101
|
Islam F, Qiao B, Smith RA, Gopalan V, Lam AKY. Cancer stem cell: fundamental experimental pathological concepts and updates. Exp Mol Pathol 2015; 98:184-91. [PMID: 25659759 DOI: 10.1016/j.yexmp.2015.02.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/04/2015] [Indexed: 01/01/2023]
Abstract
Cancer stem cells (CSCs) are a subset of cancer cells which play a key role in predicting the biological aggressiveness of cancer due to its ability of self-renewal and multi-lineage differentiation (stemness). The CSC model is a dynamic one with a functional subpopulation of cancer cells rather than a stable cell population responsible for tumour regeneration. Hypotheses regarding the origins of CSCs include (1) malignant transformation of normal stem cells; (2) mature cancer cell de-differentiation with epithelial-mesenchymal transition and (3) induced pluripotent cancer cells. Surprisingly, the cancer stem cell hypothesis originated in the late nineteenth century and the existence of haematopoietic stem cells was demonstrated a century later, demonstrating that the concept was possible. In the last decade, CSCs have been identified and isolated in different cancers. The hallmark traits of CSCs include their heterogeneity, interaction with microenvironments and plasticity. Understanding these basic concepts of CSCs is important for translational applications using CSCs in the management of patients with cancer.
Collapse
Affiliation(s)
- Farhadul Islam
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Bin Qiao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Robert A Smith
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia; Genomics Research Centre, Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Alfred K-Y Lam
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia; Department of Pathology, Gold Coast University Hospital, Gold Coast, Queensland, Australia.
| |
Collapse
|
102
|
Cabrera MC, Hollingsworth RE, Hurt EM. Cancer stem cell plasticity and tumor hierarchy. World J Stem Cells 2015; 7:27-36. [PMID: 25621103 PMCID: PMC4300934 DOI: 10.4252/wjsc.v7.i1.27] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/23/2014] [Accepted: 10/27/2014] [Indexed: 02/06/2023] Open
Abstract
The origins of the complex process of intratumoral heterogeneity have been highly debated and different cellular mechanisms have been hypothesized to account for the diversity within a tumor. The clonal evolution and cancer stem cell (CSC) models have been proposed as drivers of this heterogeneity. However, the concept of cancer stem cell plasticity and bidirectional conversion between stem and non-stem cells has added additional complexity to these highly studied paradigms and may help explain the tumor heterogeneity observed in solid tumors. The process of cancer stem cell plasticity in which cancer cells harbor the dynamic ability of shifting from a non-CSC state to a CSC state and vice versa may be modulated by specific microenvironmental signals and cellular interactions arising in the tumor niche. In addition to promoting CSC plasticity, these interactions may contribute to the cellular transformation of tumor cells and affect response to chemotherapeutic and radiation treatments by providing CSCs protection from these agents. Herein, we review the literature in support of this dynamic CSC state, discuss the effectors of plasticity, and examine their role in the development and treatment of cancer.
Collapse
|
103
|
Wu J, Yang X, Chen B, Xu X. Pancreas β cell regeneration and type 1 diabetes (Review). Exp Ther Med 2014; 9:653-657. [PMID: 25667609 PMCID: PMC4316911 DOI: 10.3892/etm.2014.2163] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 11/24/2014] [Indexed: 12/18/2022] Open
Abstract
Diabetes mellitus, which may cause hyperglycemia and a number of complications, mostly results from a deficiency of β cell mass (type 1 diabetes) or a limitation of β cell function (type 2 diabetes). Currently, enhancing β cell regeneration and increasing cell proliferation have not only been described in experimental diabetes models, but have also been proven to improve outcomes for patients with diabetes. Therefore, understanding the mechanisms controlling the development and regeneration of β cells in the human pancreas may be helpful for the treatment of β cell-deficient disease. In this review, we first introduce the various cell types in the adult pancreas and thereby clarify their functions and origins. Then, the known mechanisms of β cell development and expansion in the normal human pancreas are described. The potential mechanisms of β cell regeneration, including β cell self-replication, neogenesis from non-β cell precursors and transdifferentiation from α cells, are discussed in the next part. Finally, the ability of the pancreas to regenerate mature β cells is explored in pathological conditions, including type 1 diabetes, chronic pancreatitis and persistent hyperinsulinemic hypoglycemia of infancy.
Collapse
Affiliation(s)
- Jinxiao Wu
- Department of Endocrinology, Beijing Army General Hospital, Beijing 100700, P.R. China
| | - Xiyan Yang
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Bin Chen
- Department of Endocrinology, Beijing Army General Hospital, Beijing 100700, P.R. China
| | - Xiuping Xu
- Department of Endocrinology, Beijing Army General Hospital, Beijing 100700, P.R. China
| |
Collapse
|
104
|
Sainz B, Martín B, Tatari M, Heeschen C, Guerra S. ISG15 is a critical microenvironmental factor for pancreatic cancer stem cells. Cancer Res 2014; 74:7309-20. [PMID: 25368022 DOI: 10.1158/0008-5472.can-14-1354] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer stem cells (CSC) are thought to play a major role in the development and metastatic progression of pancreatic ductal adenocarcinoma (PDAC), one of the deadliest solid tumors. Likewise, the tumor microenvironment contributes critical support in this setting, including from tumor stromal cells and tumor-associated macrophages (TAM) that contribute structural and paracrine-mediated supports, respectively. Here, we show that TAMs secrete the IFN-stimulated factor ISG15, which enhances CSC phenotypes in PDAC in vitro and in vivo. ISG15 was preferentially and highly expressed by TAM present in primary PDAC tumors resected from patients. ISG15 was secreted by macrophages in response to secretion of IFNβ by CSC, thereby reinforcing CSC self-renewal, invasive capacity, and tumorigenic potential. Overall, our work demonstrates that ISG15 is a previously unrecognized support factor for CSC in the PDAC microenvironment with a key role in pathogenesis and progression.
Collapse
Affiliation(s)
- Bruno Sainz
- Stem Cells and Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, Madrid, Spain.
| | - Beatriz Martín
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, Madrid, Spain
| | - Marianthi Tatari
- Stem Cells and Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Christopher Heeschen
- Stem Cells and Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Susana Guerra
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, Madrid, Spain.
| |
Collapse
|
105
|
Tang SC, Chen YC. Novel therapeutic targets for pancreatic cancer. World J Gastroenterol 2014; 20:10825-10844. [PMID: 25152585 PMCID: PMC4138462 DOI: 10.3748/wjg.v20.i31.10825] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/13/2014] [Accepted: 04/09/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer has become the fourth leading cause of cancer death in the last two decades. Only 3%-15% of patients diagnosed with pancreatic cancer had 5 year survival rate. Drug resistance, high metastasis, poor prognosis and tumour relapse contributed to the malignancies and difficulties in treating pancreatic cancer. The current standard chemotherapy for pancreatic cancer is gemcitabine, however its efficacy is far from satisfactory, one of the reasons is due to the complex tumour microenvironment which decreases effective drug delivery to target cancer cell. Studies of the molecular pathology of pancreatic cancer have revealed that activation of KRAS, overexpression of cyclooxygenase-2, inactivation of p16INK4A and loss of p53 activities occurred in pancreatic cancer. Co-administration of gemcitabine and targeting the molecular pathological events happened in pancreatic cancer has brought an enhanced therapeutic effectiveness of gemcitabine. Therefore, studies looking for novel targets in hindering pancreatic tumour growth are emerging rapidly. In order to give a better understanding of the current findings and to seek the direction in future pancreatic cancer research; in this review we will focus on targets suppressing tumour metastatsis and progression, KRAS activated downstream effectors, the relationship of Notch signaling and Nodal/Activin signaling with pancreatic cancer cells, the current findings of non-coding RNAs in inhibiting pancreatic cancer cell proliferation, brief discussion in transcription remodeling by epigenetic modifiers (e.g., HDAC, BMI1, EZH2) and the plausible therapeutic applications of cancer stem cell and hyaluronan in tumour environment.
