101
|
Koymans KJ, Vrieling M, Gorham RD, van Strijp JAG. Staphylococcal Immune Evasion Proteins: Structure, Function, and Host Adaptation. Curr Top Microbiol Immunol 2015; 409:441-489. [PMID: 26919864 DOI: 10.1007/82_2015_5017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Staphylococcus aureus is a successful human and animal pathogen. Its pathogenicity is linked to its ability to secrete a large amount of virulence factors. These secreted proteins interfere with many critical components of the immune system, both innate and adaptive, and hamper proper immune functioning. In recent years, numerous studies have been conducted in order to understand the molecular mechanism underlying the interaction of evasion molecules with the host immune system. Structural studies have fundamentally contributed to our understanding of the mechanisms of action of the individual factors. Furthermore, such studies revealed one of the most striking characteristics of the secreted immune evasion molecules: their conserved structure. Despite high-sequence variability, most immune evasion molecules belong to a small number of structural categories. Another remarkable characteristic is that S. aureus carries most of these virulence factors on mobile genetic elements (MGE) or ex-MGE in its accessory genome. Coevolution of pathogen and host has resulted in immune evasion molecules with a highly host-specific function and prevalence. In this review, we explore how these shared structures and genomic locations relate to function and host specificity. This is discussed in the context of therapeutic options for these immune evasion molecules in infectious as well as in inflammatory diseases.
Collapse
Affiliation(s)
- Kirsten J Koymans
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Manouk Vrieling
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Ronald D Gorham
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
102
|
|
103
|
Hildebrandt JP. Pore-forming virulence factors of Staphylococcus aureus destabilize epithelial barriers-effects of alpha-toxin in the early phases of airway infection. AIMS Microbiol 2015. [DOI: 10.3934/microbiol.2015.1.11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
104
|
Peetermans M, Vanassche T, Liesenborghs L, Claes J, Vande Velde G, Kwiecinksi J, Jin T, De Geest B, Hoylaerts MF, Lijnen RH, Verhamme P. Plasminogen activation by staphylokinase enhances local spreading of S. aureus in skin infections. BMC Microbiol 2014; 14:310. [PMID: 25515118 PMCID: PMC4274676 DOI: 10.1186/s12866-014-0310-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/24/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) is a frequent cause of skin and soft tissue infections. A unique feature of S. aureus is the combined presence of coagulases that trigger fibrin formation and of the plasminogen activator staphylokinase (SAK). Whereas the importance of fibrin generation for S. aureus virulence has been established, the role of SAK remains unclear. We studied the role of plasminogen activation by SAK in a skin infection model in mice and evaluated the impact of alpha-2-antiplasmin (α2AP) deficiency on the spreading and proteolytic activity of S. aureus skin infections. The species-selectivity of SAK was overcome by adenoviral expression of human plasminogen. Bacterial spread and density was assessed non-invasively by imaging the bioluminescence of S. aureus Xen36. RESULTS SAK-mediated plasmin activity increased the local invasiveness of S. aureus, leading to larger lesions with skin disruption as well as decreased bacterial clearance by the host. Even though fibrin and bacterial surfaces protected SAK-mediated plasmin activity from inhibition by α2AP, the deficiency of α2AP resulted in increased bacterial spreading. SAK-mediated plasmin also induced secondary activation of gelatinases, shown both in vitro and in lesions from the in vivo model. CONCLUSION SAK contributes to the phenotype of S. aureus skin infections by enhancing bacterial spreading as a result of fibrinolytic and proteolytic activation.
Collapse
Affiliation(s)
- Marijke Peetermans
- Center for Molecular and Vascular Biology, KU Leuven, Herestraat 49, Box 911, Leuven, Belgium.
| | - Thomas Vanassche
- Center for Molecular and Vascular Biology, KU Leuven, Herestraat 49, Box 911, Leuven, Belgium.
| | - Laurens Liesenborghs
- Center for Molecular and Vascular Biology, KU Leuven, Herestraat 49, Box 911, Leuven, Belgium.
| | - Jorien Claes
- Center for Molecular and Vascular Biology, KU Leuven, Herestraat 49, Box 911, Leuven, Belgium.
| | - Greetje Vande Velde
- Biomedical MRI/Molecular Small Animal Imaging Center, KU Leuven, Herestraat 49, Box 505, Leuven, Belgium.
| | - Jakub Kwiecinksi
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Guldhedsgatan 10, Box 480, Gothenburg, Sweden.
| | - Tao Jin
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Guldhedsgatan 10, Box 480, Gothenburg, Sweden.
| | - Bart De Geest
- Center for Molecular and Vascular Biology, KU Leuven, Herestraat 49, Box 911, Leuven, Belgium.
| | - Marc F Hoylaerts
- Center for Molecular and Vascular Biology, KU Leuven, Herestraat 49, Box 911, Leuven, Belgium.
| | - Roger H Lijnen
- Center for Molecular and Vascular Biology, KU Leuven, Herestraat 49, Box 911, Leuven, Belgium.
| | - Peter Verhamme
- Center for Molecular and Vascular Biology, KU Leuven, Herestraat 49, Box 911, Leuven, Belgium.
| |
Collapse
|
105
|
Zhao L, Yang M, Zhang M, Zhang S. Expression, purification, and in vitro comparative characterization of avian beta-defensin-2, -6, and -12. Avian Dis 2014; 58:541-549. [PMID: 25618998 DOI: 10.1637/10848-042014-reg.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The mature peptides of avian β-defensin-2 (AvBD-2), AvBD-6, and AvBD-12 were expressed as 6xHis-tagged recombinant proteins using the Escherichia coli BL21(DE3)pLysS system. The yields of rAvBD-2, rAvBD-6, and rAvBD-12 were approximately 0.92 mg/L, 1.24 mg/L, and 1.52 mg/L, respectively, of bacterial culture. The antimicrobial activities of rAvBDs were characterized under different salt, nutrient, and pH conditions. At concentrations of 8 μg/ml, 16 μg/ml, and 32 μg/ml, rAvBDs inhibited the growth of Staphylococcus aureus, E. coli, and Salmonella enterica serovar Typhimurium. While no synergistic inhibitory activity was found, a significant antagonistic effect was detected between rAvBD-2 and rAvBD-12. Treatment of E. coli and Salmonella Typhimurium with rAvBDs diminished their natural resistance to bile salts. Under the nonreplicating low-nutrient condition, rAvBDs at a concentration of 16 μg/ml were able to kill E. coli and S. aureus within 30 min of contact. The antimicrobial activities of rAvBDs were enhanced by lowering salt concentration and pH from 7 to 6. The antimicrobial potency against S. aureus and E. coli could be characterized as rAvBD-6 > rAvBD-2 > rAvBD-12, which coincided with the net positive charges of these peptides. In conclusion, data from the current study warrant the investigation of the potential use of rAvBD-2, -6, and -12 as therapeutic and prophylactic antimicrobial agents against common bacterial pathogens.
Collapse
|
106
|
Transcriptional adaptations during long-term persistence of Staphylococcus aureus in the airways of a cystic fibrosis patient. Int J Med Microbiol 2014; 305:38-46. [PMID: 25439320 DOI: 10.1016/j.ijmm.2014.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 08/22/2014] [Accepted: 10/20/2014] [Indexed: 12/16/2022] Open
Abstract
The lungs of Cystic fibrosis (CF) patients are often colonized and/or infected by Staphylococcus aureus for years, mostly by one predominant clone. For long-term survival in this environment, S. aureus needs to adapt during its interactions with host factors, antibiotics, and other pathogens. Here, we study long-term transcriptional as well as genomic adaptations of an isogenic pair of S. aureus isolates from a single patient using RNA sequencing (RNA-Seq) and whole genome sequencing (WGS). Mimicking in vivo conditions, we cultivated the S. aureus isolates using artificial sputum medium before harvesting RNA for subsequent analysis. We confirmed our RNA-Seq data using quantitative real-time (qRT)-PCR and additionally investigated intermediate isolates from the same patient representing in total 13.2 years of persistence in the CF airways. Comparative RNA-Seq analysis of the first and the last ("late") isolate revealed significant differences in the late isolate after 13.2 years of persistence. Of the 2545 genes expressed in both isolates that were cultivated aerobically, 256 genes were up- and 161 were down-regulated with a minimum 2-fold change (2f). Focusing on 25 highly (≥8f) up- (n=9) or down- (n=16) regulated genes, we identified several genes encoding for virulence factors involved in immune evasion, bacterial spread or secretion (e.g. spa, sak, and esxA). Moreover, these genes displayed similar expression trends under aerobic, microaerophilic and anaerobic conditions. Further qRT-PCR-experiments of highly up- or down-regulated genes within intermediate S. aureus isolates resulted in different gene expression patterns over the years. Using sequencing analysis of the differently expressed genes and their upstream regions in the late S. aureus isolate resulted in only few genomic alterations. Comparative transcriptomic analysis revealed adaptive changes affecting mainly genes involved in host-pathogen interaction. Although the underlying mechanisms were not known, our results suggest adaptive processes beyond genomic mutations triggered by local factors rather than by activation of global regulators.
