1501
|
Jones RA, Panda SS, Hall CD. Quinine conjugates and quinine analogues as potential antimalarial agents. Eur J Med Chem 2015; 97:335-55. [PMID: 25683799 DOI: 10.1016/j.ejmech.2015.02.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/08/2015] [Accepted: 02/04/2015] [Indexed: 10/24/2022]
Abstract
Malaria is a tropical disease, prevalent in Southeast Asia and Africa, resulting in over half a million deaths annually; efforts to develop new antimalarial agents are therefore particularly important. Quinine continues to play a role in the fight against malaria, but quinoline derivatives are more widely used. Drugs based on the quinoline scaffold include chloroquine and primaquine, which are able to act against the blood and liver stages of the parasite's life cycle. The purpose of this review is to discuss reported biologically active compounds based on either the quinine or quinoline scaffold that may have enhanced antimalarial activity. The review emphasises hybrid molecules, and covers advances made in the last five years. The review is divided into three sections: modifications to the quinine scaffold, modifications to aminoquinolines and finally metal-containing antimalarial compounds.
Collapse
Affiliation(s)
- Rachel A Jones
- Center for Heterocyclic Compounds, University of Florida, Department of Chemistry, Gainesville, FL 32611-7200, USA.
| | - Siva S Panda
- Center for Heterocyclic Compounds, University of Florida, Department of Chemistry, Gainesville, FL 32611-7200, USA
| | - C Dennis Hall
- Center for Heterocyclic Compounds, University of Florida, Department of Chemistry, Gainesville, FL 32611-7200, USA
| |
Collapse
|
1502
|
Analysis of major genome loci underlying artemisinin resistance and pfmdr1 copy number in pre- and post-ACTs in western Kenya. Sci Rep 2015; 5:8308. [PMID: 25655315 PMCID: PMC4319159 DOI: 10.1038/srep08308] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 01/06/2015] [Indexed: 11/08/2022] Open
Abstract
Genetic analysis of molecular markers is critical in tracking the emergence and/or spread of artemisinin resistant parasites. Clinical isolates collected in western Kenya pre- and post- introduction of artemisinin combination therapies (ACTs) were genotyped at SNP positions in regions of strong selection signatures on chromosome 13 and 14, as described in Southeast Asia (SEA). Twenty five SNPs were genotyped using Sequenom MassArray and pfmdr1 gene copy number by real-time PCR. Parasite clearance half-life and in vitro drug sensitivity testing were performed using standard methods. One hundred twenty nine isolates were successfully analyzed. Fifteen SNPs were present in pre-ACTs isolates and six in post-ACTs. None of the SNPs showed association with parasite clearance half-life. Post-ACTs parasites had significantly higher pfmdr1 copy number compared to pre-ACTs. Seven of eight parasites with multiple pfmdr1 were post-ACTs. When in vitro IC50s were compared for parasites with single vs. multiple gene copies, only amodiaquine and piperaquine reached statistical significance. Data showed SNPs on chromosome 13 and 14 had different frequency and trend in western Kenya parasites compared SEA. Increase in pfmdr1 gene copy is consistent with recent studies in African parasites. Data suggests genetic signature of artemisinin resistance in Africa might be different from SEA.
Collapse
|
1503
|
Fall B, Camara C, Fall M, Nakoulima A, Dionne P, Diatta B, Diemé Y, Wade B, Pradines B. Plasmodium falciparum susceptibility to standard and potential anti-malarial drugs in Dakar, Senegal, during the 2013-2014 malaria season. Malar J 2015; 14:60. [PMID: 25849097 PMCID: PMC4334420 DOI: 10.1186/s12936-015-0589-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/27/2015] [Indexed: 11/28/2022] Open
Abstract
Background In 2006, the Senegalese National Malaria Control Programme recommended artemisinin-based combination therapy (ACT) as the first-line treatment for uncomplicated malaria. Since the introduction of ACT, there have been very few reports on the level of Plasmodium falciparum resistance to anti-malarial drugs. An ex vivo susceptibility study was conducted on local isolates obtained from the Hôpital Principal de Dakar (Dakar, Senegal) from November 2013 to January 2014. Methods Eighteen P. falciparum isolates were sussessfully assessed for ex vivo susceptibility to chloroquine (CQ), quinine (QN), monodesethylamodiaquine (MDAQ), the active metabolite of amodiaquine, mefloquine (MQ), lumefantrine (LMF), artesunate (AS), dihydroartemisinin (DHA), the active metabolite of artemisinin derivatives, pyronaridine (PND), piperaquine (PPQ), and, Proveblue (PVB), a methylene blue preparation, using the HRP2-based ELISA test. Results The prevalence of isolates with reduced susceptibility was 55.6% for MQ, 50% for CQ, 5.6% for QN and MDAQ, and 0% for DHA, AS and LMF. The mean IC50 for PND, PPQ and PVB were 5.8 nM, 32.2 nM and 5.3 nM, respectively. Conclusions The prevalence of isolates with a reduced susceptibility to MQ remains high and stable in Dakar. Since 2004, the prevalence of CQ resistance decreased, but rebounded in 2013 in Dakar. PND, PPQ and PVB showed high in vitro activity in P. falciparum parasites from Dakar.
Collapse
|
1504
|
Kapisi J, Bigira V, Clark T, Kinara S, Mwangwa F, Achan J, Kamya M, Soremekun S, Dorsey G. Efficacy and safety of artemether-lumefantrine for the treatment of uncomplicated malaria in the setting of three different chemopreventive regimens. Malar J 2015; 14:53. [PMID: 25652127 PMCID: PMC4333162 DOI: 10.1186/s12936-015-0583-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/25/2015] [Indexed: 11/30/2022] Open
Abstract
Background The burden of malaria remains high for children in parts of Africa despite the use of insecticide-treated bed nets (ITNs). Chemoprevention has the potential of reducing the malaria burden; however, limited data exist on the efficacy and safety of anti-malarial therapy in the setting of chemoprevention. Methods 600 children 4–5 months of age were enrolled in Tororo, Uganda, an area of high transmission intensity. Participants were given ITNs, and caregivers instructed to bring their child to a study clinic whenever they were ill. Starting at six months of age, 579 were randomized to no chemoprevention, monthly sulphadoxine-pyrimethamine (SP), daily trimethoprim-sulphamethoxazole (TS), or monthly dihydroartemisinin-piperaquine (DP). Study drugs were administered unsupervised at home until 24 months of age. Episodes of uncomplicated malaria were treated with artemether-lumefantrine (AL) with active follow-up for 28 days. The cumulative risk of recurrent malaria within 84 days and the risk of adverse events within 28 days were compared across study arms using a Cox proportional hazards model and generalized estimating equations, respectively. Results A total of 1007, 919, 736, and 451 episodes of malaria were treated in the no chemoprevention, SP, TS, and DP arms, respectively. Only 19 (0.6%) treatments were for severe malaria. Early response to therapy with AL was excellent with 96.5% fever clearance and 99.4% parasite clearance by day 3. However, over 50% of AL treatments were followed by recurrent parasitaemia within 28 days. Compared to the no chemoprevention arm, the cumulative risk of recurrent malaria within 84 days following treatment of uncomplicated malaria with AL was significantly lower in the DP arm (HR = 0.77, 95% CI 0.63-0.95, p = 0.01) but not the SP or TS arms. Compared to the no chemoprevention arm, none of the chemopreventive regimens were associated with an increased risk of adverse events following treatment of malaria with AL. Conclusions The risk of severe malaria was very low in this cohort of young children living in a high transmission setting. In the setting of chemoprevention, treatment of uncomplicated malaria with AL was safe and efficacious, with moderate protection against recurrent malaria among children assigned monthly DP. Trial registration ClinicalTrials.gov NCT00948896.
Collapse
Affiliation(s)
- James Kapisi
- Infectious Diseases Research Collaboration, Mulago Hospital Complex, PO Box 7475, Kampala, Uganda.
| | - Victor Bigira
- Infectious Diseases Research Collaboration, Mulago Hospital Complex, PO Box 7475, Kampala, Uganda.
| | - Tamara Clark
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, CA, USA.
| | - Stephen Kinara
- Infectious Diseases Research Collaboration, Mulago Hospital Complex, PO Box 7475, Kampala, Uganda.
| | - Florence Mwangwa
- Infectious Diseases Research Collaboration, Mulago Hospital Complex, PO Box 7475, Kampala, Uganda.
| | - Jane Achan
- Department of Pediatrics, Makerere University College of Health Sciences, Kampala, Uganda.
| | - Moses Kamya
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda.
| | - Seyi Soremekun
- Faculty of Epidemiology and Public Health, London School of Hygiene and Tropical Medicine, London, UK.
| | - Grant Dorsey
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, CA, USA.
| |
Collapse
|
1505
|
Carter TE, Boulter A, Existe A, Romain JR, St Victor JY, Mulligan CJ, Okech BA. Artemisinin resistance-associated polymorphisms at the K13-propeller locus are absent in Plasmodium falciparum isolates from Haiti. Am J Trop Med Hyg 2015; 92:552-4. [PMID: 25646258 DOI: 10.4269/ajtmh.14-0664] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Antimalarial drugs are a key tool in malaria elimination programs. With the emergence of artemisinin resistance in southeast Asia, an effort to identify molecular markers for surveillance of resistant malaria parasites is underway. Non-synonymous mutations in the kelch propeller domain (K13-propeller) in Plasmodium falciparum have been associated with artemisinin resistance in samples from southeast Asia, but additional studies are needed to characterize this locus in other P. falciparum populations with different levels of artemisinin use. Here, we sequenced the K13-propeller locus in 82 samples from Haiti, where limited government oversight of non-governmental organizations may have resulted in low-level use of artemisinin-based combination therapies. We detected a single-nucleotide polymorphism (SNP) at nucleotide 1,359 in a single isolate. Our results contribute to our understanding of the global genomic diversity of the K13-propeller locus in P. falciparum populations.
