101
|
Tal Z, Geva R, Amedi A. Positive and Negative Somatotopic BOLD Responses in Contralateral Versus Ipsilateral Penfield Homunculus. Cereb Cortex 2017; 27:962-980. [PMID: 28168279 PMCID: PMC6093432 DOI: 10.1093/cercor/bhx024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/17/2017] [Indexed: 11/20/2022] Open
Abstract
One of the basic properties of sensory cortices is their topographical organization. Most imaging studies explored this organization using the positive blood oxygenation level-dependent (BOLD) signal. Here, we studied the topographical organization of both positive and negative BOLD in contralateral and ipsilateral primary somatosensory cortex (S1). Using phase-locking mapping methods, we verified the topographical organization of contralateral S1, and further showed that different body segments elicit pronounced negative BOLD responses in both hemispheres. In the contralateral hemisphere, we found a sharpening mechanism in which stimulation of a given body segment triggered a gradient of activation with a significant deactivation in more remote areas. In the ipsilateral cortex, deactivation was not only located in the homolog area of the stimulated parts but rather was widespread across many parts of S1. Additionally, analysis of resting-state functional magnetic resonance imaging signal showed a gradient of connectivity to the neighboring contralateral body parts as well as to the ipsilateral homologous area for each body part. Taken together, our results indicate a complex pattern of baseline and activity-dependent responses in the contralateral and ipsilateral sides. Both primary sensory areas were characterized by unique negative BOLD responses, suggesting that they are an important component in topographic organization of sensory cortices.
Collapse
Affiliation(s)
- Zohar Tal
- Department of Medical Neurobiology, Institute of Medical Research Israel – Canada (IMRIC), Faculty of Medicine
| | - Ran Geva
- Department of Medical Neurobiology, Institute of Medical Research Israel – Canada (IMRIC), Faculty of Medicine
| | - Amir Amedi
- Department of Medical Neurobiology, Institute of Medical Research Israel – Canada (IMRIC), Faculty of Medicine
- The Edmond and Lily Safra Center for Brain Science (ELSC)
- Program of Cognitive Science, The Hebrew University of Jerusalem, Jerusalem 91220, Israel
| |
Collapse
|
102
|
THE FEATURES OF BLOOD SUPPLY OF CORPUS CALLOSUM AND THE STRUCTURE OF ITS HEMOMICROCIRCULATORY CHANNEL. EUREKA: HEALTH SCIENCES 2017. [DOI: 10.21303/2504-5679.2017.00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Today we know the location of the sources of arterial blood delivery to the corpus callosum and we can approximately say, where are situated the venous vessels that the blood outflows from it to, but it is absolutely unknown, what is the intermediate link – the blood microcirculatory channel.
Aim of research. The aim of our research is in identification of the ways of venous outflow from corpus callosum and in clarification of the principle of structural organization of its hemomicrocirculatory channel.
Materials and methods. In the work are used the median total preparations of the corpus callosum (together with septum pellucidum and cerebral fornix formations) of 10 men 36–60 years old. Histological paraffin sections, colored by hematoxylin and eosin and according to Van-gieson were made of these preparations, and the methods of plastination of the corpus callosum tissues in epoxy resin with further creation of polished sections of different width and serial fine sections of blocs, for which coloration served the 1 % solution of blue methene for 1% borax solution, were also used.
Results. It was established, that the arterial microvessels, starting from vascular plexus that covers the upper surface of corpus callosum, penetrate it as arterioles along interfunicular connective tissue septs that divide its commissural funicles between them. The arterioles are prolonged directly in venous microvessels that can be related to gathering venules. These direct microvascular communications, coming through the thickness of corpus callosum, can be named perforating arteriolovenular anastomoses. The aforesaid collector venules, localized in the lowest sections of interfunicular interlayers, are the direct inflows of venous channel of septum pellucidum. In general system of blood supply of corpus callosum the main arteries on the one side and the veins of septum pellucidum – on the other, are not accompanied by the vessels of opposite type.
