101
|
Self-Assembling β-Glucan Nanomedicine for the Delivery of siRNA. Biomedicines 2020; 8:biomedicines8110497. [PMID: 33198404 PMCID: PMC7698166 DOI: 10.3390/biomedicines8110497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
We aimed to design and manufacture a transporter capable of delivering small interfering RNAs (siRNAs) into the skin without causing any damage. β-glucans are unique chiral polysaccharides with well-defined immunological properties and supramolecular wrapping ability. However, the chiral properties of these polymers have hardly been applied in drug delivery systems. In this study, β-glucan nanoparticles were designed and manufactured to deliver genetic material to the target cells. The β-glucan molecules were self-assembled with an siRNA into nanoparticles of 300–400 nm in diameter via a conformational transition process, in order to construct a gene delivery system. The assembled gene nanocarriers were associated with high gene-loading ability. The expression and efficiency of siRNA were verified after its delivery via β-glucan. Our results provide evidence that β-glucan nanoparticles can be effectively used to deliver siRNA into the cells.
Collapse
|
102
|
The design and characterization of a gravitational microfluidic platform for drug sensitivity assay in colorectal perfused tumoroid cultures. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 30:102294. [DOI: 10.1016/j.nano.2020.102294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/24/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022]
|
103
|
Kiyomi A, Miyakawa R, Matsumoto J, Yamazaki K, Imai S, Yuan B, Hirano T, Sugiura M. Potent antitumor activity of cepharanthine against triple-negative breast cancer spheroids compared with tetrandrine. Oncol Lett 2020; 20:331. [PMID: 33101499 PMCID: PMC7577078 DOI: 10.3892/ol.2020.12191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/07/2020] [Indexed: 12/26/2022] Open
Abstract
Cepharanthine (CEP) is a bis-bynzelisoquinoline alkaloid from the same class as the anticancer agent tetrandrine (TET). However, the effects of CEP against breast cancer have not been extensively studied, despite its long therapeutic history with low toxicity against other types of cancer. 3D culture systems more accurately mimic the human body and address the limitations of determining drug effectiveness compared with 2D culture systems. In the present study, the antitumor activities of TET and CEP were compared in 3D culture systems in triple-negative breast cancer (TNBC) MDA-MB-231 and estrogen receptor-positive breast cancer MCF-7 cell lines. Cell viability, apoptosis and cytotoxicity assays were performed to determine the total number of live or dead cells, the IC50 values, the number of apoptotic cells and spheroid roundness. Viability suppression of MDA-MB-231 cells was significantly greater with both TET and CEP compared with that of MCF-7 cells, and the roundness of MDA-MB-231 spheroids treated with CEP was decreased significantly compared with that of spheroid treated with TET. Cytoplasmic shrinkage in each cell line significantly increased with the treatment of TET compared with the control; however, this effect was stronger with CEP. The ratio of dead/live cells in each cell line treated with TET and CEP increased in a dose-dependent manner. Overall, the present study demonstrated that CEP had greater cell toxicity in 3D spheroids of breast cancer cells compared with TET, suggesting that CEP may have a stronger antitumor activity on TNBC spheroids compared with TET.
Collapse
Affiliation(s)
- Anna Kiyomi
- Department of Drug Safety and Risk Management, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Risako Miyakawa
- Department of Drug Safety and Risk Management, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Juri Matsumoto
- Department of Drug Safety and Risk Management, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kyousuke Yamazaki
- Department of Drug Safety and Risk Management, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Shinobu Imai
- Department of Drug Safety and Risk Management, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Bo Yuan
- Laboratory of Pharmacology, School of Pharmacy, Josai University, Sakado, Saitama 350-0295, Japan
| | - Toshihiko Hirano
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Munetoshi Sugiura
- Department of Drug Safety and Risk Management, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
104
|
Vaidya FU, Sufiyan Chhipa A, Mishra V, Gupta VK, Rawat SG, Kumar A, Pathak C. Molecular and cellular paradigms of multidrug resistance in cancer. Cancer Rep (Hoboken) 2020; 5:e1291. [PMID: 33052041 PMCID: PMC9780431 DOI: 10.1002/cnr2.1291] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The acquisition of resistance to chemotherapy is a major hurdle in the successful application of cancer therapy. Several anticancer approaches, including chemotherapies, radiotherapy, surgery and targeted therapies are being employed for the treatment of cancer. However, cancer cells reprogram themselves in multiple ways to evade the effect of these therapies, and over a period of time, the drug becomes inactive due to the development of multi-drug resistance (MDR). MDR is a complex phenomenon where malignant cells become insensitive to anticancer drugs and attain the ability to survive even after several exposures of anticancer drugs. In this review, we have discussed the molecular and cellular paradigms of multidrug resistance in cancer. RECENT FINDINGS An Extensive research in cancer biology revealed that drug resistance in cancer is the result of perpetuated intracellular and extracellular mechanisms such as drug efflux, drug inactivation, drug target alteration, oncogenic mutations, altered DNA damage repair mechanism, inhibition of programmed cell death signaling, metabolic reprogramming, epithelial mesenchymal transition (EMT), inherent cell heterogeneity, epigenetic changes, redox imbalance, or any combination of these mechanisms. An inevitable cross-link between inflammation and drug resistance has been discussed. This review provided insight molecular mechanism to understand the vulnerabilities of cancer cells to develop drug resistance. CONCLUSION MDR is an outcome of interplays between multiple intricate pathways responsible for the inactivation of drug and development of resistance. MDR is a major obstacle in regimens of successful application of anti-cancer therapy. An improved understanding of the molecular mechanism of multi drug resistance and cellular reprogramming can provide a promising opportunity to combat drug resistance in cancer and intensify anti-cancer therapy for the upcoming future.