Collapse
|
107
|
Nawrocki KL, Crispell EK, McBride SM. Antimicrobial Peptide Resistance Mechanisms of Gram-Positive Bacteria. Antibiotics (Basel) 2014; 3:461-92. [PMID: 25419466 PMCID: PMC4239024 DOI: 10.3390/antibiotics3040461] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/25/2014] [Accepted: 09/28/2014] [Indexed: 01/09/2023] Open
Abstract
Antimicrobial peptides, or AMPs, play a significant role in many environments as a tool to remove competing organisms. In response, many bacteria have evolved mechanisms to resist these peptides and prevent AMP-mediated killing. The development of AMP resistance mechanisms is driven by direct competition between bacterial species, as well as host and pathogen interactions. Akin to the number of different AMPs found in nature, resistance mechanisms that have evolved are just as varied and may confer broad-range resistance or specific resistance to AMPs. Specific mechanisms of AMP resistance prevent AMP-mediated killing against a single type of AMP, while broad resistance mechanisms often lead to a global change in the bacterial cell surface and protect the bacterium from a large group of AMPs that have similar characteristics. AMP resistance mechanisms can be found in many species of bacteria and can provide a competitive edge against other bacterial species or a host immune response. Gram-positive bacteria are one of the largest AMP producing groups, but characterization of Gram-positive AMP resistance mechanisms lags behind that of Gram-negative species. In this review we present a summary of the AMP resistance mechanisms that have been identified and characterized in Gram-positive bacteria. Understanding the mechanisms of AMP resistance in Gram-positive species can provide guidelines in developing and applying AMPs as therapeutics, and offer insight into the role of resistance in bacterial pathogenesis.
Collapse
Affiliation(s)
- Kathryn L Nawrocki
- Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA 30322, USA; (K.L.N.); (E.K.C.)
| | - Emily K Crispell
- Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA 30322, USA; (K.L.N.); (E.K.C.)
| | - Shonna M McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA 30322, USA; (K.L.N.); (E.K.C.)
| |
Collapse
|
108
|
Okumura CYM, Nizet V. Subterfuge and sabotage: evasion of host innate defenses by invasive gram-positive bacterial pathogens. Annu Rev Microbiol 2014; 68:439-58. [PMID: 25002085 DOI: 10.1146/annurev-micro-092412-155711] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of a severe invasive bacterial infection in an otherwise healthy individual is one of the most striking and fascinating aspects of human medicine. A small cadre of gram-positive pathogens of the genera Streptococcus and Staphylococcus stand out for their unique invasive disease potential and sophisticated ability to counteract the multifaceted components of human innate defense. This review illustrates how these leading human disease agents evade host complement deposition and activation, impede phagocyte recruitment and activation, resist the microbicidal activities of host antimicrobial peptides and reactive oxygen species, escape neutrophil extracellular traps, and promote and accelerate phagocyte cell death through the action of pore-forming cytolysins. Understanding the molecular basis of bacterial innate immune resistance can open new avenues for therapeutic intervention geared to disabling specific virulence factors and resensitizing the pathogen to host innate immune clearance.
Collapse
Affiliation(s)
- Cheryl Y M Okumura
- Department of Biology, Occidental College, Los Angeles, California 90041;
| | | |
Collapse
|
109
|
Wang C, Chen F, Hu H, Li W, Wang Y, Chen P, Liu Y, Ku X, He Q, Chen H, Xue F. Gene Expression Profiling of Cecropin B-Resistant Haemophilus parasuis. J Mol Microbiol Biotechnol 2014; 24:120-9. [DOI: 10.1159/000362277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
110
|
Colonization and infection of the skin by S. aureus: immune system evasion and the response to cationic antimicrobial peptides. Int J Mol Sci 2014; 15:8753-72. [PMID: 24840573 PMCID: PMC4057757 DOI: 10.3390/ijms15058753] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 02/08/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a widespread cutaneous pathogen responsible for the great majority of bacterial skin infections in humans. The incidence of skin infections by S. aureus reflects in part the competition between host cutaneous immune defenses and S. aureus virulence factors. As part of the innate immune system in the skin, cationic antimicrobial peptides (CAMPs) such as the β-defensins and cathelicidin contribute to host cutaneous defense, which prevents harmful microorganisms, like S. aureus, from crossing epithelial barriers. Conversely, S. aureus utilizes evasive mechanisms against host defenses to promote its colonization and infection of the skin. In this review, we focus on host-pathogen interactions during colonization and infection of the skin by S. aureus and methicillin-resistant Staphylococcus aureus (MRSA). We will discuss the peptides (defensins, cathelicidins, RNase7, dermcidin) and other mediators (toll-like receptor, IL-1 and IL-17) that comprise the host defense against S. aureus skin infection, as well as the various mechanisms by which S. aureus evades host defenses. It is anticipated that greater understanding of these mechanisms will enable development of more sustainable antimicrobial compounds and new therapeutic approaches to the treatment of S. aureus skin infection and colonization.
Collapse
|
111
|
Nontraditional therapies to treat Helicobacter pylori infection. J Microbiol 2014; 52:259-72. [PMID: 24682990 DOI: 10.1007/s12275-014-3603-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/16/2013] [Indexed: 12/15/2022]
Abstract
The Gram-negative pathogen Helicobacter pylori is increasingly more resistant to the three major antibiotics (metronidazole, clarithromycin and amoxicillin) that are most commonly used to treat infection. As a result, there is an increased rate of treatment failure; this translates into an overall higher cost of treatment due to the need for increased length of treatment and/or the requirement for combination or sequential therapy. Given the rise in antibiotic resistance, the complicated treatment regime, and issues related to patient compliance that stem from the duration and complexity of treatment, there is clearly a pressing need for the development of novel therapeutic strategies to combat H. pylori infection. As such, researchers are actively investigating the utility of antimicrobial peptides, small molecule inhibitors and naturopathic therapies. Herein we review and discuss each of these novel approaches as a means to target this important gastric pathogen.
Collapse
|
112
|
Herzog IM, Fridman M. Design and synthesis of membrane-targeting antibiotics: from peptides- to aminosugar-based antimicrobial cationic amphiphiles. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00012a] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Infections caused by drug resistant and/or slow-growing bacteria are increasingly becoming some of the greatest challenges of health organizations worldwide.
Collapse
Affiliation(s)
- Ido M. Herzog
- School of Chemistry
- Raymond and Beverley Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - Micha Fridman
- School of Chemistry
- Raymond and Beverley Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| |
Collapse
|
113
|
Tavares LS, Silva CSF, de Souza VC, da Silva VL, Diniz CG, Santos MO. Strategies and molecular tools to fight antimicrobial resistance: resistome, transcriptome, and antimicrobial peptides. Front Microbiol 2013; 4:412. [PMID: 24427156 PMCID: PMC3876575 DOI: 10.3389/fmicb.2013.00412] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/15/2013] [Indexed: 11/13/2022] Open
Abstract
The increasing number of antibiotic resistant bacteria motivates prospective research toward discovery of new antimicrobial active substances. There are, however, controversies concerning the cost-effectiveness of such research with regards to the description of new substances with novel cellular interactions, or description of new uses of existing substances to overcome resistance. Although examination of bacteria isolated from remote locations with limited exposure to humans has revealed an absence of antibiotic resistance genes, it is accepted that these genes were both abundant and diverse in ancient living organisms, as detected in DNA recovered from Pleistocene deposits (30,000 years ago). Indeed, even before the first clinical use of antibiotics more than 60 years ago, resistant organisms had been isolated. Bacteria can exhibit different strategies for resistance against antibiotics. New genetic information may lead to the modification of protein structure affecting the antibiotic carriage into the cell, enzymatic inactivation of drugs, or even modification of cellular structure interfering in the drug-bacteria interaction. There are still plenty of new genes out there in the environment that can be appropriated by putative pathogenic bacteria to resist antimicrobial agents. On the other hand, there are several natural compounds with antibiotic activity that may be used to oppose them. Antimicrobial peptides (AMPs) are molecules which are wide-spread in all forms of life, from multi-cellular organisms to bacterial cells used to interfere with microbial growth. Several AMPs have been shown to be effective against multi-drug resistant bacteria and have low propensity to resistance development, probably due to their unique mode of action, different from well-known antimicrobial drugs. These substances may interact in different ways with bacterial cell membrane, protein synthesis, protein modulation, and protein folding. The analysis of bacterial transcriptome may contribute to the understanding of microbial strategies under different environmental stresses and allows the understanding of their interaction with novel AMPs.
Collapse
Affiliation(s)
| | - Carolina S. F. Silva
- Department of Microbiology, Immunology and Infectious Diseases, University of Juiz de ForaJuiz de Fora, Brazil
| | | | - Vânia L. da Silva
- Department of Microbiology, Immunology and Infectious Diseases, University of Juiz de ForaJuiz de Fora, Brazil
| | - Cláudio G. Diniz
- Department of Microbiology, Immunology and Infectious Diseases, University of Juiz de ForaJuiz de Fora, Brazil
| | - Marcelo O. Santos
- Department of Biology, University of Juiz de ForaJuiz de Fora, Brazil
| |
Collapse
|
114
|
Botelho-Nevers E, Verhoeven P, Paul S, Grattard F, Pozzetto B, Berthelot P, Lucht F. Staphylococcal vaccine development: review of past failures and plea for a future evaluation of vaccine efficacy not only on staphylococcal infections but also on mucosal carriage. Expert Rev Vaccines 2013; 12:1249-1259. [PMID: 24111513 DOI: 10.1586/14760584.2013.840091] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Staphylococcal disease represents a universal burden including acute, life-threatening infections as well as chronic infections usually associated with foreign materials. Infections occur notably in permanent carriers of Staphylococcus aureus. To date, all the attempts to develop an efficacious vaccine against S. aureus have failed. Failures in vaccine clinical trials might be related to a focus on single targets and development of humoral-based vaccines rather than vaccines with a combination of antigens stimulating both humoral and cellular immunity. The end points of these unsuccessful trials were a reduction in mortality or bacteremia, whereas the patient's decolonization was not assessed. Adopting the latter point of view, the aim of this article is to discuss nasal mucosal decolonization as a complementary marker of vaccine efficacy for clinical research in vaccine development.