Collapse
|
106
|
Haqq J, Howells LM, Garcea G, Metcalfe MS, Steward WP, Dennison AR. Pancreatic stellate cells and pancreas cancer: current perspectives and future strategies. Eur J Cancer 2014; 50:2570-82. [PMID: 25091797 DOI: 10.1016/j.ejca.2014.06.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/25/2014] [Accepted: 06/30/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant disease with a very poor prognosis. To date patient outcomes have not improved principally due to the limited number of patients suitable for surgical resections and the radiation and chemotherapy resistance of these tumours. In the last decade, a failure of conventional therapies has forced researchers to re-examine the environment of PDAC. The tumour environment has been demonstrated to consist of an abundance of stroma containing many cells but predominantly pancreatic stellate cells (PSCs). Recent research has focused on understanding the interaction between PSCs and PDAC cells in vitro and in vivo. It is believed that the interaction between these cells is responsible for supporting tumour growth, invasion and metastasis and creating the barrier to delivery of chemotherapeutics. Novel approaches which focus on the interactions between PDAC and PSCs which sustain the tumour microenvironment may achieve significant patient benefits. This manuscript reviews the current evidence regarding PSCs, their interaction with PDAC cells and the potential implication this may have for future therapies. METHODS A PubMed search was carried out for the terms 'pancreas cancer' OR 'pancreatic cancer', AND 'pancreatic stellate cells', NOT 'hepatic stellate cells'. All studies were screened and assessed for their eligibility and manuscripts exploring the relationship between PSCs and PDAC were included. The studies were subdivided into in vitro and in vivo groups. RESULTS One hundred and sixty-six manuscripts were identified and reduced to seventy-three in vitro and in vivo studies for review. The manuscripts showed that PDAC cells and PSCs interact with each other to enhance proliferation, reduce apoptosis and increase migration and invasion of cancer cells. The pathways through which they facilitate these actions provide potential targets for future novel therapies. CONCLUSION There is accumulating evidence supporting the multiple roles of PSCs in establishing the tumour microenvironment and supporting the survival of PDAC. To further validate these findings there is a need for greater use of physiologically relevant models of pancreatic cancer in vitro such as three dimensional co-cultures and the use of orthotopic and genetically engineered murine (GEM) models in vivo.
Collapse
Affiliation(s)
- Jonathan Haqq
- Department of Hepatobiliary and Pancreatic Surgery & Cancer Studies and Molecular Medicine Group, University Hospitals of Leicester & University of Leicester, Leicester LE5 4PW, United Kingdom.
| | - Lynne M Howells
- Department of Hepatobiliary and Pancreatic Surgery & Cancer Studies and Molecular Medicine Group, University Hospitals of Leicester & University of Leicester, Leicester LE5 4PW, United Kingdom
| | - Giuseppe Garcea
- Department of Hepatobiliary and Pancreatic Surgery & Cancer Studies and Molecular Medicine Group, University Hospitals of Leicester & University of Leicester, Leicester LE5 4PW, United Kingdom
| | - Matthew S Metcalfe
- Department of Hepatobiliary and Pancreatic Surgery & Cancer Studies and Molecular Medicine Group, University Hospitals of Leicester & University of Leicester, Leicester LE5 4PW, United Kingdom
| | - Will P Steward
- Department of Hepatobiliary and Pancreatic Surgery & Cancer Studies and Molecular Medicine Group, University Hospitals of Leicester & University of Leicester, Leicester LE5 4PW, United Kingdom
| | - Ashley R Dennison
- Department of Hepatobiliary and Pancreatic Surgery & Cancer Studies and Molecular Medicine Group, University Hospitals of Leicester & University of Leicester, Leicester LE5 4PW, United Kingdom
| |
Collapse
|
107
|
Al Haddad AHI, Adrian TE. Challenges and future directions in therapeutics for pancreatic ductal adenocarcinoma. Expert Opin Investig Drugs 2014; 23:1499-515. [PMID: 25078674 DOI: 10.1517/13543784.2014.933206] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death in the USA. The 5-year survival of < 5% has not changed in decades. In contrast to other major cancers, the incidence of PDAC is increasing. AREAS COVERED The aims of this paper are first to analyze why PDAC is so difficult to treat and, second, to suggest future directions for PDAC therapeutics. The authors provide an article that is based on a comprehensive search through MEDLINE and the clinicalTrials.gov website. EXPERT OPINION Progress has been made recently. Notably, FOLFIRINOX or nab-paclitaxel plus gemcitabine provide survival benefit over gemcitabine alone, which was previously the mainstay of therapy for PDAC. Most of the current trials are testing combinations of repurposed drugs rather than addressing key targets in the PDAC pathogenesis. It is clear that to really make an impact on this disease, it will be necessary to address three different problems with targeted therapeutics. First, it is important to eradicate PDAC stem cells that result in recurrence. Second, it is important to reduce the peritumoral stroma that provides the tumors with growth support and provides a barrier to access of therapeutic agents. Finally, it is important to address the marked cachexia and metabolic derangement that contribute to morbidity and mortality and further complicate therapeutic intervention.
Collapse
Affiliation(s)
- Amal H I Al Haddad
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University , PO Box 17666, Al Ain , UAE
| | | |
Collapse
|
108
|
Abstract
Intratumoral hypoxia is a common feature of solid tumors. Recent advances in cancer biology indicate that hypoxia is not only a consequence of unrestrained tumor growth, but also plays an active role in promoting tumor progression, malignancy, and resistance to therapy. Hypoxia signaling is mediated by the hypoxia-inducible factors (HIFs), which are not only stabilized under hypoxia, but also by activated oncogenes or inactivated tumor suppressors under normoxia. Hypoxia is a prominent feature of the tumor microenvironment of pancreatic tumors, also characterized by the presence of a fibrotic reaction that promotes, and is also modulated by, hypoxia. As the mechanisms by which hypoxia signaling impacts invasion and metastasis in pancreatic cancer are being elucidated, hypoxia is emerging as a key determinant of pancreatic cancer malignancy as well as an important target for therapy. Herein we present an overview of recent advances in the understanding of the impact that hypoxia has in pancreatic cancer invasion and metastasis.
Collapse
Affiliation(s)
- Angela Yuen
- Tumor Microenvironment and Metastasis Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Begoña Díaz
- Tumor Microenvironment and Metastasis Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| |
Collapse
|
109
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer death in the Western world. Owing to a lack of specific symptoms and no accessible precursor lesions, primary diagnosis is commonly delayed, resulting in only 15%-20% of patients with potentially curable disease. The standard of care in advanced pancreatic cancer has improved. Apart from gemcitabine (plus erlotinib), FOLFIRINOX and the combination of gemcitabine plus nab-paclitaxel are novel and promising therapeutic options for patients with metastatic PDAC. A better molecular understanding of pancreatic cancer has led to the identification of a variety of potential molecular therapeutic targets. Many targeted therapies are currently under clinical evaluation in combination with standard therapies for PDAC. This review highlights the current status of targeted therapies and their potential benefit for the treatment of advanced PDAC.
Collapse
Affiliation(s)
- A Kleger
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| | - L Perkhofer
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| | - T Seufferlein
- Department of Internal Medicine I, Ulm University, Ulm, Germany.
| |
Collapse
|
110
|
Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA, Dekleva EN, Saunders T, Becerra CP, Tattersall IW, Westphalen CB, Kitajewski J, Fernandez-Barrena MG, Fernandez-Zapico ME, Iacobuzio-Donahue C, Olive KP, Stanger BZ. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 2014; 25:735-47. [PMID: 24856585 PMCID: PMC4096698 DOI: 10.1016/j.ccr.2014.04.021] [Citation(s) in RCA: 1571] [Impact Index Per Article: 142.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 03/18/2014] [Accepted: 04/25/2014] [Indexed: 12/11/2022]
Abstract
Sonic hedgehog (Shh), a soluble ligand overexpressed by neoplastic cells in pancreatic ductal adenocarcinoma (PDAC), drives formation of a fibroblast-rich desmoplastic stroma. To better understand its role in malignant progression, we deleted Shh in a well-defined mouse model of PDAC. As predicted, Shh-deficient tumors had reduced stromal content. Surprisingly, such tumors were more aggressive and exhibited undifferentiated histology, increased vascularity, and heightened proliferation--features that were fully recapitulated in control mice treated with a Smoothened inhibitor. Furthermore, administration of VEGFR blocking antibody selectively improved survival of Shh-deficient tumors, indicating that Hedgehog-driven stroma suppresses tumor growth in part by restraining tumor angiogenesis. Together, these data demonstrate that some components of the tumor stroma can act to restrain tumor growth.