Collapse
Affiliation(s)
- Foram U. Vaidya
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| | - Abu Sufiyan Chhipa
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| | - Vinita Mishra
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| | | | | | - Ajay Kumar
- Department of ZoologyBanaras Hindu UniversityVaranasiIndia
| | - Chandramani Pathak
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| |
Collapse
|
105
|
Zhang S, Zhou Y, Wang Q, Donahue K, Feng J, Yao Y, Chen A, Li X, Hong L. Nipped-B-like Protein Sensitizes Esophageal Squamous Cell Carcinoma Cells to Cisplatin via Upregulation of PUMA. Technol Cancer Res Treat 2020; 19:1533033820960726. [PMID: 33034274 PMCID: PMC7592177 DOI: 10.1177/1533033820960726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nipped-B-like protein plays a pivotal role as a cohesin loading factor in the segregation of chromosomes when cells divide. Accumulating evidence indicates that alterations of this protein are involved in human carcinogenesis, especially in the regulation of chemotherapeutic drug response. However, the role of Nipped-B-like protein in esophageal squamous cell carcinoma remains unknown. In this study, we investigated the relevance of Nipped-B-like protein in the regulation of cisplatin sensitivity in esophageal squamous cell carcinoma. Ectopic expression of Nipped-B-like protein inhibited the growth of COLO-680N cells with low endogenous expression levels of Nipped-B-like protein, and increased sensitivity to cisplatin, a commonly used chemotherapy drug for patients with esophageal squamous cell carcinoma. In contrast, loss of Nipped-B-like protein stimulated the growth of EC9706 and Eca-109 cells with high levels of the protein, and resulted in resistance to cisplatin. P53-upregulated modulator of apoptosis, which is essential in the modulation of cisplatin sensitivity in a variety of cancers, acts as a downstream effector of Nipped-B-like protein. Restoration of this pro-apoptotic protein in Nipped-B-like protein-overexpressing esophageal squamous cell carcinoma cells effectively increased cisplatin sensitivity. Conversely, the silencing of P53-upregulated modulator of apoptosis in Nipped-B-like protein-depleted esophageal squamous cell carcinoma rendered cells resistant to cisplatin. Moreover, Nipped-B-like protein could bind directly to the promoter region of P53-upregulated modulator of apoptosis. In summary, our study addresses the involvement of Nipped-B-like protein in the development of esophageal squamous cell carcinoma, and the modulation of cisplatin sensitivity via regulation of P53-upregulated modulator of apoptosis.
Collapse
Affiliation(s)
- Shengjie Zhang
- Experimental Research Center, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang Province, China.,Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Hangzhou, Zhejiang Province, China
| | - Yun Zhou
- Experimental Research Center, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang Province, China.,Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Hangzhou, Zhejiang Province, China
| | - Qinchuan Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Kristine Donahue
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Jianguo Feng
- Experimental Research Center, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang Province, China.,Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Hangzhou, Zhejiang Province, China
| | - Yinli Yao
- Department of Medicine, The Children's Hospital, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Aiping Chen
- Experimental Research Center, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang Province, China.,Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Hangzhou, Zhejiang Province, China
| | - Xia Li
- Experimental Research Center, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang Province, China.,Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Hangzhou, Zhejiang Province, China
| | - Lianlian Hong
- Experimental Research Center, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang Province, China.,Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Hangzhou, Zhejiang Province, China
| |
Collapse
|
106
|
Waghela BN, Vaidya FU, Ranjan K, Chhipa AS, Tiwari BS, Pathak C. AGE-RAGE synergy influences programmed cell death signaling to promote cancer. Mol Cell Biochem 2020; 476:585-598. [PMID: 33025314 DOI: 10.1007/s11010-020-03928-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022]
Abstract
Advanced glycation end products (AGEs) are formed as a result of non-enzymatic reaction between the free reducing sugars and proteins, lipids, or nucleic acids. AGEs are predominantly synthesized during chronic hyperglycemic conditions or aging. AGEs interact with their receptor RAGE and activate various sets of genes and proteins of the signal transduction pathway. Accumulation of AGEs and upregulated expression of RAGE is associated with various pathological conditions including diabetes, cardiovascular diseases, neurodegenerative disorders, and cancer. The role of AGE-RAGE signaling has been demonstrated in the progression of various types of cancer and other pathological disorders. The expression of RAGE increases manifold during cancer progression. The activation of AGE-RAGE signaling also perturbs the cellular redox balance and modulates various cell death pathways. The programmed cell death signaling often altered during the progression of malignancies. The cellular reprogramming of AGE-RAGE signaling with cell death machinery during tumorigenesis is interesting to understand the complex signaling mechanism of cancer cells. The present review focus on multiple molecular paradigms relevant to cell death particularly Apoptosis, Autophagy, and Necroptosis that are considerably influenced by the AGE-RAGE signaling in the cancer cells. Furthermore, the review also attempts to shed light on the provenience of AGE-RAGE signaling on oxidative stress and consequences of cell survival mechanism of cancer cells.
Collapse
Affiliation(s)
- Bhargav N Waghela
- Cell Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Foram U Vaidya
- Cell Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Kishu Ranjan
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT, 06519, USA
| | - Abu Sufiyan Chhipa
- Cell Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Budhi Sagar Tiwari
- Cell Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Chandramani Pathak
- Cell Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
107
|
A Marine Collagen-Based Biomimetic Hydrogel Recapitulates Cancer Stem Cell Niche and Enhances Progression and Chemoresistance in Human Ovarian Cancer. Mar Drugs 2020; 18:md18100498. [PMID: 33003514 PMCID: PMC7599646 DOI: 10.3390/md18100498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Recent attention has focused on the development of an effective three-dimensional (3D) cell culture system enabling the rapid enrichment of cancer stem cells (CSCs) that are resistant to therapies and serving as a useful in vitro tumor model that accurately reflects in vivo behaviors of cancer cells. Presently, an effective 3D in vitro model of ovarian cancer (OC) was developed using a marine collagen-based hydrogel. Advantages of the model include simplicity, efficiency, bioactivity, and low cost. Remarkably, OC cells grown in this hydrogel exhibited biochemical and physiological features, including (1) enhanced cell proliferation, migration and invasion, colony formation, and chemoresistance; (2) suppressed apoptosis with altered expression levels of apoptosis-regulating molecules; (3) upregulated expression of crucial multidrug resistance-related genes; (4) accentuated expression of key molecules associated with malignant progression, such as epithelial–mesenchymal transition transcription factors, Notch, and pluripotency biomarkers; and (5) robust enrichment of ovarian CSCs. The findings indicate the potential of our 3D in vitro OC model as an in vitro research platform to study OC and ovarian CSC biology and to screen novel therapies targeting OC and ovarian CSCs.