Collapse
Affiliation(s)
- Elisabeth Botelho-Nevers
- Groupe Immunité Muqueuse et Agents Pathogènes, EA 3064, PRES Lyon, Université Jean Monnet et CHU de Saint-Etienne, 42023 Saint-Etienne, France
| | | | | | | | | | | | | |
Collapse
|
115
|
Chen CJ, Unger C, Hoffmann W, Lindsay JA, Huang YC, Götz F. Characterization and comparison of 2 distinct epidemic community-associated methicillin-resistant Staphylococcus aureus clones of ST59 lineage. PLoS One 2013; 8:e63210. [PMID: 24039691 PMCID: PMC3764004 DOI: 10.1371/journal.pone.0063210] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 04/02/2013] [Indexed: 02/06/2023] Open
Abstract
Sequence type (ST) 59 is an epidemic lineage of community-associated (CA) methicillin-resistant Staphylococcus aureus (MRSA) isolates. Taiwanese CA-MRSA isolates belong to ST59 and can be grouped into 2 distinct clones, a virulent Taiwan clone and a commensal Asian-Pacific clone. The Taiwan clone carries the Panton–Valentine leukocidin (PVL) genes and the staphylococcal chromosomal cassette mec (SCCmec) VT, and is frequently isolated from patients with severe disease. The Asian-Pacific clone is PVL-negative, carries SCCmec IV, and a frequent colonizer of healthy children. Isolates of both clones were characterized by their ability to adhere to respiratory A549 cells, cytotoxicity to human neutrophils, and nasal colonization of a murine and murine sepsis models. Genome variation was determined by polymerase chain reaction of selected virulence factors and by multi-strain whole genome microarray. Additionally, the expression of selected factors was compared between the 2 clones. The Taiwan clone showed a much higher cytotoxicity to the human neutrophils and caused more severe septic infections with a high mortality rate in the murine model. The clones were indistinguishable in their adhesion to A549 cells and persistence of murine nasal colonization. The microarray data revealed that the Taiwan clone had lost the ø3-prophage that integrates into the β-hemolysin gene and includes staphylokinase- and enterotoxin P-encoding genes, but had retained the genes for human immune evasion, scn and chps. Production of the virulence factors did not differ significantly in the 2 clonal groups, although more α-toxin was expressed in Taiwan clone isolates from pneumonia patients. In conclusion, the Taiwan CA-MRSA clone was distinguished by enhanced virulence in both humans and an animal infection model. The evolutionary acquisition of PVL, the higher expression of α-toxin, and possibly the loss of a large portion of the β-hemolysin-converting prophage likely contribute to its higher pathogenic potential than the Asian-Pacific clone.
Collapse
Affiliation(s)
- Chih-Jung Chen
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- * E-mail:
| | - Clemens Unger
- Institut für Tropenmedizin, Wilhelmstraße 27, Tübingen, Germany
| | | | - Jodi A. Lindsay
- Department of Cellular & Molecular Medicine, St George’s, University of London, Cranmer Terrace, London, United Kingdom
| | - Yhu-Chering Huang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Friedrich Götz
- Department of Microbial Genetics, Faculty of Biology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
116
|
Characterization of Antimicrobial Peptides toward the Development of Novel Antibiotics. Pharmaceuticals (Basel) 2013; 6:1055-81. [PMID: 24276381 PMCID: PMC3817730 DOI: 10.3390/ph6081055] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/02/2013] [Accepted: 08/16/2013] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial agents have eradicated many infectious diseases and significantly improved our living environment. However, abuse of antimicrobial agents has accelerated the emergence of multidrug-resistant microorganisms, and there is an urgent need for novel antibiotics. Antimicrobial peptides (AMPs) have attracted attention as a novel class of antimicrobial agents because AMPs efficiently kill a wide range of species, including bacteria, fungi, and viruses, via a novel mechanism of action. In addition, they are effective against pathogens that are resistant to almost all conventional antibiotics. AMPs have promising properties; they directly disrupt the functions of cellular membranes and nucleic acids, and the rate of appearance of AMP-resistant strains is very low. However, as pharmaceuticals, AMPs exhibit unfavorable properties, such as instability, hemolytic activity, high cost of production, salt sensitivity, and a broad spectrum of activity. Therefore, it is vital to improve these properties to develop novel AMP treatments. Here, we have reviewed the basic biochemical properties of AMPs and the recent strategies used to modulate these properties of AMPs to enhance their safety.
Collapse
|
117
|
Spaan AN, Surewaard BGJ, Nijland R, van Strijp JAG. Neutrophils versus Staphylococcus aureus: a biological tug of war. Annu Rev Microbiol 2013; 67:629-50. [PMID: 23834243 DOI: 10.1146/annurev-micro-092412-155746] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pathogen Staphylococcus aureus is well adapted to its human host. Neutrophil-mediated killing is a crucial defense system against S. aureus; however, the pathogen has evolved many strategies to resist killing. We first describe the discrete steps of neutrophil activation and migration to the site of infection and the killing of microbes by neutrophils in general. We then highlight the different approaches utilized by S. aureus to resist the different steps of neutrophil attack. Various molecules are discussed in their evolutionary context. Most of the molecules secreted by S. aureus to combat neutrophil attacks at the site of infection show clear human specificity. Many elements of human neutrophil defenses appear redundant, and so the evasion strategies of staphylococci display redundant functions as well. All efforts by S. aureus to resist neutrophil-mediated killing stress the importance of these mechanisms in the pathophysiology of staphylococcal diseases. However, the highly human-specific nature of most host-pathogen interactions hinders the in vivo establishment of their contribution to staphylococcal pathophysiology.
Collapse
Affiliation(s)
- András N Spaan
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; , , ,
| | | | | | | |
Collapse
|
118
|
Candida albicans mucin Msb2 is a broad-range protectant against antimicrobial peptides. Antimicrob Agents Chemother 2013; 57:3917-22. [PMID: 23733470 DOI: 10.1128/aac.00862-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human fungal pathogen Candida albicans releases a large glycofragment of the Msb2 surface protein (Msb2*) into the growth environment, which protects against the action of human antimicrobial peptides (AMPs) LL-37 and histatin-5. Quantitation of Msb2*/LL-37 interactions by microscale thermophoresis revealed high-affinity binding (dissociation constant [KD] = 73 nM), which was lost or greatly diminished by lack of O-glycosylation or by Msb2* denaturation. Msb2* also interacted with human α- and β-defensins and protected C. albicans against these AMPs. In addition, the lipopeptide antibiotic daptomycin was bound and inactivated by Msb2*, which prevented the killing of bacterial pathogens Staphylococcus aureus, Enterococcus faecalis, and Corynebacterium pseudodiphtheriticum. In coculturings or mixed biofilms of S. aureus with C. albicans wild-type but not msb2 mutant strains, the protective effects of Msb2* on the bactericidal action of daptomycin were demonstrated. These results suggest that tight binding of shed Msb2* to AMPs that occurs during bacterial coinfections with C. albicans compromises antibacterial therapy by inactivating a relevant reserve antibiotic.
Collapse
|
119
|
Potempa M, Potempa J. Protease-dependent mechanisms of complement evasion by bacterial pathogens. Biol Chem 2013; 393:873-88. [PMID: 22944688 DOI: 10.1515/hsz-2012-0174] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/06/2012] [Indexed: 12/11/2022]
Abstract
The human immune system has evolved a variety of mechanisms for the primary task of neutralizing and eliminating microbial intruders. As the first line of defense, the complement system is responsible for rapid recognition and opsonization of bacteria, presentation to phagocytes and bacterial cell killing by direct lysis. All successful human pathogens have mechanisms of circumventing the antibacterial activity of the complement system and escaping this stage of the immune response. One of the ways in which pathogens achieve this is the deployment of proteases. Based on the increasing number of recent publications in this area, it appears that proteolytic inactivation of the antibacterial activities of the complement system is a common strategy of avoiding targeting by this arm of host innate immune defense. In this review, we focus on those bacteria that deploy proteases capable of degrading complement system components into non-functional fragments, thus impairing complement-dependent antibacterial activity and facilitating pathogen survival inside the host.
Collapse
Affiliation(s)
- Michal Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | | |
Collapse
|
120
|
Zecconi A, Scali F. Staphylococcus aureus virulence factors in evasion from innate immune defenses in human and animal diseases. Immunol Lett 2013; 150:12-22. [PMID: 23376548 DOI: 10.1016/j.imlet.2013.01.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/09/2012] [Accepted: 01/08/2013] [Indexed: 01/04/2023]
Abstract
In the last decades, Staphylococcus aureus acquired a dramatic relevance in human and veterinary medicine for different reasons, one of them represented by the increasing prevalence of antibiotic resistant strains. However, antibiotic resistance is not the only weapon in the arsenal of S. aureus. Indeed, these bacteria have plenty of virulence factors, including a vast ability to evade host immune defenses. The innate immune system represents the first line of defense against invading pathogens. This system consists of three major effector mechanisms: antimicrobial peptides and enzymes, the complement system and phagocytes. In this review, we focused on S. aureus virulence factors involved in the immune evasion in the first phases of infection: TLR recognition avoidance, adhesins affecting immune response and resistance to host defenses peptides and polypeptides. Studies of innate immune defenses and their role against S. aureus are important in human and veterinary medicine given the problems related to S. aureus antimicrobial resistance. Moreover, due to the pathogen ability to manipulate the immune response, these data are needed to develop efficacious vaccines or molecules against S. aureus.