Collapse
Affiliation(s)
- Tamar E Carter
- Genetics and Genomics Program, University of Florida, Gainesville, Florida; Department of Anthropology, University of Florida, Gainesville, Florida; Genetics Institute, University of Florida, Gainesville, Florida; National Public Health Laboratory, Ministry of Public Health and the Population, Port-au-Prince, Haiti; Hospital Saint Croix, Leogane, Haiti; Blanchard Clinic, Terre Noire, Haiti; Emerging Pathogens Institute, University of Florida, Gainesville, Florida; Department of Environmental and Global Health, University of Florida, Gainesville, Florida
| | - Alexis Boulter
- Genetics and Genomics Program, University of Florida, Gainesville, Florida; Department of Anthropology, University of Florida, Gainesville, Florida; Genetics Institute, University of Florida, Gainesville, Florida; National Public Health Laboratory, Ministry of Public Health and the Population, Port-au-Prince, Haiti; Hospital Saint Croix, Leogane, Haiti; Blanchard Clinic, Terre Noire, Haiti; Emerging Pathogens Institute, University of Florida, Gainesville, Florida; Department of Environmental and Global Health, University of Florida, Gainesville, Florida
| | - Alexandre Existe
- Genetics and Genomics Program, University of Florida, Gainesville, Florida; Department of Anthropology, University of Florida, Gainesville, Florida; Genetics Institute, University of Florida, Gainesville, Florida; National Public Health Laboratory, Ministry of Public Health and the Population, Port-au-Prince, Haiti; Hospital Saint Croix, Leogane, Haiti; Blanchard Clinic, Terre Noire, Haiti; Emerging Pathogens Institute, University of Florida, Gainesville, Florida; Department of Environmental and Global Health, University of Florida, Gainesville, Florida
| | - Jean R Romain
- Genetics and Genomics Program, University of Florida, Gainesville, Florida; Department of Anthropology, University of Florida, Gainesville, Florida; Genetics Institute, University of Florida, Gainesville, Florida; National Public Health Laboratory, Ministry of Public Health and the Population, Port-au-Prince, Haiti; Hospital Saint Croix, Leogane, Haiti; Blanchard Clinic, Terre Noire, Haiti; Emerging Pathogens Institute, University of Florida, Gainesville, Florida; Department of Environmental and Global Health, University of Florida, Gainesville, Florida
| | - Jean Yves St Victor
- Genetics and Genomics Program, University of Florida, Gainesville, Florida; Department of Anthropology, University of Florida, Gainesville, Florida; Genetics Institute, University of Florida, Gainesville, Florida; National Public Health Laboratory, Ministry of Public Health and the Population, Port-au-Prince, Haiti; Hospital Saint Croix, Leogane, Haiti; Blanchard Clinic, Terre Noire, Haiti; Emerging Pathogens Institute, University of Florida, Gainesville, Florida; Department of Environmental and Global Health, University of Florida, Gainesville, Florida
| | - Connie J Mulligan
- Genetics and Genomics Program, University of Florida, Gainesville, Florida; Department of Anthropology, University of Florida, Gainesville, Florida; Genetics Institute, University of Florida, Gainesville, Florida; National Public Health Laboratory, Ministry of Public Health and the Population, Port-au-Prince, Haiti; Hospital Saint Croix, Leogane, Haiti; Blanchard Clinic, Terre Noire, Haiti; Emerging Pathogens Institute, University of Florida, Gainesville, Florida; Department of Environmental and Global Health, University of Florida, Gainesville, Florida
| | - Bernard A Okech
- Genetics and Genomics Program, University of Florida, Gainesville, Florida; Department of Anthropology, University of Florida, Gainesville, Florida; Genetics Institute, University of Florida, Gainesville, Florida; National Public Health Laboratory, Ministry of Public Health and the Population, Port-au-Prince, Haiti; Hospital Saint Croix, Leogane, Haiti; Blanchard Clinic, Terre Noire, Haiti; Emerging Pathogens Institute, University of Florida, Gainesville, Florida; Department of Environmental and Global Health, University of Florida, Gainesville, Florida
| |
Collapse
|
1506
|
Abstract
An effective malaria vaccine that reduces morbidity and mortality and contributes to malaria elimination is a much-needed tool, particularly in endemic areas where health-care delivery and vector control efforts are difficult to sustain. RTS,S/AS01 is likely to be the first licensed malaria vaccine and represents an important step toward malaria control and elimination. However, a partially effective vaccine such as RTS,S/AS01 poses challenges for evaluating the efficacy of second-generation malaria vaccines. Whole-sporozoite immunization approaches have shown promising results, inducing sterile immunity in small-scale trials of malaria-naïve adults, but may not achieve durable sterile protection in endemic populations. Vaccines targeting both the pre-erythrocytic and the erythrocyte-invasive form of the parasite (merozoites) may abrogate breakthrough infections by neutralizing merozoites emerging from infected hepatocytes, whereas vaccines targeting the sexual stages seek to break the transmission cycle. Moving forward, a multi-stage vaccine could be the next step toward malaria elimination and eradication.
Collapse
|
1507
|
Ndeffo Mbah ML, Parikh S, Galvani AP. Comparing the impact of artemisinin-based combination therapies on malaria transmission in sub-Saharan Africa. Am J Trop Med Hyg 2015; 92:555-60. [PMID: 25624402 DOI: 10.4269/ajtmh.14-0490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Artemisinin-based combination therapies (ACTs) are currently considered the first-line treatments for uncomplicated Plasmodium falciparum malaria. Among these, artemether-lumefantrine (AL) has been the most widely prescribed ACT in sub-Saharan Africa. Recent clinical trials conducted in sub-Saharan Africa have shown that dihydroartemisinin-piperaquine (DP), a most recent ACT, may have a longer post-treatment prophylactic period and post-treatment infection period (duration of gametocyte carriage) than AL. Using epidemiological and clinical data on the efficacy of AL and DP, we developed and parameterized a mathematical transmission model that we used to compare the population-level impact of AL and DP for reducing P. falciparum malaria transmission in sub-Saharan Africa. Our results showed that DP is likely to more effectively reduce malaria incidence of clinical episodes than AL. However in low P. falciparum transmission areas, DP and AL are likely to be equally effective in reducing malaria prevalence. The predictions of our model were shown to be robust to the empirical uncertainty summarizing the epidemiological parameters. DP should be considered as a replacement for AL as first-line treatment of uncomplicated malaria in highly endemic P. falciparum communities. To optimize the effectiveness of ACTs, it is necessary to tailor treatment policies to the transmission intensity in different settings.
Collapse
Affiliation(s)
| | - Sunil Parikh
- School of Public Health, Yale University, New Haven, Connecticut
| | - Alison P Galvani
- School of Public Health, Yale University, New Haven, Connecticut
| |
Collapse
|
1508
|
Mok S, Ashley EA, Ferreira PE, Zhu L, Lin Z, Yeo T, Chotivanich K, Imwong M, Pukrittayakamee S, Dhorda M, Nguon C, Lim P, Amaratunga C, Suon S, Hien TT, Htut Y, Faiz MA, Onyamboko MA, Mayxay M, Newton PN, Tripura R, Woodrow CJ, Miotto O, Kwiatkowski DP, Nosten F, Day NPJ, Preiser PR, White NJ, Dondorp AM, Fairhurst RM, Bozdech Z. Drug resistance. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. Science 2015; 347:431-5. [PMID: 25502316 PMCID: PMC5642863 DOI: 10.1126/science.1260403] [Citation(s) in RCA: 295] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Artemisinin resistance in Plasmodium falciparum threatens global efforts to control and eliminate malaria. Polymorphisms in the kelch domain-carrying protein K13 are associated with artemisinin resistance, but the underlying molecular mechanisms are unknown. We analyzed the in vivo transcriptomes of 1043 P. falciparum isolates from patients with acute malaria and found that artemisinin resistance is associated with increased expression of unfolded protein response (UPR) pathways involving the major PROSC and TRiC chaperone complexes. Artemisinin-resistant parasites also exhibit decelerated progression through the first part of the asexual intraerythrocytic development cycle. These findings suggest that artemisinin-resistant parasites remain in a state of decelerated development at the young ring stage, whereas their up-regulated UPR pathways mitigate protein damage caused by artemisinin. The expression profiles of UPR-related genes also associate with the geographical origin of parasite isolates, further suggesting their role in emerging artemisinin resistance in the Greater Mekong Subregion.