Collapse
|
108
|
Yang Y, Liu S, Chen C, Huang H, Tao L, Qian Z, Li W. Microfluidic-enabled self-organized tumor model for in vitro cytotoxicity assessment of doxorubicin. Biomed Microdevices 2020; 22:70. [PMID: 32960346 DOI: 10.1007/s10544-020-00523-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 12/18/2022]
Abstract
The advent of microfluidic technologies has enabled a better recapitulation of in vitro tumor model with higher biological relevance over conventional monolayer assays. This work built upon a microfluidic system that supported the spontaneous aggregate formation of tumoral cells under flow-induced dynamic physical forces in a confined microchamber without additional matrix materials. Our findings indicated that fluidic streams significantly modulated the biological and architectural features of human breast adenocarcinoma cell (MCF-7), human hepatocarcinoma cell (HepG2), and human cervix adenocarcinoma cell (HeLa) with cell-type-dependent variation. The microfluidic platform was further integrated with a fluorescence detection and imaging system, allowing for non-invasive monitoring of cellular accumulation and spatial distribution of a chemotherapeutic agent, doxorubicin (DOX). The cytotoxic effects of DOX of various concentrations were determined and compared in MCF-7 cells in conventional two-dimensional (2D) static and microfluidic culture conditions. Dose-dependent response to DOX was noticed in both cultures, whereas tumor micronodules grown in microfluidic devices demonstrated significantly lower sensitivity to DOX at increased concentration. Our platform owns promising potentials as a universal modality for bridging traditional 2D cell cultures and in vivo experimentation for preclinical anticancer drug screening.
Collapse
Affiliation(s)
- Yamin Yang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, 169 Sheng Tai West Road, Nanjing, 211106, Jiangsu, China.
| | - Sijia Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, 169 Sheng Tai West Road, Nanjing, 211106, Jiangsu, China
| | - Chunxiao Chen
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, 169 Sheng Tai West Road, Nanjing, 211106, Jiangsu, China
| | - Haipeng Huang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, 169 Sheng Tai West Road, Nanjing, 211106, Jiangsu, China
| | - Ling Tao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, 169 Sheng Tai West Road, Nanjing, 211106, Jiangsu, China
| | - Zhiyu Qian
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, 169 Sheng Tai West Road, Nanjing, 211106, Jiangsu, China
| | - Weitao Li
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, 169 Sheng Tai West Road, Nanjing, 211106, Jiangsu, China
| |
Collapse
|
109
|
Crowell LL, Yakisich JS, Aufderheide B, Adams TNG. Electrical Impedance Spectroscopy for Monitoring Chemoresistance of Cancer Cells. MICROMACHINES 2020; 11:E832. [PMID: 32878225 PMCID: PMC7570252 DOI: 10.3390/mi11090832] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 12/14/2022]
Abstract
Electrical impedance spectroscopy (EIS) is an electrokinetic method that allows for the characterization of intrinsic dielectric properties of cells. EIS has emerged in the last decade as a promising method for the characterization of cancerous cells, providing information on inductance, capacitance, and impedance of cells. The individual cell behavior can be quantified using its characteristic phase angle, amplitude, and frequency measurements obtained by fitting the input frequency-dependent cellular response to a resistor-capacitor circuit model. These electrical properties will provide important information about unique biomarkers related to the behavior of these cancerous cells, especially monitoring their chemoresistivity and sensitivity to chemotherapeutics. There are currently few methods to assess drug resistant cancer cells, and therefore it is difficult to identify and eliminate drug-resistant cancer cells found in static and metastatic tumors. Establishing techniques for the real-time monitoring of changes in cancer cell phenotypes is, therefore, important for understanding cancer cell dynamics and their plastic properties. EIS can be used to monitor these changes. In this review, we will cover the theory behind EIS, other impedance techniques, and how EIS can be used to monitor cell behavior and phenotype changes within cancerous cells.
Collapse
Affiliation(s)
- Lexi L. Crowell
- Department of Chemical and Biomolecular Engineering, University of California-Irvine, Irvine, CA 92697, USA;
- Sue & Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Juan S. Yakisich
- Department of Pharmaceutical Sciences, Hampton University, Hampton, VA 23668, USA;
| | - Brian Aufderheide
- Department of Chemical Engineering, Hampton University, Hampton, VA 23668, USA;
| | - Tayloria N. G. Adams
- Department of Chemical and Biomolecular Engineering, University of California-Irvine, Irvine, CA 92697, USA;
- Sue & Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
110
|
Azimi T, Loizidou M, Dwek MV. Cancer cells grown in 3D under fluid flow exhibit an aggressive phenotype and reduced responsiveness to the anti-cancer treatment doxorubicin. Sci Rep 2020; 10:12020. [PMID: 32694700 PMCID: PMC7374750 DOI: 10.1038/s41598-020-68999-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
3D laboratory models of cancer are designed to recapitulate the biochemical and biophysical characteristics of the tumour microenvironment and aim to enable studies of cancer, and new therapeutic modalities, in a physiologically-relevant manner. We have developed an in vitro 3D model comprising a central high-density mass of breast cancer cells surrounded by collagen type-1 and we incorporated fluid flow and pressure. We noted significant changes in cancer cell behaviour using this system. MDA-MB231 and SKBR3 breast cancer cells grown in 3D downregulated the proliferative marker Ki67 (P < 0.05) and exhibited decreased response to the chemotherapeutic agent doxorubicin (DOX) (P < 0.01). Mesenchymal markers snail and MMP14 were upregulated in cancer cells maintained in 3D (P < 0.001), cadherin-11 was downregulated (P < 0.001) and HER2 increased (P < 0.05). Cells maintained in 3D under fluid flow exhibited a further reduction in response to DOX (P < 0.05); HER2 and Ki67 levels were also attenuated. Fluid flow and pressure was associated with reduced cell viability and decreased expression levels of vimentin. In summary, aggressive cancer cell behaviour and reduced drug responsiveness was observed when breast cancer cells were maintained in 3D under fluid flow and pressure. These observations are relevant for future developments of 3D in vitro cancer models and organ-on-a-chip initiatives.