Collapse
Affiliation(s)
- Alfonso Zecconi
- Università degli Studi di Milano, Dip. Scienze Veterinarie e Sanità Pubblica, Via Celoria 10, 20133 Milano, Italy.
| | | |
Collapse
|
121
|
van Sorge NM, Beasley FC, Gusarov I, Gonzalez DJ, von Köckritz-Blickwede M, Anik S, Borkowski AW, Dorrestein PC, Nudler E, Nizet V. Methicillin-resistant Staphylococcus aureus bacterial nitric-oxide synthase affects antibiotic sensitivity and skin abscess development. J Biol Chem 2013; 288:6417-26. [PMID: 23322784 DOI: 10.1074/jbc.m112.448738] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Staphylococcus aureus infections present an enormous global health concern complicated by an alarming increase in antibiotic resistance. S. aureus is among the few bacterial species that express nitric-oxide synthase (bNOS) and thus can catalyze NO production from L-arginine. Here we generate an isogenic bNOS-deficient mutant in the epidemic community-acquired methicillin-resistant S. aureus (MRSA) USA300 clone to study its contribution to virulence and antibiotic susceptibility. Loss of bNOS increased MRSA susceptibility to reactive oxygen species and host cathelicidin antimicrobial peptides, which correlated with increased MRSA killing by human neutrophils and within neutrophil extracellular traps. bNOS also promoted resistance to the pharmaceutical antibiotics that act on the cell envelope such as vancomycin and daptomycin. Surprisingly, bNOS-deficient strains gained resistance to aminoglycosides, suggesting that the role of bNOS in antibiotic susceptibility is more complex than previously observed in Bacillus species. Finally, the MRSA bNOS mutant showed reduced virulence with decreased survival and smaller abscess generation in a mouse subcutaneous infection model. Together, these data indicate that bNOS contributes to MRSA innate immune and antibiotic resistance phenotypes. Future development of specific bNOS inhibitors could be an attractive option to simultaneously reduce MRSA pathology and enhance its susceptibility to commonly used antibiotics.
Collapse
Affiliation(s)
- Nina M van Sorge
- Departments of Pediatrics, University of California, San Diego, California 92093, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Alba A, López-Abarrategui C, Otero-González AJ. Host defense peptides: an alternative as antiinfective and immunomodulatory therapeutics. Biopolymers 2013. [PMID: 23193590 DOI: 10.1002/bip.22076] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Host defense peptides are conserved components of innate immune response present among all classes of life. These peptides are potent, broad spectrum antimicrobial agents with potential as novel therapeutic compounds. Also, the ability of host defense peptides to modulate immunity is an emerging therapeutic concept since its selective modulation is a novel antiinfective strategy. Their mechanisms of action and the fundamental differences between pathogens and host cells surfaces mostly lead to a not widely extended microbial resistance and to a lower toxicity toward host cells. Biological libraries and rational design are novel tools for developing such molecules with promising applications as therapeutic drugs.
Collapse
Affiliation(s)
- Annia Alba
- Departamento de Parasitología, Instituto de Medicina Tropical "Pedro Kourí," La Habana, Cuba
| | | | | |
Collapse
|
123
|
Hollands A, Gonzalez D, Leire E, Donald C, Gallo RL, Sanderson-Smith M, Dorrestein PC, Nizet V. A bacterial pathogen co-opts host plasmin to resist killing by cathelicidin antimicrobial peptides. J Biol Chem 2012; 287:40891-7. [PMID: 23038245 PMCID: PMC3510793 DOI: 10.1074/jbc.m112.404582] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/14/2012] [Indexed: 02/04/2023] Open
Abstract
The bacterial pathogen Group A Streptococcus (GAS) colonizes epithelial and mucosal surfaces and can cause a broad spectrum of human disease. Through the secreted plasminogen activator streptokinase (Ska), GAS activates human plasminogen into plasmin and binds it to the bacterial surface. The resulting surface plasmin protease activity has been proposed to play a role in disrupting tissue barriers, promoting invasive spread of the bacterium. We investigated whether this surface protease activity could aid the immune evasion role through degradation of the key innate antimicrobial peptide LL-37, the human cathelicidin. Cleavage products of plasmin-degraded LL-37 were analyzed by matrix-assisted laser desorption ionization mass spectrometry. Ska-deficient GAS strains were generated by targeted allelic exchange mutagenesis and confirmed to lack surface plasmin activity after growth in human plasma or media supplemented with plasminogen and fibrinogen. Loss of surface plasmin activity left GAS unable to efficiently degrade LL-37 and increased bacterial susceptibility to killing by the antimicrobial peptide. When mice infected with GAS were simultaneously treated with the plasmin inhibitor aprotinin, a significant reduction in the size of necrotic skin lesions was observed. Together these data reveal a novel immune evasion strategy of the human pathogen: co-opting the activity of a host protease to evade peptide-based innate host defenses.
Collapse
Affiliation(s)
| | | | | | - Cortny Donald
- the Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | | | - Martina Sanderson-Smith
- the Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Pieter C. Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 and
| | - Victor Nizet
- From the Department of Pediatrics
- Skaggs School of Pharmacy and Pharmaceutical Sciences
| |
Collapse
|
124
|
Mao R, Teng D, Wang X, Xi D, Zhang Y, Hu X, Yang Y, Wang J. Design, expression, and characterization of a novel targeted plectasin against methicillin-resistant Staphylococcus aureus. Appl Microbiol Biotechnol 2012; 97:3991-4002. [PMID: 23095942 DOI: 10.1007/s00253-012-4508-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 10/27/2022]
Abstract
A novel specifically targeted antimicrobial peptide (STAMP) that was especially effective against methicillin-resistant Staphylococcus aureus (MRSA) was designed by fusing the AgrD1 pheromone to the N-terminal end of plectasin. This STAMP was named Agplectasin, and its gene was synthesized and expressed in Pichia pastoris X-33 via pPICZαA. The highest amount of total secreted protein reached 1,285.5 mg/l at 108 h during the 120-h induction. The recombinant Agplectasin (rAgP) was purified by cation exchange chromatography and hydrophobic exchange chromatography; its yield reached 150 mg/l with 94 % purity. The rAgP exhibited strong bactericidal activity against S. aureus but not Staphylococcus epidermidis or other types of tested bacteria. A bactericidal kinetics assay showed that the rAgP killed over 99.9 % of tested S. aureus (ATCC 25923 and ATCC 43300) in both Mueller-Hinton medium and human blood within 10 h when treated with 4× minimal inhibitory concentration. The rAgP caused only approximately 1 % hemolysis of human blood cells, even when the concentration reached 512 μg/ml, making it potentially feasible as a clinical injection agent. In addition, it maintained a high activity over a wide range of pH values (2.0-10.0) and demonstrated a high thermal stability at 100 °C for 1 h. These results suggested that this STAMP has the potential to eliminate MRSA strains without disrupting the normal flora.
Collapse
Affiliation(s)
- Ruoyu Mao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, China
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Rautenbach M, Eyéghé-Bickong HA, Vlok NM, Stander M, de Beer A. Direct surfactin-gramicidin S antagonism supports detoxification in mixed producer cultures of Bacillus subtilis and Aneurinibacillus migulanus. MICROBIOLOGY-SGM 2012; 158:3072-3082. [PMID: 23103974 DOI: 10.1099/mic.0.063131-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Antibiotic production as a defence mechanism is a characteristic of a wide variety of organisms. In natural evolutionary adaptation, cellular events such as sporulation, biofilm formation and resistance to antibiotics enable some micro-organisms to survive environmental and antibiotic stress conditions. The two antimicrobial cyclic peptides in this study, gramicidin S (GS) from Aneurinibacillus migulanus and the lipopeptide surfactin (Srf) from Bacillus subtilis, have been shown to affect both membrane and intercellular components of target organisms. Many functions, other than that of antimicrobial activity, have been assigned to Srf. We present evidence that an additional function may exist for Srf, namely that of a detoxifying agent that protects its producer from the lytic activity of GS. We observed that Srf producers were more resistant to GS and could be co-cultured with the GS producer. Furthermore, exogenous Srf antagonized the activity of GS against both Srf-producing and non-producing bacterial strains. A molecular interaction between the anionic Srf and the cationic GS was observed with circular dichroism and electrospray MS. Our results indicate that the formation of an inactive complex between GS and Srf supports resistance towards GS, with the anionic Srf forming a chemical barrier to protect its producer. This direct detoxification combined with the induction of protective stress responses in B. subtilis by Srf confers resistance toward GS from A. migulanus and allows survival in mixed cultures.