Collapse
Affiliation(s)
- Sachel Mok
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Elizabeth A Ashley
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Pedro E Ferreira
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Lei Zhu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Zhaoting Lin
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Tomas Yeo
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kesinee Chotivanich
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sasithon Pukrittayakamee
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mehul Dhorda
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK. WorldWide Antimalarial Resistance Network (WWARN), Asia Regional Centre, Mahidol University, Bangkok, Thailand. WorldWide Antimalarial Resistance Network, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chea Nguon
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Pharath Lim
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia. Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chanaki Amaratunga
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Seila Suon
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Tran Tinh Hien
- Oxford University Clinical Research Unit (OUCRU), Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Ye Htut
- Department of Medical Research, Lower Myanmar, Yangon, Myanmar
| | - M Abul Faiz
- Malaria Research Group & Dev Care Foundation, Dhaka, Bangladesh
| | - Marie A Onyamboko
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of the Congo
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao PDR. Faculty of Postgraduate Studies, University of Health Sciences, Vientiane, Lao PDR
| | - Paul N Newton
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK. Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao PDR
| | - Rupam Tripura
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Charles J Woodrow
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Olivo Miotto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. Medical Research Council (MRC) Centre for Genomics and Global Health, University of Oxford, Oxford, UK. Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Dominic P Kwiatkowski
- Medical Research Council (MRC) Centre for Genomics and Global Health, University of Oxford, Oxford, UK. Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - François Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK. Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter R Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
1509
|
Straimer J, Gnädig NF, Witkowski B, Amaratunga C, Duru V, Ramadani AP, Dacheux M, Khim N, Zhang L, Lam S, Gregory PD, Urnov FD, Mercereau-Puijalon O, Benoit-Vical F, Fairhurst RM, Ménard D, Fidock DA. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science 2015; 347:428-31. [PMID: 25502314 PMCID: PMC4349400 DOI: 10.1126/science.1260867] [Citation(s) in RCA: 507] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The emergence of artemisinin resistance in Southeast Asia imperils efforts to reduce the global malaria burden. We genetically modified the Plasmodium falciparum K13 locus using zinc-finger nucleases and measured ring-stage survival rates after drug exposure in vitro; these rates correlate with parasite clearance half-lives in artemisinin-treated patients. With isolates from Cambodia, where resistance first emerged, survival rates decreased from 13 to 49% to 0.3 to 2.4% after the removal of K13 mutations. Conversely, survival rates in wild-type parasites increased from ≤0.6% to 2 to 29% after the insertion of K13 mutations. These mutations conferred elevated resistance to recent Cambodian isolates compared with that of reference lines, suggesting a contemporary contribution of additional genetic factors. Our data provide a conclusive rationale for worldwide K13-propeller sequencing to identify and eliminate artemisinin-resistant parasites.
Collapse
Affiliation(s)
- Judith Straimer
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Nina F Gnädig
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Chanaki Amaratunga
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Valentine Duru
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Arba Pramundita Ramadani
- Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie de Coordination UPR8241, Toulouse, France. Université de Toulouse, UPS, Institut National Polytechnique de Toulouse, Toulouse, France
| | - Mélanie Dacheux
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Nimol Khim
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Lei Zhang
- Sangamo BioSciences, Richmond, CA, USA
| | | | | | | | | | - Françoise Benoit-Vical
- Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie de Coordination UPR8241, Toulouse, France. Université de Toulouse, UPS, Institut National Polytechnique de Toulouse, Toulouse, France
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Didier Ménard
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA. Division of Infectious Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
1510
|
|
1511
|
Subtle changes in endochin-like quinolone structure alter the site of inhibition within the cytochrome bc1 complex of Plasmodium falciparum. Antimicrob Agents Chemother 2015; 59:1977-82. [PMID: 25605352 DOI: 10.1128/aac.04149-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytochrome bc1 complex (cyt bc1) is the third component of the mitochondrial electron transport chain and is the target of several potent antimalarial compounds, including the naphthoquinone atovaquone (ATV) and the 4(1H)-quinolone ELQ-300. Mechanistically, cyt bc1 facilitates the transfer of electrons from ubiquinol to cytochrome c and contains both oxidative (Qo) and reductive (Qi) catalytic sites that are amenable to small-molecule inhibition. Although many antimalarial compounds, including ATV, effectively target the Qo site, it has been challenging to design selective Qi site inhibitors with the ability to circumvent clinical ATV resistance, and little is known about how chemical structure contributes to site selectivity within cyt bc1. Here, we used the proposed Qi site inhibitor ELQ-300 to generate a drug-resistant Plasmodium falciparum clone containing an I22L mutation at the Qi region of cyt b. Using this D1 clone and the Y268S Qo mutant strain, P. falciparum Tm90-C2B, we created a structure-activity map of Qi versus Qo site selectivity for a series of endochin-like 4(1H)-quinolones (ELQs). We found that Qi site inhibition was associated with compounds containing 6-position halogens or aryl 3-position side chains, while Qo site inhibition was favored by 5,7-dihalogen groups or 7-position substituents. In addition to identifying ELQ-300 as a preferential Qi site inhibitor, our data suggest that the 4(1H)-quinolone scaffold is compatible with binding to either site of cyt bc1 and that minor chemical changes can influence Qo or Qi site inhibition by the ELQs.
Collapse
|
1512
|
Affiliation(s)
- MAKOTO HIRAI
- Department of Molecular and Cellular Parasitology, Juntendo University Graduate School of Medicine
| | - TOSHIHIRO MITA
- Department of Molecular and Cellular Parasitology, Juntendo University Graduate School of Medicine
| |
Collapse
|
1513
|
Brindisi M, Gemma S, Kunjir S, Di Cerbo L, Brogi S, Parapini S, D'Alessandro S, Taramelli D, Habluetzel A, Tapanelli S, Lamponi S, Novellino E, Campiani G, Butini S. Synthetic spirocyclic endoperoxides: new antimalarial scaffolds. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00454j] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Design, synthesis and molecular docking calculation studies led to the identification of novel spirocyclic peroxides with in vitro and in vivo antimalarial activity.
Collapse
|
1514
|
Corsello MA, Garg NK. Synthetic chemistry fuels interdisciplinary approaches to the production of artemisinin. Nat Prod Rep 2015; 32:359-66. [DOI: 10.1039/c4np00113c] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the developing world, multi-drug resistant malaria is an epidemic that claims the lives of 1–3 million people per year. Artemisinin, a naturally occurring small molecule, is a valuable weapon in the fight against this disease. This review highlights interdisciplinary efforts to access artemisinin, with an emphasis on the key role of synthetic chemistry.
Collapse
Affiliation(s)
- Michael A. Corsello
- Department of Chemistry and Biochemistry
- University of California
- Los Angeles
- USA
| | - Neil K. Garg
- Department of Chemistry and Biochemistry
- University of California
- Los Angeles
- USA
| |
Collapse
|
1515
|
Ștefan I. Combination therapy--a way to forestall artemisinin resistance and optimize uncomplicated malaria treatment. J Med Life 2015; 8:326-8. [PMID: 26351534 PMCID: PMC4556913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/18/2015] [Indexed: 11/01/2022] Open
Abstract
Artemisinin resistance represents a global concern, which requires a concerted and coordinated effort at a global level. Lessons learned from the experience of drug combination therapies in HIV, TB, and HCV infections showed that combination therapies reduce the risk of drug resistance development. In order to maximize the effectiveness of artemisinin and its derivates and to protect it from the development of resistance, WHO recommended that they should be combined with other drugs that have different mechanisms of action and longer half-lives. Until the attainment of new pharmaceuticals, artemisinin-based combination therapy (ACT) is the way to forestall artemisinin resistance and optimize uncomplicated malaria treatment.
Collapse
Affiliation(s)
- I Ștefan
- Infectious Diseases Ward, ”Dr. Carol Davila” Central Military University Emergency Hospital, Bucharest, Romania
| |
Collapse
|
1516
|
Giovani S, Penzo M, Butini S, Brindisi M, Gemma S, Novellino E, Campiani G, Blackman MJ, Brogi S. Plasmodium falciparum subtilisin-like protease 1: discovery of potent difluorostatone-based inhibitors. RSC Adv 2015. [DOI: 10.1039/c5ra01170a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We here describe the development of potent inhibitors of the malaria parasite enzyme subtilisin-like protease 1 (PfSUB1).