Collapse
Affiliation(s)
- Tayebeh Azimi
- School of Life Sciences, University of Westminster, 115 New Cavendish St, London, W1W 6UW, UK
| | - Marilena Loizidou
- Division of Surgery and Interventional Science, Department of Surgical Biotechnology, UCL Medical School Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - Miriam V Dwek
- School of Life Sciences, University of Westminster, 115 New Cavendish St, London, W1W 6UW, UK.
| |
Collapse
|
111
|
Lee K, Min D, Choi Y, Kim J, Yoon S, Jang J, Park S, Tanaka M, Cho YW, Koo HJ, Jeon H, Choi J. Study and Evaluation of the Potential of Lipid Nanocarriers for Transdermal Delivery of siRNA. Biotechnol J 2020; 15:e2000079. [PMID: 32678938 DOI: 10.1002/biot.202000079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/02/2020] [Indexed: 11/08/2022]
Abstract
The topical delivery of siRNA-based therapies has opened new avenues for the treatment of skin disorders. The use of siRNA as a therapeutic, however, is limited due to its rapid degradation and poor cellular uptake. Furthermore, the top layer of skin, the stratum corneum, is a major barrier to the delivery of topical agents. There is an unmet need for efficient topical formulations for delivering siRNA to the site of action. In this study, 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or lipofectamine is used to prepare a nanocarrier for delivering siRNA against glyceraldehyde 3-phosphate dehydrogenase (GAPDH); GAPDH expression is then evaluated at the cellular level. In addition, a dermal transport assay is designed and implemented to evaluate the penetration and delivery efficacy of siRNA in pig skin using lipid nanocarriers. The delivery of siRNA with the use of a lipid nanocarrier is significantly better than the delivery of siRNA without it. Thus, the findings identify lipid nanocarriers as excellent candidates for the transdermal delivery of siRNA for gene silencing in the skin and thus for applications in related preclinical models.
Collapse
Affiliation(s)
- Kyungwoo Lee
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea.,Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Daejin Min
- Basic Research & Innovation Division, AMOREPACIFIC R&D Unit, Yongin-si, 17074, Republic of Korea.,Department of Chemical Engineering, Hanyang University, Ansan-si, 15588, Republic of Korea
| | - Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jiwon Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Semi Yoon
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jaehee Jang
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Soomin Park
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1-S1-24, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Yong Woo Cho
- Department of Chemical Engineering, Hanyang University, Ansan-si, 15588, Republic of Korea
| | - Hyung-Jun Koo
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Hojeong Jeon
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| |
Collapse
|
112
|
Pham SH, Choi Y, Choi J. Stimuli-Responsive Nanomaterials for Application in Antitumor Therapy and Drug Delivery. Pharmaceutics 2020; 12:E630. [PMID: 32635539 PMCID: PMC7408499 DOI: 10.3390/pharmaceutics12070630] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 01/14/2023] Open
Abstract
The new era of nanotechnology has produced advanced nanomaterials applicable to various fields of medicine, including diagnostic bio-imaging, chemotherapy, targeted drug delivery, and biosensors. Various materials are formed into nanoparticles, such as gold nanomaterials, carbon quantum dots, and liposomes. The nanomaterials have been functionalized and widely used because they are biocompatible and easy to design and prepare. This review mainly focuses on nanomaterials responsive to the external stimuli used in drug-delivery systems. To overcome the drawbacks of conventional therapeutics to a tumor, the dual- and multi-responsive behaviors of nanoparticles have been harnessed to improve efficiency from a drug delivery point of view. Issues and future research related to these nanomaterial-based stimuli sensitivities and the scope of stimuli-responsive systems for nanomedicine applications are discussed.
Collapse
Affiliation(s)
| | | | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (S.H.P.); (Y.C.)
| |
Collapse
|
113
|
Kulkarni B, Gondaliya P, Kirave P, Rawal R, Jain A, Garg R, Kalia K. Exosome-mediated delivery of miR-30a sensitize cisplatin-resistant variant of oral squamous carcinoma cells via modulating Beclin1 and Bcl2. Oncotarget 2020; 11:1832-1845. [PMID: 32499869 PMCID: PMC7244014 DOI: 10.18632/oncotarget.27557] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
Exosomes facilitate cross-talk amongst tumor cells, and thus also possess the potential to influence tumor-microenvironment and chemo-resistance. miRNAs, the important constituent of exosomes, are often dysregulated in cancer. They have been shown to play an essential role in tumor progression, metastasis, invasion, and resistance developed against different therapies. Acquisition of cisplatin-chemoresistance remains a major hurdle in the effective treatment of oral squamous cell carcinoma (OSCC). In this study, we demonstrate the importance of exosome-mediated miR-30a transfer in conferring cisplatin sensitivity in the otherwise resistant OSCC cells. Notably, miR-30a was found to be significantly reduced in exosomes isolated from the serum of OSCC patients, especially those having disease-recurrence, post cisplatin treatment. In conjunction with the findings in clinical samples, decreased miR-30a expression was observed in vitro in the cisplatin-resistant cultured OSCC cells compared to the cisplatin-sensitive cells. Besides, we identified Beclin1, an autophagy-related marker, as a target of miR-30a and found it to be overexpressed in cisplatin-resistant OSCC cells, thus indicating at its possible negative-regulation by miR30a. Exosomes from the cisplatin-resistant cells that have been transfected with miR-30a mimics, when delivered to the naïve cisplatin-resistant cells, caused not only the significant enhancements in miR-30a expression but also a concomitant decrease in Beclin1 and Bcl2 expression (autophagic and anti-apoptotic marker). More importantly, this together resulted in the sensitization of cisplatin-resistant cells. Thus, our study highlighted the role of exosomal-mediated miR-30a transfer in regaining sensitivity of the cisplatin-resistant OSCC cells via Beclin1 and Bcl2 regulation and hence suggests at its potential therapeutic role.
