1451
|
Chan LK, Ng IOL. Proteomic profiling in liver cancer: another new page. Transl Gastroenterol Hepatol 2019; 4:47. [PMID: 31304424 DOI: 10.21037/tgh.2019.06.03] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 06/03/2019] [Indexed: 12/14/2022] Open
Affiliation(s)
- Lo-Kong Chan
- Department of Pathology, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
1452
|
Chen S, Cao Q, Wen W, Wang H. Targeted therapy for hepatocellular carcinoma: Challenges and opportunities. Cancer Lett 2019; 460:1-9. [PMID: 31207320 DOI: 10.1016/j.canlet.2019.114428] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/15/2019] [Accepted: 06/05/2019] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, which ranks as the sixth of cancer-related death. Despite the emergence of targeted therapy, advanced-stage HCC remains largely incurable due to low response rate and therapeutic resistance. In this review, we mainly focused on the current progression of multi-kinase inhibitors and immunotherapies in the treatment of HCC. We highlight the mechanism underlying the ineffectiveness of these targeted therapies, including oncogenic alterations in driver genes and downstream pathways, high heterogeneity of HCC, and the mutual interaction of tumor microenvironment that promotes therapeutic resistance. We also discussed how these previous studies suggested for future therapeutic strategies. Besides, the complexity of HCC heterogeneity and cancer revolution need to be recognized in personalized therapy. Establishment of a drug screening system and identification of biomarkers of response is also in urgent need to overcome drug resistance. Meanwhile, a combination of targeted therapies could also be explored as a promising strategy in the future.
Collapse
Affiliation(s)
- Shuzhen Chen
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai, 201805, China
| | - Qiqi Cao
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Wen Wen
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai, 201805, China.
| | - Hongyang Wang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai, 201805, China.
| |
Collapse
|
1453
|
Ruiz de Galarreta M, Bresnahan E, Molina-Sánchez P, Lindblad KE, Maier B, Sia D, Puigvehi M, Miguela V, Casanova-Acebes M, Dhainaut M, Villacorta-Martin C, Singhi AD, Moghe A, von Felden J, Tal Grinspan L, Wang S, Kamphorst AO, Monga SP, Brown BD, Villanueva A, Llovet JM, Merad M, Lujambio A. β-Catenin Activation Promotes Immune Escape and Resistance to Anti-PD-1 Therapy in Hepatocellular Carcinoma. Cancer Discov 2019. [PMID: 31186238 DOI: 10.1158/2159-8290.cd-19-0074.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PD-1 immune checkpoint inhibitors have produced encouraging results in patients with hepatocellular carcinoma (HCC). However, what determines resistance to anti-PD-1 therapies is unclear. We created a novel genetically engineered mouse model of HCC that enables interrogation of how different genetic alterations affect immune surveillance and response to immunotherapies. Expression of exogenous antigens in MYC;Trp53 -/- HCCs led to T cell-mediated immune surveillance, which was accompanied by decreased tumor formation and increased survival. Some antigen-expressing MYC;Trp53 -/- HCCs escaped the immune system by upregulating the β-catenin (CTNNB1) pathway. Accordingly, expression of exogenous antigens in MYC;CTNNB1 HCCs had no effect, demonstrating that β-catenin promoted immune escape, which involved defective recruitment of dendritic cells and consequently impaired T-cell activity. Expression of chemokine CCL5 in antigen-expressing MYC;CTNNB1 HCCs restored immune surveillance. Finally, β-catenin-driven tumors were resistant to anti-PD-1. In summary, β-catenin activation promotes immune escape and resistance to anti-PD-1 and could represent a novel biomarker for HCC patient exclusion. SIGNIFICANCE: Determinants of response to anti-PD-1 immunotherapies in HCC are poorly understood. Using a novel mouse model of HCC, we show that β-catenin activation promotes immune evasion and resistance to anti-PD-1 therapy and could potentially represent a novel biomarker for HCC patient exclusion.See related commentary by Berraondo et al., p. 1003.This article is highlighted in the In This Issue feature, p. 983.
Collapse
Affiliation(s)
- Marina Ruiz de Galarreta
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Erin Bresnahan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pedro Molina-Sánchez
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Katherine E Lindblad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Barbara Maier
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniela Sia
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marc Puigvehi
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Hospital del Mar, IMIM, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Verónica Miguela
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - María Casanova-Acebes
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Maxime Dhainaut
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Carlos Villacorta-Martin
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aatur D Singhi
- Division of Experimental Pathology, Department of Pathology, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Akshata Moghe
- Division of Experimental Pathology, Department of Pathology, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Johann von Felden
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,First Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lauren Tal Grinspan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Shuang Wang
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alice O Kamphorst
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Brian D Brown
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Augusto Villanueva
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Josep M Llovet
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Translational Research Laboratory, Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit and Pathology Department, IDIBAPS, Hospital Clínic, CIBERehd, Universitat de Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York. .,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
1454
|
Ruiz de Galarreta M, Bresnahan E, Molina-Sánchez P, Lindblad KE, Maier B, Sia D, Puigvehi M, Miguela V, Casanova-Acebes M, Dhainaut M, Villacorta-Martin C, Singhi AD, Moghe A, von Felden J, Tal Grinspan L, Wang S, Kamphorst AO, Monga SP, Brown BD, Villanueva A, Llovet JM, Merad M, Lujambio A. β-Catenin Activation Promotes Immune Escape and Resistance to Anti-PD-1 Therapy in Hepatocellular Carcinoma. Cancer Discov 2019; 9:1124-1141. [PMID: 31186238 DOI: 10.1158/2159-8290.cd-19-0074] [Citation(s) in RCA: 604] [Impact Index Per Article: 100.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/13/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023]
Abstract
PD-1 immune checkpoint inhibitors have produced encouraging results in patients with hepatocellular carcinoma (HCC). However, what determines resistance to anti-PD-1 therapies is unclear. We created a novel genetically engineered mouse model of HCC that enables interrogation of how different genetic alterations affect immune surveillance and response to immunotherapies. Expression of exogenous antigens in MYC;Trp53 -/- HCCs led to T cell-mediated immune surveillance, which was accompanied by decreased tumor formation and increased survival. Some antigen-expressing MYC;Trp53 -/- HCCs escaped the immune system by upregulating the β-catenin (CTNNB1) pathway. Accordingly, expression of exogenous antigens in MYC;CTNNB1 HCCs had no effect, demonstrating that β-catenin promoted immune escape, which involved defective recruitment of dendritic cells and consequently impaired T-cell activity. Expression of chemokine CCL5 in antigen-expressing MYC;CTNNB1 HCCs restored immune surveillance. Finally, β-catenin-driven tumors were resistant to anti-PD-1. In summary, β-catenin activation promotes immune escape and resistance to anti-PD-1 and could represent a novel biomarker for HCC patient exclusion. SIGNIFICANCE: Determinants of response to anti-PD-1 immunotherapies in HCC are poorly understood. Using a novel mouse model of HCC, we show that β-catenin activation promotes immune evasion and resistance to anti-PD-1 therapy and could potentially represent a novel biomarker for HCC patient exclusion.See related commentary by Berraondo et al., p. 1003.This article is highlighted in the In This Issue feature, p. 983.
Collapse
Affiliation(s)
- Marina Ruiz de Galarreta
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Erin Bresnahan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pedro Molina-Sánchez
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Katherine E Lindblad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Barbara Maier
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniela Sia
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marc Puigvehi
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Hospital del Mar, IMIM, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Verónica Miguela
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - María Casanova-Acebes
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Maxime Dhainaut
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Carlos Villacorta-Martin
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aatur D Singhi
- Division of Experimental Pathology, Department of Pathology, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Akshata Moghe
- Division of Experimental Pathology, Department of Pathology, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Johann von Felden
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,First Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lauren Tal Grinspan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Shuang Wang
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alice O Kamphorst
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Brian D Brown
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Augusto Villanueva
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Josep M Llovet
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Translational Research Laboratory, Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit and Pathology Department, IDIBAPS, Hospital Clínic, CIBERehd, Universitat de Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York. .,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
1455
|
Ouyang L, Zhang Q, Ma G, Zhu L, Wang Y, Chen Z, Wang Y, Zhao L. New Dual-Spectroscopic Strategy for the Direct Detection of Aristolochic Acids in Blood and Tissue. Anal Chem 2019; 91:8154-8161. [PMID: 31140784 DOI: 10.1021/acs.analchem.9b00442] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Aristolochic acids (AAs) contained in herbal plants are implicated in multiple organ injuries and have a high mutational burden in upper tract urothelial cancers. The currently available techniques for monitoring AAs include LC (liquid chromatography) and LC/MS (mass spectrometry), but the application of these approaches are limited due to the complex sample preparation and derivatization steps. Therefore, there is an urgent need to develop efficient methods for identifying and quantifying AAs. Here, we present a new dual-spectroscopic approach for the direct detection of AAs from blood and tissue samples; the detection of aristolochic acid I (AAI) is performed by surface-enhanced Raman spectroscopy (SERS), and its bioproduct, aristololactam (AAT), is detected by fluorescence spectroscopy based on their distinctive spectral response. Furthermore, a graphene assisted enrichment coupled with a magnetic retrieval strategy was developed to enhance SERS sensitivity toward AAI. Our method was successfully applied to directly determine both AAI and AAT from the blood, liver, and kidney of rats. The potential for real-world application was demonstrated by continuously monitoring AAI and AAT in rat blood and tissues after AAI feeding. The results showed that AAI was gradually metabolized to AAT and transported to different organs. It was found that the metabolism of AAI took place in the kidney, but AAT residue was detected in both liver and kidney, which might be related to long-term toxicity and gene mutation. The proposed dual-spectroscopic strategy is applicable to long-term toxicology research and to the direct diagnosis of AAI-induced organ injury.
Collapse
Affiliation(s)
- Lei Ouyang
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica , Huazhong University of Science and Technology , Wuhan 430074 , China.,Shenzhen Institute of Huazhong University of Science and Technology , Shenzhen 518000 , China
| | - Qian Zhang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Guina Ma
- Radiology Department, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Lihua Zhu
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica , Huazhong University of Science and Technology , Wuhan 430074 , China.,Shenzhen Institute of Huazhong University of Science and Technology , Shenzhen 518000 , China
| | - Youqin Wang
- Department of Pediatric, Renmin Hospital , Hubei University of Medicine , Shiyan 442000 , China
| | - Zhilin Chen
- Department of Infectious Diseases, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Yuling Wang
- Department of Molecular Sciences , Macquarie University , Sydney , NSW 2109 , Australia
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| |
Collapse
|
1456
|
Xue R, Chen L, Zhang C, Fujita M, Li R, Yan SM, Ong CK, Liao X, Gao Q, Sasagawa S, Li Y, Wang J, Guo H, Huang QT, Zhong Q, Tan J, Qi L, Gong W, Hong Z, Li M, Zhao J, Peng T, Lu Y, Lim KHT, Boot A, Ono A, Chayama K, Zhang Z, Rozen SG, Teh BT, Wang XW, Nakagawa H, Zeng MS, Bai F, Zhang N. Genomic and Transcriptomic Profiling of Combined Hepatocellular and Intrahepatic Cholangiocarcinoma Reveals Distinct Molecular Subtypes. Cancer Cell 2019; 35:932-947.e8. [PMID: 31130341 PMCID: PMC8317046 DOI: 10.1016/j.ccell.2019.04.007] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 03/22/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023]
Abstract
We performed genomic and transcriptomic sequencing of 133 combined hepatocellular and intrahepatic cholangiocarcinoma (cHCC-ICC) cases, including separate, combined, and mixed subtypes. Integrative comparison of cHCC-ICC with hepatocellular carcinoma and intrahepatic cholangiocarcinoma revealed that combined and mixed type cHCC-ICCs are distinct subtypes with different clinical and molecular features. Integrating laser microdissection, cancer cell fraction analysis, and single nucleus sequencing, we revealed both mono- and multiclonal origins in the separate type cHCC-ICCs, whereas combined and mixed type cHCC-ICCs were all monoclonal origin. Notably, cHCC-ICCs showed significantly higher expression of Nestin, suggesting Nestin may serve as a biomarker for diagnosing cHCC-ICC. Our results provide important biological and clinical insights into cHCC-ICC.
Collapse
MESH Headings
- Asia
- Bile Duct Neoplasms/chemistry
- Bile Duct Neoplasms/classification
- Bile Duct Neoplasms/genetics
- Bile Duct Neoplasms/pathology
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Carcinoma, Hepatocellular/chemistry
- Carcinoma, Hepatocellular/classification
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cholangiocarcinoma/chemistry
- Cholangiocarcinoma/classification
- Cholangiocarcinoma/genetics
- Cholangiocarcinoma/pathology
- Databases, Genetic
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Gene Regulatory Networks
- Humans
- Immunohistochemistry
- Liver Neoplasms/chemistry
- Liver Neoplasms/classification
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Male
- Neoplasms, Complex and Mixed/chemistry
- Neoplasms, Complex and Mixed/classification
- Neoplasms, Complex and Mixed/genetics
- Neoplasms, Complex and Mixed/pathology
- Nestin/analysis
- Nestin/genetics
- Predictive Value of Tests
- Prognosis
- Transcriptome
- Up-Regulation
Collapse
Affiliation(s)
- Ruidong Xue
- Biomedical Pioneering Innovation Center (BIOPIC) and Translational Cancer Research Center, School of Life Sciences, First Hospital, Peking University, Beijing 100871, China
| | - Lu Chen
- Department of Hepatobiliary Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Chong Zhang
- Biomedical Pioneering Innovation Center (BIOPIC) and Translational Cancer Research Center, School of Life Sciences, First Hospital, Peking University, Beijing 100871, China
| | - Masashi Fujita
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Ruoyan Li
- Biomedical Pioneering Innovation Center (BIOPIC) and Translational Cancer Research Center, School of Life Sciences, First Hospital, Peking University, Beijing 100871, China
| | - Shu-Mei Yan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Choon Kiat Ong
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai 200032, China
| | - Shota Sasagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Yanmeng Li
- Biomedical Pioneering Innovation Center (BIOPIC) and Translational Cancer Research Center, School of Life Sciences, First Hospital, Peking University, Beijing 100871, China
| | - Jincheng Wang
- Biomedical Pioneering Innovation Center (BIOPIC) and Translational Cancer Research Center, School of Life Sciences, First Hospital, Peking University, Beijing 100871, China
| | - Hua Guo
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Qi-Tao Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Jing Tan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Lisha Qi
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Wenchen Gong
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Zhixian Hong
- Department of Hepatobiliary Surgery, Beijing 302 Hospital, Beijing 100039, China
| | - Meng Li
- Department of Ultrasonography, Beijing 302 Hospital, Beijing 100039, China
| | - Jingmin Zhao
- Department of Pathology and Hepatology, Beijing 302 Hospital, Beijing 100039, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yinying Lu
- Comprehensive Liver Cancer Center, Beijing 302 Hospital, Beijing 100039, China
| | - Kiat Hon Tony Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore 169608, Singapore
| | - Arnoud Boot
- Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Atushi Ono
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC) and Translational Cancer Research Center, School of Life Sciences, First Hospital, Peking University, Beijing 100871, China
| | - Steve George Rozen
- Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Bin Tean Teh
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China.