Collapse
Affiliation(s)
- Andrew D Rhim
- Division of Gastroenterology, Department of Internal Medicine and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Gastroenterology Division, Department of Medicine and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul E Oberstein
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Dafydd H Thomas
- Division of Digestive and Liver Diseases in the Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Emily T Mirek
- Gastroenterology Division, Department of Medicine and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carmine F Palermo
- Division of Digestive and Liver Diseases in the Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Stephen A Sastra
- Division of Digestive and Liver Diseases in the Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Erin N Dekleva
- Gastroenterology Division, Department of Medicine and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tyler Saunders
- Sol Goldman Pancreatic Cancer Research Center and Department of Pathology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Claudia P Becerra
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Ian W Tattersall
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - C Benedikt Westphalen
- Division of Digestive and Liver Diseases in the Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Jan Kitajewski
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | - Christine Iacobuzio-Donahue
- Sol Goldman Pancreatic Cancer Research Center and Department of Pathology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Kenneth P Olive
- Division of Digestive and Liver Diseases in the Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA.
| | - Ben Z Stanger
- Gastroenterology Division, Department of Medicine and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
111
|
Cabrera MC, Tilahun E, Nakles R, Diaz-Cruz ES, Charabaty A, Suy S, Jackson P, Ley L, Slack R, Jha R, Collins SP, Haddad N, Kallakury BVS, Schroeder T, Pishvaian MJ, Furth PA. Human Pancreatic Cancer-Associated Stellate Cells Remain Activated after in vivo Chemoradiation. Front Oncol 2014; 4:102. [PMID: 24847445 PMCID: PMC4023027 DOI: 10.3389/fonc.2014.00102] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/24/2014] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by an extensive fibrotic reaction or desmoplasia and complex involvement of the surrounding tumor microenvironment. Pancreatic stellate cells are a key mediator of the pancreatic matrix and they promote progression and invasion of pancreatic cancer by increasing cell proliferation and offering protection against therapeutic interventions. Our study utilizes human tumor-derived pancreatic stellate cells (HTPSCs) isolated from fine needle aspirates of pancreatic cancer tissue from patients with locally advanced, unresectable pancreatic adenocarcinoma before and after treatment with full-dose gemcitabine plus concurrent hypo-fractionated stereotactic radiosurgery. We show that HTPSCs survive in vivo chemotherapy and radiotherapy treatment and display a more activated phenotype post-therapy. These data support the idea that stellate cells play an essential role in supporting and promoting pancreatic cancer and further research is needed to develop novel treatments targeting the pancreatic tumor microenvironment.
Collapse
Affiliation(s)
- M Carla Cabrera
- National Cancer Informatics Program, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA ; Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University , Washington, DC , USA
| | - Estifanos Tilahun
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University , Washington, DC , USA
| | - Rebecca Nakles
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University , Washington, DC , USA
| | - Edgar S Diaz-Cruz
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University , Washington, DC , USA ; Department of Pharmaceutical Sciences, College of Pharmacy, Belmont University , Nashville, TN , USA
| | - Aline Charabaty
- Department of Gastroenterology, Georgetown University , Washington, DC , USA
| | - Simeng Suy
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University , Washington, DC , USA ; Department of Radiation Medicine, Georgetown University , Washington, DC , USA
| | - Patrick Jackson
- Department of Surgery, Georgetown University , Washington, DC , USA
| | - Lisa Ley
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University , Washington, DC , USA
| | - Rebecca Slack
- Department of Biostatistics, University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | - Reena Jha
- Department of Radiology, Georgetown University , Washington, DC , USA
| | - Sean P Collins
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University , Washington, DC , USA ; Department of Radiation Medicine, Georgetown University , Washington, DC , USA
| | - Nadim Haddad
- Department of Gastroenterology, Georgetown University , Washington, DC , USA
| | - Bhaskar V S Kallakury
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University , Washington, DC , USA ; Department of Pathology, Georgetown University , Washington, DC , USA
| | - Timm Schroeder
- Helmholtz Zentrum München - German Research Center for Environmental Health, Research Unit Stem Cell Dynamics , Neuherberg , Germany ; Department of Biosystems Science and Engineering, ETH Zurich , Basel , Switzerland
| | - Michael J Pishvaian
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University , Washington, DC , USA ; Department of Gastroenterology, Georgetown University , Washington, DC , USA ; Division of Hematology/Oncology, Department of Medicine, Georgetown University , Washington, DC , USA
| | - Priscilla A Furth
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University , Washington, DC , USA ; Division of Hematology/Oncology, Department of Medicine, Georgetown University , Washington, DC , USA
| |
Collapse
|
112
|
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related deaths in the Western world. Due to lack of specific symptoms and no accessible precursor lesions, primary diagnosis is commonly delayed, resulting in the identification of only 15-20% of patients with potentially curable disease. The major limiting factor is an already locally advanced or metastatic disease at the time of diagnosis. Consequently, systemic therapy forms the backbone of treatment strategy for the majority of patients. SUMMARY A deeper understanding of the molecular characteristics of pancreatic cancer has led to the identification of several potential therapeutic targets. A variety of targeted therapies are currently under clinical evaluation as single agents or in combination with chemotherapy for PDAC. This review highlights the current state of chemotherapy in pancreatic cancer and provides an outlook on its future perspectives. KEY MESSAGE This review focuses on the current chemotherapy regimens for the systemic treatment of PDAC. PRACTICAL IMPLICATIONS Various neoadjuvant approaches have been explored, including chemoradiation, chemotherapy followed by chemoradiation or intensified chemotherapy without defining a standard of care so far. The standard of care is gemcitabine or 5-fluorouracil. The oral fluoropyrimidine S-1 may be a promising new agent in this setting. For first-line treatment of metastatic pancreatic cancer, no targeted therapy has yet demonstrated clinical benefit apart from the combination of the tyrosine kinase inhibitor erlotinib plus gemcitabine. Recently, novel chemotherapeutic regimens such as FOLFIRINOX and gemcitabine plus nanoparticle albumin-bound paclitaxel have been introduced. Both combinations have proved to be superior to the standard gemcitabine regimen. For second-line treatment the combination of 5-fluorouracil/leucovorin and oxaliplatin yields improved results compared to best supportive care.
Collapse
Affiliation(s)
| | | | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
113
|
Balic A, Sørensen MD, Trabulo SM, Sainz B, Cioffi M, Vieira CR, Miranda-Lorenzo I, Hidalgo M, Kleeff J, Erkan M, Heeschen C. Chloroquine targets pancreatic cancer stem cells via inhibition of CXCR4 and hedgehog signaling. Mol Cancer Ther 2014; 13:1758-71. [PMID: 24785258 DOI: 10.1158/1535-7163.mct-13-0948] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pancreatic ductal adenocarcinoma is one of the deadliest carcinomas and is characterized by highly tumorigenic and metastatic cancer stem cells (CSC). CSCs evade available therapies, which preferentially target highly proliferative and more differentiated progenies, leaving behind CSCs as a putative source for disease relapse. Thus, to identify potentially more effective treatment regimens, we screened established and new compounds for their ability to eliminate CSCs in primary pancreatic cancer (stem) cells in vitro and corresponding patient-derived pancreatic cancer tissue xenografts in vivo. Intriguingly, we found that in vitro treatment with the antimalarial agent chloroquine significantly decreased CSCs, translating into diminished in vivo tumorigenicity and invasiveness in a large panel of pancreatic cancers. In vivo treatment in combination with gemcitabine was capable of more effectively eliminating established tumors and improved overall survival. The inhibitory effect of chloroquine was not related to inhibition of autophagy, but was due to inhibition of CXCL12/CXCR4 signaling, resulting in reduced phosphorylation of ERK and STAT3. Furthermore, chloroquine showed potent inhibition of hedgehog signaling by decreasing the production of Smoothened, translating into a significant reduction in sonic hedgehog-induced chemotaxis and downregulation of downstream targets in CSCs and the surrounding stroma. Our study demonstrates that via to date unreported effects, chloroquine is an effective adjuvant therapy to chemotherapy, offering more efficient tumor elimination and improved cure rates. Chloroquine should be further explored in the clinical setting as its success may help to more rapidly improve the poor prognosis of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Anamaria Balic
- Authors' Affiliations: Stem Cells & Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO)
| | - Morten Dræby Sørensen
- Authors' Affiliations: Stem Cells & Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO); Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Sara Maria Trabulo
- Authors' Affiliations: Stem Cells & Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO); Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Bruno Sainz
- Authors' Affiliations: Stem Cells & Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO)
| | - Michele Cioffi
- Authors' Affiliations: Stem Cells & Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO)
| | - Catarina R Vieira
- Authors' Affiliations: Stem Cells & Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO)
| | - Irene Miranda-Lorenzo
- Authors' Affiliations: Stem Cells & Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO)
| | - Manuel Hidalgo
- Gastrointestinal Cancer Clinical Research Unit, Clinical Research Programme, CNIO, Madrid, Spain
| | - Joerg Kleeff
- Department of Surgery, Klinikum Rechts der Isar, Technical University, Munich, Germany; and
| | - Mert Erkan
- Department of Surgery, Klinikum Rechts der Isar, Technical University, Munich, Germany; and
| | - Christopher Heeschen
- Authors' Affiliations: Stem Cells & Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO); Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
114
|
Hamada S, Masamune A, Shimosegawa T. Inflammation and pancreatic cancer: disease promoter and new therapeutic target. J Gastroenterol 2014; 49:605-17. [PMID: 24292163 DOI: 10.1007/s00535-013-0915-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 11/13/2013] [Indexed: 02/04/2023]
Abstract
Chronic inflammation has a certain impact on the carcinogenesis of the digestive organs. The characteristic tissue structure of pancreatic cancer, desmoplasia, results from inflammatory processes induced by cancer cells and stromal cells. Concerning the progression of pancreatic cancer, recent research has clarified the pivotal role of tumor-stromal interaction, which promotes the development of an invasive phenotype of cancer and provides survival advantages against chemotherapeutic agents or immune surveillance. Tumor stromal cells such as pancreatic stellate cells and immune cells establish a microenvironment that protects cancer cells through complex interactions. The microenvironment of pancreatic cancer acts as a niche for pancreatic cancer stem cells from which therapy-resistance and disease recurrence develop. Inhibition of the stromal functions or restoration of the immune reaction against cancer cells has therapeutic benefits that enhance the efficacy of conventional therapies. Some of the recent advances in this field are now under evaluation in clinical settings, but many problems must be overcome to establish a radical therapy for pancreatic cancer. This review summarizes current knowledge about the tumor-promoting stromal functions, immune system modulation and therapeutic strategies targeting tumor-stromal interactions in pancreatic cancer.