Collapse
Affiliation(s)
- Bhagyashri Kulkarni
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India.,These authors contributed equally to this work
| | - Piyush Gondaliya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India.,These authors contributed equally to this work
| | - Prathibha Kirave
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India.,These authors contributed equally to this work
| | - Rakesh Rawal
- Department of Life Science, Gujarat University, Ahmedabad, Gujarat, India
| | - Alok Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India
| | - Rachana Garg
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India
| |
Collapse
|
114
|
Tae IH, Son JY, Lee SH, Ahn MY, Yoon K, Yoon S, Moon HR, Kim HS. A new SIRT1 inhibitor, MHY2245, induces autophagy and inhibits energy metabolism via PKM2/mTOR pathway in human ovarian cancer cells. Int J Biol Sci 2020; 16:1901-1916. [PMID: 32398958 PMCID: PMC7211172 DOI: 10.7150/ijbs.44343] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/19/2020] [Indexed: 01/06/2023] Open
Abstract
Ovarian cancer is a common gynecological cancer that is found worldwide. Class III histone deacetylase (HDAC) inhibitors, a new class of anticancer agents, induce autophagy in various human cancer cells. The aim of the present study was to investigate the antitumor activity of MHY2245, a new synthetic SIRT inhibitor, on human ovarian cancer cells. We found that MHY2245 exhibited potent cytotoxicity to SKOV3 cells in a time- and concentration-dependent manner. The cytotoxicity of MHY2245 (IC50=0.32 µM) was higher than that of doxorubicin (DOX, IC50=1.38µM) against SKOV3 cells. MHY2245 significantly inhibited SIRT1 enzyme activity, reduced the expression of SIRT1, increased cell cycle arrest at G2/M phase, and induced apoptotic cell death in SKOV3 cells via expression of cytochrome c, cleaved-PARP, cleaved caspase-3, and Bax. This might be associated with blocking of the pyruvate kinase M2 (PKM2)/mTOR pathway. MHY2245 also inhibited tumor growth and reduced tumor size when SKOV3 cells were transplanted into nude mice. Our results indicate that MHY2245 exerts antitumor activity against ovarian cancer cells by blocking the PKM2/mTOR pathway. We suggest that MHY2245 is a promising anticancer agent that disrupts ovarian cancer cell metabolism.
Collapse
Affiliation(s)
- In Hwan Tae
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Suwon 16419, Republic of Korea
| | - Ji Yeon Son
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Suwon 16419, Republic of Korea
| | - Su Hyun Lee
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Suwon 16419, Republic of Korea
| | - Mi-Young Ahn
- Major in Pharmaceutical Engineering, Division of Bio-industry, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
| | - Kyungsil Yoon
- Comparative Biomedicine Research Branch, Division of Translational Science, National Cancer Center, 323 Ilsandong-gu, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Sungpil Yoon
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Suwon 16419, Republic of Korea
| | - Hyung Ryong Moon
- College of Pharmacy, Pusan National University, Busandaehak-ro 63, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Suwon 16419, Republic of Korea
| |
Collapse
|
115
|
Kwon Y, Choi Y, Jang J, Yoon S, Choi J. NIR Laser-Responsive PNIPAM and Gold Nanorod Composites for the Engineering of Thermally Reactive Drug Delivery Nanomedicine. Pharmaceutics 2020; 12:E204. [PMID: 32120934 PMCID: PMC7150923 DOI: 10.3390/pharmaceutics12030204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 01/26/2023] Open
Abstract
When ingesting a drug on its own or injecting it directly into tissue, its concentration increases immediately within the body, which often exacerbates the side effects and increases its toxicity. To solve this problem, we synthesized the thermally reactive polymer poly(N-isopropylacrylamide) (PNIPAM) using reversible addition-fragmentation chain transfer (RAFT) polymerization and prepared nanocarriers by binding PNIPAM to gold nanorods (GRs), with the anticancer agent doxorubicin (DOX) used as a model drug. PNIPAM changes from hydrophilic to hydrophobic at temperatures above its lower critical solution temperature, which represents a coil-to-globule volume phase transition. Because GRs absorb near-infrared (NIR) laser light and emit energy, PNIPAM aggregation occurs when the synthesized PNIPAM/GR are subjected to an NIR laser, and the temperature of the GRs rises. Using this principle, DOX was combined with the PNIPAM/GR complex, and the resulting anticancer effects with and without laser treatment were observed in Hela and MDA-MB-231 cells. In our proposed complex, the GR binding rate of PNIPAM reached 20% and the DOX binding rate reached 15%. The release profile of the drug following laser irradiation was determined using a drug release test and confocal microscopy imaging. It was subsequently confirmed that the release of the drug is higher at higher temperatures, especially with laser treatment. The proposed combination of temperature-reactive polymers and gold nanostructures shows promise for future research into controlled drug release.