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC) and Translational Cancer Research Center, School of Life Sciences, First Hospital, Peking University, Beijing 100871, China.
| | - Ning Zhang
- Biomedical Pioneering Innovation Center (BIOPIC) and Translational Cancer Research Center, School of Life Sciences, First Hospital, Peking University, Beijing 100871, China; Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| |
Collapse
|
1457
|
Wu DM, Zheng ZH, Zhang YB, Fan SH, Zhang ZF, Wang YJ, Zheng YL, Lu J. Down-regulated lncRNA DLX6-AS1 inhibits tumorigenesis through STAT3 signaling pathway by suppressing CADM1 promoter methylation in liver cancer stem cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:237. [PMID: 31171015 PMCID: PMC6554918 DOI: 10.1186/s13046-019-1239-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/21/2019] [Indexed: 02/06/2023]
Abstract
Background Liver cancer stem cells (LCSCs) are a small subset of cells characterized by unlimited self-renewal, cell differentiation, and uncontrollable cellular growth. LCSCs are also resistant to conventional therapies and are thus believed to be held responsible for causing treatment failure of hepatocellular carcinoma (HCC). It has been recently found that long non-coding RNAs (lncRNAs) are important regulators in HCC. This present study aims to explore the underlying mechanism of how lncRNA DLX6-AS1 influences the development of LCSCs and HCC. Methods A microarray-based analysis was performed to initially screen differentially expressed lncRNAs associated with HCC. We then analyzed the lncRNA DLX6-AS1 levels as well as CADM1 promoter methylation. The mRNA and protein expression of CADM1, STAT3, CD133, CD13, OCT-4, SOX2, and Nanog were then detected. We quantified our results by evaluating the spheroid formation, proliferation, and tumor formation abilities, as well as the proportion of tumor stem cells, and the recruitment of DNA methyltransferase (DNMT) in LCSCs when lncRNA DLX6-AS1 was either overexpressed or silenced. Results LncRNA DLX6-AS1 was upregulated in HCC. The silencing of lncRNA DLX6-AS1 was shown to reduce and inhibit spheroid formation, colony formation, proliferation, and tumor formation abilities, as well as attenuate CD133, CD13, OCT-4, SOX2, and Nanog expression in LCSCs. Furthermore, downregulation of lncRNA DLX6-AS1 contributed to a reduction in CADM1 promoter methylation via suppression of DNMT1, DNMT3a, and DNMT3b in LCSCs and inactivating the STAT3 signaling pathway. Conclusion This study demonstrated that down-regulated lncRNA DLX6-AS1 may inhibit the stem cell properties of LCSCs through upregulation of CADM1 by suppressing the methylation of the CADM1 promoter and inactivation of the STAT3 signaling pathway. Electronic supplementary material The online version of this article (10.1186/s13046-019-1239-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China
| | - Zi-Hui Zheng
- State Key Laboratory Cultivation Base For TCM Quality and Efficacy, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Ying-Bo Zhang
- Department of Pathology, Qiqihar Medical University, Qiqihar, 161006, People's Republic of China
| | - Shao-Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China
| | - Zi-Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China
| | - Yong-Jian Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China. .,College of Health Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China.
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China. .,College of Health Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China.
| |
Collapse
|
1458
|
Tian MX, Liu WR, Wang H, Zhou YF, Jin L, Jiang XF, Tao CY, Tang Z, Zhou PY, Fang Y, Qu WF, Ding ZB, Peng YF, Dai Z, Qiu SJ, Zhou J, Lau WY, Fan J, Shi YH. Tissue-infiltrating lymphocytes signature predicts survival in patients with early/intermediate stage hepatocellular carcinoma. BMC Med 2019; 17:106. [PMID: 31164128 PMCID: PMC6549297 DOI: 10.1186/s12916-019-1341-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Intratumoral immune infiltrates have manifested a robust prognostic signature in patients with hepatocellular carcinoma (HCC). We hypothesized that a novel tissue-related immune signature (TRIS) could improve the prediction of postoperative survival for patients diagnosed with early/intermediate HCC. METHODS Twenty-eight immune features were immunohistochemically examined on 352 HCC specimens. The LASSO Cox regression model was used to construct a five-feature-based TRIS. The univariate and multivariate Cox analyses were performed. Based on independent predictors, the immune-clinical prognostic index (ICPI) was established. Performance assessment was measured with C-index and compared with seven traditional staging systems. The independent validation cohort (n = 393) was included to validate the model. RESULTS By using the LASSO method, the TRIS were constructed on the basis of five immune features, CD3intratumoral (T), CD27T, CD68peritumoral (P), CD103T, and PD1T. Multivariate Cox analysis showed that the TRIS was an independent prognostic predictor. In the training cohort, γ-glutamyl transferase, tumor diameter, tumor differentiation, and TRIS were incorporated into the ICPI. The ICPI presented satisfactory discrimination ability, with C-index values of 0.691 and 0.686 in the training and validation cohorts, respectively. Compared with seven conventional staging systems (C-index, training cohort, 0.548-0.597; validation cohort, 0.519-0.610), the ICPI exhibited better performance for early/intermediate-stage HCCs. Further, the patients were categorized into three subgroups with X-tile software, and the stratified ICPI presented a superior corrected Akaike information criterion and homogeneity in both cohorts. CONCLUSIONS Our ICPI was a useful and reliable prognostic tool which may offer good individualized prediction capability for HCC patients with early/intermediate stage.
Collapse
Affiliation(s)
- Meng-Xin Tian
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Wei-Ren Liu
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Han Wang
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Yu-Fu Zhou
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Lei Jin
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Xi-Fei Jiang
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Chen-Yang Tao
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Zheng Tang
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Pei-Yun Zhou
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Yuan Fang
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Wei-Feng Qu
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Zhen-Bin Ding
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Yuan-Fei Peng
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Zhi Dai
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Shuang-Jian Qiu
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Jian Zhou
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Wan Yee Lau
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.,Faculty of Medicine, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR, China
| | - Jia Fan
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Ying-Hong Shi
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
1459
|
O'Rourke CJ, Lafuente-Barquero J, Andersen JB. Epigenome Remodeling in Cholangiocarcinoma. Trends Cancer 2019; 5:335-350. [PMID: 31208696 DOI: 10.1016/j.trecan.2019.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/22/2022]
Abstract
Cholangiocarcinoma (CCA) comprises a heterogeneous collection of malignancies arising within the biliary tract, characterized by late diagnosis, innate chemoresistance, and abysmal prognosis. Sequencing data have uncovered recurrent mutations in diverse epigenetic regulators, implicating epigenetic destabilization at the root of these tumors. However, few studies have characterized biliary tumor epigenomes. In this Opinion article, we argue that an epigenome-oriented approach to CCA could establish diverse interconnections between many key aspects of research on this disease, including molecular heterogeneity, diverse cells of origin, and prominent tumor microenvironments. Moreover, we discuss plausible causes of epigenome dysregulation in biliary tumors, including genetic, epigenetic, metabolic, microenvironmental, and physiological factors. Lastly, we assess the translational potential of epigenomics in CCA to uncover robust biomarkers and therapeutic opportunities for this growing group of patients with limited treatment options.
Collapse
Affiliation(s)
- Colm J O'Rourke
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Juan Lafuente-Barquero
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
1460
|
Müller M, Forbes SJ, Bird TG. Beneficial Noncancerous Mutations in Liver Disease. Trends Genet 2019; 35:475-477. [PMID: 31151757 DOI: 10.1016/j.tig.2019.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/30/2022]
Abstract
Chronic liver disease results in fibrosis and cancer. While injury is associated with mutational burden, a recent study (Zhu et al. Cell 2019;177:608-621) highlights that not all positively selected mutations in the liver are precancerous. Indeed, some may be beneficial to the ability of the liver to not only withstand injury , but also to regenerate.
Collapse
Affiliation(s)
- Miryam Müller
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Stuart J Forbes
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH164TJ, UK; MRC Centre for Regenerative Medicine, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| | - Thomas G Bird
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK; MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH164TJ, UK
| |
Collapse
|
1461
|
Raja A, Park I, Haq F, Ahn SM. FGF19- FGFR4 Signaling in Hepatocellular Carcinoma. Cells 2019; 8:E536. [PMID: 31167419 PMCID: PMC6627123 DOI: 10.3390/cells8060536] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common type of cancer, with an increasing mortality rate. Aberrant expression of fibroblast growth factor 19-fibroblast growth factor receptor 4 (FGF19-FGFR4) is reported to be an oncogenic-driver pathway for HCC patients. Thus, the FGF19-FGFR4 signaling pathway is a promising target for the treatment of HCC. Several pan-FGFR (1-4) and FGFR4-specific inhibitors are in different phases of clinical trials. In this review, we summarize the information, recent developments, binding modes, selectivity, and clinical trial phases of different available FGFR4/pan-FGF inhibitors. We also discuss future perspectives and highlight the points that should be addressed to improve the efficacy of these inhibitors.
Collapse
Affiliation(s)
- Aroosha Raja
- Department of Biosciences, Comsats University, Islamabad 45550, Pakistan.
| | - Inkeun Park
- Division of Medical Oncology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon 21565, Korea.
| | - Farhan Haq
- Department of Biosciences, Comsats University, Islamabad 45550, Pakistan.
| | - Sung-Min Ahn
- Division of Medical Oncology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon 21565, Korea.
- Department of Genome Medicine and Science, College of Medicine, Gachon University, Incheon 21565, Korea.
| |
Collapse
|
1462
|
Liao X, Wang X, Huang K, Han C, Deng J, Yu T, Yang C, Huang R, Liu X, Yu L, Zhu G, Su H, Qin W, Zeng X, Han B, Han Q, Liu Z, Zhou X, Gong Y, Liu Z, Huang J, Winkler CA, O'Brien SJ, Ye X, Peng T. Integrated analysis of competing endogenous RNA network revealing potential prognostic biomarkers of hepatocellular carcinoma. J Cancer 2019; 10:3267-3283. [PMID: 31289599 PMCID: PMC6603367 DOI: 10.7150/jca.29986] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 04/03/2019] [Indexed: 12/15/2022] Open
Abstract
Objective: The goal of our study is to identify a competing endogenous RNA (ceRNA) network using dysregulated RNAs between HCC tumors and the adjacent normal liver tissues from The Cancer Genome Atlas (TCGA) datasets, and to investigate underlying prognostic indicators in hepatocellular carcinoma (HCC) patients. Methods: All of the RNA- and miRNA-sequencing datasets of HCC were obtained from TCGA, and dysregulated RNAs between HCC tumors and the adjacent normal liver tissues were investigated by DESeq and edgeR algorithm. Survival analysis was used to confirm underlying prognostic indicators. Results: In the present study, we constructed a ceRNA network based on 16 differentially expressed genes (DEGs), 7 differentially expressed microRNAs and 34 differentially expressed long non-coding RNAs (DELs). Among these dysregulated RNAs, three DELs (AP002478.1, HTR2A-AS1, and ERVMER61-1) and six DEGs (enhancer of zeste homolog 2 [EZH2], kinesin family member 23 [KIF23], chromobox 2 [CBX2], centrosomal protein 55 [CEP55], cell division cycle 25A [CDC25A], and claspin [CLSPN]) were used for construct a prognostic signature for HCC overall survival (OS), and performed well in HCC OS (adjusted P<0.0001, adjusted hazard ratio = 2.761, 95% confidence interval = 1.838-4.147). Comprehensive survival analysis demonstrated that this prognostic signature may be act as an independent prognostic indicator of HCC OS. Functional assessment of these dysregulated DEGs in the ceRNA network and gene set enrichment of this prognostic signature suggest that both were enriched in the biological processes and pathways of the cell cycle, cell division and cell proliferation. Conclusions: Our current study constructed a ceRNA network for HCC, and developed a prognostic signature that may act as an independent indicator for HCC OS.
Collapse
Affiliation(s)
- Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jianlong Deng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Hepatobiliary Surgery, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, 537000, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Rui Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiaoguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong Province, China
| | - Long Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan Province, China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hao Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wei Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xianmin Zeng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Bowen Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Quanfa Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhengqian Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yizhen Gong
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Evidence-based Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhengtao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, Hangzhou, 310003, Zhejiang Province, People's Republic of China.,Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | - Jianlv Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning 530031, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Cheryl A Winkler
- Basic Research Laboratory, CCR, NCI and Leidos Biomedical Research, Frederick National Laboratory, Frederick MD. 21702, USA
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint-Petersburg State University, Saint-Petersburg, 199004, Russia.,Oceanographic Center, Nova Southeastern University, Ft Lauderdale, 33004, FL, USA
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
1463
|
Schlichtemeier SM, Nahm CB, Xue A, Gill AJ, Smith RC, Hugh TJ. SELDI-TOF MS Analysis of Hepatocellular Carcinoma in an Australian Cohort. J Surg Res 2019; 238:127-136. [PMID: 30771682 DOI: 10.1016/j.jss.2019.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 11/05/2018] [Accepted: 01/04/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common cause of cancer death worldwide. Resection offers the best chance of long-term survival, but a consistent adverse prognostic factor is the presence of microvascular invasion (MVI). In this study, surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS), a high throughput method of analyzing complex samples, was used to explore differentially expressed proteins between HCC and adjacent nontumour liver tissue (ANLT). These findings were correlated with clinical outcomes. MATERIALS AND METHODS From 2002 to 2011, tumor and ANLT were collected from patients who underwent liver resection and these samples were later prepared for SELDI-TOF MS. Output data were then used to identify proteins capable of discriminating HCC from ANLT. Proteins from the multivariate analysis were then analyzed to determine prognostic factors and the m/z ratios of these proteins were entered into the ExPASy database to infer potential candidates. RESULTS During the study period, 30 patients had SELDI-TOF MS performed on their HCC and ANLT samples. On multivariate analysis, a panel of four proteins-m/z 5840, m/z 8921, m/z 9961, and m/z 25,872-discriminated HCC from ANLT with an area under the ROC curve of 0.954 (P < 0.001). On prognostic factor assessment, decreased m/z 9961 was significantly associated with the presence of MVI (P = 0.025) and shorter disease-free survival (P = 0.045) in our patients. A potential candidate for this protein was coxsackievirus and adenovirus receptor, isoform 3 (CAR 3/7), which helps maintain tight junction integrity. CONCLUSIONS Using SELDI TOF-MS, we identified a panel of four proteins with excellent discriminative capacity between HCC and ANLT. Of these, m/z 9961 was the only protein significantly associated with a known poor prognostic factor (presence of MVI) and survival (shorter disease-free survival). While loss of CAR 3/7 could lead to MVI, further research is warranted to validate the identity of protein m/z 9961.