Collapse
Affiliation(s)
- Simone Giovani
- European Research Centre for Drug Discovery and Development (NatSynDrugs)
- University of Siena
- Siena
- Italy
- Dept. Biotechnology
| | - Maria Penzo
- Division of Parasitology
- MRC National Institute for Medical Research
- London
- UK
| | - Stefania Butini
- European Research Centre for Drug Discovery and Development (NatSynDrugs)
- University of Siena
- Siena
- Italy
- Dept. Biotechnology
| | - Margherita Brindisi
- European Research Centre for Drug Discovery and Development (NatSynDrugs)
- University of Siena
- Siena
- Italy
- Dept. Biotechnology
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development (NatSynDrugs)
- University of Siena
- Siena
- Italy
- Dept. Biotechnology
| | - Ettore Novellino
- European Research Centre for Drug Discovery and Development (NatSynDrugs)
- University of Siena
- Siena
- Italy
- Dip. di Farmacia
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development (NatSynDrugs)
- University of Siena
- Siena
- Italy
- Dept. Biotechnology
| | | | - Simone Brogi
- European Research Centre for Drug Discovery and Development (NatSynDrugs)
- University of Siena
- Siena
- Italy
- Dept. Biotechnology
| |
Collapse
|
1517
|
Najer A, Wu D, Bieri A, Brand F, Palivan CG, Beck HP, Meier W. Nanomimics of host cell membranes block invasion and expose invasive malaria parasites. ACS NANO 2014; 8:12560-71. [PMID: 25435059 DOI: 10.1021/nn5054206] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The fight against most infectious diseases, including malaria, is often hampered by the emergence of drug resistance and lack or limited efficacies of vaccines. Therefore, new drugs, vaccines, or other strategies to control these diseases are needed. Here, we present an innovative nanotechnological strategy in which the nanostructure itself represents the active substance with no necessity to release compounds to attain therapeutic effect and which might act in a drug- and vaccine-like dual function. Invasion of Plasmodium falciparum parasites into red blood cells was selected as a biological model for the initial validation of this approach. Stable nanomimics-polymersomes presenting receptors required for parasite attachment to host cells-were designed to efficiently interrupt the life cycle of the parasite by inhibiting invasion. A simple way to build nanomimics without postformation modifications was established. First, a block copolymer of the receptor with a hydrophobic polymer was synthesized and then mixed with a polymersome-forming block copolymer. The resulting nanomimics bound parasite-derived ligands involved in the initial attachment to host cells and they efficiently blocked reinvasion of malaria parasites after their egress from host cells in vitro. They exhibited efficacies of more than 2 orders of magnitude higher than the soluble form of the receptor, which can be explained by multivalent interactions of several receptors on one nanomimic with multiple ligands on the infective parasite. In the future, our strategy might offer interesting treatment options for severe malaria or a way to modulate the immune response.
Collapse
Affiliation(s)
- Adrian Najer
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
1518
|
Nyunt MH, Hlaing T, Oo HW, Tin-Oo LLK, Phway HP, Wang B, Zaw NN, Han SS, Tun T, San KK, Kyaw MP, Han ET. Molecular assessment of artemisinin resistance markers, polymorphisms in the k13 propeller, and a multidrug-resistance gene in the eastern and western border areas of Myanmar. Clin Infect Dis 2014; 60:1208-15. [PMID: 25537878 DOI: 10.1093/cid/ciu1160] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND As K13 propeller mutations have been recently reported to serve as molecular markers, assessment of K13 propeller polymorphisms in multidrug-resistant gene in isolates from Myanmar, especially the eastern and western border areas, is crucial if we are to understand the spread of artemisinin resistance. METHODS A 3-day surveillance study was conducted in the eastern and western border areas in Myanmar, and K13 propeller and Plasmodium falciparum multidrug resistance-associated protein 1 (pfmrp1) mutations were analyzed. RESULTS Among the 1761 suspected malaria cases screened, a total of 42 uncomplicated falciparum cases from the eastern border and 49 from the western border were subjected to 3 days of surveillance after artemether-lumefantrine treatment. No parasitemic case showing positivity on day 3 was noted from the western border, but 26.2% (11/42) of cases were positive in the eastern border. Although we found no marked difference in the prevalence of the pfmrp1 mutation in the eastern and western borders (36% vs 31%, respectively), K13 mutations were more frequent in the eastern border area (where the 3-day persistent cases were detected; 48% vs 14%). C580Y, M476I, A481V, N458Y, R539T, and R516Y accounted for 68.9% of all K13 mutations significantly associated with day 3 parasitaemia. CONCLUSIONS The K13 mutations were significantly associated with day 3 parasitaemia, emphasizing the importance of K13 surveillance. The low prevalence of K13 mutations and the absence of day 3 parasitaemic cases indicate that artemisinin resistance may not have spread to the western Myanmar border region. Although analysis of multiple K13 mutations is challenging, it should be done at various sentinel sites in Myanmar.
Collapse
Affiliation(s)
- Myat Htut Nyunt
- Department of Medical Research (Lower Myanmar), Yangon, Republic of the Union of Myanmar Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Thaung Hlaing
- Department of Health, Nay Pyi Taw, Republic of the Union of Myanmar
| | - Htet Wai Oo
- Department of Medical Research (Lower Myanmar), Yangon, Republic of the Union of Myanmar
| | - Lu-Lu Kyaw Tin-Oo
- Department of Medical Research (Lower Myanmar), Yangon, Republic of the Union of Myanmar
| | - Hnin Phyu Phway
- Department of Medical Research (Lower Myanmar), Yangon, Republic of the Union of Myanmar
| | - Bo Wang
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Ni Ni Zaw
- Department of Medical Research (Lower Myanmar), Yangon, Republic of the Union of Myanmar
| | - Soe Soe Han
- Department of Medical Research (Lower Myanmar), Yangon, Republic of the Union of Myanmar
| | - Thurein Tun
- Department of Medical Research (Lower Myanmar), Yangon, Republic of the Union of Myanmar
| | - Kyaw Kyaw San
- Department of Medical Research (Lower Myanmar), Yangon, Republic of the Union of Myanmar
| | - Myat Phone Kyaw
- Department of Medical Research (Lower Myanmar), Yangon, Republic of the Union of Myanmar
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
1519
|
Congpuong K, Hoonchaiyapoom T, Inorn K. Plasmodium falciparum genotype diversity in artemisinin derivatives treatment failure patients along the Thai-Myanmar border. THE KOREAN JOURNAL OF PARASITOLOGY 2014; 52:631-7. [PMID: 25548414 PMCID: PMC4277025 DOI: 10.3347/kjp.2014.52.6.631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 09/09/2014] [Accepted: 09/28/2014] [Indexed: 11/26/2022]
Abstract
Genetic characteristics of Plasmodium falciparum may play a role in the treatment outcome of malaria infection. We have studied the association between diversity at the merozoite surface protein-1 (msp-1), msp-2, and glutamate-rich protein (glurp) loci and the treatment outcome of uncomplicated falciparum malaria patients along the Thai-Myanmar border who were treated with artemisinin derivatives combination therapy. P. falciparum isolates were collected prior to treatment from 3 groups of patients; 50 cases of treatment failures, 50 recrudescences, and 56 successful treatments. Genotyping of the 3 polymorphic markers was analyzed by nested PCR. The distribution of msp-1 alleles was significantly different among the 3 groups of patients but not the msp-2 and glurp alleles. The allelic frequencies of K1 and MAD20 alleles of msp1 gene were higher while RO33 allele was significantly lower in the successful treatment group. Treatment failure samples had a higher median number of alleles as compared to the successful treatment group. Specific genotypes of msp-1, msp-2, and glurp were significantly associated with the treatment outcomes. Three allelic size variants were significantly higher among the isolates from the treatment failure groups, i.e., K1270-290, 3D7610-630, G650-690, while 2 variants, K1150-170, and 3D7670-690 were significantly lower. In conclusion, the present study reports the differences in multiplicity of infection and distribution of specific alleles of msp-1, msp-2, and glurp genes in P. falciparum isolates obtained from treatment failure and successful treatment patients following artemisinin derivatives combination therapy.
Collapse
Affiliation(s)
| | - Thirasak Hoonchaiyapoom
- Bureau of Vector Borne Disease, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Kornnarin Inorn
- Bansomdejchaopraya Rajabhat University, Bangkok 10600, Thailand
| |
Collapse
|
1520
|
Cheeseman IH, McDew-White M, Phyo AP, Sriprawat K, Nosten F, Anderson TJC. Pooled sequencing and rare variant association tests for identifying the determinants of emerging drug resistance in malaria parasites. Mol Biol Evol 2014; 32:1080-90. [PMID: 25534029 PMCID: PMC4379400 DOI: 10.1093/molbev/msu397] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We explored the potential of pooled sequencing to swiftly and economically identify selective sweeps due to emerging artemisinin (ART) resistance in a South-East Asian malaria parasite population. ART resistance is defined by slow parasite clearance from the blood of ART-treated patients and mutations in the kelch gene (chr. 13) have been strongly implicated to play a role. We constructed triplicate pools of 70 slow-clearing (resistant) and 70 fast-clearing (sensitive) infections collected from the Thai–Myanmar border and sequenced these to high (∼150-fold) read depth. Allele frequency estimates from pools showed almost perfect correlation (Lin’s concordance = 0.98) with allele frequencies at 93 single nucleotide polymorphisms measured directly from individual infections, giving us confidence in the accuracy of this approach. By mapping genome-wide divergence (FST) between pools of drug-resistant and drug-sensitive parasites, we identified two large (>150 kb) regions (on chrs. 13 and 14) and 17 smaller candidate genome regions. To identify individual genes within these genome regions, we resequenced an additional 38 parasite genomes (16 slow and 22 fast-clearing) and performed rare variant association tests. These confirmed kelch as a major molecular marker for ART resistance (P = 6.03 × 10−6). This two-tier approach is powerful because pooled sequencing rapidly narrows down genome regions of interest, while targeted rare variant association testing within these regions can pinpoint the genetic basis of resistance. We show that our approach is robust to recurrent mutation and the generation of soft selective sweeps, which are predicted to be common in pathogen populations with large effective population sizes, and may confound more traditional gene mapping approaches.