Collapse
Affiliation(s)
| | | | | | | | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (Y.K.); (Y.C.); (J.J.); (S.Y.)
| |
Collapse
|
116
|
Chen Z, Wu L, Zhou J, Lin X, Peng Y, Ge L, Chiang CM, Huang H, Wang H, He W. N6-methyladenosine-induced ERRγ triggers chemoresistance of cancer cells through upregulation of ABCB1 and metabolic reprogramming. Theranostics 2020; 10:3382-3396. [PMID: 32206097 PMCID: PMC7069076 DOI: 10.7150/thno.40144] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/25/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Drug resistance severely reduces treatment efficiency of chemotherapy and leads to poor prognosis. However, regulatory factors of chemoresistant cancer cells are largely unknown. Methods: The expression of estrogen receptor related receptors (ERRs) in chemoresistant cancer cells are checked. The roles of ERRγ in chemoresistance are confirmed by in vitro and in vivo studies. The mechanisms responsible for ERRγ-regulated expression of ABCB1 and CPT1B are investigated. Results: The expression of ERRγ is upregulated in chemoresistant cancer cells. Targeted inhibition of ERRγ restores the chemosensitivity. ERRγ can directly bind to the promoter of ABCB1 to increase its transcription. An elevated interaction between ERRγ and p65 in chemoresistant cells further strengthens transcription of ABCB1. Further, ERRγ can increase the fatty acid oxidation (FAO) in chemoresistant cells via regulation of CPT1B, the rate-limiting enzyme of FAO. The upregulated ERRγ in chemoresistant cancer cells might be due to increased levels of N6-methyladenosine (m6A) can trigger the splicing of precursor ESRRG mRNA. Conclusions: m6A induced ERRγ confers chemoresistance of cancer cells through upregulation of ABCB1 and CPT1B.
Collapse
Affiliation(s)
- Zhuojia Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Long Wu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jiawang Zhou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xinyao Lin
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yanxi Peng
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Lichen Ge
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
- Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing 210002, China
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, Department of Pharmacology, and Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Hui Huang
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shennan Middle Road 3025#, Shenzhen, 518033, China
| | - Hongsheng Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Weiling He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| |
Collapse
|
117
|
Song C, Tang C, Xu W, Ran J, Wei Z, Wang Y, Zou H, Cheng W, Cai Y, Han W. Hypoxia-Targeting Multifunctional Nanoparticles for Sensitized Chemotherapy and Phototherapy in Head and Neck Squamous Cell Carcinoma. Int J Nanomedicine 2020; 15:347-361. [PMID: 32021184 PMCID: PMC6980849 DOI: 10.2147/ijn.s233294] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/09/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose Chemotherapy in head and neck squamous cell carcinoma (HNSCC) has many systemic side effects, as well as hypoxia-induced chemoresistance. To reduce side effects and enhance chemosensitivity are urgently needed. Methods We synthesized a drug delivery system (named CECMa NPs) based on cisplatin (CDDP) and metformin (chemotherapeutic sensitizer), of which chlorin e6 (Ce6) and polyethylene glycol diamine (PEG) were synthesized as the shell, an anti-LDLR antibody (which can target to hypoxic tumor cells) was modified on the surface to achieve tumor targeting. Results The NPs possessed a great synergistic effect of chemotherapy and phototherapy. After laser stimulation, both CDDP and metformin can be released in situ to achieve anti-tumor effects. Meanwhile, PDT and PTT triggered by a laser have anticancer effects. Furthermore, compared with free cisplatin, CECMa exhibits less systemic toxicity with laser irradiation in the xenograft mouse tumor model. Conclusion CECMa effectively destroyed the tumors via hypoxia targeting multimodal therapy both in vitro and in vivo, thereby providing a novel strategy for targeting head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Chuanhui Song
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China
| | - Chuanchao Tang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China
| | - Wenguang Xu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China
| | - Jianchuan Ran
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China
| | - Zheng Wei
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China.,Pediatric Dentistry, Nanjing Stomatology Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China
| | - Yufeng Wang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China
| | - Huihui Zou
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China
| | - Wei Cheng
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China
| | - Yu Cai
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China
| | - Wei Han
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China
| |
Collapse
|
118
|
Nunes SC. Tumor Microenvironment - Selective Pressures Boosting Cancer Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:35-49. [PMID: 32130692 DOI: 10.1007/978-3-030-34025-4_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In 2018, 9.6 million deaths from cancer were estimated, being this disease the second leading cause of death worldwide. Notwithstanding all the efforts developed in prevention, diagnosis and new treatment approaches, chemoresistance seems to be inevitable, leading to cancer progression, recurrence and affecting the outcome of the disease. As more and more evidence support that cancer is an evolutionary and ecological process, this concept is rarely applied in the clinical context. In fact, cancer cells emerge and progress within an ecological niche - the tumor microenvironment - that is shared with several other cell types and that is continuously changing. Therefore, the tumor microenvironment imposes several selective pressures on cancer cells such as acidosis, hypoxia, competition for space and resources, immune predation and anti-cancer therapies, that cancer cells must be able to adapt to or will face extinction.In here, the role of the tumor microenvironment selective pressures on cancer progression will be discussed, as well as the targeting of its features/components as strategies to fight cancer.
Collapse
Affiliation(s)
- Sofia C Nunes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| |
Collapse
|
119
|
Anticancer activity of an ehnomedicinal plant Croton caudatus Geiseler, Kam sabut in cultured HeLa cells. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
120
|
Heaster TM, Landman BA, Skala MC. Quantitative Spatial Analysis of Metabolic Heterogeneity Across in vivo and in vitro Tumor Models. Front Oncol 2019; 9:1144. [PMID: 31737571 PMCID: PMC6839277 DOI: 10.3389/fonc.2019.01144] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
Metabolic preferences of tumor cells vary within a single tumor, contributing to tumor heterogeneity, drug resistance, and patient relapse. However, the relationship between tumor treatment response and metabolically distinct tumor cell populations is not well-understood. Here, a quantitative approach was developed to characterize spatial patterns of metabolic heterogeneity in tumor cell populations within in vivo xenografts and 3D in vitro cultures (i.e., organoids) of head and neck cancer. Label-free images of cell metabolism were acquired using two-photon fluorescence lifetime microscopy of the metabolic co-enzymes NAD(P)H and FAD. Previous studies have shown that NAD(P)H mean fluorescence lifetimes can identify metabolically distinct cells with varying drug response. Thus, density-based clustering of the NAD(P)H mean fluorescence lifetime was used to identify metabolic sub-populations of cells, then assessed in control, cetuximab-, cisplatin-, and combination-treated xenografts 13 days post-treatment and organoids 24 h post-treatment. Proximity analysis of these metabolically distinct cells was designed to quantify differences in spatial patterns between treatment groups and between xenografts and organoids. Multivariate spatial autocorrelation and principal components analyses of all autofluorescence intensity and lifetime variables were developed to further improve separation between cell sub-populations. Spatial principal components analysis and Z-score calculations of autofluorescence and spatial distribution variables also visualized differences between models. This analysis captures spatial distributions of tumor cell sub-populations influenced by treatment conditions and model-specific environments. Overall, this novel spatial analysis could provide new insights into tumor growth, treatment resistance, and more effective drug treatments across a range of microscopic imaging modalities (e.g., immunofluorescence, imaging mass spectrometry).