Conclusions. The blood microcirculatory channel of corpus callosum is the complexly branched in its thickness net of resistive, metabolic and capacitive microvessels, placed on the running way between arterial channel of soft cerebral tunic that covers the upper surface of corpus callosum and collector veins of septum pellucidum, situated below it. The direct shunting tracts between them are perforating arteriolovenular anastomoses.
Collapse
|
103
|
METRIC CHARACTERISTIC OF ANATOMICAL PREPARATIONS OF THE MATURE MALE CORPUS CALLOSUM. WORLD OF MEDICINE AND BIOLOGY 2017. [DOI: 10.26724/2079-8334-2017-3-61-85-89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
104
|
Prete G, Fabri M, Foschi N, Tommasi L. Geometry, landmarks and the cerebral hemispheres: 2D spatial reorientation in split-brain patients. J Neuropsychol 2016; 12:248-270. [DOI: 10.1111/jnp.12115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/18/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Giulia Prete
- Department of Psychological Science, Health and Territory; ‘G. d'Annunzio’ University of Chieti-Pescara; Italy
| | - Mara Fabri
- Department of Clinical and Experimental Medicine; Neuroscience and Cell Biology Section; Polytechnic University of Marche; Ancona Italy
| | - Nicoletta Foschi
- Regional Epilepsy Center; Neurological Clinic; ‘Ospedali Riuniti’; Ancona Italy
| | - Luca Tommasi
- Department of Psychological Science, Health and Territory; ‘G. d'Annunzio’ University of Chieti-Pescara; Italy
| |
Collapse
|
105
|
Kershner JR. Network dynamics in dyslexia: Review and implications for remediation. RESEARCH IN DEVELOPMENTAL DISABILITIES 2016; 59:24-34. [PMID: 27497371 DOI: 10.1016/j.ridd.2016.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/22/2016] [Accepted: 07/27/2016] [Indexed: 06/06/2023]
Abstract
Extant neurobiological theories of dyslexia appear fractional in focusing on isolated brain regions, mechanisms, and functional pathways. A synthesis of current research shows support for an Interactive Specialization (IS) model of dyslexia involving the dysfunctional orchestration of a widely-distributed, attentionally-controlled, hierarchical, and interhemispheric circuit of intercommunicating neuronal networks. This circuitry is comprised principally of the frontostriatal-parietal cognitive control system of networks, the posterior corpus callosum, and the left arcuate fasciculus. During development, the coalescence of these functionally specialized regions, acting together, may be essential to preventing the core phonemic and phonological processing deficits defining the dyslexic phenotype. Research demonstrating an association of each with processing phonology presents the foundational outline for a comprehensive, integrative theory of dyslexia and suggests the importance of inclusive remedial efforts aimed at promoting interactions among all three networking territories.