Collapse
Affiliation(s)
- Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi Aobaku, Sendai, Miyagi, 980-8574, Japan,
| | | | | |
Collapse
|
115
|
Lin WC, Rajbhandari N, Wagner KU. Cancer cell dormancy in novel mouse models for reversible pancreatic cancer: a lingering challenge in the development of targeted therapies. Cancer Res 2014; 74:2138-43. [PMID: 24670819 DOI: 10.1158/0008-5472.can-13-3437] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significant advances have been made in the identification of key molecular pathways that play pivotal roles in the initiation and progression of pancreatic ductal adenocarcinoma (PDAC). Among the common genetic and epigenetic changes, oncogenic mutations in Kras and upregulation of the c-Myc oncogene are frequent events in PDAC. Using genetically defined in vivo models, several studies have recently demonstrated that expression of mutant Kras and c-Myc is equally important for the initiation and maintenance of pancreatic cancer. The targeted downregulation of a single oncogene resulted in cancer cell death at primary and metastatic sites. These findings are very encouraging and provide a strong rationale for the development of targeted therapies against these oncogenic drivers. Despite what seemed to be a complete response to the ablation of the oncogene, a few dormant cancer cells remained present, and it was demonstrated that they are a cellular reservoir for a swift relapse of pancreatic cancer following oncogene reactivation. This review summarizes the basic principles of cancer dormancy and the applicability of the novel genetic models for reversible metastatic PDAC to elucidate the role of cancer stem cells as well as biologic and molecular mechanisms that mediate the survival of dormant tumor cells.
Collapse
Affiliation(s)
- Wan-Chi Lin
- Authors' Affiliations: Eppley Institute for Research in Cancer and Allied Diseases; and Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska
| | | | | |
Collapse
|
116
|
Onishi H, Katano M. Hedgehog signaling pathway as a new therapeutic target in pancreatic cancer. World J Gastroenterol 2014; 20:2335-2342. [PMID: 24605030 PMCID: PMC3942836 DOI: 10.3748/wjg.v20.i9.2335] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/11/2013] [Accepted: 01/08/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most aggressive and difficult cancers to treat. Despite numerous research efforts, limited success has been achieved in the therapeutic management of patients with this disease. In the current review, we focus on one component of morphogenesis signaling, Hedgehog (Hh), with the aim of developing novel, effective therapies for the treatment of pancreatic cancer. Hh signaling contributes to the induction of a malignant phenotype in pancreatic cancer and is responsible for maintaining pancreatic cancer stem cells. In addition, we propose a novel concept linking Hh signaling and tumor hypoxic conditions, and discuss the effects of Hh inhibitors in clinical trials. The Hh signaling pathway may represent a potential therapeutic target for patients with refractory pancreatic cancer.
Collapse
|
117
|
Park TS, Donnenberg VS, Donnenberg AD, Zambidis ET, Zimmerlin L. Dynamic Interactions Between Cancer Stem Cells And Their Stromal Partners. CURRENT PATHOBIOLOGY REPORTS 2014; 2:41-52. [PMID: 24660130 PMCID: PMC3956651 DOI: 10.1007/s40139-013-0036-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cancer stem cell (CSC) paradigm presumes the existence of self-renewing cancer cells capable of regenerating all tumor compartments and exhibiting stem cell-associated phenotypes. Recent interpretations of the CSC hypothesis envision stemness as a dynamic trait of tumor-initiating cells rather than a defined and unique cell type. Bidirectional crosstalk between the tumor microenvironment and the cancer bulk is well described in the literature and the tumor-associated stroma, vasculature and immune infiltrate have all been implicated as direct contributors to tumor development. These non-neoplastic cell types have also been shown to organize specific niches within the tumor bulk where they can control the intra-tumor CSC content and alter the fate of CSCs and tumor progenitors during tumorigenesis to acquire phenotypic features for invasion, metastasis and dormancy. Despite the complexity of the tumor-stroma interactome, novel therapeutic approaches envision combining tumor-ablative treatment with manipulation of the tumor microenvironment. We will review the currently available literature that provides clues about the complex cellular network that regulate the CSC phenotype and its niches during tumor progression.
Collapse
Affiliation(s)
- Tea Soon Park
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Vera S. Donnenberg
- University of Pittsburgh School of Medicine, Department of Cardiothoracic Surgery, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
- McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Albert D. Donnenberg
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
- McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh School of Medicine, Department of Medicine, Division of Hematology/Oncology, Pittsburgh, Pennsylvania, United States of America
| | - Elias T. Zambidis
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Ludovic Zimmerlin
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| |
Collapse
|
118
|
Ady JW, Heffner J, Klein E, Fong Y. Oncolytic viral therapy for pancreatic cancer: current research and future directions. Oncolytic Virother 2014; 3:35-46. [PMID: 27512661 PMCID: PMC4918362 DOI: 10.2147/ov.s53858] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The development of targeted agents and chemotherapies for pancreatic cancer has only modestly affected clinical outcome and not changed 5-year survival. Fortunately the genetic and molecular mechanisms underlying pancreatic cancer are being rapidly uncovered and are providing opportunities for novel targeted therapies. Oncolytic viral therapy is one of the most promising targeted agents for pancreatic cancer. This review will look at the current state of the development of these self-replicating nanoparticles in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Justin W Ady
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jacqueline Heffner
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Elizabeth Klein
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Yuman Fong
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
119
|
Vaz AP, Ponnusamy MP, Seshacharyulu P, Batra SK. A concise review on the current understanding of pancreatic cancer stem cells. JOURNAL OF CANCER STEM CELL RESEARCH 2014; 2:e1004. [PMID: 26451384 PMCID: PMC4594952 DOI: 10.14343/jcscr.2014.2e1004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several evidences suggest that a small population of cells known as cancer stem cells (CSCs) or tumor initiating stemlike cells within a tumor is capable of tumor initiation, maintenance and propagation. Recent publications have supported the existence of CSCs in pancreatic tumors. The pancreatic stem/progenitor cells, which express self-renewal markers, are identified to be present in the peribiliary gland. Based on the CSC hypothesis, mutations can lead to the transformation of stem/progenitor cells or differentiated cells into CSCs. The pancreatic CSCs express a wide array of markers such as CD44, CD24, ESA, CD133, c-MET, CXCR4, PD2/Paf1 and ALDH1. The CSCs are isolated based on surface markers or by other methods such as ALDEFLOUR assay or Hoechst 33342 dye exclusion assay. The isolated cells are further characterized by in vitro and in vivo tumorigenic assays. The most important characteristics of CSCs are its ability to self-renew and impart drug resistance towards chemotherapy. Moreover, these distinct cells display alteration of signaling pathways pertaining to CSCs such as Notch, Wnt and Shh to maintain the self-renewal process. Failure of cancer treatment could be attributed to the therapy resistance exhibited by the CSCs. Metastasis and drug resistance in pancreatic cancer is associated with epithelial to mesenchymal transition (EMT). Furthermore, mucins, the high molecular weight proteins are found to be associated with pancreatic CSCs and EMT. Understanding the underlying molecular pathways that aid in the metastatic and drug resistant nature of these distinct cells will aid in targeting these cells. Overall, this review focuses on the various aspects of pancreatic adult/stem progenitors, CSC hypothesis, its markers, pathways, niche, EMT and novel therapeutic drugs used for the elimination of pancreatic CSCs.