Collapse
Affiliation(s)
- Steven M Schlichtemeier
- Cancer Surgery and Metabolism Research Group, University of Sydney, Kolling Institute of Medical Research, St Leonards, NSW, Australia.
| | - Christopher B Nahm
- Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, St Leonards, NSW, Australia; Discipline of Surgery, The University of Sydney, Camperdown, NSW, Australia
| | - Aiqun Xue
- Cancer Surgery and Metabolism Research Group, University of Sydney, Kolling Institute of Medical Research, St Leonards, NSW, Australia
| | - Anthony J Gill
- Department of Anatomical Pathology, Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Sydney NSW and NSW Health Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Ross C Smith
- Cancer Surgery and Metabolism Research Group, University of Sydney, Kolling Institute of Medical Research, St Leonards, NSW, Australia; Discipline of Surgery, The University of Sydney, Camperdown, NSW, Australia
| | - Thomas J Hugh
- Cancer Surgery and Metabolism Research Group, University of Sydney, Kolling Institute of Medical Research, St Leonards, NSW, Australia; Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, St Leonards, NSW, Australia; Discipline of Surgery, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
1464
|
Xu LX, He MH, Dai ZH, Yu J, Wang JG, Li XC, Jiang BB, Ke ZF, Su TH, Peng ZW, Guo Y, Chen ZB, Chen SL, Peng S, Kuang M. Genomic and transcriptional heterogeneity of multifocal hepatocellular carcinoma. Ann Oncol 2019; 30:990-997. [PMID: 30916311 PMCID: PMC6594462 DOI: 10.1093/annonc/mdz103] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) often presents with multiple nodules within the liver, with limited effective interventions. The high genetic heterogeneity of HCC might be the major cause of treatment failure. We aimed to characterize genomic heterogeneity, infer clonal evolution, investigate RNA expression pattern and explore tumour immune microenvironment profile of multifocal HCC. PATIENTS AND METHODS Whole-exome sequencing and RNA sequencing were carried out in 34 tumours and 6 adjacent normal liver tissue samples from 6 multifocal HCC patients. Protein expression of Ki67, AFP, P53, Survivin and CD8 was detected by immunohistochemistry. Fluorescence in situ hybridization was carried out to validate the amplification status of sorafenib-targeted genes. RESULTS We deciphered genomic and transcriptional heterogeneity among tumours in each multifocal HCC patient including mutational profiles, copy number alterations, tumour evolutionary trajectory and tumour immune microenvironment profiles. Of note, sorafenib-targeted alterations were identified in the trunk of phylogenetic tree in only one out of the six patients, which may explain the relative low treatment response rate to sorafenib in clinical practice. Moreover, we demonstrated RNA expression patterns and tumour immune microenvironment profiles of all nodules. We found that RNA expression pattern was associated with Edmondson-Steiner grading. Based on the differential expression of 66 reported immune markers, unsupervised hierarchical clustering analysis of 34 nodules identified immune subsets: one low expression cluster with seven nodules and one high expression cluster with 11 nodules. CD8+ T cells were more enriched in nodules of the high expression cluster. CONCLUSIONS Our study provided a detailed view of genomic and transcriptional heterogeneity, clonal evolution and immune infiltration of multifocal HCC. The heterogeneity of druggable targets and immune landscape might help interpret the clinical responsiveness to targeted drugs and immunotherapy for multifocal HCC patients.
Collapse
Affiliation(s)
- L X Xu
- Departments of Gastroenterology and Hepatology
| | - M H He
- Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Z H Dai
- Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - J Yu
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - J G Wang
- State Key Laboratory of Molecular Neuroscience, Division of Life Science, Department of Chemical and Biological Engineering, Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Hong Kong
| | - X C Li
- Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Cancer Institute, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin
| | - B B Jiang
- State Key Laboratory of Molecular Neuroscience, Division of Life Science, Department of Chemical and Biological Engineering, Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Hong Kong
| | | | - T H Su
- Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | | | - Y Guo
- Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Z B Chen
- Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - S L Chen
- Division of Interventional Ultrasound
| | - S Peng
- Departments of Gastroenterology and Hepatology; Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - M Kuang
- Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Division of Interventional Ultrasound.
| |
Collapse
|
1465
|
Liu W, Wu J, Yang F, Ma L, Ni C, Hou X, Wang L, Xu A, Song J, Deng Y, Xian L, Li Z, Wang S, Chen X, Yin J, Han X, Li C, Zhao J, Cao G. Genetic Polymorphisms Predisposing the Interleukin 6-Induced APOBEC3B-UNG Imbalance Increase HCC Risk via Promoting the Generation of APOBEC-Signature HBV Mutations. Clin Cancer Res 2019; 25:5525-5536. [PMID: 31152021 DOI: 10.1158/1078-0432.ccr-18-3083] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/04/2019] [Accepted: 05/29/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE APOBEC3-UNG imbalance contributes to hepatitis B virus (HBV) inhibition and somatic mutations. We aimed to explore the associations between hepatocellular carcinoma (HCC) risk and genetic polymorphisms predisposing the imbalance.Experimental Design: Genetic polymorphisms at APOBEC3 promoter and UNG enhancer regions were genotyped in 5,621 participants using quantitative PCR. HBV mutations (nt.1600-nt.1945, nt.2848-nt.155) were determined by Sanger sequencing. Dual-luciferase reporter assay was applied to detect the transcriptional activity. Effects of APOBEC3B/UNG SNPs and expression levels on HCC prognosis were evaluated with a cohort of 400 patients with HCC and public databases, respectively. RESULTS APOBEC3B rs2267401-G allele and UNG rs3890995-C allele significantly increased HCC risk. rs2267401-G allele was significantly associated with the generation of APOBEC-signature HBV mutation whose frequency consecutively increased from asymptomatic HBV carriers to patients with HCC. Multiplicative interaction of rs2267401-G allele with rs3890995-C allele increased HCC risk, with an adjusted OR (95% confidence interval) of 1.90 (1.34-2.81). rs2267401 T-to-G and rs3890995 T-to-C conferred increased activities of APOBEC3B promoter and UNG enhancer, respectively. IL6 significantly increased APOBEC3B promoter activity and inhibited UNG enhancer activity, and these effects were more evident in those carrying rs2267401-G and rs3890995-C, respectively. APOBEC3B rs2267401-GG genotype, higher APOBEC3B expression, and higher APOBEC3B/UNG expression ratio in HCCs indicated poor prognosis. APOBEC-signature somatic mutation predicts poor prognosis in HBV-free HCCs rather than in HBV-positive ones. CONCLUSIONS Polymorphic genotypes predisposing the APOBEC3B-UNG imbalance in IL6-presenting microenvironment promote HCC development, possibly via promoting the generation of high-risk HBV mutations. This can be transformed into specific prophylaxis of HBV-caused HCC.
Collapse
Affiliation(s)
- Wenbin Liu
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Jianfeng Wu
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Fan Yang
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Longteng Ma
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Chong Ni
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xiaomei Hou
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Ling Wang
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Aijing Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Jiahui Song
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Yang Deng
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Linfeng Xian
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Zixiong Li
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Shuo Wang
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xi Chen
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Jianhua Yin
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xue Han
- Division of Chronic Diseases, Center for Disease Control and Prevention of Yangpu District, Shanghai, China
| | - Chengzhong Li
- Department of Infectious Diseases, The First Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Jun Zhao
- Department of Liver Cancer Surgery, The Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai, China. .,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology, Shanghai, China
| |
Collapse
|
1466
|
Dreval K, Tryndyak V, de Conti A, Beland FA, Pogribny IP. Gene Expression and DNA Methylation Alterations During Non-alcoholic Steatohepatitis-Associated Liver Carcinogenesis. Front Genet 2019; 10:486. [PMID: 31191608 PMCID: PMC6549534 DOI: 10.3389/fgene.2019.00486] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/06/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive human cancers. HCC is characterized by an acquisition of multiple abnormal phenotypes driven by genetic and epigenetic alterations, especially abnormal DNA methylation. Most of the existing clinical and experimental reports provide only a snapshot of abnormal DNA methylation patterns in HCC rather than their dynamic changes. This makes it difficult to elucidate the significance of these changes in the development of HCC. In the present study, we investigated hepatic gene expression and gene-specific DNA methylation alterations in mice using the Stelic Animal Model (STAM) of non-alcoholic steatohepatitis (NASH)-derived liver carcinogenesis. Analysis of the DNA methylation status in aberrantly expressed epigenetically regulated genes showed the accumulation of DNA methylation abnormalities during the development of HCC, with the greatest number of aberrantly methylated genes being found in full-fledged HCC. Among these genes, only one gene, tubulin, beta 2B class IIB (Tubb2b), was increasingly hypomethylated and over-expressed during the progression of the carcinogenic process. Furthermore, the TUBB2B gene was also over-expressed and hypomethylated in poorly differentiated human HepG2 cells as compared to well-differentiated HepaRG cells. The results of this study indicate that unique gene-expression alterations mediated by aberrant DNA methylation of selective genes may contribute to the development of HCC and may have diagnostic value as the disease-specific indicator.
Collapse
Affiliation(s)
- Kostiantyn Dreval
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, United States.,Program in Cancer Genetics, Epigenetics and Genomics, Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, United States
| | - Volodymyr Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, United States
| | - Aline de Conti
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, United States
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, United States
| | - Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, United States
| |
Collapse
|
1467
|
Canagliflozin inhibits growth of hepatocellular carcinoma via blocking glucose-influx-induced β-catenin activation. Cell Death Dis 2019; 10:420. [PMID: 31142735 PMCID: PMC6541593 DOI: 10.1038/s41419-019-1646-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 04/14/2019] [Accepted: 04/23/2019] [Indexed: 12/17/2022]
Abstract
Accelerated glucose metabolism is critical in hepatocarcinogenesis, but the utilities of different glucose transporter inhibitors in treating hepatocellular carcinoma (HCC) remain largely uncharacterized. In this study, we examined a collection of glucose transporter inhibitors and found differential anti-HCC effects among these compounds. Canagliflozin (CANA), phloretin, and WZB117 decreased cellular glucose influx, but only CANA showed potent growth inhibition in HCC, which indicated a glucose-independent anti-HCC mechanism. Notably, we found that CANA treatment significantly downregulated the expression of β-catenin in HCC cells in. By co-treating cells with cycloheximide and MG-132, we proved that CANA promoted proteasomal degradation of β-catenin protein by increasing phosphorylation of β-catenin, and CANA-induced inactivation of protein phosphatase 2A was identified being responsible for this effect. Moreover, using Huh7 xenografted tumor model, CANA treatment was shown to delay tumor growth and improved the survival of HCC bearing mice. Our study highlights the unique dual β-catenin-inhibition mechanisms of CANA, which may provide new thoughts on treating HCC patient with concurrent diabetes, and, furthermore, on developing novel treatment targeting metabolic reprogram and/or WNT/β-catenin signaling in HCC.
Collapse
|
1468
|
Wang Y, Huang Q, Deng T, Li BH, Ren XQ. Clinical Significance of TRMT6 in Hepatocellular Carcinoma: A Bioinformatics-Based Study. Med Sci Monit 2019; 25:3894-3901. [PMID: 31128068 PMCID: PMC6556066 DOI: 10.12659/msm.913556] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background The purpose of this study was to investigate the correlation between TRMT6 mRNA expression levels and clinicopathological features in primary HCC patients and to evaluate their prognostic value. Material/Methods The clinical information and the mRNA sequencing data of the patients with primary hepatocellular carcinoma (HCC) were extracted from The Cancer Genome Atlas (TCGA) Liver Cancer database. The correlation between the clinicopathological features and the expression of TRMT6 was analyzed by t test and chi-square test. The overall survival (OS) and recurrence-free survival (RFS) were estimated using the Kaplan-Meier method and Cox regression models. Gene set enrichment analysis (GSEA) was used to explore the potential mechanisms of TRMT6 dysregulation in primary HCC patients. Results Compared to normal tissues, TRMT6 was significantly upregulated in primary HCC tissues. Kaplan-Meier survival curves revealed that higher TRMT6 expression was associated with reduced RFS (p=0.0146) and OS (p=0.0224) in HCC patients. Moreover, multivariable Cox regression analysis indicated that TRMT6 upregulation independently predicted poor RFS (HR: 1.871, 95% CI: 1.204, 2.905, p=0.005) and OS (HR: 2.176, 95% CI: 1.234, 3.836, p=0.007). Gene Set Enrichment Analysis (GSEA) indicated that primary HCC samples in the TRMT6 high expression group were enriched for the G2M checkpoint, spermatogenesis, and MYC target genes. Conclusions TRMT6 was upregulated in HCC tissues, and higher TRMT6 expression levels was correlated with reduced OS and RFS in patients with primary HCC. TRMT6 might be a promising prognostic biomarker for poor clinical outcomes in primary HCC patients.