Collapse
Affiliation(s)
- Tiffany M. Heaster
- Department of Biomedical Engineering, University of Wisconsin—Madison, Madison, WI, United States
- Morgridge Institute for Research, Madison, WI, United States
| | - Bennett A. Landman
- Department of Electrical Engineering, Computer Engineering, and Computer Science, Vanderbilt University, Nashville, TN, United States
| | - Melissa C. Skala
- Department of Biomedical Engineering, University of Wisconsin—Madison, Madison, WI, United States
- Morgridge Institute for Research, Madison, WI, United States
| |
Collapse
|
121
|
Landgraf M, Lahr CA, Sanchez-Herrero A, Meinert C, Shokoohmand A, Pollock PM, Hutmacher DW, Shafiee A, McGovern JA. Humanized bone facilitates prostate cancer metastasis and recapitulates therapeutic effects of zoledronic acid in vivo. Bone Res 2019; 7:31. [PMID: 31646018 PMCID: PMC6804745 DOI: 10.1038/s41413-019-0072-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022] Open
Abstract
Advanced prostate cancer (PCa) is known for its high prevalence to metastasize to bone, at which point it is considered incurable. Despite significant effort, there is no animal model capable of recapitulating the complexity of PCa bone metastasis. The humanized mouse model for PCa bone metastasis used in this study aims to provide a platform for the assessment of new drugs by recapitulating the human-human cell interactions relevant for disease development and progression. The humanized tissue-engineered bone construct (hTEBC) was created within NOD-scid IL2rgnull (NSG) mice and was used for the study of experimental PC3-Luc bone metastases. It was confirmed that PC3-Luc cells preferentially grew in the hTEBC compared with murine bone. The translational potential of the humanized mouse model for PCa bone metastasis was evaluated with two clinically approved osteoprotective therapies, the non-species-specific bisphosphonate zoledronic acid (ZA) or the human-specific antibody Denosumab, both targeting Receptor Activator of Nuclear Factor Kappa-Β Ligand. ZA, but not Denosumab, significantly decreased metastases in hTEBCs, but not murine femora. These results highlight the importance of humanized models for the preclinical research on PCa bone metastasis and indicate the potential of the bioengineered mouse model to closely mimic the metastatic cascade of PCa cells to human bone. Eventually, it will enable the development of new effective antimetastatic treatments.
Collapse
Affiliation(s)
- Marietta Landgraf
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Christoph A. Lahr
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Alvaro Sanchez-Herrero
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Christoph Meinert
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Ali Shokoohmand
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Pamela M. Pollock
- School of Biomedical Science, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Dietmar W. Hutmacher
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Australian Research Council (ARC) Training Centre in Additive Biomanufacturing, Queensland University of Technology, Brisbane, Australia
| | - Abbas Shafiee
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD Australia
| | - Jacqui A. McGovern
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
122
|
Domingues C, Alvarez-Lorenzo C, Concheiro A, Veiga F, Figueiras A. Nanotheranostic Pluronic-Like Polymeric Micelles: Shedding Light into the Dark Shadows of Tumors. Mol Pharm 2019; 16:4757-4774. [DOI: 10.1021/acs.molpharmaceut.9b00945] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Cátia Domingues
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-295, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra 3004-504, Portugal
- CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra 3004-531, Portugal
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-295, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra 3004-504, Portugal
| | - Ana Figueiras
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-295, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra 3004-504, Portugal
| |
Collapse
|
123
|
Chen SH, Chang JY. New Insights into Mechanisms of Cisplatin Resistance: From Tumor Cell to Microenvironment. Int J Mol Sci 2019; 20:ijms20174136. [PMID: 31450627 PMCID: PMC6747329 DOI: 10.3390/ijms20174136] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
Although cisplatin has been a pivotal chemotherapy drug in treating patients with various types of cancer for decades, drug resistance has been a major clinical impediment. In general, cisplatin exerts cytotoxic effects in tumor cells mainly through the generation of DNA-platinum adducts and subsequent DNA damage response. Accordingly, considerable effort has been devoted to clarify the resistance mechanisms inside tumor cells, such as decreased drug accumulation, enhanced detoxification activity, promotion of DNA repair capacity, and inactivated cell death signaling. However, recent advances in high-throughput techniques, cell culture platforms, animal models, and analytic methods have also demonstrated that the tumor microenvironment plays a key role in the development of cisplatin resistance. Recent clinical successes in combination treatments with cisplatin and novel agents targeting components in the tumor microenvironment, such as angiogenesis and immune cells, have also supported the therapeutic value of these components in cisplatin resistance. In this review, we summarize resistance mechanisms with respect to a single tumor cell and crucial components in the tumor microenvironment, particularly focusing on favorable results from clinical studies. By compiling emerging evidence from preclinical and clinical studies, this review may provide insights into the development of a novel approach to overcome cisplatin resistance.
Collapse
Affiliation(s)
- Shang-Hung Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan
- Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jang-Yang Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan.
- Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
124
|
Russi S, Verma HK, Laurino S, Mazzone P, Storto G, Nardelli A, Zoppoli P, Calice G, La Rocca F, Sgambato A, Lucci V, Falco G, Ruggieri V. Adapting and Surviving: Intra and Extra-Cellular Remodeling in Drug-Resistant Gastric Cancer Cells. Int J Mol Sci 2019; 20:3736. [PMID: 31370155 PMCID: PMC6695752 DOI: 10.3390/ijms20153736] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Despite the significant recent advances in clinical practice, gastric cancer (GC) represents a leading cause of cancer-related deaths in the world. In fact, occurrence of chemo-resistance still remains a daunting hindrance to effectiveness of the current approach to GC therapy. There is accumulating evidence that a plethora of cellular and molecular factors is implicated in drug-induced phenotypical switching of GC cells. Among them, epithelial-mesenchymal transition (EMT), autophagy, drug detoxification, DNA damage response and drug target alterations, have been reported as major determinants. Intriguingly, resistant GC phenotype may be the result of GC cell-induced tumor microenvironment (TME) remodeling, which is currently emerging as a key player in promoting drug resistance and overcoming cytotoxic effects of drugs. In this review, we discuss the possible mechanisms of drug resistance and their involvement in determining current GC therapies failure.
Collapse
Affiliation(s)
- Sabino Russi
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Henu Kumar Verma
- Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
- Section of Stem Cell and Development, Istituto di Ricerche Genetiche "Gaetano Salvatore" Biogem s.c. a.r.l., 83031 Ariano Irpino, Italy
| | - Simona Laurino
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Pellegrino Mazzone
- Section of Stem Cell and Development, Istituto di Ricerche Genetiche "Gaetano Salvatore" Biogem s.c. a.r.l., 83031 Ariano Irpino, Italy
| | - Giovanni Storto
- Department of Nuclear Medicine, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Anna Nardelli
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, 80145 Napoli, Italy
| | - Pietro Zoppoli
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Giovanni Calice
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Francesco La Rocca
- Laboratory of Clinical Research and Advanced Diagnostics, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Alessandro Sgambato
- Scientific Direction, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Valeria Lucci
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Geppino Falco
- Section of Stem Cell and Development, Istituto di Ricerche Genetiche "Gaetano Salvatore" Biogem s.c. a.r.l., 83031 Ariano Irpino, Italy.
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| | - Vitalba Ruggieri
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy.
| |
Collapse
|
125
|
Salmina K, Gerashchenko BI, Hausmann M, Vainshelbaum NM, Zayakin P, Erenpreiss J, Freivalds T, Cragg MS, Erenpreisa J. When Three Isn't a Crowd: A Digyny Concept for Treatment-Resistant, Near-Triploid Human Cancers. Genes (Basel) 2019; 10:E551. [PMID: 31331093 PMCID: PMC6678365 DOI: 10.3390/genes10070551] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/10/2019] [Accepted: 06/19/2019] [Indexed: 12/19/2022] Open
Abstract
Near-triploid human tumors are frequently resistant to radio/chemotherapy through mechanisms that are unclear. We recently reported a tight association of male tumor triploidy with XXY karyotypes based on a meta-analysis of 15 tumor cohorts extracted from the Mitelman database. Here we provide a conceptual framework of the digyny-like origin of this karyotype based on the germline features of malignant tumors and adaptive capacity of digyny, which supports survival in adverse conditions. Studying how the recombinatorial reproduction via diploidy can be executed in primary cancer samples and HeLa cells after DNA damage, we report the first evidence that diploid and triploid cell sub-populations constitutively coexist and inter-change genomes via endoreduplicated polyploid cells generated through genotoxic challenge. We show that irradiated triploid HeLa cells can enter tripolar mitosis producing three diploid sub-subnuclei by segregation and pairwise fusions of whole genomes. Considering the upregulation of meiotic genes in tumors, we propose that the reconstructed diploid sub-cells can initiate pseudo-meiosis producing two "gametes" (diploid "maternal" and haploid "paternal") followed by digynic-like reconstitution of a triploid stemline that returns to mitotic cycling. This process ensures tumor survival and growth by (1) DNA repair and genetic variation, (2) protection against recessive lethal mutations using the third genome.
Collapse
Affiliation(s)
- Kristine Salmina
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Bogdan I Gerashchenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, 03022 Kyiv, Ukraine
| | - Michael Hausmann
- Kirchhoff Institute for Physics, Heidelberg University, D-69120 Heidelberg, Germany
| | - Ninel M Vainshelbaum
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
- Institute of Cardiology and Regenerative Medicine, University of Latvia, LV-1004 Riga, Latvia
| | - Pawel Zayakin
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Juris Erenpreiss
- Riga Stradins University, LV-1007 Riga, Latvia
- Clinic IVF-Riga, LV-1010 Riga, Latvia
| | - Talivaldis Freivalds
- Institute of Cardiology and Regenerative Medicine, University of Latvia, LV-1004 Riga, Latvia
| | - Mark S Cragg
- Centre for Cancer Immunology, University of Southampton, Southampton SO16 6YD, UK
| | | |
Collapse
|
126
|
Tumor-Associated Neutrophils in Cancer: Going Pro. Cancers (Basel) 2019; 11:cancers11040564. [PMID: 31010242 PMCID: PMC6520693 DOI: 10.3390/cancers11040564] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/09/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
The progression of cancer is not only about the tumor cell itself, but also about other involved players including cancer cell recruited immune cells, their released pro-inflammatory factors, and the extracellular matrix. These players constitute the tumor microenvironment and play vital roles in the cancer progression. Neutrophils—the most abundant white blood cells in the circulation system—constitute a significant part of the tumor microenvironment. Neutrophils play major roles linking inflammation and cancer and are actively involved in progression and metastasis. Additionally, recent data suggest that neutrophils could be considered one of the emerging targets for multiple cancer types. This review summarizes the most recent updates regarding neutrophil recruitments and functions in the tumor microenvironment as well as potential development of neutrophils-targeted putative therapeutic strategies.
Collapse
|
127
|
Kim HN, Choi N. Consideration of the Mechanical Properties of Hydrogels for Brain Tissue Engineering and Brain-on-a-chip. BIOCHIP JOURNAL 2019. [DOI: 10.1007/s13206-018-3101-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|