Collapse
Affiliation(s)
| | | | - Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
1521
|
Vullo D, Del Prete S, Fisher GM, Andrews KT, Poulsen SA, Capasso C, Supuran CT. Sulfonamide inhibition studies of the η-class carbonic anhydrase from the malaria pathogen Plasmodium falciparum. Bioorg Med Chem 2014; 23:526-31. [PMID: 25533402 DOI: 10.1016/j.bmc.2014.12.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 12/12/2022]
Abstract
The η-carbonic anhydrases (CAs, EC 4.2.1.1) were recently discovered as the sixth genetic class of this metalloenzyme superfamily, and are so far known only in protozoa, including various Plasmodium species, the causative agents of malaria. We report here an inhibition study of the η-CA from Plasmodium falciparum (PfCA) against a panel of sulfonamides and one sulfamate compound, some of which are clinically used. The strongest inhibitors identified were ethoxzolamide and sulthiame, with KIs of 131-132 nM, followed by acetazolamide, methazolamide and hydrochlorothiazide (KIs of 153-198 nM). Brinzolamide, topiramate, zonisamide, indisulam, valdecoxib and celecoxib also showed significant inhibitory action against PfCA, with KIs ranging from 217 to 308 nM. An interesting observation was that the more efficient PfCA inhibitors are representative of several scaffolds and chemical classes, including benzene sulfonamides, monocyclic/bicyclic heterocyclic sulfonamides and compounds with a more complex scaffold (i.e., the sugar sulfamate derivative, topiramate, and the coxibs, celecoxib and valdecoxib). A comprehensive inhibition study of small molecules for η-CAs is needed as a first step towards assessing PfCA as a druggable target. The present work identifies the first known η-CA inhibitors and provides a platform for the development of next generation novel PfCA inhibitors.
Collapse
Affiliation(s)
- Daniela Vullo
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Sonia Del Prete
- Istituto di Bioscienze e Biorisorse (IBBR)-CNR, Via P. Castellino 111, 80131 Napoli, Italy
| | - Gillian M Fisher
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Katherine T Andrews
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Sally-Ann Poulsen
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse (IBBR)-CNR, Via P. Castellino 111, 80131 Napoli, Italy.
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Polo Scientifico, Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
1522
|
Identification and deconvolution of cross-resistance signals from antimalarial compounds using multidrug-resistant Plasmodium falciparum strains. Antimicrob Agents Chemother 2014; 59:1110-8. [PMID: 25487796 DOI: 10.1128/aac.03265-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmodium falciparum, the most deadly agent of malaria, displays a wide variety of resistance mechanisms in the field. The ability of antimalarial compounds in development to overcome these must therefore be carefully evaluated to ensure uncompromised activity against real-life parasites. We report here on the selection and phenotypic as well as genotypic characterization of a panel of sensitive and multidrug-resistant P. falciparum strains that can be used to optimally identify and deconvolute the cross-resistance signals from an extended panel of investigational antimalarials. As a case study, the effectiveness of the selected panel of strains was demonstrated using the 1,2,4-oxadiazole series, a newly identified antimalarial series of compounds with in vitro activity against P. falciparum at nanomolar concentrations. This series of compounds was to be found inactive against several multidrug-resistant strains, and the deconvolution of this signal implicated pfcrt, the genetic determinant of chloroquine resistance. Targeted mode-of-action studies further suggested that this new chemical series might act as falcipain 2 inhibitors, substantiating the suggestion that these compounds have a site of action similar to that of chloroquine but a distinct mode of action. New antimalarials must overcome existing resistance and, ideally, prevent its de novo appearance. The panel of strains reported here, which includes recently collected as well as standard laboratory-adapted field isolates, is able to efficiently detect and precisely characterize cross-resistance and, as such, can contribute to the faster development of new, effective antimalarial drugs.
Collapse
|
1523
|
Torrentino-Madamet M, Fall B, Benoit N, Camara C, Amalvict R, Fall M, Dionne P, Ba Fall K, Nakoulima A, Diatta B, Diemé Y, Ménard D, Wade B, Pradines B. Limited polymorphisms in k13 gene in Plasmodium falciparum isolates from Dakar, Senegal in 2012-2013. Malar J 2014; 13:472. [PMID: 25471113 PMCID: PMC4289025 DOI: 10.1186/1475-2875-13-472] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/28/2014] [Indexed: 11/21/2022] Open
Abstract
Background The emergence of Plasmodium falciparum resistance to artemisinin and its derivatives, manifested as delayed parasite clearance following the treatment, has developed in Southeast Asia. The spread of resistance to artemisinin from Asia to Africa may be catastrophic for malaria control and elimination worldwide. Recently, mutations in the propeller domain of the Kelch 13 (k13) gene (PF3D71343700) were associated with in vitro resistance to artemisinin and with delayed clearance after artemisinin treatment in southern Asia. The aim of the study was to characterize the genetic variability of k13 and to evaluate the molecular resistance to artemisinin for the first time in Senegal. Methods Plasmodium falciparum isolates were collected from 138 malaria patients in Dakar and its districts during the rainy season of October 2012 to January 2013 at the Hôpital Principal de Dakar. The k13 gene was amplified using nested PCR and sequenced. Results A very limited variability within the k13 gene in Senegalese P. falciparum isolates was identified. No polymorphism was detected in the six k13-propeller blades. Only two mutations, T149S (6.3%) and K189T (42.2%), and one (N) or two (NN) asparagine insertion at the codon 142 (4.7 and 6.3%, respectively) were detected in the Plasmodium/Apicomplexa-specific domain. None of the polymorphisms associated with artemisinin resistance in Southeast Asia was detected in the 138 P. falciparum from Dakar. Discussion The present data do not suggest widespread artemisinin resistance in Dakar in 2012–2013. Notably, the C580Y, R539T or Y493H substitutions that were associated with in vitro resistance or delayed parasite clearance in Southeast Asia were not observed in Dakar, nor were any of the polymorphisms observed in parasites from Southeast Asia, nor the M476I mutation that was selected in vitro with artemisinin pressure in a African parasite line.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Bruno Pradines
- Aix Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France.
| |
Collapse
|
1524
|
Abstract
Apicomplexan parasites include some of the most prevalent and deadly human pathogens. Novel antiparasitic drugs are urgently needed. Synthesis and metabolism of isoprenoids may present multiple targets for therapeutic intervention. The apicoplast-localized methylerythritol phosphate (MEP) pathway for isoprenoid precursor biosynthesis is distinct from the mevalonate (MVA) pathway used by the mammalian host, and this pathway is apparently essential in most Apicomplexa. In this review, we discuss the current field of research on production and metabolic fates of isoprenoids in apicomplexan parasites, including the acquisition of host isoprenoid precursors and downstream products. We describe recent work identifying the first MEP pathway regulator in apicomplexan parasites, and introduce several promising areas for ongoing research into this well-validated antiparasitic target.
Collapse
Affiliation(s)
- Leah Imlay
- Department of Molecular Microbiology Washington University School of Medicine St. Louis, MO 63110 USA
| | - Audrey R Odom
- Department of Pediatrics Washington University School of Medicine St. Louis, MO 63110 USA & Department of Molecular Microbiology Washington University School of Medicine St. Louis, MO 63110 USA
| |
Collapse
|
1525
|
Sharma V, Agarwal S, Madurkar SM, Datta G, Dangi P, Dandugudumula R, Sen S, Singh S. Diversity-oriented synthesis and activity evaluation of substituted bicyclic lactams as anti-malarial against Plasmodium falciparum. Malar J 2014; 13:467. [PMID: 25431142 PMCID: PMC4289231 DOI: 10.1186/1475-2875-13-467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/19/2014] [Indexed: 11/23/2022] Open
Abstract
Background Malaria remains the world’s most important devastating parasitic disease. Of the five species of Plasmodium known to infect and cause human malaria, Plasmodium falciparum is the most virulent and responsible for majority of the deaths caused by this disease. Mainstream drug therapy targets the asexual blood stage of the malaria parasite, as the disease symptoms are mainly associated with this stage. The prevalence of malaria parasite strains resistance to existing anti-malarial drugs has made the control of malaria even more challenging and hence the development of a new class of drugs is inevitable. Methods Screening against different drug resistant and sensitive strains of P. falciparum was performed for few bicyclic lactam-based motifs, exhibiting a broad spectrum of activity with low toxicity generated via a focussed library obtained from diversity oriented synthesis (DOS). The synthesis and screening was followed by an in vitro assessment of the possible cytotoxic effect of this class of compounds on malaria parasite. Results The central scaffold a chiral bicyclic lactam (A) and (A’) which were synthesized from (R)-phenylalaninol, levulinic acid and 3-(2-nitrophenyl) levulinic acid respectively. The DOS library was generated from A and from A’, by either direct substitution with o-nitrobenzylbromide at the carbon α- to the amide functionality or by conversion to fused pyrroloquinolines. Upon screening this diverse library for their anti-malarial activity, a dinitro/diamine substituted bicyclic lactam was found to demonstrate exceptional activity of >85% inhibition at 50 μM concentration across different strains of P. falciparum with no toxicity against mammalian cells. Also, loss of mitochondrial membrane potential, mitochondrial functionality and apoptosis was observed in parasite treated with diamine-substituted bicyclic lactams. Conclusions This study unveils a DOS-mediated exploration of small molecules with novel structural motifs that culminates in identifying a potential lead molecule against malaria. In vitro investigations further reveal their cytocidal effect on malaria parasite growth. It is not the first time that DOS has been used as a strategy to identify therapeutic leads against malaria, but this study establishes the direct implications of DOS in scouting novel motifs with anti-malarial activity. Electronic supplementary material The online version of this article (doi:10.1186/1475-2875-13-467) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Subhabrata Sen
- Shiv Nadar University, Gautam Budh Nagar, UP 203207, India.