Collapse
Affiliation(s)
- Marina Rautenbach
- BIOPEP Peptide Group, Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Hans André Eyéghé-Bickong
- BIOPEP Peptide Group, Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Nicolas Maré Vlok
- BIOPEP Peptide Group, Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Marietjie Stander
- Department of Biochemistry and LCMS-Central Analytical Facility, Science Faculty, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Abré de Beer
- BIOPEP Peptide Group, Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
126
|
Bacterial plasminogen receptors utilize host plasminogen system for effective invasion and dissemination. J Biomed Biotechnol 2012; 2012:482096. [PMID: 23118509 PMCID: PMC3477821 DOI: 10.1155/2012/482096] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/24/2012] [Accepted: 08/13/2012] [Indexed: 01/06/2023] Open
Abstract
In order for invasive pathogens to migrate beyond the site of infection, host physiological barriers such as the extracellular matrix, the basement membrane, and encapsulating fibrin network must be degraded. To circumvent these impediments, proteolytic enzymes facilitate the dissemination of the microorganism. Recruitment of host proteases to the bacterial surface represents a particularly effective mechanism for enhancing invasiveness. Plasmin is a broad spectrum serine protease that degrades fibrin, extracellular matrices, and connective tissue. A large number of pathogens express plasminogen receptors which immobilize plasmin(ogen) on the bacterial surface. Surface-bound plasminogen is then activated by plasminogen activators to plasmin through limited proteolysis thus triggering the development of a proteolytic surface on the bacteria and eventually assisting the spread of bacteria. The host hemostatic system plays an important role in systemic infection. The interplay between hemostatic processes such as coagulation and fibrinolysis and the inflammatory response constitutes essential components of host defense and bacterial invasion. The goal of this paper is to highlight mechanisms whereby pathogenic bacteria, by engaging surface receptors, utilize and exploit the host plasminogen and fibrinolytic system for the successful dissemination within the host.
Collapse
|
127
|
Jeong DW, Cho H, Jones MB, Shatzkes K, Sun F, Ji Q, Liu Q, Peterson SN, He C, Bae T. The auxiliary protein complex SaePQ activates the phosphatase activity of sensor kinase SaeS in the SaeRS two-component system of Staphylococcus aureus. Mol Microbiol 2012; 86:331-48. [PMID: 22882143 DOI: 10.1111/j.1365-2958.2012.08198.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2012] [Indexed: 12/21/2022]
Abstract
In bacterial two-component regulatory systems (TCSs), dephosphorylation of phosphorylated response regulators is essential for resetting the activated systems to the pre-activation state. However, in the SaeRS TCS, a major virulence TCS of Staphylococcus aureus, the mechanism for dephosphorylation of the response regulator SaeR has not been identified. Here we report that two auxiliary proteins from the sae operon, SaeP and SaeQ, form a protein complex with the sensor kinase SaeS and activate the sensor kinase's phosphatase activity. Efficient activation of the phosphatase activity required the presence of both SaeP and SaeQ. When SaeP and SaeQ were ectopically expressed, the expression of coagulase, a sae target with low affinity for phosphorylated SaeR, was greatly reduced, while the expression of alpha-haemolysin, a sae target with high affinity for phosphorylated SaeR, was not, demonstrating a differential effect of SaePQ on sae target gene expression. When expression of SaePQ was abolished, most sae target genes were induced at an elevated level. Since the expression of SaeP and SaeQ is induced by the SaeRS TCS, these results suggest that the SaeRS TCS returns to the pre-activation state by a negative feedback mechanism.
Collapse
Affiliation(s)
- Do-Won Jeong
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN 46408, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Anaya-López JL, López-Meza JE, Ochoa-Zarzosa A. Bacterial resistance to cationic antimicrobial peptides. Crit Rev Microbiol 2012; 39:180-95. [PMID: 22799636 DOI: 10.3109/1040841x.2012.699025] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Naturally occurring cationic antimicrobial peptides (CAMPs) have been considered as promising candidates to treat infections caused by pathogenic bacteria to animals and humans. This assumption is based on their mechanism of action, which is mainly performed through electrostatic membrane interactions. Unfortunately, the rise in the reports that describe bacterial resistance to CAMPs has redefined their role as therapeutic agents. In this review, we describe the state of the art of the most common resistance mechanisms developed by bacteria to CAMPs, making special emphasis on resistance selection. Considering most of the resistance mechanisms here reviewed, the emergence of resistance is unlikely in the short term, however we also described evidences that show the evolution of resistance to CAMPs, reevaluating their use as good antibacterial agents. Finally, the knowledge related to the description of CAMP resistance mechanisms may provide useful information for improving strategies to control infections.
Collapse
Affiliation(s)
- José Luis Anaya-López
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Unidad de Biotecnología, Celaya, México
| | | | | |
Collapse
|
129
|
Rajabi M, Ericksen B, Wu X, de Leeuw E, Zhao L, Pazgier M, Lu W. Functional determinants of human enteric α-defensin HD5: crucial role for hydrophobicity at dimer interface. J Biol Chem 2012; 287:21615-27. [PMID: 22573326 DOI: 10.1074/jbc.m112.367995] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human α-defensins are cationic peptides that self-associate into dimers and higher-order oligomers. They bind protein toxins, such as anthrax lethal factor (LF), and kill bacteria, including Escherichia coli and Staphylococcus aureus, among other functions. There are six members of the human α-defensin family: four human neutrophil peptides, including HNP1, and two enteric human defensins, including HD5. We subjected HD5 to comprehensive alanine scanning mutagenesis. We then assayed LF binding by surface plasmon resonance, LF activity by enzyme kinetic inhibition, and antibacterial activity by the virtual colony count assay. Most mutations could be tolerated, resulting in activity comparable with that of wild type HD5. However, the L29A mutation decimated LF binding and bactericidal activity against Escherichia coli and Staphylococcus aureus. A series of unnatural aliphatic and aromatic substitutions at position 29, including aminobutyric acid (Abu) and norleucine (Nle) correlated hydrophobicity with HD5 function. The crystal structure of L29Abu-HD5 depicted decreased hydrophobic contacts at the dimer interface, whereas the Nle-29-HD5 crystal structure depicted a novel mode of dimerization with parallel β strands. The effect of mutating Leu(29) is similar to that of a C-terminal hydrophobic residue of HNP1, Trp(26). In addition, in order to further clarify the role of dimerization in HD5 function, an obligate monomer was generated by N-methylation of the Glu(21) residue, decreasing LF binding and antibacterial activity against S. aureus. These results further characterize the dimer interface of the α-defensins, revealing a crucial role of hydrophobicity-mediated dimerization.
Collapse
Affiliation(s)
- Mohsen Rajabi
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | |
Collapse
|
130
|
Abstract
Defensins are small, multifunctional cationic peptides. They typically contain six conserved cysteines whose three intramolecular disulfides stabilize a largely β-sheet structure. This review of human α-defensins begins by describing their evolution, including their likely relationship to the Big Defensins of invertebrates, and their kinship to the β-defensin peptides of many if not all vertebrates, and the θ-defensins found in certain non-human primates. We provide a short history of the search for leukocyte-derived microbicidal molecules, emphasizing the roles played by luck (good), preconceived notions (mostly bad), and proper timing (essential). The antimicrobial, antiviral, antitoxic, and binding properties of human α-defensins are summarized. The structural features of α-defensins are described extensively and their functional contributions are assessed. The properties of HD6, an enigmatic Paneth cell α-defensin, are contrasted with those of the four myeloid α-defensins (HNP1-4) and of HD5, the other α-defensin of human Paneth cells. The review ends with a decalogue that may assist researchers or students interested in α-defensins and related aspects of neutrophil function.
Collapse
Affiliation(s)
- Robert I Lehrer
- Department of Medicine and Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1688, USA.
| | | |
Collapse
|
131
|
Weidenmaier C, Goerke C, Wolz C. Staphylococcus aureus determinants for nasal colonization. Trends Microbiol 2012; 20:243-50. [PMID: 22494802 DOI: 10.1016/j.tim.2012.03.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/27/2012] [Accepted: 03/12/2012] [Indexed: 01/06/2023]
Abstract
Approximately 20% of the healthy human population is persistently colonized in the nasal cavity with Staphylococcus aureus, which constitutes a major risk for infection. S. aureus seems to predominantly colonize the anterior part of the nasal cavity by adhering to nasal surface structures and escaping the host innate and adaptive immune responses. Several bacterial and host factors that play a role in these processes have been identified in the past few years and were in part functionally evaluated in appropriate colonization models. However, the dynamics of host-pathogen crosstalk is only partially understood.
Collapse
Affiliation(s)
- Christopher Weidenmaier
- Interfaculty Institute of Microbiology and Infection Medicine, University Hospital Tübingen, University of Tübingen, Elfriede-Aulhorn Straße 6, 72076 Tübingen, Germany
| | | | | |
Collapse
|
132
|
Abstract
Staphylococcus aureus is an important human pathogen whose virulence relies on the secretion of many different proteins. In general, the secretion of most proteins in S. aureus, as well as other bacteria, is dependent on the type I signal peptidase (SPase)-mediated cleavage of the N-terminal signal peptide that targets a protein to the general secretory pathway. The arylomycins are a class of natural product antibiotics that inhibit SPase, suggesting that they may be useful chemical biology tools for characterizing the secretome. While wild-type S. aureus (NCTC 8325) is naturally resistant to the arylomycins, sensitivity is conferred via a point mutation in its SPase. Here, we use a synthetic arylomycin along with a sensitized strain of S. aureus and multidimensional protein identification technology (MudPIT) mass spectrometry to identify 46 proteins whose extracellular accumulation requires SPase activity. Forty-four possess identifiable Sec-type signal peptides and thus are likely canonically secreted proteins, while four also appear to possess cell wall retention signals. We also identified the soluble C-terminal domains of two transmembrane proteins, lipoteichoic acid synthase, LtaS, and O-acyteltransferase, OatA, both of which appear to have noncanonical, internal SPase cleavage sites. Lastly, we identified three proteins, HtrA, PrsA, and SAOUHSC_01761, whose secretion is induced by arylomycin treatment. In addition to elucidating fundamental aspects of the physiology and pathology of S. aureus, the data suggest that an arylomycin-based therapeutic would reduce virulence while simultaneously eradicating an infection.