Collapse
|
106
|
Francis AN, Mothi SS, Mathew IT, Tandon N, Clementz B, Pearlson GD, Sweeney JA, Tamminga CA, Keshavan MS. Callosal Abnormalities Across the Psychosis Dimension: Bipolar Schizophrenia Network on Intermediate Phenotypes. Biol Psychiatry 2016; 80:627-35. [PMID: 26954565 PMCID: PMC5218825 DOI: 10.1016/j.biopsych.2015.12.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 11/24/2015] [Accepted: 12/15/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND The corpus callosum has been implicated in the pathogenesis of schizophrenia and bipolar disorder. However, it is unclear whether corpus callosum alterations are related to the underlying familial diathesis for psychotic disorders. We examined the corpus callosum and its subregion volumes and their relationship to cognition, psychotic symptoms, and age in probands with schizophrenia (SZ), psychotic bipolar disorder (PBD), and schizoaffective disorder; their first-degree relatives; and healthy control subjects. METHODS We present findings from morphometric and neurocognitive analyses of 1381 subjects (SZ probands, n = 224; PBD probands, n = 190; schizoaffective disorder probands, n = 142; unaffected relatives, n = 483 [SZ relatives, n = 195; PBD relatives, n = 175; schizoaffective disorder relatives, n = 113]; control subjects, n = 342). Magnetization prepared rapid acquisition gradient-echo T1 scans across five sites were obtained using 3-tesla magnets. Image processing was done using FreeSurfer Version 5.1. Neurocognitive function was measured using the Brief Assessment of Cognition in Schizophrenia scale. RESULTS Anterior and posterior splenial volumes were significantly reduced across the groups. The SZ and PBD probands showed robust and significant reductions, whereas relatives showed significant reductions of intermediate severity. The splenial volumes were positively but differentially correlated with aspects of cognition in the probands and their relatives. Proband groups showed a significant age-related decrease in the volume of the anterior splenium compared with control subjects. Among the psychosis groups, the anterior splenium in probands with PBD showed a stronger correlation with psychotic symptoms, as shown by the Positive and Negative Syndrome Scale. All five subregions showed significantly high familiality. CONCLUSIONS The splenial volumes were significantly reduced across the psychosis dimension. However, this volume reduction impacts cognition and clinical manifestation of the illnesses differentially.
Collapse
Affiliation(s)
- Alan N Francis
- Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, Massachusetts.
| | - Suraj S Mothi
- Beth Israel Deaconess Medical Center, Harvard University, Boston
| | - Ian T Mathew
- Beth Israel Deaconess Medical Center, Harvard University, Boston
| | - Neeraj Tandon
- Beth Israel Deaconess Medical Center, Harvard University, Boston
| | - Brett Clementz
- Department of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, Georgia
| | - Godfrey D Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford; Yale University School of Medicine, New Haven, Connecticut
| | - John A Sweeney
- University of Texas Southwestern Medical Center, Dallas, Texas
| | | | | |
Collapse
|
107
|
Ocklenburg S, Friedrich P, Güntürkün O, Genç E. Intrahemispheric white matter asymmetries: the missing link between brain structure and functional lateralization? Rev Neurosci 2016; 27:465-80. [DOI: 10.1515/revneuro-2015-0052] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/29/2015] [Indexed: 01/01/2023]
Abstract
AbstractHemispheric asymmetries are a central principle of nervous system architecture and shape the functional organization of most cognitive systems. Structural gray matter asymmetries and callosal interactions have been identified as contributing neural factors but always fell short to constitute a full explanans. Meanwhile, recent advances in in vivo white matter tractography have unrevealed the asymmetrical organization of many intrahemispheric white matter pathways, which might serve as the missing link to explain the substrate of functional lateralization. By taking into account callosal interactions, gray matter asymmetries and asymmetrical interhemispheric pathways, we opt for a new triadic model that has the potential to explain many observations which cannot be elucidated within the current frameworks of lateralized cognition.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- 1Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr University of Bochum, D-44780 Bochum, Germany
| | - Patrick Friedrich
- 1Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr University of Bochum, D-44780 Bochum, Germany
| | - Onur Güntürkün
- 1Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr University of Bochum, D-44780 Bochum, Germany
| | - Erhan Genç
- 1Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr University of Bochum, D-44780 Bochum, Germany
| |
Collapse
|
108
|
Badve C, Yu A, Rogers M, Ma D, Liu Y, Schluchter M, Sunshine J, Griswold M, Gulani V. Simultaneous T 1 and T 2 Brain Relaxometry in Asymptomatic Volunteers using Magnetic Resonance Fingerprinting. ACTA ACUST UNITED AC 2015; 1:136-144. [PMID: 26824078 PMCID: PMC4727840 DOI: 10.18383/j.tom.2015.00166] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Magnetic resonance fingerprinting (MRF) is an imaging tool that produces multiple magnetic resonance imaging parametric maps from a single scan. Herein we describe the normal range and progression of MRF-derived relaxometry values with age in healthy individuals. In total, 56 normal volunteers (24 men and 32 women) aged 11-71 years were scanned. Regions of interest were drawn on T1 and T2 maps in 38 areas, including lobar and deep white matter (WM), deep gray nuclei, thalami, and posterior fossa structures. Relaxometry differences were assessed using a forward stepwise selection of a baseline model that included either sex, age, or both, where variables were included if they contributed significantly (P < .05). In addition, differences in regional anatomy, including comparisons between hemispheres and between anatomical subcomponents, were assessed by paired t tests. MRF-derived T1 and T2 in frontal WM regions increased with age, whereas occipital and temporal regions remained relatively stable. Deep gray nuclei such as substantia nigra, were found to have age-related decreases in relaxometry. Differences in sex were observed in T1 and T2 of temporal regions, the cerebellum, and pons. Men were found to have more rapid age-related changes in frontal and parietal WM. Regional differences were identified between hemispheres, between the genu and splenium of the corpus callosum, and between posteromedial and anterolateral thalami. In conclusion, MRF quantification measures relaxometry trends in healthy individuals that are in agreement with the current understanding of neurobiology and has the ability to uncover additional patterns that have not yet been explored.