| | | |
Collapse
|
1526
|
Picot S. The Other Face of Artesunate: Southern Drug to Treat Northern Diseases. EBioMedicine 2014; 2:17-8. [PMID: 26137531 PMCID: PMC4485488 DOI: 10.1016/j.ebiom.2014.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 11/29/2022] Open
Affiliation(s)
- Stephane Picot
- Malaria Research Unit, SMITH, ICBMS, UMR 5246 CNRS-INSA-CPE-UCBL1, University Lyon 1, France
| |
Collapse
|
1527
|
Abstract
Across the globe, over 200 million annual malaria infections result in up to 660,000 deaths, 77% of which occur in children under the age of five years. Although prevention is important, malaria deaths are typically prevented by using antimalarial drugs that eliminate symptoms and clear parasites from the blood. Artemisinins are one of the few remaining compound classes that can be used to cure multidrug-resistant Plasmodium falciparum infections. Unfortunately, clinical trials from Southeast Asia are showing that artemisinin-based treatments are beginning to lose their effectiveness, adding renewed urgency to the search for the genetic determinants of parasite resistance to this important drug class. We review the genetic and genomic approaches that have led to an improved understanding of artemisinin resistance, including the identification of resistance-conferring mutations in the P. falciparum kelch13 gene.
Collapse
|
1528
|
Kastner KW, Shoue DA, Estiu GL, Wolford J, Fuerst MF, Markley LD, Izaguirre JA, McDowell MA. Characterization of the Anopheles gambiae octopamine receptor and discovery of potential agonists and antagonists using a combined computational-experimental approach. Malar J 2014; 13:434. [PMID: 25407998 PMCID: PMC4253978 DOI: 10.1186/1475-2875-13-434] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/03/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Octopamine receptors (OARs) perform key functions in the biological pathways of primarily invertebrates, making this class of G-protein coupled receptors (GPCRs) a potentially good target for insecticides. However, the lack of structural and experimental data for this insect-essential GPCR family has promoted the development of homology models that are good representations of their biological equivalents for in silico screening of small molecules. METHODS Two Anopheles gambiae OARs were cloned, analysed and functionally characterized using a heterologous cell reporter system. Four antagonist- and four agonist-binding homology models were generated and virtually screened by docking against compounds obtained from the ZINC database. Resulting compounds from the virtual screen were tested experimentally using an in vitro reporter assay and in a mosquito larvicide bioassay. RESULTS Six An. gambiae OAR/tyramine receptor genes were identified. Phylogenetic analysis revealed that the OAR (AGAP000045) that encodes two open reading frames is an α-adrenergic-like receptor. Both splice variants signal through cAMP and calcium. Mutagenesis analysis revealed that D100 in the TM3 region and S206 and S210 in the TM5 region are important to the activation of the GPCR. Some 2,150 compounds from the virtual screen were structurally analysed and 70 compounds were experimentally tested against AgOAR45B expressed in the GloResponse™CRE-luc2P HEK293 reporter cell line, revealing 21 antagonists, 17 weak antagonists, 2 agonists, and 5 weak agonists. CONCLUSION Reported here is the functional characterization of two An. gambiae OARs and the discovery of new OAR agonists and antagonists based on virtual screening and molecular dynamics simulations. Four compounds were identified that had activity in a mosquito larva bioassay, three of which are imidazole derivatives. This combined computational and experimental approach is appropriate for the discovery of new and effective insecticides.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mary Ann McDowell
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
1529
|
White MT, Karl S, Battle KE, Hay SI, Mueller I, Ghani AC. Modelling the contribution of the hypnozoite reservoir to Plasmodium vivax transmission. eLife 2014; 3. [PMID: 25406065 PMCID: PMC4270097 DOI: 10.7554/elife.04692] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/13/2014] [Indexed: 12/25/2022] Open
Abstract
Plasmodium vivax relapse infections occur following activation of latent liver-stages parasites (hypnozoites) causing new blood-stage infections weeks to months after the initial infection. We develop a within-host mathematical model of liver-stage hypnozoites, and validate it against data from tropical strains of P. vivax. The within-host model is embedded in a P. vivax transmission model to demonstrate the build-up of the hypnozoite reservoir following new infections and its depletion through hypnozoite activation and death. The hypnozoite reservoir is predicted to be over-dispersed with many individuals having few or no hypnozoites, and some having intensely infected livers. Individuals with more hypnozoites are predicted to experience more relapses and contribute more to onwards P. vivax transmission. Incorporating hypnozoite killing drugs such as primaquine into first-line treatment regimens is predicted to cause substantial reductions in P. vivax transmission as individuals with the most hypnozoites are more likely to relapse and be targeted for treatment. DOI:http://dx.doi.org/10.7554/eLife.04692.001 Malaria is one of the world's most deadly infections, causing 100s of 1000s of deaths each year despite being both preventable and curable. Malaria is caused by Plasmodium parasites, which are transmitted between humans by mosquitoes. When a mosquito bites a human, Plasmodium is injected into the bloodstream with the mosquito's saliva. The parasite then travels through the bloodstream to the liver, infects liver cells and multiplies within those cells without causing any noticeable symptoms. After remaining silent in the liver for weeks or months, the now abundant parasite ruptures the host liver cell, re-enters the bloodstream, and begins infecting red blood cells. If another mosquito bites the infected individual and takes a blood meal, the parasite moves into the mosquito and the cycle of transmission continues. There are several species of Plasmodium that are known to cause malaria. The most widely studied species is P. falciparum, which also causes one of the deadliest types of malaria. However, another Plasmodium species called P. vivax is the most widely distributed species and, despite being less virulent than P. falciparum, is particularly dangerous because it causes recurring malaria. In contrast to P. falciparum, P. vivax has the ability to form hypnozoites: a dormant form of the parasite that can remain inside liver cells for long periods of time, sometimes for years. The reservoir of P. vivax hypnozoites can regularly populate the bloodstream with the infectious form of the parasite, triggering relapses of malaria. Even if an individual suffering a relapse receives prompt treatment to clear parasites in the blood, more parasites may emerge from the liver and cause new blood-stage infections. White et al. developed a mathematical model to help understand how P. vivax is transmitted. Unlike many of the established models of malaria transmission, the new model accounts for the reservoir of P. vivax hypnozoites in the liver, and assumes that hypnozoites in the reservoir either die, or are activated and enter the bloodstream, at a constant rate. This produces patterns that closely match how often relapses occur in patients. White et al. go on to predict that although many infected people have few or no hypnozoites in their liver, some have many hypnozoites, and these people are more likely to suffer from malaria relapses. This suggests that if the initial treatments given to malaria sufferers incorporate additional drugs that kill the hypnozoites in the liver, then it may be possible to substantially reduce the extent of P. vivax transmission. DOI:http://dx.doi.org/10.7554/eLife.04692.002
Collapse
Affiliation(s)
- Michael T White
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Stephan Karl
- Department of Infection and Immunity, Walter and Eliza Hall Institute, Melbourne, Australia
| | - Katherine E Battle
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Simon I Hay
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Ivo Mueller
- Department of Infection and Immunity, Walter and Eliza Hall Institute, Melbourne, Australia
| | - Azra C Ghani
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| |
Collapse
|
1530
|
Mohon AN, Alam MS, Bayih AG, Folefoc A, Shahinas D, Haque R, Pillai DR. Mutations in Plasmodium falciparum K13 propeller gene from Bangladesh (2009-2013). Malar J 2014; 13:431. [PMID: 25404021 PMCID: PMC4240861 DOI: 10.1186/1475-2875-13-431] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/03/2014] [Indexed: 12/22/2022] Open
Abstract
Background Bangladesh is a malaria hypo-endemic country sharing borders with India and Myanmar. Artemisinin combination therapy (ACT) remains successful in Bangladesh. An increase of artemisinin-resistant malaria parasites on the Thai-Cambodia and Thai-Myanmar borders is worrisome. K13 propeller gene (PF3D7_1343700 or PF13_0238) mutations have been linked to both in vitro artemisinin resistance and in vivo slow parasite clearance rates. This group undertook to evaluate if mutations seen in Cambodia have emerged in Bangladesh where ACT use is now standard for a decade. Methods Samples were obtained from Plasmodium falciparum-infected malaria patients from Upazila health complexes (UHC) between 2009 and 2013 in seven endemic districts of Bangladesh. These districts included Khagrachari (Matiranga UHC), Rangamati (Rajasthali UHC), Cox’s Bazar (Ramu and Ukhia UHC), Bandarban (Lama UHC), Mymensingh (Haluaghat UHC), Netrokona (Durgapur and Kalmakanda UHC), and Moulvibazar (Sreemangal and Kamalganj UHC). Results Out of 296 microscopically positive P. falciparum samples, 271 (91.6%) were confirmed as mono-infections by both real-time PCR and nested PCR. The K13 propeller gene from 253 (93.4%) samples was sequenced bi-directionally. One non-synonymous mutation (A578S) was found in Bangladeshi clinical isolates. The A578S mutation was confirmed and lies adjacent to the C580Y mutation, the major mutation causing delayed parasite clearance in Cambodia. Based on computational modeling A578S should have a significant effect on tertiary structure of the protein. Conclusion The data suggest that P. falciparum in Bangladesh remains free of the C580Y mutation linked to delayed parasite clearance. However, the mutation A578S is present and based on structural analysis could affect K13 gene function. Further in vivo clinical studies are required to validate the effect of this mutation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dylan R Pillai
- Department of Microbiology, Immunology and Infectious Diseases, Faculty of Medicine, University of Calgary, Diagnostic and Scientific Centre, Room 1 W-416, 9-3535 Research Road NW, Calgary, AB T2L 2 K8, Canada.