Collapse
|
133
|
Leonard BC, Affolter VK, Bevins CL. Antimicrobial peptides: agents of border protection for companion animals. Vet Dermatol 2012; 23:177-e36. [PMID: 22409270 PMCID: PMC3467306 DOI: 10.1111/j.1365-3164.2012.01037.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the past 20 years, there have been significant inroads into understanding the roles of antimicrobial peptides in homeostatic functions and their involvement in disease pathogenesis. In addition to direct antimicrobial activity, these peptides participate in many cellular functions, including chemotaxis, wound healing and even determination of canine coat colour. Various biological and genetic approaches have helped to elucidate the role of antimicrobial peptides with respect to innate immunity and host defense. Associations of antimicrobial peptides with various skin diseases, including psoriasis, rosacea and atopic dermatitis, have been documented in humans. In the longer term, therapeutic modulation of antimicrobial peptide expression may provide effective new treatments for disease. This review highlights current knowledge about antimicrobial peptides of the skin and circulating leukocytes, with particular focus on relevance to physiology and disease in companion animals.
Collapse
Affiliation(s)
- Brian C Leonard
- Department of Microbiology and Immunology, UC Davis School of Medicine, Davis, CA 95616, USA
| | | | | |
Collapse
|
134
|
Bardoel BW, Strijp JAG. Molecular battle between host and bacterium: recognition in innate immunity. J Mol Recognit 2012; 24:1077-86. [PMID: 22038814 DOI: 10.1002/jmr.1156] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During infection, our innate immune system is the first line of defense and has evolved to clear invading bacteria immediately. To do so, recognition is the key element. However, how does the innate immune system distinguish self from nonself, and how does it recognize all bacteria (estimated to be far over a million species)? The answer lies in the recognition of evolutionary conserved structures. In this review, we approach this phenomenon from the bacterial perspective. What are the evolutionary conserved structures in bacteria, and what strategies are there in the human innate immune system to sense these structures? We illustrate most examples both at the functional as well as at the molecular level. Furthermore, we highlight how pathogenic bacteria can evade this recognition to survive better in the human host which in turn can result in life-threatening diseases.
Collapse
Affiliation(s)
- Bart W Bardoel
- Department of Medical Microbiology, UMC Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
135
|
Szafranski-Schneider E, Swidergall M, Cottier F, Tielker D, Román E, Pla J, Ernst JF. Msb2 shedding protects Candida albicans against antimicrobial peptides. PLoS Pathog 2012; 8:e1002501. [PMID: 22319443 PMCID: PMC3271078 DOI: 10.1371/journal.ppat.1002501] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 12/09/2011] [Indexed: 11/30/2022] Open
Abstract
Msb2 is a sensor protein in the plasma membrane of fungi. In the human fungal pathogen C. albicans Msb2 signals via the Cek1 MAP kinase pathway to maintain cell wall integrity and allow filamentous growth. Msb2 doubly epitope-tagged in its large extracellular and small cytoplasmic domain was efficiently cleaved during liquid and surface growth and the extracellular domain was almost quantitatively released into the growth medium. Msb2 cleavage was independent of proteases Sap9, Sap10 and Kex2. Secreted Msb2 was highly O-glycosylated by protein mannosyltransferases including Pmt1 resulting in an apparent molecular mass of >400 kDa. Deletion analyses revealed that the transmembrane region is required for Msb2 function, while the large N-terminal and the small cytoplasmic region function to downregulate Msb2 signaling or, respectively, allow its induction by tunicamycin. Purified extracellular Msb2 domain protected fungal and bacterial cells effectively from antimicrobial peptides (AMPs) histatin-5 and LL-37. AMP inactivation was not due to degradation but depended on the quantity and length of the Msb2 glycofragment. C. albicans msb2 mutants were supersensitive to LL-37 but not histatin-5, suggesting that secreted rather than cell-associated Msb2 determines AMP protection. Thus, in addition to its sensor function Msb2 has a second activity because shedding of its glycofragment generates AMP quorum resistance. Microbial pathogens are attacked by antimicrobial peptides (AMPs) produced by the human host. AMPs kill pathogens and recruit immune cells to the site of infection. In defense, the human fungal pathogen Candida albicans continuously cleaves and secretes a glycoprotein fragment of the surface protein Msb2, which protects against AMPs. The results suggest that shed Msb2 allows fungal colonies to persist and avoid inflammatory responses caused by AMPs. Msb2 shedding and its additional role in stabilizing the fungal cell wall may be considered as novel diagnostic tools and targets for antifungal action.
Collapse
Affiliation(s)
| | - Marc Swidergall
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Fabien Cottier
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Denis Tielker
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Elvira Román
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Jesus Pla
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Joachim F. Ernst
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
136
|
Kim HK, Thammavongsa V, Schneewind O, Missiakas D. Recurrent infections and immune evasion strategies of Staphylococcus aureus. Curr Opin Microbiol 2012; 15:92-9. [PMID: 22088393 PMCID: PMC3538788 DOI: 10.1016/j.mib.2011.10.012] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/21/2011] [Accepted: 10/21/2011] [Indexed: 12/15/2022]
Abstract
Staphylococcus aureus causes purulent skin and soft tissue infections (SSTIs) that frequently reoccur. Staphylococal SSTIs can lead to invasive disease and sepsis, which are among the most significant causes of infectious disease mortality in both developed and developing countries. Human or animal infections with S. aureus do not elicit protective immunity against staphylococcal diseases. Here we review what is known about the immune evasive strategies of S. aureus that enable the pathogen's escape from protective immune responses. Three secreted products are discussed in detail, staphylococcal protein A (SpA), staphylococcal binder of immunoglobulin (Sbi) and adenosine synthase A (AdsA). By forming a complex with V(H)3-type IgM on the surface of B cells, SpA functions as a superantigen to modulate antibody responses to staphylococcal infection. SpA also captures pathogen-specific antibodies by binding their Fcγ portion. The latter activity of SpA is shared by Sbi, which also associates with complement factors 3d and factor H to promote the depletion of complement. AdsA synthesizes the immune signaling molecule adenosine, thereby dampening innate and adaptive immune responses during infection. We discuss strategies how the three secreted products of staphylococci may be exploited for the development of vaccines and therapeutics.
Collapse
Affiliation(s)
- Hwan Keun Kim
- Department of Microbiology, University of Chicago, 920 East 58 Street, Chicago, IL 60637
| | - Vilasack Thammavongsa
- Department of Microbiology, University of Chicago, 920 East 58 Street, Chicago, IL 60637
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, 920 East 58 Street, Chicago, IL 60637
| | - Dominique Missiakas
- Department of Microbiology, University of Chicago, 920 East 58 Street, Chicago, IL 60637
| |
Collapse
|
137
|
Mazda Y, Kawada-Matsuo M, Kanbara K, Oogai Y, Shibata Y, Yamashita Y, Miyawaki S, Komatsuzawa H. Association of CiaRH with resistance of Streptococcus mutans to antimicrobial peptides in biofilms. Mol Oral Microbiol 2012; 27:124-35. [DOI: 10.1111/j.2041-1014.2012.00637.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
138
|
Rosenstein R, Götz F. What Distinguishes Highly Pathogenic Staphylococci from Medium- and Non-pathogenic? Curr Top Microbiol Immunol 2012; 358:33-89. [DOI: 10.1007/82_2012_286] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
139
|
The oligo-acyl lysyl antimicrobial peptide C₁₂K-2β₁₂ exhibits a dual mechanism of action and demonstrates strong in vivo efficacy against Helicobacter pylori. Antimicrob Agents Chemother 2011; 56:378-90. [PMID: 22064541 DOI: 10.1128/aac.00689-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori has developed antimicrobial resistance to virtually all current antibiotics. Thus, there is a pressing need to develop new anti-H. pylori therapies. We recently described a novel oligo-acyl-lysyl (OAK) antimicrobial peptidomimetic, C(12)K-2β(12), that shows potent in vitro bactericidal activity against H. pylori. Herein, we define the mechanism of action and evaluate the in vivo efficacy of C(12)K-2β(12) against H. pylori after experimental infection of Mongolian gerbils. We demonstrate using a 1-N-phenylnaphthylamine (fluorescent probe) uptake assay and electron microscopy that C(12)K-2β(12) rapidly permeabilizes the bacterial membrane and creates pores that cause bacterial cell lysis. Furthermore, using nucleic acid binding assays, Western blots, and confocal microscopy, we show that C(12)K-2β(12) can cross the bacterial membranes into the cytoplasm and tightly bind to bacterial DNA, RNA, and proteins, a property that may result in inhibition of enzymatic activities and macromolecule synthesis. To define the in vivo efficacy of C(12)K-2β(12), H. pylori-infected gerbils were orogastrically treated with increasing doses and concentrations of C(12)K-2β(12) 1 day or 1 week postinfection. The efficacy of C(12)K-2β(12) was strongest in animals that received the largest number of doses at the highest concentration, indicating dose-dependent activity of the peptide (P < 0.001 by analysis of variance [ANOVA]) regardless of the timing of the treatment with C(12)K-2β(12). Overall, our results demonstrate a dual mode of action of C(12)K-2β(12) against the H. pylori membrane and cytoplasmic components. Moreover, and consistent with the previously reported in vitro efficacy, C(12)K-2β(12) shows significant in vivo efficacy against H. pylori when used as monotherapy. Therefore, OAK peptides may be a valuable resource for therapeutic treatment of H. pylori infection.
