry regulated the alternative pathway of complement more efficiently than B6 Crry, as a membrane protein, it regulated the alternative pathway equivalently to B6 Crry. These data fail to provide evidence for a functional effect of the structural alterations in Sle1c Crry and suggest that the role of Cr2 in the Sle1c autoimmune phenotypes can be isolated in recombinant congenic mice containing both genes.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Animals
- Base Sequence
- CHO Cells
- Complement Activation/immunology
- Complement Pathway, Alternative/immunology
- Cricetinae
- Cricetulus
- Female
- Genetic Predisposition to Disease
- Glycosylation
- Immunoblotting
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Male
- Mice
- Mice, Congenic
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Mice, Knockout
- Models, Molecular
- Polymorphism, Single Nucleotide
- Protein Structure, Tertiary
- Receptors, Complement/chemistry
- Receptors, Complement/genetics
- Receptors, Complement/immunology
- Receptors, Complement 3b
Collapse
Affiliation(s)
- Svetlana N. Tchepeleva
- Departments of Medicine and Immunology, University of Colorado School of Medicine, 1775 Aurora Court, Aurora, CO 80045, USA
| | - Joshua M. Thurman
- Departments of Medicine and Immunology, University of Colorado School of Medicine, 1775 Aurora Court, Aurora, CO 80045, USA
| | - Katherine Ruff
- Departments of Medicine and Immunology, University of Colorado School of Medicine, 1775 Aurora Court, Aurora, CO 80045, USA
| | - Stephen J. Perkins
- Department of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, UK
| | - Laurence Morel
- Departments of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Susan A. Boackle
- Departments of Medicine and Immunology, University of Colorado School of Medicine, 1775 Aurora Court, Aurora, CO 80045, USA
| |
Collapse
|
144
|
Abstract
Previous studies using blocking antibodies suggested that bone marrow (BM)-derived C3 is required for efficient osteoclast (OC) differentiation, and that C3 receptors are involved in this process. However, the detailed underlying mechanism and the possible involvement of other complement receptors remain unclear. In this report, we found that C3(-/-) BM cells exhibited lower RANKL/OPG expression ratios, produced smaller amounts of macrophage colony-stimulating factor and interleukin-6 (IL-6), and generated significantly fewer OCs than wild-type (WT) BM cells. During differentiation, in addition to C3, WT BM cells locally produced all other complement components required to activate C3 and to generate C3a/C5a through the alter-native pathway, which is required for efficient OC differentiation. Abrogating C3aR/C5aR activity either genetically or pharmaceutically suppressed OC generation, while stimulating WT or C3(-/-) BM cells with exogenous C3a and/or C5a augmented OC differentiation. Furthermore, supplementation with IL-6 rescued OC generation from C3(-/-) BM cells, and neutralizing antibodies to IL-6 abolished the stimulatory effects of C3a/C5a on OC differentiation. These data indicate that during OC differentiation, BM cells locally produce components, which are activated through the alternative pathway to regulate OC differentiation. In addition to C3 receptors, C3aR/C5aR also regulate OC differentiation, at least in part, by modulating local IL-6 production.
Collapse
|
145
|
Postconditioning attenuates renal ischemia-reperfusion injury by preventing DAF down-regulation. J Urol 2010; 183:2424-31. [PMID: 20403613 DOI: 10.1016/j.juro.2010.01.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Indexed: 11/23/2022]
Abstract
PURPOSE There is increasing evidence that ischemic postconditioning may noticeably attenuate renal ischemic-reperfusion injury, although the specific mechanisms are not fully clear. We examined the role of the complement system, especially membrane bound complement regulatory proteins, in postconditioning after renal ischemic-reperfusion injury in a right nephrectomy rat model. MATERIALS AND METHODS After right nephrectomy the left renal pedicles were occluded for 60 minutes, followed by 24-hour reperfusion. Postconditioning was induced by 6 cycles of 10-second ischemia and 10-second reperfusion before reperfusion. After 24-hour reperfusion without a control blood samples were obtained via the vena cava. Renal samples were also obtained. DAF, CD46, CD59, C3aR and C5aR mRNA and protein expression was examined by reverse transcriptase-polymerase chain reaction, Western blot and immunohistochemistry. C3/C9 deposition in tissue was detected by immunofluorescence. Renal function, histology and cellular apoptosis were also observed. RESULTS In renal tissue postconditioning prevents DAF down-regulation, which is induced by ischemic-reperfusion injury. It results in the decreased renal necrosis caused by ischemic-reperfusion injury mediated complement activation. However, in all experimental groups renal CD46/CD59 expression was not altered. Increased DAF expression due to postconditioning may decrease C5aR expression in renal tissues compared with ischemic-reperfusion injury, which can decrease apoptosis. C3aR expression did not differ among the experimental groups. CONCLUSIONS These findings provide new evidence that postconditioning protects kidneys from ischemic-reperfusion injury, at least in part, by preventing DAF down-regulation.