Collapse
Affiliation(s)
- Arokia Priyanka Vaz
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Moorthy P. Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
120
|
Quan M, Wang P, Cui J, Gao Y, Xie K. The roles of FOXM1 in pancreatic stem cells and carcinogenesis. Mol Cancer 2013; 12:159. [PMID: 24325450 PMCID: PMC3924162 DOI: 10.1186/1476-4598-12-159] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/28/2013] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the poorest prognoses among all cancers. Over the past several decades, investigators have made great advances in the research of PDAC pathogenesis. Importantly, identification of pancreatic cancer stem cells (PCSCs) in pancreatic cancer cases has increased our understanding of PDAC biology and therapy. PCSCs are responsible for pancreatic tumorigenesis and tumor progression via a number of mechanisms, including extensive proliferation, self-renewal, high tumorigenic ability, high propensity for invasiveness and metastasis, and resistance to conventional treatment. Furthermore, emerging evidence suggests that PCSCs are involved in the malignant transformation of pancreatic intraepithelial neoplasia. The molecular mechanisms that control PCSCs are related to alterations of various signaling pathways, for instance, Hedgehog, Notch, Wnt, B-cell-specific Moloney murine leukemia virus insertion site 1, phosphoinositide 3-kinase/AKT, and Nodal/Activin. Also, authors have reported that the proliferation-specific transcriptional factor Forkhead box protein M1 is involved in PCSC self-renewal and proliferation. In this review, we describe the current knowledge about the signaling pathways related to PCSCs and the early stages of PDAC development, highlighting the pivotal roles of Forkhead box protein M1 in PCSCs and their impacts on the development and progression of pancreatic intraepithelial neoplasia.
Collapse
Affiliation(s)
| | | | | | | | - Keping Xie
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
121
|
Pancreatic stellate cells promote hapto-migration of cancer cells through collagen I-mediated signalling pathway. Br J Cancer 2013; 110:409-20. [PMID: 24201748 PMCID: PMC3899756 DOI: 10.1038/bjc.2013.706] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/27/2013] [Accepted: 10/15/2013] [Indexed: 01/05/2023] Open
Abstract
Background: Pancreatic stellate cells (PSCs) promote metastasis as well as local growth of pancreatic cancer. However, the factors mediating the effect of PSCs on pancreatic cancer cells have not been clearly identified. Methods: We used a modified Boyden chamber assay as an in vitro model to investigate the role of PSCs in migration of Panc1 and UlaPaCa cells and to identify the underlying mechanisms. Results: PSC supernatant (PSC-SN) dose-dependently induced the trans-migration of Panc1 and UlaPaCa cells, mainly via haptokinesis and haptotaxis, respectively. In contrast to poly-L-lysine or fibronectin, collagen I resembled PSC-SN with respect to its effect on cancer cell behaviours, including polarised morphology, facilitated adhesion, accelerated motility and stimulated trans-migration. Blocking antibodies against integrin α2/β1 subunits significantly attenuated PSC-SN- or collagen I-promoted cell trans-migration and adhesion. Moreover, both PSC-SN and collagen I induced the formation of F-actin and focal adhesions in cells, which was consistent with the constantly enhanced phosphorylation of focal adhesion kinase (FAK, Tyr397). Inhibition of FAK function by an inhibitor or small interference RNAs significantly diminished the effect of PSC-SN or collagen I on haptotaxis/haptokinesis of pancreatic cancer cells. Conclusion: Collagen I is the major mediator for PSC-SN-induced haptokinesis of Panc1 and haptotaxis of UlaPaCa by activating FAK signalling via binding to integrin α2β1.
Collapse
|
122
|
Hamada S, Masamune A, Shimosegawa T. Alteration of pancreatic cancer cell functions by tumor-stromal cell interaction. Front Physiol 2013; 4:318. [PMID: 24198790 PMCID: PMC3814547 DOI: 10.3389/fphys.2013.00318] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/14/2013] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer shows a characteristic tissue structure called desmoplasia, which consists of dense fibrotic stroma surrounding cancer cells. Interactions between pancreatic cancer cells and stromal cells promote invasive growth of cancer cells and establish a specific microenvironment such as hypoxia which further aggravates the malignant behavior of cancer cells. Pancreatic stellate cells (PSCs) play a pivotal role in the development of fibrosis within the pancreatic cancer tissue, and also affect cancer cell function. PSCs induce epithelial-mesenchymal transition and cancer stem cell (CSC)-related phenotypes in pancreatic cancer cells by activating multiple signaling pathways. In addition, pancreatic cancer cells and PSCs recruit myeloid-derived suppressor cells which attenuate the immune reaction against pancreatic cancer cells. As a result, pancreatic cancer cells become refractory against conventional therapies. The formation of the CSC-niche by stromal cells facilitates postoperative recurrence, re-growth of therapy-resistant tumors and distant metastasis. Conventional therapies targeting cancer cells alone have failed to conquer pancreatic cancer, but targeting the stromal cells and immune cells in animal experiments has provided evidence of improved therapeutic responses. A combination of novel strategies altering stromal cell functions could contribute to improving the pancreatic cancer prognosis.
Collapse
Affiliation(s)
- Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine Sendai, Japan
| | | | | |
Collapse
|
123
|
Paltridge JL, Belle L, Khew-Goodall Y. The secretome in cancer progression. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2233-41. [DOI: 10.1016/j.bbapap.2013.03.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/05/2013] [Accepted: 03/12/2013] [Indexed: 12/21/2022]
|
124
|
Ene-Obong A, Clear AJ, Watt J, Wang J, Fatah R, Riches JC, Marshall JF, Chin-Aleong J, Chelala C, Gribben JG, Ramsay AG, Kocher HM. Activated pancreatic stellate cells sequester CD8+ T cells to reduce their infiltration of the juxtatumoral compartment of pancreatic ductal adenocarcinoma. Gastroenterology 2013; 145:1121-32. [PMID: 23891972 PMCID: PMC3896919 DOI: 10.1053/j.gastro.2013.07.025] [Citation(s) in RCA: 428] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 06/24/2013] [Accepted: 07/17/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) is characterized by a prominent desmoplastic microenvironment that contains many different immune cells. Activated pancreatic stellate cells (PSCs) contribute to the desmoplasia. We investigated whether distinct stromal compartments are differentially infiltrated by different types of immune cells. METHODS We used tissue microarray analysis to compare immune cell infiltration of different pancreaticobiliary diseased tissues (PDAC, ampullary carcinoma, cholangiocarcinoma, mucinous cystic neoplasm, chronic inflammation, and chronic pancreatitis) and juxtatumoral stromal (<100 μm from tumor) and panstromal compartments. We investigated the association between immune infiltrate and patient survival times. We also analyzed T-cell migration and tumor infiltration in LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre (KPC) mice and the effects of all-trans retinoic acid (ATRA) on these processes. RESULTS Juxtatumoral compartments in PDAC samples from 2 independent groups of patients contained increased numbers of myeloperoxidase(+) and CD68(+) cells compared with panstromal compartments. However, juxtatumoral compartments of PDACs contained fewer CD8(+), FoxP3(+), CD56(+), or CD20(+) cells than panstromal compartments, a distinction absent in ampullary carcinomas and cholangiocarcinomas. Patients with PDACs that had high densities of CD8(+) T cells in the juxtatumoral compartment had longer survival times than patients with lower densities. In KPC mice, administration of ATRA, which renders PSCs quiescent, increased numbers of CD8(+) T cells in juxtatumoral compartments. We found that activated PSCs express cytokines, chemokines, and adhesion molecules that regulate T-cell migration. In vitro migration assays showed that CD8(+) T cells, from patients with PDAC, had increased chemotaxis toward activated PSCs, which secrete CXCL12, compared with quiescent PSCs or tumor cells. These effects could be reversed by knockdown of CXCL12 or treatment of PSCs with ATRA. CONCLUSIONS Based on studies of human PDAC samples and KPC mice, activated PSCs appear to reduce migration of CD8(+) T cells to juxtatumoral stromal compartments, preventing their access to cancer cells. Deregulated signaling by activated PSCs could prevent an effective antitumor immune response.