| |
Collapse
|
1531
|
Chia WN, Goh YS, Rénia L. Novel approaches to identify protective malaria vaccine candidates. Front Microbiol 2014; 5:586. [PMID: 25452745 PMCID: PMC4233905 DOI: 10.3389/fmicb.2014.00586] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/17/2014] [Indexed: 12/17/2022] Open
Abstract
Efforts to develop vaccines against malaria have been the focus of substantial research activities for decades. Several categories of candidate vaccines are currently being developed for protection against malaria, based on antigens corresponding to the pre-erythrocytic, blood stage, or sexual stages of the parasite. Long lasting sterile protection from Plasmodium falciparum sporozoite challenge has been observed in human following vaccination with whole parasite formulations, clearly demonstrating that a protective immune response targeting predominantly the pre-erythrocytic stages can develop against malaria. However, most of vaccine candidates currently being investigated, which are mostly subunits vaccines, have not been able to induce substantial (>50%) protection thus far. This is due to the fact that the antigens responsible for protection against the different parasite stages are still yet to be known and relevant correlates of protection have remained elusive. For a vaccine to be developed in a timely manner, novel approaches are required. In this article, we review the novel approaches that have been developed to identify the antigens for the development of an effective malaria vaccine.
Collapse
Affiliation(s)
- Wan Ni Chia
- Singapore Immunology Network, Agency for Science, Technology and Research Singapore, Singapore ; Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| | - Yun Shan Goh
- Singapore Immunology Network, Agency for Science, Technology and Research Singapore, Singapore
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research Singapore, Singapore ; Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| |
Collapse
|
1532
|
|
1533
|
Efficacy of artemether-lumefantrine and dihydroartemisinin-piperaquine for treatment of uncomplicated malaria in children in Zaire and Uíge Provinces, angola. Antimicrob Agents Chemother 2014; 59:437-43. [PMID: 25367912 DOI: 10.1128/aac.04181-14] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The development of resistance to antimalarials is a major challenge for global malaria control. Artemisinin-based combination therapies, the newest class of antimalarials, are used worldwide but there have been reports of artemisinin resistance in Southeast Asia. In February through May 2013, we conducted open-label, nonrandomized therapeutic efficacy studies of artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP) in Zaire and Uíge Provinces in northern Angola. The parasitological and clinical responses to treatment in children with uncomplicated Plasmodium falciparum monoinfection were measured over 28 days, and the main outcome was a PCR-corrected adequate clinical and parasitological response (ACPR) proportion on day 28. Parasites from treatment failures were analyzed for the presence of putative molecular markers of resistance to lumefantrine and artemisinins, including the recently identified mutations in the K13 propeller gene. In the 320 children finishing the study, 25 treatment failures were observed: 24 in the AL arms and 1 in the DP arm. The PCR-corrected ACPR proportions on day 28 for AL were 88% (95% confidence interval [CI], 78 to 95%) in Zaire and 97% (91 to 100%) in Uíge. For DP, the proportions were 100% (95 to 100%) in Zaire, and 100% (96 to 100%) in Uíge. None of the treatment failures had molecular evidence of artemisinin resistance. In contrast, 91% of AL late-treatment failures had markers associated with lumefantrine resistance on the day of failure. The absence of molecular markers for artemisinin resistance and the observed efficacies of both drug combinations suggest no evidence of artemisinin resistance in northern Angola. There is evidence of increased lumefantrine resistance in Zaire, which should continue to be monitored.
Collapse
|
1534
|
Kamau E, Campino S, Amenga-Etego L, Drury E, Ishengoma D, Johnson K, Mumba D, Kekre M, Yavo W, Mead D, Bouyou-Akotet M, Apinjoh T, Golassa L, Randrianarivelojosia M, Andagalu B, Maiga-Ascofare O, Amambua-Ngwa A, Tindana P, Ghansah A, MacInnis B, Kwiatkowski D, Djimde AA. K13-propeller polymorphisms in Plasmodium falciparum parasites from sub-Saharan Africa. J Infect Dis 2014; 211:1352-5. [PMID: 25367300 DOI: 10.1093/infdis/jiu608] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in the Plasmodium falciparum K13-propeller domain have recently been shown to be important determinants of artemisinin resistance in Southeast Asia. This study investigated the prevalence of K13-propeller polymorphisms across sub-Saharan Africa. A total of 1212 P. falciparum samples collected from 12 countries were sequenced. None of the K13-propeller mutations previously reported in Southeast Asia were found, but 22 unique mutations were detected, of which 7 were nonsynonymous. Allele frequencies ranged between 1% and 3%. Three mutations were observed in >1 country, and the A578S was present in parasites from 5 countries. This study provides the baseline prevalence of K13-propeller mutations in sub-Saharan Africa.
Collapse
Affiliation(s)
- Edwin Kamau
- KEMRI/United States Army Medical Research Unit-Kenya, Kisumu
| | | | | | | | - Deus Ishengoma
- National Institute for Medical Research, Tanga, Tanzania
| | - Kimberly Johnson
- Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | - Dieudonne Mumba
- Institut National de Recherche Biomédicale, Ecole de Santé Publique/Faculté de Médecine, Université de Kinshasa, Democratic Republic of the Congo
| | | | - William Yavo
- Malaria Research and Control Center, National Institute of Public Health, Abidjan, Côte d'Ivoire
| | | | - Marielle Bouyou-Akotet
- Department of Parasitology and Mycology, Faculty of Medicine, Université des Sciences de la Santé, Libreville, Gabon
| | | | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University and Armauer Hansen Research Institute, Ethiopia
| | | | - Ben Andagalu
- KEMRI/United States Army Medical Research Unit-Kenya, Kisumu
| | - Oumou Maiga-Ascofare
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, University of Science, Techniques and Technologies of Bamako, Mali Benhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | - Anita Ghansah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | | | - Dominic Kwiatkowski
- Wellcome Trust Sanger Institute, Hinxton Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | - Abdoulaye A Djimde
- Wellcome Trust Sanger Institute, Hinxton Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, University of Science, Techniques and Technologies of Bamako, Mali
| |
Collapse
|
1535
|
Antimalarial action of artesunate involves DNA damage mediated by reactive oxygen species. Antimicrob Agents Chemother 2014; 59:317-25. [PMID: 25348537 DOI: 10.1128/aac.03663-14] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Artemisinin-based combination therapy (ACT) is the recommended first-line treatment for Plasmodium falciparum malaria. It has been suggested that the cytotoxic effect of artemisinin is mediated by free radicals followed by the alkylation of P. falciparum proteins. The endoperoxide bridge, the active moiety of artemisinin derivatives, is cleaved in the presence of ferrous iron, generating reactive oxygen species (ROS) and other free radicals. However, the emergence of resistance to artemisinin in P. falciparum underscores the need for new insights into the molecular mechanisms of antimalarial activity of artemisinin. Here we show that artesunate (ART) induces DNA double-strand breaks in P. falciparum in a physiologically relevant dose- and time-dependent manner. DNA damage induced by ART was accompanied by an increase in the intracellular ROS level in the parasites. Mannitol, a ROS scavenger, reversed the cytotoxic effect of ART and reduced DNA damage, and modulation of glutathione (GSH) levels was found to impact ROS and DNA damage induced by ART. Accumulation of ROS, increased DNA damage, and the resulting antiparasite effect suggest a causal relationship between ROS, DNA damage, and parasite death. Finally, we also show that ART-induced ROS production involves a potential role for NADPH oxidase, an enzyme involved in the production of superoxide anions. Our results with P. falciparum provide novel insights into previously unknown molecular mechanisms underlying the antimalarial activity of artemisinin derivatives and may help in the design of next-generation antimalarial drugs against the most virulent Plasmodium species.