Collapse
|
146
|
Tu Z, Cohen M, Bu H, Lin F. Tissue distribution and functional analysis of Sushi domain-containing protein 4. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2378-84. [PMID: 20348246 DOI: 10.2353/ajpath.2010.091036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sushi domain-containing protein 4 (SUSD4) was a hypothetical cell surface protein whose tissue distribution and function were completely unknown. However, recent microarray-based studies have identified deletions of SUSD4 gene in patients with autism or Fryns syndrome, both of which are genetic diseases with severe abnormal neurological development and/or functions. In this article, we described the cloning, expression, refolding, tissue distribution, and functional analysis of this novel protein. Using polyclonal antibodies generated by immunizing chickens with the recombinant SUSD4, we found that SUSD4 is detectable in murine brains, eyes, spinal cords, and testis but not other tissues. In brains, SUSD4 is highly expressed in the white matter on oligodendrocytes/axons, and in eyes, it is exclusively expressed on the photoreceptor outer segments. In in vitro complement assays, SUSD4 augments the alternative but not the classical pathway of complement activation at the C3 convertase step. In in vivo studies, knocking down SUSD4 expression in zebrafish markedly increases ratios of mortality and developmental abnormality. These results provide the first insight into the important physiological roles of SUSD4 and could help to better understand the pathogenesis of autism and Fryns syndrome.
Collapse
Affiliation(s)
- Zhidan Tu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | |
Collapse
|
147
|
Zhou W, Guan Q, Kwan CCH, Chen H, Gleave ME, Nguan CYC, Du C. Loss of clusterin expression worsens renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 2010; 298:F568-78. [DOI: 10.1152/ajprenal.00399.2009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prevention of ischemia-reperfusion injury (IRI) is a challenge in clinical care of the patients with kidney transplants or acute kidney injury, and understanding of the intrinsic mechanisms of resistance to injury in the kidney will lead to a novel therapy. Clusterin, a secreted glycoprotein, is an antiapoptotic protein in cancer cells. Our study is to investigate the role of clusterin in renal IRI. Renal IRI in mice was induced by clamping renal vein and artery for 45 or 50 min at 32°C. Apoptosis of renal tubular epithelial cells (TECs) was determined by FACS analysis. Clusterin expression was examined by Western blot or immunohistochemistry. Here, we showed that clusterin protein was induced in TECs following IRI, and more tubules expressed clusterin in the kidneys following ischemia at higher temperatures. In human proximal TEC HKC-8 cultures, clusterin was upregulated by removal of serum and growth factors in medium and was downregulated by TNF-α-IFN-γ mixture. The levels of clusterin were positively correlated with cell survival in these conditions. Knockdown or knockout of clusterin expression enhanced the sensitivity of TECs to apoptosis. In experimental models of renal IRI, deficiency in clusterin expression worsened the injury, as indicated by a significant increase in renal tissue damage with higher levels of serum creatinine and blood urea nitrogen and by a poorer recovery from the injury in clusterin-deficient mice compared with wild-type mice. Our data indicate that the reduction of inducible expression of clusterin results in an increase in TEC apoptosis in the cultures and renders mice susceptibility to IRI, implying a protective role of clusterin in kidney injury.