Collapse
Affiliation(s)
- Abasi Ene-Obong
- Centre for Tumour Biology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Andrew J. Clear
- Centre for Hemato-Oncology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Jennifer Watt
- Centre for Tumour Biology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
,Department of Surgery, Barts and the London HPB Centre, The Royal London Hospital, Barts Health NHS Trust, London, E1 1BB, UK.
| | - Jun Wang
- Centre for Molecular Oncology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Rewas Fatah
- Centre for Hemato-Oncology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - John C. Riches
- Centre for Hemato-Oncology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - John F. Marshall
- Centre for Tumour Biology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Joanne Chin-Aleong
- Department of Pathology, Barts and the London HPB Centre, The Royal London Hospital, Barts Health NHS Trust, London, E1 1BB, UK.
| | - Claude Chelala
- Centre for Molecular Oncology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - John G. Gribben
- Centre for Hemato-Oncology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Alan G. Ramsay
- Centre for Hemato-Oncology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Hemant M. Kocher
- Centre for Tumour Biology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
,Department of Surgery, Barts and the London HPB Centre, The Royal London Hospital, Barts Health NHS Trust, London, E1 1BB, UK.
| |
Collapse
|
125
|
Lonardo E, Cioffi M, Sancho P, Sanchez-Ripoll Y, Trabulo SM, Dorado J, Balic A, Hidalgo M, Heeschen C. Metformin targets the metabolic achilles heel of human pancreatic cancer stem cells. PLoS One 2013; 8:e76518. [PMID: 24204632 PMCID: PMC3799760 DOI: 10.1371/journal.pone.0076518] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 09/01/2013] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinomas contain a subset of exclusively tumorigenic cancer stem cells (CSCs), which are capable of repopulating the entire heterogeneous cancer cell populations and are highly resistant to standard chemotherapy. Here we demonstrate that metformin selectively ablated pancreatic CSCs as evidenced by diminished expression of pluripotency-associated genes and CSC-associated surface markers. Subsequently, the ability of metformin-treated CSCs to clonally expand in vitro was irreversibly abrogated by inducing apoptosis. In contrast, non-CSCs preferentially responded by cell cycle arrest, but were not eliminated by metformin treatment. Mechanistically, metformin increased reactive oxygen species production in CSC and reduced their mitochondrial transmembrane potential. The subsequent induction of lethal energy crisis in CSCs was independent of AMPK/mTOR. Finally, in primary cancer tissue xenograft models metformin effectively reduced tumor burden and prevented disease progression; if combined with a stroma-targeting smoothened inhibitor for enhanced tissue penetration, while gemcitabine actually appeared dispensable.
Collapse
Affiliation(s)
- Enza Lonardo
- Stem Cells & Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Michele Cioffi
- Stem Cells & Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Patricia Sancho
- Stem Cells & Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Yolanda Sanchez-Ripoll
- Stem Cells & Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sara Maria Trabulo
- Stem Cells & Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Jorge Dorado
- Stem Cells & Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Anamaria Balic
- Stem Cells & Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Manuel Hidalgo
- Gastrointestinal Cancer Clinical Research Unit, Clinical Research Programme (CNIO), Spanish National Cancer Research Centre, Madrid, Spain
| | - Christopher Heeschen
- Stem Cells & Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- * E-mail:
| |
Collapse
|
126
|
The clinical potential of targeted nanomedicine: delivering to cancer stem-like cells. Mol Ther 2013; 22:278-291. [PMID: 24113515 DOI: 10.1038/mt.2013.231] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/19/2013] [Indexed: 12/18/2022] Open
Abstract
Cancer stem-like cells (CSCs) have been implicated in recurrence and treatment resistance in many human cancers. Thus, a CSC-targeted drug delivery strategy to eliminate CSCs is a desirable approach for developing a more effective anticancer therapy. We have developed a tumor-targeting nanodelivery platform (scL) for systemic administration of molecular medicines. Following treatment with the scL nanocomplex carrying various payloads, we have observed exquisite tumor-targeting specificity and significant antitumor response with long-term survival benefit in numerous animal models. We hypothesized that this observed efficacy might be attributed, at least in part, to elimination of CSCs. Here, we demonstrate the ability of scL to target both CSCs and differentiated nonstem cancer cells (non-CSCs) in various mouse models including subcutaneous and intracranial xenografts, syngeneic, and chemically induced tumors. We also show that systemic administration of scL carrying the wtp53 gene was able to induce tumor growth inhibition and the death of both CSCs and non-CSCs in subcutaneous colorectal cancer xenografts suggesting that this could be an effective method to reduce cancer recurrence and treatment resistance. This scL nanocomplex is being evaluated in a number of clinical trials where it has been shown to be well tolerated with indications of anticancer activity.
Collapse
|
127
|
Vidal SJ, Rodriguez-Bravo V, Galsky M, Cordon-Cardo C, Domingo-Domenech J. Targeting cancer stem cells to suppress acquired chemotherapy resistance. Oncogene 2013; 33:4451-63. [PMID: 24096485 DOI: 10.1038/onc.2013.411] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 12/18/2022]
Abstract
Acquired resistance has curtailed cancer survival since the dawn of the chemotherapy age more than half a century ago. Although the application of stem cell (SC) concepts to cancer captured the imagination of scientists for many years, only the last decade has yielded substantial evidence that cancer SCs (CSCs) contribute to chemotherapy resistance. Recent studies suggest that the functional and molecular properties of CSCs constitute therapeutic opportunities to improve the efficacy of chemotherapy. Here we review how these properties have stimulated combination strategies that suppress acquired resistance across a spectrum of malignancies. The clinical implementation of these strategies promises to rejuvenate the effort against an enduring challenge.
Collapse
Affiliation(s)
- S J Vidal
- 1] Department of Pathology, Mount Sinai Icahn School of Medicine, New York, NY, USA [2] Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - V Rodriguez-Bravo
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M Galsky
- Oncology Department, Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, NY, USA
| | - C Cordon-Cardo
- Department of Pathology, Mount Sinai Icahn School of Medicine, New York, NY, USA
| | - J Domingo-Domenech
- Department of Pathology, Mount Sinai Icahn School of Medicine, New York, NY, USA
| |
Collapse
|
128
|
Gnoni A, Licchetta A, Scarpa A, Azzariti A, Brunetti AE, Simone G, Nardulli P, Santini D, Aieta M, Delcuratolo S, Silvestris N. Carcinogenesis of pancreatic adenocarcinoma: precursor lesions. Int J Mol Sci 2013; 14:19731-62. [PMID: 24084722 PMCID: PMC3821583 DOI: 10.3390/ijms141019731] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/04/2013] [Accepted: 09/10/2013] [Indexed: 02/06/2023] Open
Abstract
Pancreatic adenocarcinoma displays a variety of molecular changes that evolve exponentially with time and lead cancer cells not only to survive, but also to invade the surrounding tissues and metastasise to distant sites. These changes include: genetic alterations in oncogenes and cancer suppressor genes; changes in the cell cycle and pathways leading to apoptosis; and also changes in epithelial to mesenchymal transition. The most common alterations involve the epidermal growth factor receptor (EGFR) gene, the HER2 gene, and the K-ras gene. In particular, the loss of function of tumor-suppressor genes has been documented in this tumor, especially in CDKN2a, p53, DPC4 and BRCA2 genes. However, other molecular events involved in pancreatic adenocarcinoma pathogenesis contribute to its development and maintenance, specifically epigenetic events. In fact, key tumor suppressors that are well established to play a role in pancreatic adenocarcinoma may be altered through hypermethylation, and oncogenes can be upregulated secondary to permissive histone modifications. Indeed, factors involved in tumor invasiveness can be aberrantly expressed through dysregulated microRNAs. This review summarizes current knowledge of pancreatic carcinogenesis from its initiation within a normal cell until the time that it has disseminated to distant organs. In this scenario, highlighting these molecular alterations could provide new clinical tools for early diagnosis and new effective therapies for this malignancy.
Collapse
Affiliation(s)
- Antonio Gnoni
- Medical Oncology Unit, Hospital Vito Fazzi, Lecce 73100, Italy; E-Mails: (A.G.); (A.L.)
| | - Antonella Licchetta
- Medical Oncology Unit, Hospital Vito Fazzi, Lecce 73100, Italy; E-Mails: (A.G.); (A.L.)
| | - Aldo Scarpa
- Department of Pathology and Diagnostics, University of Verona, Verona 37121, Italy; E-Mail:
| | - Amalia Azzariti
- Clinical and Preclinical Pharmacology Laboratory, National Cancer Research Centre Istituto Tumori “Giovanni Paolo II”, Bari 70124, Italy; E-Mail:
| | - Anna Elisabetta Brunetti
- Scientific Direction, National Cancer Research Centre Istituto Tumori “Giovanni Paolo II”, Bari 70124, Italy; E-Mail: (A.E.B.); (S.D.)
| | - Gianni Simone
- Histopathology Unit, National Cancer Research Centre Istituto Tumori “Giovanni Paolo II”, Bari 70124, Italy; E-Mail:
| | - Patrizia Nardulli
- Hospital Pharmacy Unit - National Cancer Research Centre Istituto Tumori “Giovanni Paolo II”, Bari 70124, Italy; E-Mail:
| | - Daniele Santini
- Medical Oncology Department, University Campus Bio-Medico, Rome 00199, Italy; E-Mail:
| | - Michele Aieta
- Medical Oncology Unit - CROB-IRCCS, 85028, Rionero in Vulture, Potenza 85100, Italy; E-Mail:
| | - Sabina Delcuratolo
- Scientific Direction, National Cancer Research Centre Istituto Tumori “Giovanni Paolo II”, Bari 70124, Italy; E-Mail: (A.E.B.); (S.D.)