Collapse
Affiliation(s)
- Yang Wang
- Department of General Surgery, Center for Evidence-Based Medicine and Clinical Research, Huaihe Hospital of Henan University, Kaifeng, Henan, China (mainland)
| | - Qiao Huang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Tong Deng
- Department of General Surgery, Center for Evidence-Based Medicine and Clinical Research, Huaihe Hospital of Henan University, Kaifeng, Henan, China (mainland)
| | - Bing-Hui Li
- Department of General Surgery, Center for Evidence-Based Medicine and Clinical Research, Huaihe Hospital of Henan University, Kaifeng, Henan, China (mainland)
| | - Xue-Qun Ren
- Department of General Surgery, Center for Evidence-Based Medicine and Clinical Research, Huaihe Hospital of Henan University, Kaifeng, Henan, China (mainland)
| |
Collapse
|
1469
|
Khatib SA, Wang XW. Proteomic heterogeneity reveals SOAT1 as a potential biomarker for hepatocellular carcinoma. Transl Gastroenterol Hepatol 2019; 4:37. [PMID: 31231704 DOI: 10.21037/tgh.2019.05.09] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Subreen A Khatib
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.,Department of Tumor Biology, Graduate Partnership Program, Georgetown University, Washington, DC, USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.,Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
1470
|
Chen D, Li Z, Cheng Q, Wang Y, Qian L, Gao J, Zhu JY. Genetic alterations and expression of PTEN and its relationship with cancer stem cell markers to investigate pathogenesis and to evaluate prognosis in hepatocellular carcinoma. J Clin Pathol 2019; 72:588-596. [DOI: 10.1136/jclinpath-2019-205769] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 12/27/2022]
Abstract
AimsTo investigate molecular alteration and expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) gene in hepatocellular carcinoma (HCC), and to evaluate the correlation between PTEN and cancer stem cell (CSC) markers and the prognostic value of these markers.MethodsWe evaluated changes of PTEN and CSC markers (CD133, epithelial cell adhesion molecule (EpCAM) and CK19) in 183 resection specimens by immunohistochemistry (IHC) and detected PTEN and phosphoinositide-3-kinase catalytic-alpha (PIK3CA) gene by fluorescence in situ hybridisation (FISH) in some specimens.ResultsPTEN and CD133, EpCAM and CK19 in 183 resection specimens were studied by IHC, and PTEN and PIK3CA genes were detected by FISH. PTEN expression was reduced in 92 HCC tissues (50.3%). There were 16 HCCs with PTEN deletion (51.6%). Comparison between PTEN IHC and FISH showed that the analysis was highly concordant (54/59, 91.5%). There were 19 HCCs with PIK3CA amplification. Deletion of PTEN was positively correlated with amplification of PIK3CA. Positive expression of CD133, EpCAM and CK19 was correlated with steatosis, moderate to poor differentiation, and so on. Reduction of PTEN expression was negatively correlated with positive expression of CD133, EpCAM and CK19. Reduced expression of PTEN (p=0.028) was an independent predictor for HCC recurrence and overall survival in HCC. PTEN−/CD133+ group had shorter OS and RFS time.ConclusionsPTEN plays a key role in hepatocarcinogenesis and reduction of PTEN expression is related to increased expression of CD133, EpCAM and CK19, which is a useful tool to evaluate HCC prognosis and recurrence.
Collapse
|
1471
|
Zhou X, Wang X, Huang K, Liao X, Yang C, Yu T, Liu J, Han C, Zhu G, Su H, Qin W, Han Q, Liu Z, Huang J, Gong Y, Ye X, Peng T. Investigation of the clinical significance and prospective molecular mechanisms of cystatin genes in patients with hepatitis B virus‑related hepatocellular carcinoma. Oncol Rep 2019; 42:189-201. [PMID: 31115549 PMCID: PMC6549101 DOI: 10.3892/or.2019.7154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/02/2019] [Indexed: 12/29/2022] Open
Abstract
The present study aimed to investigate the clinical significance and prospective molecular mechanism of cystatin (CST) genes in patients with hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). The role of CST genes in the molecular mechanism of HCC was revealed through bioinformatics analysis. The clinical significance of CST genes was investigated using GSE14520-derived data from patients with HBV-related HCC. Gene set enrichment analysis (GSEA) was used to identify pathways in which the CST genes were enriched, as well as the association between these pathways and HCC. The expression levels of CST1, CST2, CST5, CSTA and CSTB genes were higher in HCC tissue compared with in normal tissue; conversely, CST3 and CST7 were reduced in HCC tissue. Subsequent receiver operating characteristic analysis of the CST genes demonstrated that CST7 and CSTB genes may function as potential diagnostic markers for HCC. Furthermore, the expression levels of CST6 and CST7 were strongly associated with recurrence-free survival and overall survival of patients with HBV-related HCC. GSEA of the CST genes revealed that CST7 was significantly enriched in tumor evasion and tolerogenicity, cancer progenitors, liver cancer late recurrence, liver cancer progression and several liver cancer subclasses. In addition, CST genes demonstrated homology in terms of protein structure and were revealed to be strongly co-expressed. The present findings suggested that CST7 and CSTB genes may serve as potential prognostic and diagnostic biomarkers for HCC.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Junqi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hao Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Wei Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Quanfa Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhengqian Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jianlv Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yizhen Gong
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
1472
|
Association between IL-37 gene polymorphisms and risk of HBV-related liver disease in a Saudi Arabian population. Sci Rep 2019; 9:7123. [PMID: 31073186 PMCID: PMC6509272 DOI: 10.1038/s41598-019-42808-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 03/13/2019] [Indexed: 12/26/2022] Open
Abstract
Interleukin-37 (IL-37) has recently been recognized as a strong anti-inflammatory cytokine having anti-tumor activity against hepatocellular carcinoma (HCC) in hepatitis B virus (HBV)-infected patients. HCC is a typical inflammation-related cancer, and genetic variations within the IL-37 gene may be associated with the risk of HBV infection. Identification of the allelic patterns that genetically have a high disease risk is essential for the development of preventive diagnostics for HBV-mediated liver disease pathogenesis. In this study, we aimed to investigate the association between single nucleotide polymorphisms (SNPs) within the IL-37 gene and disease sequelae associated with HBV infection. We genotyped ten IL-37 SNPs in 1274 patients infected with HBV and 599 healthy controls from a Saudi Arabian population. Among the selected SNPs, two SNPs (rs2723175 and rs2708973) were strongly associated with HBV infection, and six SNPs (rs2723176, rs2723175, rs2723186, rs364030, rs28947200, rs4392270) were associated with HBV clearance, comparing healthy controls and HBV infected-patients respectively. A suggestive association of rs4849133 was identified with active HBV surface antigen (HBsAg) carrier and HBV-related liver disease progression. In conclusion, our findings suggest that variations at the IL-37 gene may be useful as genetic predictive risk factors for HBV infection and HBV-mediated liver disease progression in the Saudi Arabian population.
Collapse
|
1473
|
Lin J, Shi J, Guo H, Yang X, Jiang Y, Long J, Bai Y, Wang D, Yang X, Wan X, Zhang L, Pan J, Hu K, Guan M, Huo L, Sang X, Wang K, Zhao H. Alterations in DNA Damage Repair Genes in Primary Liver Cancer. Clin Cancer Res 2019; 25:4701-4711. [PMID: 31068370 DOI: 10.1158/1078-0432.ccr-19-0127] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/16/2019] [Accepted: 05/03/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Alterations in DNA damage repair (DDR) genes produce therapeutic biomarkers. However, the characteristics and significance of DDR alterations remain undefined in primary liver cancer (PLC). EXPERIMENTAL DESIGN Patients diagnosed with PLC were enrolled in the trial (PTHBC, NCT02715089). Tumors and matched blood samples from participants were collected for a targeted next-generation sequencing assay containing exons of 450 cancer-related genes, including 31 DDR genes. The OncoKB knowledge database was used to identify and classify actionable alterations, and therapeutic regimens were determined after discussion by a multidisciplinary tumor board. RESULTS A total of 357 patients with PLC were enrolled, including 214 with hepatocellular carcinoma, 122 with ICC, and 21 with mixed hepatocellular-cholangiocarcinoma. A total of 92 (25.8%) patients had at least one DDR gene mutation, 15 of whom carried germline mutations. The most commonly altered DDR genes were ATM (5%) and BRCA1/2 (4.8%). The occurrence of DDR mutations was significantly correlated with a higher tumor mutation burden regardless of the PLC pathologic subtype. For DDR-mutated PLC, 26.1% (24/92) of patients possessed at least one actionable alteration, and the actionable frequency in DDR wild-type PLC was 18.9% (50/265). Eight patients with the BRCA mutation were treated by olaparib, and patients with BRCA2 germline truncation mutations showed an objective response. CONCLUSIONS The landscape of DDR mutations and their association with genetic and clinicopathologic features demonstrated that patients with PLC with altered DDR genes may be rational candidates for precision oncology treatment.
Collapse
Affiliation(s)
- Jianzhen Lin
- Department of Liver Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Peking Union Medical College Hospital, Beijing, China
| | | | | | - Xu Yang
- Department of Liver Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Peking Union Medical College Hospital, Beijing, China
| | | | - Junyu Long
- Department of Liver Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Peking Union Medical College Hospital, Beijing, China
| | - Yi Bai
- Department of Liver Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Peking Union Medical College Hospital, Beijing, China
| | - Dongxu Wang
- Department of Liver Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Peking Union Medical College Hospital, Beijing, China
| | - Xiaobo Yang
- Department of Liver Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Peking Union Medical College Hospital, Beijing, China
| | - Xueshuai Wan
- Department of Liver Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Peking Union Medical College Hospital, Beijing, China
| | - Lei Zhang
- Department of Liver Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Peking Union Medical College Hospital, Beijing, China
| | - Jie Pan
- Department of Radiology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Peking Union Medical College Hospital, Beijing, China
| | - Ke Hu
- Department of Radiotherapy, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Peking Union Medical College Hospital, Beijing, China
| | - Mei Guan
- Department of Medical Oncology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Peking Union Medical College Hospital, Beijing, China
| | - Li Huo
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Peking Union Medical College Hospital, Beijing, China
| | - Xinting Sang
- Department of Liver Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Peking Union Medical College Hospital, Beijing, China
| | - Kai Wang
- OrigiMed, Shanghai, China.
- Zhejiang University International Hospital, Zhejiang, China
| | - Haitao Zhao
- Department of Liver Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Peking Union Medical College Hospital, Beijing, China.
- Department of Liver Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
1474
|
Ericksen RE, Lim SL, McDonnell E, Shuen WH, Vadiveloo M, White PJ, Ding Z, Kwok R, Lee P, Radda GK, Toh HC, Hirschey MD, Han W. Loss of BCAA Catabolism during Carcinogenesis Enhances mTORC1 Activity and Promotes Tumor Development and Progression. Cell Metab 2019; 29:1151-1165.e6. [PMID: 30661928 PMCID: PMC6506390 DOI: 10.1016/j.cmet.2018.12.020] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/13/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023]
Abstract
Tumors display profound changes in cellular metabolism, yet how these changes aid the development and growth of tumors is not fully understood. Here we use a multi-omic approach to examine liver carcinogenesis and regeneration, and find that progressive loss of branched-chain amino acid (BCAA) catabolism promotes tumor development and growth. In human hepatocellular carcinomas and animal models of liver cancer, suppression of BCAA catabolic enzyme expression led to BCAA accumulation in tumors, though this was not observed in regenerating liver tissues. The degree of enzyme suppression strongly correlated with tumor aggressiveness, and was an independent predictor of clinical outcome. Moreover, modulating BCAA accumulation regulated cancer cell proliferation in vitro, and tumor burden and overall survival in vivo. Dietary BCAA intake in humans also correlated with cancer mortality risk. In summary, loss of BCAA catabolism in tumors confers functional advantages, which could be exploited by therapeutic interventions in certain cancers.
Collapse
Affiliation(s)
- Russell E Ericksen
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, 11 Biopolis Way, 138667 Singapore, Singapore
| | - Siew Lan Lim
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, 11 Biopolis Way, 138667 Singapore, Singapore
| | - Eoin McDonnell
- Duke Molecular Physiology Institute, 300 North Duke Street, Durham, NC 27701, USA
| | - Wai Ho Shuen
- Division of Medical Oncology, National Cancer Center Singapore, 11 Hospital Drive, 169610 Singapore, Singapore
| | - Maya Vadiveloo
- Department of Nutrition and Food Sciences, University of Rhode Island, 41 Lower College Road, Kingston, RI 02881, USA
| | - Phillip J White
- Duke Molecular Physiology Institute, 300 North Duke Street, Durham, NC 27701, USA
| | - Zhaobing Ding
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, 11 Biopolis Way, 138667 Singapore, Singapore
| | - Royston Kwok
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, 11 Biopolis Way, 138667 Singapore, Singapore
| | - Philip Lee
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, 11 Biopolis Way, 138667 Singapore, Singapore
| | - George K Radda
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, 11 Biopolis Way, 138667 Singapore, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Center Singapore, 11 Hospital Drive, 169610 Singapore, Singapore
| | - Matthew D Hirschey
- Duke Molecular Physiology Institute, 300 North Duke Street, Durham, NC 27701, USA
| | - Weiping Han
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, 11 Biopolis Way, 138667 Singapore, Singapore.
| |
Collapse
|
1475
|
LINE-1 hypomethylation in human hepatocellular carcinomas correlates with shorter overall survival and CIMP phenotype. PLoS One 2019; 14:e0216374. [PMID: 31059558 PMCID: PMC6502450 DOI: 10.1371/journal.pone.0216374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/18/2019] [Indexed: 02/08/2023] Open
Abstract
Reactivation of interspersed repetitive sequences due to loss of methylation is associated with genomic instability, one of the hallmarks of cancer cells. LINE-1 hypomethylation is a surrogate marker for global methylation loss and is potentially a new diagnostic and prognostic biomarker in tumors. However, the correlation of LINE-1 hypomethylation with clinicopathological parameters and the CpG island methylator phenotype (CIMP) in patients with liver tumors is not yet well defined, particularly in Caucasians who show quite low rates of HCV/HBV infection and a higher incidence of liver steatosis. Therefore, quantitative DNA methylation analysis of LINE-1, RASSF1A, and CCND2 using pyrosequencing was performed in human hepatocellular carcinomas (HCC, n = 40), hepatocellular adenoma (HCA, n = 10), focal nodular hyperplasia (FNH, n = 5), and corresponding peritumoral liver tissues as well as healthy liver tissues (n = 5) from Caucasian patients. Methylation results were correlated with histopathological findings and clinical data. We found loss of LINE-1 DNA methylation only in HCC. It correlated significantly with poor survival (log rank test, p = 0.007). An inverse correlation was found for LINE-1 and RASSF1A DNA methylation levels (r2 = -0.47, p = 0.002). LINE-1 hypomethylation correlated with concurrent RASSF1/CCND2 hypermethylation (Fisher’s exact test, p = 0.02). Both LINE-1 hypomethylation and RASSF1A/CCND2 hypermethylation were not found in benign hepatocellular tumors (HCA and FNH). Our results show that LINE-1 hypomethylation and RASSF1A/CCND2 hypermethylation are epigenetic aberrations specific for the process of malignant liver transformation. In addition, LINE-1 hypomethylation might serve as a future predictive biomarker to identify HCC patients with unfavorable overall survival.