Collapse
|
140
|
Krishna S, Miller LS. Innate and adaptive immune responses against Staphylococcus aureus skin infections. Semin Immunopathol 2011; 34:261-80. [PMID: 22057887 DOI: 10.1007/s00281-011-0292-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 10/14/2011] [Indexed: 12/20/2022]
Abstract
Staphylococcus aureus is an important human pathogen that is responsible for the vast majority of bacterial skin and soft tissue infections in humans. S. aureus can also become more invasive and cause life-threatening infections such as bacteremia, pneumonia, abscesses of various organs, meningitis, osteomyelitis, endocarditis, and sepsis. These infections represent a major public health threat due to the enormous numbers of these infections and the widespread emergence of methicillin-resistant S. aureus (MRSA) strains. MSRA is endemic in hospitals worldwide and is rapidly spreading throughout the normal human population in the community. The increasing frequency of MRSA infections has complicated treatment as these strains are more virulent and are increasingly becoming resistant to multiple different classes of antibiotics. The important role of the immune response against S. aureus infections cannot be overemphasized as humans with certain genetic and acquired immunodeficiency disorders are at an increased risk for infection. Understanding the cutaneous immune responses against S. aureus is essential as most of these infections occur or originate from a site of infection or colonization of the skin and mucosa. This review will summarize the innate immune responses against S. aureus skin infections, including antimicrobial peptides that have direct antimicrobial activity against S. aureus as well as pattern recognition receptors and proinflammatory cytokines that promote neutrophil abscess formation in the skin, which is required for bacterial clearance. Finally, we will discuss the recent discoveries involving IL-17-mediated responses, which provide a key link between cutaneous innate and adaptive immune responses against S. aureus skin infections.
Collapse
Affiliation(s)
- Sheila Krishna
- Division of Dermatology, Department of Medicine, University of California Los Angeles, 52-121 Center for Health Sciences, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | | |
Collapse
|
141
|
Edwards AM, Massey RC, Clarke SR. Molecular mechanisms of Staphylococcus aureus nasopharyngeal colonization. Mol Oral Microbiol 2011; 27:1-10. [PMID: 22230461 DOI: 10.1111/j.2041-1014.2011.00628.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Staphylococcus aureus is responsible for a wide range of different infections ranging in severity from mild to fatal. However, it primarily exists as a commensal organism in a number of different anatomical sites including the nasopharynx. Although colonization itself is a harmless state, colonized individuals are at risk of endogenous infection when S. aureus enters otherwise sterile sites via wounds or indwelling medical devices. As such, studies of colonization may identify important targets for vaccines or other prophylactic approaches. Colonization is a dynamic process; S. aureus must attach to host surfaces, overcome immune components and compete with other commensal microbes. This occurs via a number of surface-attached and secreted proteins and other factors such as wall teichoic acid. In addition, colonizing S. aureus must constantly replicate to maintain its niche and exclude other strains. These myriad interactions provide a strong selective pressure for the maintenance or enhancement of mechanisms of adhesion, invasion and immune evasion. The evolutionary implications of this may explain why S. aureus is such a capable pathogen because many of the proteins involved in colonization have also been identified as virulence factors. This review describes the diverse molecular mechanisms used by S. aureus to colonize the host and discusses how the pressures that have selected for these may have led to its virulence.
Collapse
Affiliation(s)
- A M Edwards
- Department of Biology and Biochemistry, University of Bath, Bath, UK.
| | | | | |
Collapse
|
142
|
Parker D, Prince A. Immunopathogenesis of Staphylococcus aureus pulmonary infection. Semin Immunopathol 2011; 34:281-97. [PMID: 22037948 DOI: 10.1007/s00281-011-0291-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/14/2011] [Indexed: 01/23/2023]
Abstract
Staphylococcus aureus is a common human pathogen highly evolved as both a component of the commensal flora and as a major cause of invasive infection. Severe respiratory infection due to staphylococci has been increasing due to the prevalence of more virulent USA300 CA-MRSA strains in the general population. The ability of S. aureus to adapt to the milieu of the respiratory tract has facilitated its emergence as a respiratory pathogen. Its metabolic versatility, the ability to scavenge iron, coordinate gene expression, and the horizontal acquisition of useful genetic elements have all contributed to its success as a component of the respiratory flora, in hospitalized patients, as a complication of influenza and in normal hosts. The expression of surface adhesins facilitates its persistence in the airways. In addition, the highly sophisticated interactions of the multiple S. aureus virulence factors, particularly the α-hemolysin and protein A, with diverse immune effectors in the lung such as ADAM10, TNFR1, EGFR, immunoglobulin, and complement all contribute to the pathogenesis of staphylococcal pneumonia.
Collapse
Affiliation(s)
- Dane Parker
- Department of Pediatrics, Columbia University, New York, NY, USA
| | | |
Collapse
|
143
|
Thammavongsa V, Schneewind O, Missiakas DM. Enzymatic properties of Staphylococcus aureus adenosine synthase (AdsA). BMC BIOCHEMISTRY 2011; 12:56. [PMID: 22035583 PMCID: PMC3213008 DOI: 10.1186/1471-2091-12-56] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 10/28/2011] [Indexed: 01/08/2023]
Abstract
Background Staphylococcus aureus is a human pathogen that produces extracellular adenosine to evade clearance by the host immune system, an activity attributed to the 5'-nucleotidase activity of adenosine synthase (AdsA). In mammals, conversion of adenosine triphosphate to adenosine is catalyzed in a two-step process: ecto-nucleoside triphosphate diphosphohydrolases (ecto-NTDPases) hydrolyze ATP and ADP to AMP, whereas 5'-nucleotidases hydrolyze AMP to adenosine. NTPDases harbor apyrase conserved regions (ACRs) that are critical for activity. Results NTPDase ACR motifs are absent in AdsA, yet we report here that recombinant AdsA hydrolyzes ADP and ATP in addition to AMP. Competition assays suggest that hydrolysis occurs following binding of all three substrates at a unique site. Alanine substitution of two amino acids, aspartic acid 127 and histidine 196 within the 5'-nucleotidase signature sequence, leads to reduced AMP or ADP hydrolysis but does not affect the binding of these substrates. Conclusion Collectively, these results provide insight into the unique ability of AdsA to produce adenosine through the consecutive hydrolysis of ATP, ADP and AMP, thereby endowing S. aureus with the ability to modulate host immune responses.
Collapse
Affiliation(s)
- Vilasack Thammavongsa
- Department of Microbiology, University of Chicago, 920 E, 58th St, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
144
|
McAdow M, Kim HK, DeDent AC, Hendrickx APA, Schneewind O, Missiakas DM. Preventing Staphylococcus aureus sepsis through the inhibition of its agglutination in blood. PLoS Pathog 2011; 7:e1002307. [PMID: 22028651 PMCID: PMC3197598 DOI: 10.1371/journal.ppat.1002307] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 08/25/2011] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus infection is a frequent cause of sepsis in humans, a disease associated with high mortality and without specific intervention. When suspended in human or animal plasma, staphylococci are known to agglutinate, however the bacterial factors responsible for agglutination and their possible contribution to disease pathogenesis have not yet been revealed. Using a mouse model for S. aureus sepsis, we report here that staphylococcal agglutination in blood was associated with a lethal outcome of this disease. Three secreted products of staphylococci--coagulase (Coa), von Willebrand factor binding protein (vWbp) and clumping factor (ClfA)--were required for agglutination. Coa and vWbp activate prothrombin to cleave fibrinogen, whereas ClfA allowed staphylococci to associate with the resulting fibrin cables. All three virulence genes promoted the formation of thromboembolic lesions in heart tissues. S. aureus agglutination could be disrupted and the lethal outcome of sepsis could be prevented by combining dabigatran-etexilate treatment, which blocked Coa and vWbp activity, with antibodies specific for ClfA. Together these results suggest that the combined administration of direct thrombin inhibitors and ClfA-antibodies that block S. aureus agglutination with fibrin may be useful for the prevention of staphylococcal sepsis in humans.