Collapse
Affiliation(s)
- Wenjun Zhou
- Department of Urologic Sciences, University of British Columbia, Vancouver
- Department of Surgery, University of Montreal, Montreal, Quebec, Canada
| | - Qiunong Guan
- Department of Urologic Sciences, University of British Columbia, Vancouver
| | - Chris C. H. Kwan
- Department of Urologic Sciences, University of British Columbia, Vancouver
| | - Huifang Chen
- Department of Surgery, University of Montreal, Montreal, Quebec, Canada
| | - Martin E. Gleave
- Department of Urologic Sciences, University of British Columbia, Vancouver
| | - Christopher Y. C. Nguan
- Department of Urologic Sciences, University of British Columbia, Vancouver
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia; and
| | - Caigan Du
- Department of Urologic Sciences, University of British Columbia, Vancouver
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia; and
| |
Collapse
|
148
|
Mediators of inflammation in acute kidney injury. Mediators Inflamm 2010; 2009:137072. [PMID: 20182538 PMCID: PMC2825552 DOI: 10.1155/2009/137072] [Citation(s) in RCA: 371] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 11/18/2009] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI) remains to be an independent risk factor for mortality and morbidity. Inflammation is now believed to play a major role in the pathopathophysiology of AKI. It is hypothesized that in ischemia, sepsis and nephrotoxic models that the initial insult results in morphological and/or functional changes in vascular endothelial cells and/or in tubular epithelium. Then, leukocytes including neutrophils, macrophages, natural killer cells, and lymphocytes infiltrate into the injured kidneys. The injury induces the generation of inflammatory mediators like cytokines and chemokines by tubular and endothelial cells which contribute to the recruiting of leukocytes into the kidneys. Thus, inflammation has an important role in the initiation and extension phases of AKI. This review will focus on the mediators of inflammation contributing to the pathogenesis of AKI.
Collapse
|
149
|
Castellano G, Melchiorre R, Loverre A, Ditonno P, Montinaro V, Rossini M, Divella C, Battaglia M, Lucarelli G, Annunziata G, Palazzo S, Selvaggi FP, Staffieri F, Crovace A, Daha MR, Mannesse M, van Wetering S, Paolo Schena F, Grandaliano G. Therapeutic targeting of classical and lectin pathways of complement protects from ischemia-reperfusion-induced renal damage. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1648-59. [PMID: 20150432 DOI: 10.2353/ajpath.2010.090276] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ischemia-reperfusion injury is the major cause of delayed graft function in transplanted kidneys, an early event significantly affecting long-term graft function and survival. Several studies in rodents suggest that the alternative pathway of the complement system plays a pivotal role in renal ischemia-reperfusion injury. However, limited information is currently available from humans and larger animals. Here we demonstrated that 30 minutes of ischemia resulted in the induction of C4d/C1q, C4d/MLB, and MBL/MASP-2 deposits in a swine model of ischemia-reperfusion injury. The infusion of C1-inhibitor led to a significant reduction in peritubular capillary and glomerular C4d and C5b-9 deposition. Moreover, complement-inhibiting treatment significantly reduced the numbers of infiltrating CD163(+), SWC3a(+), CD4a(+), and CD8a(+) cells. C1-inhibitor administration led to significant inhibition of tubular damage and tubular epithelial cells apoptosis. Interestingly, we report that focal C4d-deposition colocalizes with C1q and MBL at the peritubular and glomerular capillary levels also in patients with delayed graft function. In conclusion, we demonstrated the activation and a pathogenic role of classical and lectin pathways of complement in a swine model of ischemia-reperfusion-induced renal damage. Therefore, inhibition of these two pathways might represent a novel therapeutic approach in the prevention of delayed graft function in kidney transplant recipients.
Collapse
Affiliation(s)
- Giuseppe Castellano
- Department of Emergency and Organ Transplantation, University of Bari, Policlinico, Piazza Giulio Cesare 11, Bari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Zacharia BE, Hickman ZL, Grobelny BT, DeRosa PA, Ducruet AF, Connolly ES. Complement inhibition as a proposed neuroprotective strategy following cardiac arrest. Mediators Inflamm 2010; 2009:124384. [PMID: 20150958 PMCID: PMC2817500 DOI: 10.1155/2009/124384] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 10/18/2009] [Accepted: 11/04/2009] [Indexed: 01/08/2023] Open
Abstract
Out-of-hospital cardiac arrest (OHCA) is a devastating disease process with neurological injury accounting for a disproportionate amount of the morbidity and mortality following return of spontaneous circulation. A dearth of effective treatment strategies exists for global cerebral ischemia-reperfusion (GCI/R) injury following successful resuscitation from OHCA. Emerging preclinical as well as recent human clinical evidence suggests that activation of the complement cascade plays a critical role in the pathogenesis of GCI/R injury following OHCA. In addition, it is well established that complement inhibition improves outcome in both global and focal models of brain ischemia. Due to the profound impact of GCI/R injury following OHCA, and the relative lack of effective neuroprotective strategies for this pathologic process, complement inhibition provides an exciting opportunity to augment existing treatments to improve patient outcomes. To this end, this paper will explore the pathophysiology of complement-mediated GCI/R injury following OHCA.
Collapse
Affiliation(s)
- Brad E Zacharia
- Department of Neurological Surgery, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | |
Collapse
|