Collapse
|
1476
|
Blumer T, Fofana I, Matter MS, Wang X, Montazeri H, Calabrese D, Coto-Llerena M, Boldanova T, Nuciforo S, Kancherla V, Tornillo L, Piscuoglio S, Wieland S, Terracciano LM, Ng CKY, Heim MH. Hepatocellular Carcinoma Xenografts Established From Needle Biopsies Preserve the Characteristics of the Originating Tumors. Hepatol Commun 2019; 3:971-986. [PMID: 31334445 PMCID: PMC6601318 DOI: 10.1002/hep4.1365] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/19/2019] [Indexed: 12/26/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer‐related deaths worldwide. Treatment options for patients with advanced‐stage disease are limited. A major obstacle in drug development is the lack of an in vivo model that accurately reflects the broad spectrum of human HCC. Patient‐derived xenograft (PDX) tumor mouse models could overcome the limitations of cancer cell lines. PDX tumors maintain the genetic and histologic heterogeneity of the originating tumors and are used for preclinical drug development in various cancers. Controversy exists about their genetic and molecular stability through serial passaging in mice. We aimed to establish PDX models from human HCC biopsies and to characterize their histologic and molecular stability during serial passaging. A total of 54 human HCC needle biopsies that were derived from patients with various underlying liver diseases and tumor stages were transplanted subcutaneously into immunodeficient, nonobese, diabetic/severe combined immunodeficiency gamma‐c mice; 11 successfully engrafted. All successfully transplanted HCCs were Edmondson grade III or IV. HCC PDX tumors retained the histopathologic, transcriptomic, and genomic characteristics of the original HCC biopsies over 6 generations of retransplantation. These characteristics included Edmondson grade, expression of tumor markers, tumor gene signature, tumor‐associated mutations, and copy number alterations. Conclusion: PDX mouse models can be established from undifferentiated HCCs, with an overall success rate of approximately 20%. The transplanted tumors represent the entire spectrum of the molecular landscape of HCCs and preserve the characteristics of the originating tumors through serial passaging. HCC PDX models are a promising tool for preclinical personalized drug development.
Collapse
Affiliation(s)
- Tanja Blumer
- Department of Biomedicine University Hospital Basel, University of Basel Basel Switzerland
| | - Isabel Fofana
- Department of Biomedicine University Hospital Basel, University of Basel Basel Switzerland
| | - Matthias S Matter
- Institute of Pathology University Hospital Basel, University of Basel Basel Switzerland
| | - Xueya Wang
- Department of Biomedicine University Hospital Basel, University of Basel Basel Switzerland
| | - Hesam Montazeri
- Institute of Pathology University Hospital Basel, University of Basel Basel Switzerland.,Department of Bioinformatics, Institute of Biochemistry and Biophysics University of Tehran Tehran Iran
| | - Diego Calabrese
- Department of Biomedicine University Hospital Basel, University of Basel Basel Switzerland
| | - Mairene Coto-Llerena
- Department of Biomedicine University Hospital Basel, University of Basel Basel Switzerland
| | - Tujana Boldanova
- Department of Biomedicine University Hospital Basel, University of Basel Basel Switzerland.,Division of Gastroenterology and Hepatology Clarunis, University Hospital Basel, University of Basel Basel Switzerland
| | - Sandro Nuciforo
- Department of Biomedicine University Hospital Basel, University of Basel Basel Switzerland
| | - Venkatesh Kancherla
- Institute of Pathology University Hospital Basel, University of Basel Basel Switzerland
| | - Luigi Tornillo
- Institute of Pathology University Hospital Basel, University of Basel Basel Switzerland
| | - Salvatore Piscuoglio
- Institute of Pathology University Hospital Basel, University of Basel Basel Switzerland.,Visceral Surgery Research Laboratory, Clarunis, Department of Biomedicine University of Basel Basel Switzerland
| | - Stefan Wieland
- Department of Biomedicine University Hospital Basel, University of Basel Basel Switzerland
| | - Luigi M Terracciano
- Institute of Pathology University Hospital Basel, University of Basel Basel Switzerland
| | - Charlotte K Y Ng
- Department of Biomedicine University Hospital Basel, University of Basel Basel Switzerland.,Institute of Pathology University Hospital Basel, University of Basel Basel Switzerland.,Department for Biomedical Research University of Bern Bern Switzerland
| | - Markus H Heim
- Department of Biomedicine University Hospital Basel, University of Basel Basel Switzerland.,Division of Gastroenterology and Hepatology Clarunis, University Hospital Basel, University of Basel Basel Switzerland
| |
Collapse
|
1477
|
Wu C, Zheng L. Proteomics promises a new era of precision cancer medicine. Signal Transduct Target Ther 2019; 4:13. [PMID: 31069119 PMCID: PMC6497684 DOI: 10.1038/s41392-019-0046-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/01/2019] [Indexed: 11/08/2022] Open
Affiliation(s)
- Chong Wu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China
| | - Limin Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China
| |
Collapse
|
1478
|
Han Q, Lv L, Wei J, Lei X, Lin H, Li G, Cao J, Xie J, Yang W, Wu S, You J, Lu J, Liu P, Min J. Vps4A mediates the localization and exosome release of β-catenin to inhibit epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett 2019; 457:47-59. [PMID: 31059752 DOI: 10.1016/j.canlet.2019.04.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 04/05/2019] [Accepted: 04/26/2019] [Indexed: 12/20/2022]
Abstract
We previously reported that Vps4A acted as a tumor suppressor by influencing the microRNA profiles of exosomes and their parental cells in hepatocellular carcinoma (HCC). However, the underlying mechanism and if Vps4A contributes to sorting proteins into exosomes are not well known. Here, we performed mass spectrometry analysis of the immunoprecipitated Vps4A complex and confirmed that Vps4A was associated with β-catenin and CHMP4B. Through this interaction, Vps4A promoted the plasma membrane (PM) localization and exosome release of β-catenin. Silencing Vps4A or CHMP4B decreased the PM localization and exosome sorting of β-catenin. Vps4A overexpression decreased β-catenin signaling pathway and inhibited epithelial-mesenchymal transition (EMT) and motility of HCC cells. And, silencing Vps4A or CHMP4B promoted EMT in HCC. Furthermore, the expression of Vps4A was significantly related to that of several EMT markers in HCC tissues and the level of exosomal β-catenin in patients with metastatic HCC was significantly lower compared to that of control patients. In conclusion, through the interaction with CHMP4B and β-catenin, Vps4A regulates the PM localization and exosome sorting of β-catenin, consequently decreases β-catenin signaling, and thereby inhibits EMT and metastasis in HCC.
Collapse
Affiliation(s)
- Qingfang Han
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, 510120, China
| | - Lihong Lv
- Clinical Trial Institution of Pharmaceuticals, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jinxing Wei
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, 510120, China
| | - Xin Lei
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Haoming Lin
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, 510120, China
| | - Guolin Li
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, 510120, China
| | - Jun Cao
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, 510120, China
| | - Jiyan Xie
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, 510120, China
| | - Weibang Yang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, 510120, China
| | - Shaobin Wu
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, 510120, China
| | - Jia You
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jing Lu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Peiqing Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Jun Min
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, 510120, China.
| |
Collapse
|
1479
|
Teufel M, Seidel H, Köchert K, Meinhardt G, Finn RS, Llovet JM, Bruix J. Biomarkers Associated With Response to Regorafenib in Patients With Hepatocellular Carcinoma. Gastroenterology 2019; 156:1731-1741. [PMID: 30738047 DOI: 10.1053/j.gastro.2019.01.261] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS In a phase 3 trial (RESORCE), regorafenib increased overall survival compared with placebo in patients with hepatocellular carcinoma (HCC) previously treated with sorafenib. In an exploratory study, we analyzed plasma and tumor samples from study participants to identify genetic, microRNA (miRNA), and protein biomarkers associated with response to regorafenib. METHODS We obtained archived tumor tissues and baseline plasma samples from patients with HCC given regorafenib in the RESORCE trial. Baseline plasma samples from 499 patients were analyzed for expression of 294 proteins (DiscoveryMAP) and plasma samples from 349 patients were analyzed for levels of 750 miRNAs (miRCURY miRNA PCR). Tumor tissues from 7 responders and 10 patients who did not respond (progressors) were analyzed by next-generation sequencing (FoundationOne). Forty-six tumor tissues were analyzed for expression patterns of 770 genes involved in oncogenic and inflammatory pathways (PanCancer Immune Profiling). Associations between plasma levels of proteins and miRNAs and response to treatment (overall survival and time to progression) were evaluated using a Cox proportional hazards model. RESULTS Decreased baseline plasma concentrations of 5 of 266 evaluable proteins (angiopoietin 1, cystatin B, the latency-associated peptide of transforming growth factor beta 1, oxidized low-density lipoprotein receptor 1, and C-C motif chemokine ligand 3; adjusted P ≤ .05) were significantly associated with increased overall survival time after regorafenib treatment. Levels of these 5 proteins, which have roles in inflammation and/or HCC pathogenesis, were not associated with survival independently of treatment. Only 20 of 499 patients had high levels and a reduced survival time. Plasma levels of α-fetoprotein and c-MET were associated with poor outcome (overall survival) independently of regorafenib treatment only. We identified 9 plasma miRNAs (MIR30A, MIR122, MIR125B, MIR200A, MIR374B, MIR15B, MIR107, MIR320, and MIR645) whose levels significantly associated with overall survival time with regorafenib (adjusted P ≤ .05). Functional analyses of these miRNAs indicated that their expression level associated with increased overall survival of patients with tumors of the Hoshida S3 subtype. Next-generation sequencing analyses of tumor tissues revealed 49 variants in 27 oncogenes or tumor suppressor genes. Mutations in CTNNB1 were detected in 3 of 10 progressors and VEGFA amplification in 1 of 7 responders. CONCLUSION We identified expression patterns of plasma proteins and miRNAs that associated with increased overall survival times of patients with HCC following treatment with regorafenib in the RESORCE trial. Levels of these circulating biomarkers and genetic features of tumors might be used to identify patients with HCC most likely to respond to regorafenib. ClinicalTrials.gov number NCT01774344. NCBI GEO accession numbers: mRNA data (NanoString): GSE119220; miRNA data (Exiqon): GSE119221.
Collapse
Affiliation(s)
| | | | | | | | - Richard S Finn
- David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Josep M Llovet
- BCLC Group, Liver Unit, Hospital Clinic, University of Barcelona, IDIBAPS, CIBEREHD, Barcelona, Spain; Liver Cancer Program, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Jordi Bruix
- BCLC Group, Liver Unit, Hospital Clinic, University of Barcelona, IDIBAPS, CIBEREHD, Barcelona, Spain
| |
Collapse
|
1480
|
Zhang HE, Henderson JM, Gorrell MD. Animal models for hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis 2019; 1865:993-1002. [PMID: 31007176 DOI: 10.1016/j.bbadis.2018.08.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) represents ~90% of all cases of primary liver cancer and occurs predominantly in patients with underlying chronic liver disease and cirrhosis. Establishing appropriate animal models for HCC is required for basic and translational studies, especially the models that can recapitulate one of the human disease settings. Current animal models can be categorized as chemically-induced, genetically-engineered, xenograft, or a combination of these with each other or with a metabolic insult. A single approach to resemble human HCC in animals is not sufficient. Combining pathogenic insults in animal models may more realistically recapitulate the multiple etiologic agents occurring in humans. Combining chemical injury with metabolic disorder or alcohol consumption in mice reduces the time taken to hepatocarcinogenesis. Genetically-engineering weak activation of HCC-promoting pathways combined with disease-specific injury models will possibly mimic the pathophysiology of human HCC in distinct clinical settings.
Collapse
Affiliation(s)
- Hui Emma Zhang
- Centenary Institute, The University of Sydney, Newtown, New South Wales, 2042, Australia; The University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia
| | - James M Henderson
- Centenary Institute, The University of Sydney, Newtown, New South Wales, 2042, Australia; The University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia
| | - Mark D Gorrell
- Centenary Institute, The University of Sydney, Newtown, New South Wales, 2042, Australia; The University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia.
| |
Collapse
|
1481
|
Kieckhaefer JE, Maina F, Wells R, Wangensteen KJ. Liver Cancer Gene Discovery Using Gene Targeting, Sleeping Beauty, and CRISPR/Cas9. Semin Liver Dis 2019; 39:261-274. [PMID: 30912094 PMCID: PMC7485130 DOI: 10.1055/s-0039-1678725] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a devastating and prevalent cancer with limited treatment options. Technological advances have enabled genetic screens to be employed in HCC model systems to characterize genes regulating tumor initiation and growth. Relative to traditional methods for studying cancer biology, such as candidate gene approaches or expression analysis, genetic screens have several advantages: they are unbiased, with no a priori selection; can directly annotate gene function; and can uncover gene-gene interactions. In HCC, three main types of screens have been conducted and are reviewed here: (1) transposon-based mutagenesis screens, (2) knockdown screens using RNA interference (RNAi) or the CRISPR/Cas9 system, and (3) overexpression screens using CRISPR activation (CRISPRa) or cDNAs. These methods will be valuable in future genetic screens to delineate the mechanisms underlying drug resistance and to identify new treatments for HCC.