| | - Nicola Silvestris
- Medical Oncology Unit, National Cancer Research Centre Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, Bari 70124, Italy
| |
Collapse
|
129
|
Castellanos JA, Merchant NB, Nagathihalli NS. Emerging targets in pancreatic cancer: epithelial-mesenchymal transition and cancer stem cells. Onco Targets Ther 2013; 6:1261-7. [PMID: 24049451 PMCID: PMC3775701 DOI: 10.2147/ott.s34670] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is one of the most aggressive solid malignancies and is characterized by poor response to current therapy and a dismal survival rate. Recent insights regarding the role of cancer stem cells (CSCs) and epithelial–mesenchymal transition (EMT) in tumorigenesis have brought further understanding to the field and have highlighted new therapeutic targets. CSCs are a distinct subset of cancer cells, with the ability to differentiate into other cell types and self-renew in order to fuel the maintenance of tumor amplification. Transition of a cancer cell from an EMT leads to increased migratory and invasive properties, and thus facilitates initiation of metastasis. EMT is regulated by a complex network of factors that includes cytokines, growth factors, aberrant signaling pathways, transcription factors, and the tumor microenvironment. There is emerging evidence that the EMT process may give rise to CSCs, or at least cells with stem cell-like properties. We review the key pathways involved in both of these processes, the biomarkers used to identify CSCs, and new therapeutic approaches targeting CSCs and EMT in pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Jason A Castellanos
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | |
Collapse
|
130
|
Herreros-Villanueva M, Zhang JS, Koenig A, Abel EV, Smyrk TC, Bamlet WR, de Narvajas AAM, Gomez TS, Simeone DM, Bujanda L, Billadeau DD. SOX2 promotes dedifferentiation and imparts stem cell-like features to pancreatic cancer cells. Oncogenesis 2013; 2:e61. [PMID: 23917223 PMCID: PMC3759123 DOI: 10.1038/oncsis.2013.23] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 06/26/2013] [Indexed: 12/15/2022] Open
Abstract
SOX2 (Sex-determining region Y (SRY)-Box2) has important functions during embryonic development and is involved in cancer stem cell (CSC) maintenance, in which it impairs cell growth and tumorigenicity. However, the function of SOX2 in pancreatic cancer cells is unclear. The objective of this study was to analyze SOX2 expression in human pancreatic tumors and determine the role of SOX2 in pancreatic cancer cells regulating CSC properties. In this report, we show that SOX2 is not expressed in normal pancreatic acinar or ductal cells. However, ectopic expression of SOX2 is observed in 19.3% of human pancreatic tumors. SOX2 knockdown in pancreatic cancer cells results in cell growth inhibition via cell cycle arrest associated with p21Cip1 and p27Kip1 induction, whereas SOX2 overexpression promotes S-phase entry and cell proliferation associated with cyclin D3 induction. SOX2 expression is associated with increased levels of the pancreatic CSC markers ALDH1, ESA and CD44. Importantly, we show that SOX2 is enriched in the ESA+/CD44+ CSC population from two different patient samples. Moreover, we show that SOX2 directly binds to the Snail, Slug and Twist promoters, leading to a loss of E-Cadherin and ZO-1 expression. Taken together, our findings show that SOX2 is aberrantly expressed in pancreatic cancer and contributes to cell proliferation and stemness/dedifferentiation through the regulation of a set of genes controlling G1/S transition and epithelial-to-mesenchymal transition (EMT) phenotype, suggesting that targeting SOX2-positive cancer cells could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- M Herreros-Villanueva
- 1] Division of Oncology Research, Schulze Center for Novel Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN, USA [2] Department of Gastroenterology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Donostia/Instituto Biodonostia, Universidad del País Vasco UPV/EHU, San Sebastián, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Hermann PC, Trabulo SM, Sainz B, Balic A, Garcia E, Hahn SA, Vandana M, Sahoo SK, Tunici P, Bakker A, Hidalgo M, Heeschen C. Multimodal Treatment Eliminates Cancer Stem Cells and Leads to Long-Term Survival in Primary Human Pancreatic Cancer Tissue Xenografts. PLoS One 2013; 8:e66371. [PMID: 23825539 PMCID: PMC3688976 DOI: 10.1371/journal.pone.0066371] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 05/07/2013] [Indexed: 12/17/2022] Open
Abstract
Purpose In spite of intense research efforts, pancreatic ductal adenocarcinoma remains one of the most deadly malignancies in the world. We and others have previously identified a subpopulation of pancreatic cancer stem cells within the tumor as a critical therapeutic target and additionally shown that the tumor stroma represents not only a restrictive barrier for successful drug delivery, but also serves as a paracrine niche for cancer stem cells. Therefore, we embarked on a large-scale investigation on the effects of combining chemotherapy, hedgehog pathway inhibition, and mTOR inhibition in a preclinical mouse model of pancreatic cancer. Experimental Design Prospective and randomized testing in a set of almost 200 subcutaneous and orthotopic implanted whole-tissue primary human tumor xenografts. Results The combined targeting of highly chemoresistant cancer stem cells as well as their more differentiated progenies, together with abrogation of the tumor microenvironment by targeting the stroma and enhancing tissue penetration of the chemotherapeutic agent translated into significantly prolonged survival in preclinical models of human pancreatic cancer. Most pronounced therapeutic effects were observed in gemcitabine-resistant patient-derived tumors. Intriguingly, the proposed triple therapy approach could be further enhanced by using a PEGylated formulation of gemcitabine, which significantly increased its bioavailability and tissue penetration, resulting in a further improved overall outcome. Conclusions This multimodal therapeutic strategy should be further explored in the clinical setting as its success may eventually improve the poor prognosis of patients with pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Patrick C. Hermann
- Stem Cells and Cancer Group, Clinical Research Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sara M. Trabulo
- Stem Cells and Cancer Group, Clinical Research Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Bruno Sainz
- Stem Cells and Cancer Group, Clinical Research Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Anamaria Balic
- Stem Cells and Cancer Group, Clinical Research Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Elena Garcia
- Gastrointestinal Cancer Clinical Research Unit, Clinical Research Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Stephan A. Hahn
- Department of Molecular GI-Oncology, Ruhr-University Bochum, Bochum, Germany
| | - Mallaredy Vandana
- Nanomedicine Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | - Sanjeeb K. Sahoo
- Nanomedicine Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | | | - Annette Bakker
- Children’s Tumor Foundation, New York, New York, United States of America
| | - Manuel Hidalgo
- Gastrointestinal Cancer Clinical Research Unit, Clinical Research Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Christopher Heeschen
- Stem Cells and Cancer Group, Clinical Research Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- * E-mail:
| |
Collapse
|
132
|
Abel EV, Simeone DM. Biology and clinical applications of pancreatic cancer stem cells. Gastroenterology 2013; 144:1241-8. [PMID: 23622133 DOI: 10.1053/j.gastro.2013.01.072] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/10/2013] [Accepted: 01/14/2013] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinomas comprise a hierarchy of tumor cells that develop around a population of cancer stem cells. The cancer stem cells promote tumor growth and progression through a number of mechanisms, including differentiation into bulk tumor cells, metastasis, alteration of adjacent stromal cells, and evasion of conventional therapies. As with other cancer stem cells, pancreatic cancer stem cells (PCSCs) can be distinguished from bulk tumor cells based on their expression of unique surface markers, abilities to form spheres under nonadherent conditions and tumors in mice, and self-renewal and differentiation capacities. We review the markers used to identify PCSCs, the signaling pathways that regulate PCSC functions, the complex interactions between PCSCs and stromal cells, and approaches to therapeutically target PCSCs and improve treatment of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Ethan V Abel
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
133
|
Abstract
Cancer stem cells (CSCs) have been proposed as the driving force of tumorigenesis and the seeds of metastases. However, their existence and role remain a topic of intense debate. Recently, the identification of CSCs in endogenously developing mouse tumours has provided further support for this concept. Here I discuss the challenges in identifying CSCs, their dependency on a supportive niche and their role in metastasis, and propose that stemness is a flexible — rather than fixed — quality of tumour cells that can be lost and gained.
Collapse
Affiliation(s)
- Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
134
|
Abstract
Much of the focus on the transforming growth factor-β (TGFβ) superfamily in cancer has revolved around the TGFβ ligands themselves. However, it is now becoming apparent that deregulated signalling by many of the other superfamily members also has crucial roles in both the development of tumours and metastasis. Furthermore, these signalling pathways are emerging as plausible therapeutic targets. Their roles in tumorigenesis frequently reflect their function in embryonic development or in adult tissue homeostasis, and their influence extends beyond the tumours themselves, to the tumour microenvironment and more widely to complications of cancer such as cachexia and bone loss.