Collapse
Affiliation(s)
- Molly McAdow
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Hwan Keun Kim
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Andrea C. DeDent
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Antoni P. A. Hendrickx
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - Dominique M. Missiakas
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
145
|
The Staphylococcus aureus two-component regulatory system, GraRS, senses and confers resistance to selected cationic antimicrobial peptides. Infect Immun 2011; 80:74-81. [PMID: 21986630 DOI: 10.1128/iai.05669-11] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The two-component regulatory system, GraRS, appears to be involved in staphylococcal responses to cationic antimicrobial peptides (CAPs). However, the mechanism(s) by which GraRS is induced, regulated, and modulated remain undefined. In this study, we used two well-characterized MRSA strains (Mu50 and COL) and their respective mutants of graR and vraG (encoding the ABC transporter-dependent efflux pump immediately downstream of graRS), and show that (i) the expression of two key determinants of net positive surface charge (mprF and dlt) is dependent on the cotranscription of both graR and vraG, (ii) reduced expression of mprF and dlt in graR mutants was phenotypically associated with reduced surface-positive charge, (iii) this net reduction in surface-positive charge in graR and vraG mutants, in turn, correlated with enhanced killing by a range of CAPs of diverse structure and origin, including those from mammalian platelets (tPMPs) and neutrophils (hNP-1) and from bacteria (polymyxin B), and (iv) the synthesis and translocation of membrane lysyl-phosphatidylglycerol (an mprF-dependent function) was substantially lower in graR and vraG mutants than in parental strains. Importantly, the inducibility of mprF and dlt transcription via the graRS-vraFG pathway was selective, with induction by sublethal exposure to the CAPs, RP-1 (platelets), and polymyxin B, but not by other cationic molecules (hNP-1, vancomycin, gentamicin, or calcium-daptomycin). Although graR regulates expression of vraG, the expression of graR was codependent on an intact downstream vraG locus. Collectively, these data support an important role of the graRS and vraFG loci in the sensing of and response to specific CAPs involved in innate host defenses.
Collapse
|
146
|
Lin YC, Anderson MJ, Kohler PL, Strandberg KL, Olson ME, Horswill AR, Schlievert PM, Peterson ML. Proinflammatory exoprotein characterization of toxic shock syndrome Staphylococcus aureus. Biochemistry 2011; 50:7157-67. [PMID: 21749039 PMCID: PMC3156861 DOI: 10.1021/bi200435n] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pulsed-field gel electrophoresis (PFGE) clonal type USA200 is the most widely disseminated Staphylococcus aureus colonizer of the nose and is a major cause of toxic shock syndrome (TSS). Exoproteins derived from these organisms have been suggested to contribute to their colonization and causation of human diseases but have not been well-characterized. Two representative S. aureus USA200 isolates, MNPE (α-toxin positive) and CDC587 (α-toxin mutant), isolated from pulmonary post-influenza TSS and menstrual vaginal TSS, respectively, were evaluated. Biochemical, immunobiological, and cell-based assays, including mass spectrometry, were used to identify key exoproteins derived from the strains that are responsible for proinflammatory and cytotoxic activity on human vaginal epithelial cells. Exoproteins associated with virulence were produced by both strains, and cytolysins (α-toxin and γ-toxin), superantigens, and proteases were identified as the major exoproteins, which caused epithelial cell inflammation and cytotoxicity. Exoprotein fractions from MNPE were more proinflammatory and cytotoxic than those from CDC587 due to high concentrations of α-toxin. CDC587 produced a small amount of α-toxin, despite the presence of a stop codon (TAG) at codon 113. Additional exotoxin identification studies of USA200 strain [S. aureus MN8 (α-toxin mutant)] confirmed that MN8 also produced low levels of α-toxin despite the same stop codon. The differences observed in virulence factor profiles of two USA200 strains provide insight into environmental factors that select for specific virulence factors. Cytolysins, superantigens, and proteases were identified as potential targets, where toxin neutralization may prevent or diminish epithelial damage associated with S. aureus.
Collapse
Affiliation(s)
- Ying-Chi Lin
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455
| | - Michele J. Anderson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455
| | - Petra L. Kohler
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| | - Kristi L. Strandberg
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| | - Michael E. Olson
- Department of Microbiology, University of Iowa, Iowa City, IA 52242
| | | | - Patrick M. Schlievert
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| | - Marnie L. Peterson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
147
|
Isaksson J, Brandsdal BO, Engqvist M, Flaten GE, Svendsen JSM, Stensen W. A synthetic antimicrobial peptidomimetic (LTX 109): stereochemical impact on membrane disruption. J Med Chem 2011; 54:5786-95. [PMID: 21732630 DOI: 10.1021/jm200450h] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
LTX 109 is a synthetic antimicrobial peptidomimetic (SAMP) currently in clinical phase II trials for topical treatment of infections of multiresistant bacterial strains. All possible eight stereoisomers of the peptidomimetic have been synthesized and tested for antimicrobial effect, hemolysis, and hydrophobicity, revealing a strong and unusual dependence on the stereochemistry for a molecule proposed to act on a general membrane mechanism. The three-dimensional structures were assessed using nuclear magnetic resonance spectroscopy (NMR) and molecular dynamics (MD) simulations in aqueous solution and in phospholipid bilayers. The solution structures of the most active stereoisomers are perfectly preorganized for insertion into the membrane, whereas the less active isomers need to pay an energy penalty in order to enter the lipid bilayer. This effect is also found to be reinforced by a significantly improved water solubility of the less active isomers due to a guanidyl-π stacking that helps to solvate the hydrophobic surfaces.
Collapse
Affiliation(s)
- Johan Isaksson
- Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | | | |
Collapse
|
148
|
Sun H. Exploration of the host haemostatic system by group A streptococcus: implications in searching for novel antimicrobial therapies. J Thromb Haemost 2011; 9 Suppl 1:189-94. [PMID: 21781255 PMCID: PMC3151011 DOI: 10.1111/j.1538-7836.2011.04316.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The haemostatic system is heavily involved in the host response to infection. A number of host haemostatic factors, notably plasminogen and fibrinogen have been reported to bind and interact with various bacterial proteins. This review summarises the roles of host haemostatic factors such as plasminogen, factor V and fibrinogen in host defence against group A streptococcus infection and discusses the potential of targeting the host haemostatic system for therapeutic intervention against infectious diseases.
Collapse
Affiliation(s)
- H Sun
- Department of Internal Medicine, University of Missouri Hospital and Clinics, Columbia, MO, USA.
| |
Collapse
|
149
|
Koprivnjak T, Peschel A. Bacterial resistance mechanisms against host defense peptides. Cell Mol Life Sci 2011; 68:2243-54. [PMID: 21560069 PMCID: PMC11115334 DOI: 10.1007/s00018-011-0716-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 12/30/2022]
Abstract
Host defense peptides and proteins are important components of the innate host defense against pathogenic microorganisms. They target negatively charged bacterial surfaces and disrupt microbial cytoplasmic membranes, which ultimately leads to bacterial destruction. Throughout evolution, pathogens devised several mechanisms to protect themselves from deleterious damage of host defense peptides. These strategies include (a) inactivation and cleavage of host defense peptides by production of host defense binding proteins and proteases, (b) repulsion of the peptides by alteration of pathogen's surface charge employing modifications by amino acids or amino sugars of anionic molecules (e.g., teichoic acids, lipid A and phospholipids), (c) alteration of bacterial membrane fluidity, and (d) expulsion of the peptides using multi drug pumps. Together with bacterial regulatory network(s) that regulate expression and activity of these mechanisms, they represent attractive targets for development of novel antibacterials.
Collapse
Affiliation(s)
- Tomaz Koprivnjak
- Department of Biotechnology, National Institute of Chemistry Slovenia, Hajdrihova 19, 1000, Ljubljana, Slovenia,
| | | |
Collapse
|
150
|
Verkaik NJ, Benard M, Boelens HA, de Vogel CP, Nouwen JL, Verbrugh HA, Melles DC, van Belkum A, van Wamel WJB. Immune evasion cluster-positive bacteriophages are highly prevalent among human Staphylococcus aureus strains, but they are not essential in the first stages of nasal colonization. Clin Microbiol Infect 2011; 17:343-8. [PMID: 20370801 DOI: 10.1111/j.1469-0691.2010.03227.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Staphylococcus aureus immune evasion cluster (IEC), located on β-haemolysin-converting bacteriophages (βC-Φs), encodes the immune-modulating proteins chemotaxis inhibitory protein, staphylococcal complement inhibitor (SCIN), staphylococcal enterotoxin A and staphylokinase. Its precise role in S. aureus colonization is unclear. We studied the presence of the IEC-carrying bacteriophages in human and animal S. aureus isolates, using PCR for the gene encoding SCIN (scn). Human isolates were obtained by collecting serial nasal swabs from 21 persistent carriers. S. aureus strains from 19 (90%) persistent carriers contained an IEC that was present and indistinguishable in 95% of cases at all five sampling moments over a 3-month period. Of the 77 infectious animal strains included in the study, only 26 strains (34%) were IEC-positive. Integration of these IEC-positive strains into an amplified fragment length polymorphism genotype database showed that 24 of 53 (45%) strains were human-associated and only two of 24 (8%) were 'true' animal isolates (p < 0.001). The high prevalence and stability of IEC-carrying βC-Φs in human strains suggested a role for these βC-Φs in human nasal colonization. To test this hypothesis, 23 volunteers were colonized artificially with S. aureus strain NCTC 8325-4 with or without the IEC type B-carrying βC-Φ13. Intranasal survival was monitored for 28 days after inoculation. The strain harbouring βC-Φ13 was eliminated significantly faster (median 4 days; range 1-14 days) than the strain without βC-Φ13 (median 14 days; range 2-28 days; p 0.011). In conclusion, although IEC-carrying βC-Φs are highly prevalent among human colonizing S. aureus strains, they are not essential in the first stages of S. aureus nasal colonization.
Collapse
Affiliation(s)
- N J Verkaik
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|