Collapse
Affiliation(s)
- Julia E. Kieckhaefer
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA, USA
| | - Flavio Maina
- Aix Marseille University, CNRS, Developmental Biology Institute of Marseille (IBDM), Parc Scientifique de Luminy, Marseille, France
| | - Rebecca Wells
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA, USA
- Pathology and Laboratory Medicine and Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kirk J. Wangensteen
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
1482
|
Brodeur CM, Thibault P, Durand M, Perreault JP, Bisaillon M. Dissecting the expression landscape of cytochromes P450 in hepatocellular carcinoma: towards novel molecular biomarkers. Genes Cancer 2019; 10:97-108. [PMID: 31258835 PMCID: PMC6584210 DOI: 10.18632/genesandcancer.190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths around the world. Recent advances in genomic technologies have allowed the identification of various molecular signatures in HCC tissues. For instance, differential gene expression levels of various cytochrome P450 genes (CYP450) have been reported in studies performed on limited numbers of HCC tissue samples, or focused on a small subset on CYP450s. In the present study, we monitored the expression landscape of all the members of the CYP450 family (57 genes) in more than 200 HCC tissues using RNA-Seq data from The Cancer Genome Atlas. Using stringent statistical filters and data from paired tissues, we identified significantly dysregulated CYP450 genes in HCC. Moreover, the expression level of selected CYP450s was validated by qPCR on cDNA samples from an independent cohort. Threshold values (sensitivity and specificity) based on dysregulated gene expression were also determined to allow for confident identification of HCC tissues. Finally, a global look at expression levels of the 57 members of the CYP450 family across ten different cancer types revealed specific expression signatures. Overall, this study provides useful information on the transcriptomic landscape of CYP450 genes in HCC and on new potential HCC biomarkers.
Collapse
Affiliation(s)
- Camille Martenon Brodeur
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Philippe Thibault
- Laboratoire de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mathieu Durand
- Laboratoire de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jean-Pierre Perreault
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Martin Bisaillon
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
1483
|
Kang S, Bai X, Chen S, Song Y, Liu L. The potential combinational immunotherapiesfor treatment of hepatocellular carcinoma. J Interv Med 2019; 2:47-51. [PMID: 34805871 PMCID: PMC8562285 DOI: 10.1016/j.jimed.2019.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The treatment choices available for hepatocellular carcinoma (HCC) are limited and unsatisfactory. Recent improvements in our understanding of the mechanism involving immune checkpoints, including programmed cell death protein 1 (PD1), programmed death-ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), and also progress in the development of medicines make immunotherapy a promising approach to the treatment of numerous cancers, especially HCC. However, around 40% of patients still suffer from a progressive disease when treated with a monotherapy. Several clinical trials applying a combination therapy including immune checkpoint inhibitors have demonstrated the durable antitumor activity of these approaches in HCC patients. These clinical trials were done with the intent of evaluating the safety of these combination therapies, as well as whether they help improve the overall survival of patients. This study reviewed the recent progress in the use of combination therapies including immunotherapy in treating patients with HCC.
Collapse
Affiliation(s)
- Shuai Kang
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xue Bai
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shujie Chen
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Song
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Liu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
1484
|
Xie W, Yin T, Chen YL, Zhu DM, Zan MH, Chen B, Ji LW, Chen L, Guo SS, Huang HM, Zhao XZ, Wang Y, Wu Y, Liu W. Capture and "self-release" of circulating tumor cells using metal-organic framework materials. NANOSCALE 2019; 11:8293-8303. [PMID: 30977474 DOI: 10.1039/c8nr09071h] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Capturing circulating tumor cells (CTCs) from peripheral blood for subsequent analyses has shown potential in precision medicine for cancer patients. Broad as the prospect is, there are still some challenges that hamper its clinical applications. One of the challenges is to maintain the viability of the captured cells during the capturing and releasing processes. Herein, we have described a composite material that could encapsulate a magnetic Fe3O4 core in a MIL-100 shell (MMs), which could respond to pH changes and modify the anti-EpCAM antibody (anti-EpCAM-MMs) on the surface of MIL-100. After the anti-EpCAM-MMs captured the cells, there was no need for additional conditions but with the acidic environment during the cell culture process, MIL-100 could realize automatic degradation, leading to cell self-release. This self-release model could not only improve the cell viability, but could also reduce the steps of the release process and save human and material resources simultaneously. In addition, we combined clinical patients' case diagnosis with the DNA sequencing and next generation of RNA sequencing technologies in the hope of precision medicine for patients in the future.
Collapse
Affiliation(s)
- Wei Xie
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1485
|
Zhu M, Lu T, Jia Y, Luo X, Gopal P, Li L, Odewole M, Renteria V, Singal AG, Jang Y, Ge K, Wang SC, Sorouri M, Parekh JR, MacConmara MP, Yopp AC, Wang T, Zhu H. Somatic Mutations Increase Hepatic Clonal Fitness and Regeneration in Chronic Liver Disease. Cell 2019; 177:608-621.e12. [PMID: 30955891 PMCID: PMC6519461 DOI: 10.1016/j.cell.2019.03.026] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/20/2019] [Accepted: 03/11/2019] [Indexed: 12/19/2022]
Abstract
Normal tissues accumulate genetic changes with age, but it is unknown if somatic mutations promote clonal expansion of non-malignant cells in the setting of chronic degenerative diseases. Exome sequencing of diseased liver samples from 82 patients revealed a complex mutational landscape in cirrhosis. Additional ultra-deep sequencing identified recurrent mutations in PKD1, PPARGC1B, KMT2D, and ARID1A. The number and size of mutant clones increased as a function of fibrosis stage and tissue damage. To interrogate the functional impact of mutated genes, a pooled in vivo CRISPR screening approach was established. In agreement with sequencing results, examination of 147 genes again revealed that loss of Pkd1, Kmt2d, and Arid1a promoted clonal expansion. Conditional heterozygous deletion of these genes in mice was also hepatoprotective in injury assays. Pre-malignant somatic alterations are often viewed through the lens of cancer, but we show that mutations can promote regeneration, likely independent of carcinogenesis.
Collapse
Affiliation(s)
- Min Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tianshi Lu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA, 75390
| | - Yuemeng Jia
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xin Luo
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Purva Gopal
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Li
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mobolaji Odewole
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Veronica Renteria
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Amit G Singal
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Kai Ge
- NIDDK, NIH, Bethesda, MD 20892, USA
| | - Sam C Wang
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mahsa Sorouri
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Justin R Parekh
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Malcolm P MacConmara
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adam C Yopp
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA, 75390; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA, 75390.
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
1486
|
Brinkman AB, Nik-Zainal S, Simmer F, Rodríguez-González FG, Smid M, Alexandrov LB, Butler A, Martin S, Davies H, Glodzik D, Zou X, Ramakrishna M, Staaf J, Ringnér M, Sieuwerts A, Ferrari A, Morganella S, Fleischer T, Kristensen V, Gut M, van de Vijver MJ, Børresen-Dale AL, Richardson AL, Thomas G, Gut IG, Martens JWM, Foekens JA, Stratton MR, Stunnenberg HG. Partially methylated domains are hypervariable in breast cancer and fuel widespread CpG island hypermethylation. Nat Commun 2019; 10:1749. [PMID: 30988298 PMCID: PMC6465362 DOI: 10.1038/s41467-019-09828-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/27/2019] [Indexed: 12/21/2022] Open
Abstract
Global loss of DNA methylation and CpG island (CGI) hypermethylation are key epigenomic aberrations in cancer. Global loss manifests itself in partially methylated domains (PMDs) which extend up to megabases. However, the distribution of PMDs within and between tumor types, and their effects on key functional genomic elements including CGIs are poorly defined. We comprehensively show that loss of methylation in PMDs occurs in a large fraction of the genome and represents the prime source of DNA methylation variation. PMDs are hypervariable in methylation level, size and distribution, and display elevated mutation rates. They impose intermediate DNA methylation levels incognizant of functional genomic elements including CGIs, underpinning a CGI methylator phenotype (CIMP). Repression effects on tumor suppressor genes are negligible as they are generally excluded from PMDs. The genomic distribution of PMDs reports tissue-of-origin and may represent tissue-specific silent regions which tolerate instability at the epigenetic, transcriptomic and genetic level.
Collapse
Affiliation(s)
- Arie B Brinkman
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, PO Box 9101, Nijmegen, 6500 HB, The Netherlands.
| | - Serena Nik-Zainal
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Femke Simmer
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
- Department of Pathology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - F Germán Rodríguez-González
- Erasmus MC Cancer Institute and Cancer Genomics Netherlands, Department of Medical Oncology, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Marcel Smid
- Erasmus MC Cancer Institute and Cancer Genomics Netherlands, Department of Medical Oncology, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Ludmil B Alexandrov
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Adam Butler
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Sancha Martin
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Helen Davies
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Dominik Glodzik
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Xueqing Zou
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | | | - Johan Staaf
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, SE-223 81, Sweden
| | - Markus Ringnér
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, SE-223 81, Sweden
| | - Anieta Sieuwerts
- Erasmus MC Cancer Institute and Cancer Genomics Netherlands, Department of Medical Oncology, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Anthony Ferrari
- Synergie Lyon Cancer, Centre Léon Bérard, 28 rue Laënnec, Lyon Cedex 08, France
| | - Sandro Morganella
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Thomas Fleischer
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, 0310, Norway
| | - Vessela Kristensen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, 0310, Norway
- K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, 0316, Norway
- Department of Clinical Molecular Biology and Laboratory Science (EpiGen), Division of Medicine, Akershus University Hospital, Lørenskog, 1478, Norway
| | - Marta Gut
- Centro Nacional de Análisis Genómico (CNAG), Parc Científic de Barcelona, Barcelona, 08028, Spain
| | - Marc J van de Vijver
- Department of Pathology, Academic Medical Center, Meibergdreef 9, Amsterdam, AZ 1105, The Netherlands
| | - Anne-Lise Børresen-Dale
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, 0310, Norway
- K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, 0316, Norway
| | - Andrea L Richardson
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Gilles Thomas
- Synergie Lyon Cancer, Centre Léon Bérard, 28 rue Laënnec, Lyon Cedex 08, France
| | - Ivo G Gut
- Centro Nacional de Análisis Genómico (CNAG), Parc Científic de Barcelona, Barcelona, 08028, Spain
| | - John W M Martens
- Erasmus MC Cancer Institute and Cancer Genomics Netherlands, Department of Medical Oncology, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - John A Foekens
- Erasmus MC Cancer Institute and Cancer Genomics Netherlands, Department of Medical Oncology, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | | | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, PO Box 9101, Nijmegen, 6500 HB, The Netherlands.
| |
Collapse
|
1487
|
Busato D, Mossenta M, Baboci L, Di Cintio F, Toffoli G, Dal Bo M. Novel immunotherapeutic approaches for hepatocellular carcinoma treatment. Expert Rev Clin Pharmacol 2019; 12:453-470. [PMID: 30907177 DOI: 10.1080/17512433.2019.1598859] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The introduction of immune checkpoint inhibitors has been lately proposed for the treatment of hepatocellular carcinoma (HCC) with respect to other cancer types. Several immunotherapeutic approaches are now under evaluation for HCC treatment including: i) antibodies acting as immune checkpoint inhibitors; ii) antibodies targeting specific tumor-associated antigens; iii) chimeric antigen receptor redirected T (CAR-T) cells targeting specific tumor-associated antigens; iv) vaccination strategies with tumor-specific epitopes. Areas covered: The review provides a wide description of the clinical trials investigating the efficacy of the main immunotherapeutic approaches proposed for the treatment of patients affected by HCC. Expert opinion: The balancing between immunostimulative and immunosuppressive factors in the context of HCC tumor microenvironment results in heterogeneous response rates to immunotherapeutic approaches such as checkpoint inhibitors, among HCC patients. In this context, it becomes crucial the identification of predictive factors determining the treatment response. A multiple approach using different biomarkers could be useful to identify the subgroup of HCC patients responsive to the treatment with a checkpoint inhibitor (as an example, nivolumab) as single agent, and to identify those patients in which other treatment regimens, such as the combination with sorafenib, or with locoregional therapies, could be more effective.
Collapse
Affiliation(s)
- Davide Busato
- a Experimental and Clinical Pharmacology Unit , Centro di Riferimento Oncologico di Aviano (CRO), IRCCS , Aviano (PN) , Italy.,b Department of Life Sciences , University of Trieste , Trieste , Italy
| | - Monica Mossenta
- a Experimental and Clinical Pharmacology Unit , Centro di Riferimento Oncologico di Aviano (CRO), IRCCS , Aviano (PN) , Italy.,b Department of Life Sciences , University of Trieste , Trieste , Italy
| | - Lorena Baboci
- a Experimental and Clinical Pharmacology Unit , Centro di Riferimento Oncologico di Aviano (CRO), IRCCS , Aviano (PN) , Italy
| | - Federica Di Cintio
- a Experimental and Clinical Pharmacology Unit , Centro di Riferimento Oncologico di Aviano (CRO), IRCCS , Aviano (PN) , Italy.,b Department of Life Sciences , University of Trieste , Trieste , Italy
| | - Giuseppe Toffoli
- a Experimental and Clinical Pharmacology Unit , Centro di Riferimento Oncologico di Aviano (CRO), IRCCS , Aviano (PN) , Italy
| | - Michele Dal Bo
- a Experimental and Clinical Pharmacology Unit , Centro di Riferimento Oncologico di Aviano (CRO), IRCCS , Aviano (PN) , Italy
| |
Collapse
|
1488
|
El Jabbour T, Lagana SM, Lee H. Update on hepatocellular carcinoma: Pathologists’ review. World J Gastroenterol 2019; 25:1653-1665. [PMID: 31011252 PMCID: PMC6465943 DOI: 10.3748/wjg.v25.i14.1653] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/12/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023] Open
Abstract
Histopathologic diversity and several distinct histologic subtypes of hepatocellular carcinoma (HCC) are well-recognized. Recent advances in molecular pathology and growing knowledge about the biology associated with distinct histologic features and immuno-profile in HCC allowed pathologists to update classifications. Improving sub-classification will allow for more clinically relevant diagnoses and may allow for stratification into biologically meaningful subgroups. Therefore, immuno-histochemical and molecular testing are not only diagnostically useful, but also are being incorporated as crucial components in predicting prognosis of the patients with HCC. Possibilities of targeted therapy are being explored in HCC, and it will be important for pathologists to provide any data that may be valuable from a theranostic perspective. Herein, we review and provide updates regarding the pathologic sub-classification of HCC. Pathologic diagnostic approach and the role of biomarkers as prognosticators are reviewed. Further, the histopathology of four particular subtypes of HCC: Steatohepatitic, clear cell, fibrolamellar and scirrhous - and their clinical relevance, and the recent consensus on combined HCC-cholangiocarcinoma is summarized. Finally, emerging novel biomarkers and new approaches to HCC stratification are reviewed.