Collapse
Affiliation(s)
- Chaitra Badve
- Department of Radiology, Case Western Reserve University and University Hospitals of Cleveland, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Alice Yu
- School of Medicine, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Matthew Rogers
- School of Medicine, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Dan Ma
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Yiying Liu
- Biostatistics and Bioinformatics Core, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Mark Schluchter
- Biostatistics and Bioinformatics Core, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Jeffrey Sunshine
- Department of Radiology, Case Western Reserve University and University Hospitals of Cleveland, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Mark Griswold
- Department of Radiology, Case Western Reserve University and University Hospitals of Cleveland, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Vikas Gulani
- Department of Radiology, Case Western Reserve University and University Hospitals of Cleveland, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| |
Collapse
|
109
|
Tang Q, Li G, Liu T, Wang A, Feng S, Liao X, Jin Y, Guo Z, He B, McClure MA, Xing G, Mu Q. Modulation of interhemispheric activation balance in motor-related areas of stroke patients with motor recovery: Systematic review and meta-analysis of fMRI studies. Neurosci Biobehav Rev 2015; 57:392-400. [DOI: 10.1016/j.neubiorev.2015.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 08/27/2015] [Accepted: 09/02/2015] [Indexed: 02/07/2023]
|
110
|
Beaulé V, Tremblay S, Lafleur LP, Tremblay S, Lassonde M, Lepage JF, Théoret H. Cortical thickness in adults with agenesis of the corpus callosum. Neuropsychologia 2015; 77:359-65. [DOI: 10.1016/j.neuropsychologia.2015.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/23/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
|
111
|
Crosson B, McGregor KM, Nocera JR, Drucker JH, Tran SM, Butler AJ. The relevance of aging-related changes in brain function to rehabilitation in aging-related disease. Front Hum Neurosci 2015; 9:307. [PMID: 26074807 PMCID: PMC4444823 DOI: 10.3389/fnhum.2015.00307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/12/2015] [Indexed: 12/29/2022] Open
Abstract
The effects of aging on rehabilitation of aging-related diseases are rarely a design consideration in rehabilitation research. In this brief review we present strong coincidental evidence from these two fields suggesting that deficits in aging-related disease or injury are compounded by the interaction between aging-related brain changes and disease-related brain changes. Specifically, we hypothesize that some aphasia, motor, and neglect treatments using repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) in stroke patients may address the aging side of this interaction. The importance of testing this hypothesis and addressing the larger aging by aging-related disease interaction is discussed. Underlying mechanisms in aging that most likely are relevant to rehabilitation of aging-related diseases also are covered.