Collapse
Affiliation(s)
- Lalage M Wakefield
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland 20892-4255, USA.
| | | |
Collapse
|
135
|
Abstract
Cancer stem cells (CSCs) drive solid tumor formation. In this issue of Cancer Cell, Zhao and colleagues indentify the calcium channel α2δ1 subunit as a new functional hepatocellular carcinoma (HCC) CSC biomarker, which is vital for CSC biology as blocking α2δ1 in combination with doxorubicin treatment hinders HCC tumor formation.
Collapse
Affiliation(s)
- Bruno Sainz
- Stem Cells and Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | | |
Collapse
|
136
|
Mace TA, Ameen Z, Collins A, Wojcik S, Mair M, Young GS, Fuchs JR, Eubank TD, Frankel WL, Bekaii-Saab T, Bloomston M, Lesinski GB. Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3-dependent manner. Cancer Res 2013; 73:3007-18. [PMID: 23514705 DOI: 10.1158/0008-5472.can-12-4601] [Citation(s) in RCA: 348] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic stellate cells (PSC) are a subset of pancreatic cancer-associated fibroblasts. These cells provide prosurvival signals to tumors; however, little is known regarding their interactions with immune cells within the tumor microenvironment. We hypothesized that factors produced by human PSC could enhance myeloid-derived suppressor cell (MDSC) differentiation and function, which promotes an immunosuppressive microenvironment. Primary PSC cell lines (n = 7) were generated from human specimens and phenotypically confirmed via expression of vimentin, α-smooth muscle actin (α-SMA), and glial fibrillary acidic protein (GFAP). Luminex analysis indicated that PSC but not human fetal primary pancreatic fibroblast cells (HPF; negative controls) produced MDSC-promoting cytokines [interleukin (IL-6), VEGF, macrophage colony-stimulating factor (M-CSF) ] and chemokines (SDF-1, MCP-1). Culture of peripheral blood mononuclear cells [peripheral blood mononuclear cell (PBMC), n = 3 donors] with PSC supernatants or IL-6/granulocyte macrophage colony-stimulating factor (GM-CSF; positive control) for 7 days promoted PBMC differentiation into an MDSC (CD11b+CD33+) phenotype and a subpopulation of polymorphonuclear CD11b+CD33+CD15+ cells. The resulting CD11b+CD33+ cells functionally suppressed autologous T-lymphocyte proliferation. In contrast, supernatants from HPF did not induce an MDSC phenotype in PBMCs. Culture of normal PBMCs with PSC supernatants led to STAT3 but not STAT1 or STAT5 phosphorylation. IL-6 was an important mediator as its neutralization inhibited PSC supernatant-mediated STAT3 phosphorylation and MDSC differentiation. Finally, the FLLL32 STAT3 inhibitor abrogated PSC supernatant-mediated MDSC differentiation, PSC viability, and reduced autocrine IL-6 production indicating these processes are STAT3 dependent. These results identify a novel role for PSC in driving immune escape in pancreatic cancer and extend the evidence that STAT3 acts as a driver of stromal immunosuppression to enhance its interest as a therapeutic target.
Collapse
Affiliation(s)
- Thomas A Mace
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Jiang BJ, Wang J, Yu JW. Microenvironment for cancer stem cells. Shijie Huaren Xiaohua Zazhi 2013; 21:553-558. [DOI: 10.11569/wcjd.v21.i7.553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells and their metastatic niche are one of hot topics for tumor study. This review introduces the definition of microenvironment (niche) for cancer stem cells, related cells and factors, characteristics and regulation of niche, premetastatic niche and tissue components. The research progress in this field can provide some clues to the metastatic mechanism of tumors and the development and improvement of chemotherapeutic drugs.
Collapse
|
138
|
García-Silva S, Frias-Aldeguer J, Heeschen C. Stem cells & pancreatic cancer. Pancreatology 2013; 13:110-3. [PMID: 23561967 DOI: 10.1016/j.pan.2012.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 12/11/2022]
Abstract
It is now well established that human pancreatic ductal adenocarcinoma (PDAC) contains a subset of cells with self-renewal capabilities and subsequent exclusive in vivo tumorigenic capacity as assessed by limiting dilution tumorigenic transplantation assays into immunodeficient mice. These cells are considered pancreatic cancer stem cells (CSCs) and are able to form tumors indistinguishable from parental ones. Furthermore they display strong chemotherapy resistance and are implicated in tumor relapses and metastatic spread. Important next steps for advancing the field of pancreatic CSC research include the identification and characterization of CSCs in the unperturbed in vivo setting. This has been achieved just recently for other solid tumors such as glioblastoma using clonal analysis after lineage tracing in mice [1]. In vivo imaging of CSCs during tumor development should not only provide new insights into the in vivo features of CSCs, but also help to further unravel the influence of the stroma on CSC biology. Comprehensive studies of the tumor heterogeneity with respect to the coexistence of different clones potentially generated by distinct population of CSCs that are evolving by stochastic cell fate decisions may actually unite the CSC concept and the model of clonal evolution for pancreatic cancer. Eventually, the design of specific therapies against CSCs should open new alleys to improve survival of patients with PDAC. Combined therapies targeting CSCs and their progenies as well as the supportive stroma may represent the most promising approach for the future treatment of patients with PDAC.
Collapse
Affiliation(s)
- Susana García-Silva
- Stem Cells & Cancer Group, Clinical Research Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | |
Collapse
|
139
|
Feig C, Gopinathan A, Neesse A, Chan DS, Cook N, Tuveson DA. The pancreas cancer microenvironment. Clin Cancer Res 2013; 18:4266-76. [PMID: 22896693 DOI: 10.1158/1078-0432.ccr-11-3114] [Citation(s) in RCA: 988] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a common and lethal malignancy resulting in more than 250,000 deaths per year worldwide. Despite extensive efforts, cytotoxic and targeted therapies have provided only limited efficacy for patients with PDA to date. One contributing factor to the failure of systemic therapies may be the abundant tumor stromal content that is the characteristic of PDA. The PDA stroma, aptly termed the tumor microenvironment, occupies the majority of the tumor mass, and consists of a dynamic assortment of extracellular matrix components and nonneoplastic cells including fibroblastic, vascular, and immune cells. Recent work has revealed that the PDA stroma supports tumor growth and promotes metastasis and simultaneously serves as a physical barrier to drug delivery. Accordingly, methods that alter stromal composition or function, for instance interference with the vasculature via Notch/Hedgehog pathway inhibition or relief of vascular compression by hyaluronidase, are under active investigation. Here, we will review our current understanding of the PDA tumor microenvironment, and highlight opportunities for further exploration that may benefit patients.
Collapse
|
140
|
Quail DF, Siegers GM, Jewer M, Postovit LM. Nodal signalling in embryogenesis and tumourigenesis. Int J Biochem Cell Biol 2013; 45:885-98. [PMID: 23291354 DOI: 10.1016/j.biocel.2012.12.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/19/2012] [Accepted: 12/24/2012] [Indexed: 12/22/2022]
Abstract
With few exceptions, most cells in adult organisms have lost the expression of stem cell-associated proteins and are instead characterized by tissue-specific gene expression and function. This cell fate specification is dictated spatially and temporally during embryogenesis. It has become increasingly apparent that the elegant and complicated process of cell specification is "undone" in cancer. This may be because cancer cells respond to their microenvironment and mutations by acquiring a more permissive, plastic epigenome, or because cancer cells arise from mutated stem cells. Regardless, these advanced cancer cells must use stem cell-associated proteins to sustain their phenotype. One such protein is Nodal, an embryonic morphogen belonging to the transforming growth factor-β (TGF-β) superfamily. First described in early developmental models, Nodal orchestrates embryogenesis by regulating a myriad of processes, including mesendoderm induction, left-right asymmetry and embryo implantation. Nodal is relatively restricted to embryonic and reproductive cell types and is thus absent from most normal adult tissues. However, recent studies focusing on a variety of malignancies have demonstrated that Nodal expression re-emerges during cancer progression. Moreover, in almost every cancer studied thus far, the acquisition of Nodal expression is associated with increased tumourigenesis, invasion and metastasis. As the list of cancers that express Nodal grows, it is essential that the scientific and medical communities fully understand how this morphogen is regulated in both normal and neoplastic conditions. Herein, we review the literature relating to normal and pathological Nodal signalling. In particular, we emphasize the role that this secreted protein plays during morphogenic events and how it signals to support stem cell maintenance and tumour progression.
Collapse
Affiliation(s)
- Daniela F Quail
- Department of Anatomy and Cell Biology, University of Western Ontario and Robarts Research Institute, London, ON, Canada
| | | | | | | |
Collapse
|
141
|
|
142
|
Current world literature. Curr Opin Organ Transplant 2012; 17:688-99. [PMID: 23147911 DOI: 10.1097/mot.0b013e32835af316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|