Collapse
Affiliation(s)
- Tony El Jabbour
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, NY 12208, United States
| | - Stephen M Lagana
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
| | - Hwajeong Lee
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, NY 12208, United States
| |
Collapse
|
1489
|
Cao H, Xu Z, Wang J, Cigliano A, Pilo MG, Ribback S, Zhang S, Qiao Y, Che L, Pascale RM, Calvisi DF, Chen X. Functional role of SGK3 in PI3K/Pten driven liver tumor development. BMC Cancer 2019; 19:343. [PMID: 30975125 PMCID: PMC6458829 DOI: 10.1186/s12885-019-5551-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 03/28/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a leading cause of cancer related deaths worldwide. The PI3K cascade is one of the major signaling pathways underlying HCC development and progression. Activating mutations of PI3K catalytic subunit alpha (PIK3CA) and/or loss of Pten often occur in human HCCs. Serum and glucocorticoid kinase 3 (SGK3) belongs to the SGK family of AGK kinases and functions in parallel to AKT downstream of PI3K. Previous studies have shown that SGK3 may be the major kinase responsible for the oncogenic potential of PIK3CA helical domain mutants, such as PIK3CA(E545K), but not kinase domain mutants, such as PIK3CA(H1047R). METHODS We investigated the functional contribution of SGK3 in mediating activated PIK3CA mutant or loss of Pten induced HCC development using Sgk3 knockout mice. RESULTS We found that ablation of Sgk3 does not affect PIK3CA(H1047R) or PIK3CA(E545K) induced lipogenesis in the liver. Using PIK3CA(H1047R)/c-Met, PIK3CA(E545K)/c-Met, and sgPten/c-Met murine HCC models, we also demonstrated that deletion of Sgk3 moderately delays PIK3CA(E545K)/c-Met driven HCC, while not affecting PIK3CA(H1047R)/c-Met or sgPten/c-Met HCC formation in mice. Similarly, in human HCC cell lines, silencing of SGK3 reduced PIK3CA(E545K) -but not PIK3CA(H1047R)- induced accelerated tumor cell proliferation. CONCLUSION Altogether, our data suggest that SGK3 plays a role in transducing helical domain mutant PIK3CA signaling during liver tumor development.
Collapse
Affiliation(s)
- Hui Cao
- Department of Oncology, Guizhou Provincial People’s Hospital, Medical College of Guizhou University, Guiyang, People’s Republic of China
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, UCSF, 513 Parnassus Ave, San Francisco, CA 94143 USA
| | - Zhong Xu
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, UCSF, 513 Parnassus Ave, San Francisco, CA 94143 USA
- Department of Gastroenterology, Guizhou Provincial People’s Hospital, Medical College of Guizhou University, Guiyang, People’s Republic of China
| | - Jingxiao Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, UCSF, 513 Parnassus Ave, San Francisco, CA 94143 USA
- Second Clinical Medical School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Antonio Cigliano
- National Institute of Gastroenterology “S. de Bellis”, Research Hospital, Castellana Grotte, Italy
| | - Maria G. Pilo
- Department of Clinical and Experimental Medicine, University of Sassari, via P. Manzella 4, 07100 Sassari, Italy
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Shu Zhang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, UCSF, 513 Parnassus Ave, San Francisco, CA 94143 USA
| | - Yu Qiao
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, UCSF, 513 Parnassus Ave, San Francisco, CA 94143 USA
- Department of Oncology, Beijing Hospital, Beijing, People’s Republic of China
| | - Li Che
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, UCSF, 513 Parnassus Ave, San Francisco, CA 94143 USA
| | - Rosa M. Pascale
- Department of Clinical and Experimental Medicine, University of Sassari, via P. Manzella 4, 07100 Sassari, Italy
| | - Diego F. Calvisi
- Department of Clinical and Experimental Medicine, University of Sassari, via P. Manzella 4, 07100 Sassari, Italy
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, UCSF, 513 Parnassus Ave, San Francisco, CA 94143 USA
| |
Collapse
|
1490
|
Marino D, Zichi C, Audisio M, Sperti E, Di Maio M. Second-line treatment options in hepatocellular carcinoma. Drugs Context 2019; 8:212577. [PMID: 31024634 PMCID: PMC6469745 DOI: 10.7573/dic.212577] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/25/2022] Open
Abstract
For many years, sorafenib has been the only approved systemic treatment for advanced hepatocellular carcinoma (HCC). For over a decade, randomized controlled trials exploring the efficacy of new drugs both in first- and second-line treatment have failed to prove any survival benefit. However, in the past few years, several advances have been made especially in pretreated patients; phase III trials of regorafenib, cabozantinib, and ramucirumab in patients with elevated α-fetoprotein have demonstrated efficacy in patients progressing after or intolerant to sorafenib. In addition, early phase I and II trials have shown promising results of immunotherapy alone or in combination with tyrosine-kinase inhibitors or monoclonal antibodies in the same setting of patients. In this review, we will discuss the evidence on second-line options for HCC, focusing on the latest results that are currently refining the treatment scenario.
Collapse
Affiliation(s)
- Donatella Marino
- Department of Oncology, University of Turin, Turin, Italy
- Division of Medical Oncology, Ordine Mauriziano Hospital, Torino, Italy
| | - Clizia Zichi
- Department of Oncology, University of Turin, Turin, Italy
- Division of Medical Oncology, Ordine Mauriziano Hospital, Torino, Italy
| | - Marco Audisio
- Department of Oncology, University of Turin, Turin, Italy
- Division of Medical Oncology, Ordine Mauriziano Hospital, Torino, Italy
| | - Elisa Sperti
- Division of Medical Oncology, Ordine Mauriziano Hospital, Torino, Italy
| | - Massimo Di Maio
- Department of Oncology, University of Turin, Turin, Italy
- Division of Medical Oncology, Ordine Mauriziano Hospital, Torino, Italy
| |
Collapse
|
1491
|
Dong F, Yang Q, Wu Z, Hu X, Shi D, Feng M, Li J, Zhu L, Jiang S, Bao Z. Identification of survival-related predictors in hepatocellular carcinoma through integrated genomic, transcriptomic, and proteomic analyses. Biomed Pharmacother 2019; 114:108856. [PMID: 30981109 DOI: 10.1016/j.biopha.2019.108856] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/11/2022] Open
Abstract
Patient survival time generally reflects the tumor progression and represents a key clinical parameter. In this study, we aimed to comprehensively characterize the prognosis-associated molecular alterations in hepatocellular carcinoma (HCC). In this study, copy-number changes, gene mutations, mRNA expression, and reverse phase protein arrays data in HCC samples profiled by The Cancer Genome Atlas (TCGA) were obtained. Tumors were then stratified into two groups based on the clinical outcome and identified genomic, transcriptomic, and proteomic traits associated to HCC prognosis. We found that several copy number amplifications and deletions can discriminate HCC patients with poor prognosis from those with better prognosis. Mutated DNAH8 showed a worse prognosis-specific pattern and correlated with a reduced disease-free survival in HCC. By integrating RNA sequencing data, we found that HCC samples with poor prognosis are consistently associated with the up-regulation of cell cycle process, such as chromosome separation, DNA replication, cytokinesis, and etc. At the proteomic level, seven proteins were significantly enriched in samples with poor prognosis, including acetylated α-Tubulin, p62-LCK-ligand, ARID1 A, MSH6, B-Raf, Cyclin B1, and PEA15. Acetylated α-Tubulin was frequently expressed in HCC tissues and acted as a promising prognostic factor for HCC. These alterations lay a foundation for developing relevant therapeutic strategies and improve our knowledge of the pathogenesis of HCC.
Collapse
Affiliation(s)
- Fangyuan Dong
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, PR China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, PR China; Research Center on Aging and Medicine, Fudan University, Shanghai 200040, PR China; Department of Geriatrics, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, PR China
| | - Qin Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Zheng Wu
- Department of Radiation Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Xiaona Hu
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, PR China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, PR China; Research Center on Aging and Medicine, Fudan University, Shanghai 200040, PR China; Department of Geriatrics, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, PR China
| | - Dongmei Shi
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, PR China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, PR China; Research Center on Aging and Medicine, Fudan University, Shanghai 200040, PR China; Department of Geriatrics, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, PR China
| | - Mingxuan Feng
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lili Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shuheng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Zhijun Bao
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, PR China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, PR China; Research Center on Aging and Medicine, Fudan University, Shanghai 200040, PR China; Department of Geriatrics, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, PR China.
| |
Collapse
|
1492
|
Friemel J, Frick L, Unger K, Egger M, Parrotta R, Böge YT, Adili A, Karin M, Luedde T, Heikenwalder M, Weber A. Characterization of HCC Mouse Models: Towards an Etiology-Oriented Subtyping Approach. Mol Cancer Res 2019; 17:1493-1502. [PMID: 30967480 DOI: 10.1158/1541-7786.mcr-18-1045] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/18/2019] [Accepted: 04/03/2019] [Indexed: 11/16/2022]
Abstract
Murine liver tumors often fail to recapitulate the complexity of human hepatocellular carcinoma (HCC), which might explain the difficulty to translate preclinical mouse studies into clinical science. The aim of this study was to evaluate a subtyping approach for murine liver cancer models with regard to etiology-defined categories of human HCC, comparing genomic changes, histomorphology, and IHC profiles. Sequencing and analysis of gene copy-number changes [by comparative genomic hybridization (CGH)] in comparison with etiology-dependent subsets of HCC patients of The Cancer Genome Atlas (TCGA) database were conducted using specimens (75 tumors) of five different HCC mouse models: diethylnitrosamine (DEN) treated wild-type C57BL/6 mice, c-Myc and AlbLTαβ transgenic mice as well as TAK1LPC-KO and Mcl-1Δhep mice. Digital microscopy was used for the assessment of morphology and IHC of liver cell markers (A6-CK7/19, glutamine synthetase) in mouse and n = 61 human liver tumors. Tumor CGH profiles of DEN-treated mice and c-Myc transgenic mice matched alcohol-induced HCC, including morphologic findings (abundant inclusion bodies, fatty change) in the DEN model. Tumors from AlbLTαβ transgenic mice and TAK1LPC-KO models revealed the highest overlap with NASH-HCC CGH profiles. Concordant morphology (steatosis, lymphocyte infiltration, intratumor heterogeneity) was found in AlbLTαβ murine livers. CGH profiles from the Mcl-1Δhep model displayed similarities with hepatitis-induced HCC and characteristic human-like phenotypes (fatty change, intertumor and intratumor heterogeneity). IMPLICATIONS: Our findings demonstrate that stratifying preclinical mouse models along etiology-oriented genotypes and human-like phenotypes is feasible. This closer resemblance of preclinical models is expected to better recapitulate HCC subgroups and thus increase their informative value.
Collapse
Affiliation(s)
- Juliane Friemel
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Lukas Frick
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland.,Swiss Hepato-Pancreato-Biliary Center, Department of Digestive and Transplant Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Kristian Unger
- Helmholtz Zentrum München Research Center for Environmental Health (GmbH), Research Unit Radiation Cytogenetics
| | - Michele Egger
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Rossella Parrotta
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Yannick T Böge
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Arlind Adili
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Michael Karin
- Department of Pathology, University of California, San Diego, California
| | - Tom Luedde
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Mathias Heikenwalder
- Division Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany.
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
1493
|
Snezhkina AV, Lukyanova EN, Zaretsky AR, Kalinin DV, Pokrovsky AV, Golovyuk AL, Krasnov GS, Fedorova MS, Pudova EA, Kharitonov SL, Melnikova NV, Alekseev BY, Kiseleva MV, Kaprin AD, Dmitriev AA, Kudryavtseva AV. Novel potential causative genes in carotid paragangliomas. BMC MEDICAL GENETICS 2019; 20:48. [PMID: 30967136 PMCID: PMC6454587 DOI: 10.1186/s12881-019-0770-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Carotid paragangliomas (CPGLs) are rare neuroendocrine tumors that arise from the paraganglion at the bifurcation of the carotid artery and are responsible for approximately 65% of all head and neck paragangliomas. CPGLs can occur sporadically or along with different hereditary tumor syndromes. Approximately 30 genes are known to be associated with CPGLs. However, the genetic basis behind the development of these tumors is not fully elucidated, and the molecular mechanisms underlying CPGL pathogenesis remain unclear. Methods Whole exome and transcriptome high-throughput sequencing of CPGLs was performed on an Illumina platform. Exome libraries were prepared using a Nextera Rapid Capture Exome Kit (Illumina) and were sequenced under 75 bp paired-end model. For cDNA library preparation, a TruSeq Stranded Total RNA Library Prep Kit with Ribo-Zero Gold (Illumina) was used; transcriptome sequencing was carried out with 100 bp paired-end read length. Obtained data were analyzed using xseq which estimates the influence of mutations on gene expression profiles allowing to identify potential causative genes. Results We identified a total of 16 candidate genes (MYH15, CSP1, MYH3, PTGES3L, CSGALNACT2, NMD3, IFI44, GMCL1, LSP1, PPFIBP2, RBL2, MAGED1, CNIH3, STRA6, SLC6A13, and ATM) whose variants potentially influence their expression (cis-effect). The strongest cis-effect of loss-of-function variants was found in MYH15, CSP1, and MYH3, and several likely pathogenic variants in these genes associated with CPGLs were predicted. Conclusions Using the xseq probabilistic model, three novel potential causative genes, namely MYH15, CSP1, and MYH3, were identified in carotid paragangliomas.