Collapse
Affiliation(s)
- Bruce Crosson
- Department of Veterans Affairs Rehabilitation Research and Development Center of Excellence for Visual and Neurocognitive Rehabilitation (151R), Atlanta VA Medical Center Decatur, GA, USA ; Department of Neurology, Emory University Atlanta, GA, USA ; Department of Psychology, Georgia State University Atlanta, GA, USA ; School of Health and Rehabilitation Sciences, University of Queensland Brisbane, Qld, Australia
| | - Keith M McGregor
- Department of Veterans Affairs Rehabilitation Research and Development Center of Excellence for Visual and Neurocognitive Rehabilitation (151R), Atlanta VA Medical Center Decatur, GA, USA ; Department of Neurology, Emory University Atlanta, GA, USA
| | - Joe R Nocera
- Department of Veterans Affairs Rehabilitation Research and Development Center of Excellence for Visual and Neurocognitive Rehabilitation (151R), Atlanta VA Medical Center Decatur, GA, USA ; Department of Neurology, Emory University Atlanta, GA, USA
| | - Jonathan H Drucker
- Department of Veterans Affairs Rehabilitation Research and Development Center of Excellence for Visual and Neurocognitive Rehabilitation (151R), Atlanta VA Medical Center Decatur, GA, USA ; Department of Neurology, Emory University Atlanta, GA, USA ; Department of Psychology, Emory University Atlanta, GA, USA
| | - Stella M Tran
- Department of Veterans Affairs Rehabilitation Research and Development Center of Excellence for Visual and Neurocognitive Rehabilitation (151R), Atlanta VA Medical Center Decatur, GA, USA ; Department of Psychology, Georgia State University Atlanta, GA, USA
| | - Andrew J Butler
- Department of Veterans Affairs Rehabilitation Research and Development Center of Excellence for Visual and Neurocognitive Rehabilitation (151R), Atlanta VA Medical Center Decatur, GA, USA ; Department of Physical Therapy and School of Nursing and Health Professionals, Georgia State University Atlanta, GA, USA
| |
Collapse
|
112
|
Alfaro A, Bernabeu Á, Agulló C, Parra J, Fernández E. Hearing colors: an example of brain plasticity. Front Syst Neurosci 2015; 9:56. [PMID: 25926778 PMCID: PMC4396351 DOI: 10.3389/fnsys.2015.00056] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 03/23/2015] [Indexed: 12/11/2022] Open
Abstract
Sensory substitution devices (SSDs) are providing new ways for improving or replacing sensory abilities that have been lost due to disease or injury, and at the same time offer unprecedented opportunities to address how the nervous system could lead to an augmentation of its capacities. In this work we have evaluated a color-blind subject using a new visual-to-auditory SSD device called “Eyeborg”, that allows colors to be perceived as sounds. We used a combination of neuroimaging techniques including Functional Magnetic Resonance Imaging (fMRI), Diffusion Tensor Imaging (DTI) and proton Magnetic Resonance Spectroscopy (1H-MRS) to study potential brain plasticity in this subject. Our results suggest that after 8 years of continuous use of this device there could be significant adaptive and compensatory changes within the brain. In particular, we found changes in functional neural patterns, structural connectivity and cortical topography at the visual and auditive cortex of the Eyeborg user in comparison with a control population. Although at the moment we cannot claim that the continuous use of the Eyeborg is the only reason for these findings, our results may shed further light on potential brain changes associated with the use of other SSDs. This could help to better understand how the brain adapts to several pathologies and uncover adaptive resources such as cross-modal representations. We expect that the precise understanding of these changes will have clear implications for rehabilitative training, device development and for more efficient programs for people with disabilities.
Collapse
Affiliation(s)
- Arantxa Alfaro
- CIBER-BBN Madrid, Spain ; Hospital Vega Baja Orihuela, Spain
| | - Ángela Bernabeu
- Department of Magnetic Resonance, INSCANER S.L. Alicante, Spain
| | - Carlos Agulló
- Department of Magnetic Resonance, INSCANER S.L. Alicante, Spain
| | | | - Eduardo Fernández
- CIBER-BBN Madrid, Spain ; Institute of Bioengineering, Universidad Miguel Hernández Elche, Spain
| |
Collapse
|