Collapse
Affiliation(s)
| | - Elena N Lukyanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Andrew R Zaretsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V Kalinin
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anatoly V Pokrovsky
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexander L Golovyuk
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maria S Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena A Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey L Kharitonov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nataliya V Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Boris Y Alekseev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Marina V Kiseleva
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrey D Kaprin
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexey A Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
1494
|
Harding JJ, Nandakumar S, Armenia J, Khalil DN, Albano M, Ly M, Shia J, Hechtman JF, Kundra R, El Dika I, Do RK, Sun Y, Kingham TP, D'Angelica MI, Berger MF, Hyman DM, Jarnagin W, Klimstra DS, Janjigian YY, Solit DB, Schultz N, Abou-Alfa GK. Prospective Genotyping of Hepatocellular Carcinoma: Clinical Implications of Next-Generation Sequencing for Matching Patients to Targeted and Immune Therapies. Clin Cancer Res 2019. [PMID: 30373752 DOI: 10.1158/1078-0432.ccr-18-2293.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Prior molecular profiling of hepatocellular carcinoma (HCC) has identified actionable findings that may have a role in guiding therapeutic decision-making and clinical trial enrollment. We implemented prospective next-generation sequencing (NGS) in the clinic to determine whether such analyses provide predictive and/or prognostic information for HCC patients treated with contemporary systemic therapies. EXPERIMENTAL DESIGN Matched tumor/normal DNA from patients with HCC (N = 127) were analyzed using a hybridization capture-based NGS assay designed to target 341 or more cancer-associated genes. Demographic and treatment data were prospectively collected with the goal of correlating treatment outcomes and drug response with molecular profiles. RESULTS WNT/β-catenin pathway (45%) and TP53 (33%) alterations were frequent and represented mutually exclusive molecular subsets. In sorafenib-treated patients (n = 81), oncogenic PI3K-mTOR pathway alterations were associated with lower disease control rates (DCR, 8.3% vs. 40.2%), shorter median progression-free survival (PFS; 1.9 vs. 5.3 months), and shorter median overall survival (OS; 10.4 vs. 17.9 months). For patients treated with immune checkpoint inhibitors (n = 31), activating alteration WNT/β-catenin signaling were associated with lower DCR (0% vs. 53%), shorter median PFS (2.0 vs. 7.4 months), and shorter median OS (9.1 vs. 15.2 months). Twenty-four percent of patients harbored potentially actionable alterations including TSC1/2 (8.5%) inactivating/truncating mutations, FGF19 (6.3%) and MET (1.5%) amplifications, and IDH1 missense mutations (<1%). Six percent of patients treated with systemic therapy were matched to targeted therapeutics. CONCLUSIONS Linking NGS to routine clinical care has the potential to identify those patients with HCC likely to benefit from standard systemic therapies and can be used in an investigational context to match patients to genome-directed targeted therapies.See related commentary by Pinyol et al., p. 2021.
Collapse
Affiliation(s)
- James J Harding
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Subhiksha Nandakumar
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joshua Armenia
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Danny N Khalil
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Melanie Albano
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michele Ly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jinru Shia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jaclyn F Hechtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ritika Kundra
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Imane El Dika
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard K Do
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yichao Sun
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - T Peter Kingham
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael I D'Angelica
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael F Berger
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.,Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David M Hyman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William Jarnagin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David S Klimstra
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yelena Y Janjigian
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David B Solit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nikolaus Schultz
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ghassan K Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
1495
|
Oh CR, Kong SY, Im HS, Kim HJ, Kim MK, Yoon KA, Cho EH, Jang JH, Lee J, Kang J, Park SR, Ryoo BY. Genome-wide copy number alteration and VEGFA amplification of circulating cell-free DNA as a biomarker in advanced hepatocellular carcinoma patients treated with Sorafenib. BMC Cancer 2019; 19:292. [PMID: 30935424 PMCID: PMC6444867 DOI: 10.1186/s12885-019-5483-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
Background Although sorafenib is the global standard first-line systemic treatment for unresectable hepatocellular carcinoma (HCC), it does not have reliable predictive or prognostic biomarkers. Circulating cell-free DNA (cfDNA) has shown promise as a biomarker for various cancers. We investigated the use of cfDNA to predict clinical outcomes in HCC patients treated with sorafenib. Methods This prospective biomarker study analyzed plasma cfDNA from 151 HCC patients who received first-line sorafenib and 14 healthy controls. The concentration and VEGFA-to-EIF2C1 ratios (the VEGFA ratio) of cfDNA were measured. Low depth whole-genome sequencing of cfDNA was used to identify genome-wide copy number alteration (CNA), and the I-score was developed to express genomic instability. The I-score was defined as the sum of absolute Z-scores of sequenced reads on each chromosome. The primary aim of this study was to develop cfDNA biomarkers predicting treatment outcomes of sorafenib, and the primary study outcome was the association between biomarkers with treatment efficacy including disease control rate (DCR), time to progression (TTP) and overall survival (OS) in these patients. Results The cfDNA concentrations were significantly higher in HCC patients than in healthy controls (0.71 vs. 0.34 ng/μL; P < 0.0001). Patients who did not achieve disease control with sorafenib had significantly higher cfDNA levels (0.82 vs. 0.63 ng/μL; P = 0.006) and I-scores (3405 vs. 1024; P = 0.0017) than those achieving disease control. The cfDNA-high group had significantly worse TTP (2.2 vs. 4.1 months; HR = 1.71; P = 0.002) and OS (4.1 vs. 14.8 months; HR = 3.50; P < 0.0001) than the cfDNA-low group. The I-score-high group had poorer TTP (2.2 vs. 4.1 months; HR = 2.09; P < 0.0001) and OS (4.6 vs. 14.8 months; HR = 3.35; P < 0.0001). In the multivariable analyses, the cfDNA remained an independent prognostic factor for OS (P < 0.0001), and the I-score for both TTP (P = 0.011) and OS (P = 0.010). The VEGFA ratio was not significantly associated with treatment outcomes. Conclusion Pretreatment cfDNA concentration and genome-wide CNA in cfDNA are potential biomarkers predicting outcomes in advanced HCC patients receiving first-line sorafenib. Electronic supplementary material The online version of this article (10.1186/s12885-019-5483-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chung Ryul Oh
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sun-Young Kong
- Department of Laboratory Medicine, Hospital, National Cancer Center, Goyang, Republic of Korea.,Cancer Biomedical Science, Graduate School of Cancer Science and Policy, Goyang, Republic of Korea
| | - Hyeon-Su Im
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hwa Jung Kim
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min Kyeong Kim
- Cancer Biomedical Science, Graduate School of Cancer Science and Policy, Goyang, Republic of Korea
| | - Kyong-Ah Yoon
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Eun-Hae Cho
- Genome Research Center, Green Cross Genome, Yongin, Republic of Korea
| | - Ja-Hyun Jang
- Genome Research Center, Green Cross Genome, Yongin, Republic of Korea
| | - Junnam Lee
- Genome Research Center, Green Cross Genome, Yongin, Republic of Korea
| | - Jihoon Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Sook Ryun Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| | - Baek-Yeol Ryoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
1496
|
Harding JJ, Khalil DN, Abou-Alfa GK. Biomarkers: What Role Do They Play (If Any) for Diagnosis, Prognosis and Tumor Response Prediction for Hepatocellular Carcinoma? Dig Dis Sci 2019; 64:918-927. [PMID: 30838478 DOI: 10.1007/s10620-019-05517-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common illness that affects patients worldwide. The disease remains poorly understood though several recent advances have increased the understanding of HCC biology and treatment. METHODS A literature review was conducted to understand the role of biomarkers in HCC clinical practice and highlight areas of critical investigation. RESULTS Candidate biomarkers may include differential alterations in HCC genomics, epigenomics, gene expression and transcriptomic profiles, protein expression, cellular composition of the microenvironment, and vasculature. To date no circulating or tumor diagnostic markers have been established in this disease. Likewise, prognostication is currently adjudicated by clinicopathologic features and it remains unclear if the incorporation of any biomarkers may help enhance the prognostic understanding following curative intents like surgery, transplant, and select regional therapy or palliative treatment including embolization or systemic therapy. Predictive biomarkers are investigational and are under evaluation for molecular pathways like TOR, MET, VEGFA, and FGF19. Tumoral genomics, HLA allele diversity and tumoral immune activation as predictive markers for immune checkpoint inhibitors are key focuses of ongoing research. CONCLUSIONS Diagnostic, prognostic, and predictive tumor and circulating biomarkers for HCC have not been defined though several markers have been proposed to guide patient care.
Collapse
Affiliation(s)
- James J Harding
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, NY, 10065, USA. .,Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Danny N Khalil
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, NY, 10065, USA.,Department of Medicine, Weill Cornell Medical College, New York, NY, USA.,Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Ghassan K Abou-Alfa
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, NY, 10065, USA.,Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
1497
|
Salvadores M, Mas-Ponte D, Supek F. Passenger mutations accurately classify human tumors. PLoS Comput Biol 2019; 15:e1006953. [PMID: 30986244 PMCID: PMC6483366 DOI: 10.1371/journal.pcbi.1006953] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/25/2019] [Accepted: 03/15/2019] [Indexed: 12/18/2022] Open
Abstract
Determining the cancer type and molecular subtype has important clinical implications. The primary site is however unknown for some malignancies discovered in the metastatic stage. Moreover liquid biopsies may be used to screen for tumoral DNA, which upon detection needs to be assigned to a site-of-origin. Classifiers based on genomic features are a promising approach to prioritize the tumor anatomical site, type and subtype. We examined the predictive ability of causal (driver) somatic mutations in this task, comparing it against global patterns of non-selected (passenger) mutations, including features based on regional mutation density (RMD). In the task of distinguishing 18 cancer types, the driver mutations-mutated oncogenes or tumor suppressors, pathways and hotspots-classified 36% of the patients to the correct cancer type. In contrast, the features based on passenger mutations did so at 92% accuracy, with similar contribution from the RMD and the trinucleotide mutation spectra. The RMD and the spectra covered distinct sets of patients with predictions. In particular, introducing the RMD features into a combined classification model increased the fraction of diagnosed patients by 50 percentage points (at 20% FDR). Furthermore, RMD was able to discriminate molecular subtypes and/or anatomical site of six major cancers. The advantage of passenger mutations was upheld under high rates of false negative mutation calls and with exome sequencing, even though overall accuracy decreased. We suggest whole genome sequencing is valuable for classifying tumors because it captures global patterns emanating from mutational processes, which are informative of the underlying tumor biology.
Collapse
Affiliation(s)
- Marina Salvadores
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
| | - David Mas-Ponte
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
| | - Fran Supek
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
1498
|
Affiliation(s)
- Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany.
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| |
Collapse
|
1499
|
Tsuruta S, Ohishi Y, Fujiwara M, Ihara E, Ogawa Y, Oki E, Nakamura M, Oda Y. Gastric hepatoid adenocarcinomas are a genetically heterogenous group; most tumors show chromosomal instability, but MSI tumors do exist. Hum Pathol 2019; 88:27-38. [PMID: 30946937 DOI: 10.1016/j.humpath.2019.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 02/07/2023]
Abstract
The Cancer Genome Atlas Research Network classified gastric adenocarcinoma into four molecular subtypes: (1) Epstein-Barr virus-positive (EBV), (2) microsatellite-instable (MSI), (3) chromosomal instable (CIN), and (4) genomically stable (GS). The molecular subtypes of gastric hepatoid adenocarcinomas are still largely unknown. We analyzed 52 hepatoid adenocarcinomas for the expression of surrogate markers of molecular subtypes (MLH1, p53, and EBER in situ hybridization) and some biomarkers (p21, p16, Rb, cyclin D1, cyclin E, β-catenin, Bcl-2, IMP3, ARID1A and HER2), and mutations of TP53, CTNNB1, KRAS, and BRAF. We analyzed 36 solid-type poorly differentiated adenocarcinomas as a control group. Hepatoid adenocarcinomas were categorized as follows: EBV group (EBER-positive), no cases (0%); MSI group (MLH1 loss), three cases (6%); "CIN or GS" (CIN/GS) group (EBER-negative, MLH1 retained), 49 cases (94%). In the CIN/GS group, most of the tumors (59%) had either p53 overexpression or TP53 mutation and a coexisting tubular intestinal-type adenocarcinoma component (90%), suggesting that most hepatoid adenocarcinomas should be categorized as a true CIN group. Hepatoid adenocarcinomas showed relatively frequent expressions of HER2 (score 3+/2+: 21%/19%). Hepatoid adenocarcinomas showed shorter survival, more frequent overexpressions of p16 (67%) and IMP3 (98%) than the control group. None of hepatoid adenocarcinomas had KRAS or CTNNB1 mutations except for one case each, and no hepatoid adenocarcinomas had BRAF mutation. In conclusion, gastric hepatoid adenocarcinomas are a genetically heterogenous group. Most hepatoid adenocarcinomas are "CIN," but a small number of hepatoid adenocarcinomas with MSI do exist. Hepatoid adenocarcinomas are characterized by overexpressions of p16 and IMP3.
Collapse
Affiliation(s)
- Shinichi Tsuruta
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshihiro Ohishi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Minako Fujiwara
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Eikichi Ihara
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
1500
|
Wang H, Liao P, Zeng SX, Lu H. It takes a team: a gain-of-function story of p53-R249S. J Mol Cell Biol 2019; 11:277-283. [PMID: 30608603 PMCID: PMC6487778 DOI: 10.1093/jmcb/mjy086] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 11/03/2018] [Accepted: 01/03/2019] [Indexed: 12/11/2022] Open
Abstract
Gain-of-function (GOF), the most malicious oncogenic activity of a cancer-promoting protein, is well illustrated to three hotspot p53 mutations at R248, R175, and R273 with distinct molecular mechanisms. Yet, less is known about another hotspot p53 mutant, R249S (p53-R249S). p53-R249S is the sole hotspot mutation in hepatocellular carcinoma (HCC) that is highly associated with chronic hepatitis B virus (HBV) infection and dietary exposure to aflatoxin B1 (AFB1). Its GOF is suggested by the facts that this mutant is associated with earlier onset of HCC and poorer prognosis of cancer patients and that its overexpression drives HCC proliferation and tumorigenesis. By contrast, simply knocking in this mutant in normal mice did not show apparent GOF activity. Hence, the GOF activity for p53-R249S and its underlying mechanisms have been elusive until recent findings offered some new insights. This review will discuss these findings as well as their clinical significance and implications for the development of a strategy to target multiple molecules as a therapy for p53-R249S-harboring HCC.
Collapse
Affiliation(s)
- Huai Wang
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
- School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Peng Liao
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|