Collapse
|
1536
|
Evaluation of antimalarial resistance marker polymorphism in returned migrant workers in China. Antimicrob Agents Chemother 2014; 59:326-30. [PMID: 25348538 DOI: 10.1128/aac.04144-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Imported malaria has been a great challenge for public health in China due to decreased locally transmitted cases and frequent exchange worldwide. Plasmodium falciparum has been mainly responsible for the increasing impact. Currently, artesunate plus amodiaquine, one of the artemisinin combination therapies recommended by the World Health Organization, has been mainly used against uncomplicated P. falciparum malaria in China. However, drug resistance marker polymorphism in returning migrant workers has not been demonstrated. Here, we have evaluated the prevalence of pfmdr1 and pfcrt polymorphisms, as well as the K13 propeller gene, a molecular marker of artemisinin resistance, in migrant workers returned from Ghana to Shanglin County, Guangxi Province, China, in 2013. A total of 118 blood samples were randomly selected and used for the assay. Mutations of the pfmdr1 gene that covered codons 86, 184, 1034, and 1246 were found in 11 isolates. Mutations at codon N86Y (9.7%) were more frequent than at others, and Y(86)Y(184)S(1034)D(1246) was the most prevalent (63.6%) of the four haplotypes. Mutations of the pfcrt gene that covered codons 74, 75, and 76 were observed in 17 isolates, and M(74)N(75)T(76) was common (70.6%) in three haplotypes. Eight different genotypes of the K13 propeller were first observed in 10 samples in China, 2 synonymous mutations (V487V and A627A) and 6 nonsynonymous mutations. C580Y was the most prevalent (2.7%) in all the samples. The data presented might be helpful for enrichment of molecular surveillance of antimalarial resistance and will be useful for developing and updating antimalarial guidance in China.
Collapse
|
1537
|
Targett G. Phase 3 trial with the RTS,S/AS01 malaria vaccine shows protection against clinical and severe malaria in infants and children in Africa. ACTA ACUST UNITED AC 2014; 20:9. [PMID: 25228673 DOI: 10.1136/ebmed-2014-110089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Geoffrey Targett
- Faculty of Infectious and Tropical Diseases, Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
1538
|
Lehane AM, Ridgway MC, Baker E, Kirk K. Diverse chemotypes disrupt ion homeostasis in the Malaria parasite. Mol Microbiol 2014; 94:327-39. [PMID: 25145582 DOI: 10.1111/mmi.12765] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2014] [Indexed: 01/09/2023]
Abstract
The antimalarial spiroindolones disrupt Plasmodium falciparum Na(+) regulation and induce an alkalinization of the parasite cytosol. It has been proposed that they do so by inhibiting PfATP4, a parasite plasma membrane P-type ATPase postulated to export Na(+) and import H(+) equivalents. Here, we screened the 400 antiplasmodial compounds of the open access 'Malaria Box' for their effects on parasite ion regulation. Twenty eight compounds affected parasite Na(+) and pH regulation in a manner consistent with PfATP4 inhibition. Six of these, with chemically diverse structures, were selected for further analysis. All six showed reduced antiplasmodial activity against spiroindolone-resistant parasites carrying mutations in pfatp4. We exposed parasites to incrementally increasing concentrations of two of the six compounds and in both cases obtained resistant parasites with mutations in pfatp4. The finding that diverse chemotypes have an apparently similar mechanism of action indicates that PfATP4 may be a significant Achilles' heel for the parasite.
Collapse
Affiliation(s)
- Adele M Lehane
- Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia
| | | | | | | |
Collapse
|
1539
|
Delayed parasite clearance after treatment with dihydroartemisinin-piperaquine in Plasmodium falciparum malaria patients in central Vietnam. Antimicrob Agents Chemother 2014; 58:7049-55. [PMID: 25224002 DOI: 10.1128/aac.02746-14] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reduced susceptibility of Plasmodium falciparum toward artemisinin derivatives has been reported from the Thai-Cambodian and Thai-Myanmar borders. Following increasing reports from central Vietnam of delayed parasite clearance after treatment with dihydroartemisinin-piperaquine (DHA-PPQ), the current first-line treatment, we carried out a study on the efficacy of this treatment. Between September 2012 and February 2013, we conducted a 42-day in vivo and in vitro efficacy study in Quang Nam Province. Treatment was directly observed, and blood samples were collected twice daily until parasite clearance. In addition, genotyping, quantitative PCR (qPCR), and in vitro sensitivity testing of isolates was performed. The primary endpoints were parasite clearance rate and time. The secondary endpoints included PCR-corrected and uncorrected cure rates, qPCR clearance profiles, in vitro sensitivity results (for chloroquine, dihydroartemisinin, and piperaquine), and genotyping for mutations in the Kelch 13 propeller domain. Out of 672 screened patients, 95 were recruited and 89 available for primary endpoint analyses. The median parasite clearance time (PCT) was 61.7 h (interquartile range [IQR], 47.6 to 83.2 h), and the median parasite clearance rate had a slope half-life of 6.2 h (IQR, 4.4 to 7.5 h). The PCR-corrected efficacy rates were estimated at 100% at day 28 and 97.7% (95% confidence interval, 91.2% to 99.4%) at day 42. At day 3, the P. falciparum prevalence by qPCR was 2.5 times higher than that by microscopy. The 50% inhibitory concentrations (IC50s) of isolates with delayed clearance times (≥ 72 h) were significantly higher than those with normal clearance times for all three drugs. Delayed parasite clearance (PCT, ≥ 72 h) was significantly higher among day 0 samples carrying the 543 mutant allele (47.8%) than those carrying the wild-type allele (1.8%; P = 0.048). In central Vietnam, the efficacy of DHA-PPQ is still satisfactory, but the parasite clearance time and rate are indicative of emerging artemisinin resistance. (This study has been registered at ClinicalTrials.gov under registration no. NCT01775592.).
Collapse
|
1540
|
Ariey F, Paul RE. Antimalarial resistance: is vivax left behind? THE LANCET. INFECTIOUS DISEASES 2014; 14:908-9. [PMID: 25213734 DOI: 10.1016/s1473-3099(14)70921-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Frédéric Ariey
- Genetics and Genomics of Insect Vectors Unit, Institut Pasteur, Paris 75724, France.
| | - Richard E Paul
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, Paris 75724, France
| |
Collapse
|
1541
|
Takala-Harrison S, Jacob CG, Arze C, Cummings MP, Silva JC, Dondorp AM, Fukuda MM, Hien TT, Mayxay M, Noedl H, Nosten F, Kyaw MP, Nhien NTT, Imwong M, Bethell D, Se Y, Lon C, Tyner SD, Saunders DL, Ariey F, Mercereau-Puijalon O, Menard D, Newton PN, Khanthavong M, Hongvanthong B, Starzengruber P, Fuehrer HP, Swoboda P, Khan WA, Phyo AP, Nyunt MM, Nyunt MH, Brown TS, Adams M, Pepin CS, Bailey J, Tan JC, Ferdig MT, Clark TG, Miotto O, MacInnis B, Kwiatkowski DP, White NJ, Ringwald P, Plowe CV. Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. J Infect Dis 2014; 211:670-9. [PMID: 25180241 DOI: 10.1093/infdis/jiu491] [Citation(s) in RCA: 327] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The emergence of artemisinin-resistant Plasmodium falciparum in Southeast Asia threatens malaria treatment efficacy. Mutations in a kelch protein encoded on P. falciparum chromosome 13 (K13) have been associated with resistance in vitro and in field samples from Cambodia. METHODS P. falciparum infections from artesunate efficacy trials in Bangladesh, Cambodia, Laos, Myanmar, and Vietnam were genotyped at 33 716 genome-wide single-nucleotide polymorphisms (SNPs). Linear mixed models were used to test associations between parasite genotypes and parasite clearance half-lives following artesunate treatment. K13 mutations were tested for association with artemisinin resistance, and extended haplotypes on chromosome 13 were examined to determine whether mutations arose focally and spread or whether they emerged independently. RESULTS The presence of nonreference K13 alleles was associated with prolonged parasite clearance half-life (P = 1.97 × 10(-12)). Parasites with a mutation in any of the K13 kelch domains displayed longer parasite clearance half-lives than parasites with wild-type alleles. Haplotype analysis revealed both population-specific emergence of mutations and independent emergence of the same mutation in different geographic areas. CONCLUSIONS K13 appears to be a major determinant of artemisinin resistance throughout Southeast Asia. While we found some evidence of spreading resistance, there was no evidence of resistance moving westward from Cambodia into Myanmar.
Collapse
Affiliation(s)
| | | | - Cesar Arze
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore
| | - Michael P Cummings
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore
| | | | - Mark M Fukuda
- Armed Forces Research Institute of Medical Sciences, Bangkok
| | - Tran Tinh Hien
- Center for Tropical Medicine, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital Faculty of Postgraduate Studies, University of Health Sciences Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford
| | - Harald Noedl
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Austria
| | - Francois Nosten
- Mahidol-Oxford Tropical Medicine Research Unit Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford
| | - Myat P Kyaw
- Department of Medical Research (Lower Myanmar), Yangon
| | - Nguyen Thanh Thuy Nhien
- Center for Tropical Medicine, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University
| | - Delia Bethell
- Armed Forces Research Institute of Medical Sciences, Bangkok
| | - Youry Se
- Armed Forces Research Institute of Medical Sciences
| | - Chanthap Lon
- Armed Forces Research Institute of Medical Sciences
| | - Stuart D Tyner
- Armed Forces Research Institute of Medical Sciences, Bangkok
| | | | | | | | - Didier Menard
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Paul N Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford
| | | | | | - Peter Starzengruber
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Austria
| | - Hans-Peter Fuehrer
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Austria
| | - Paul Swoboda
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Austria
| | - Wasif A Khan
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Aung Pyae Phyo
- Mahidol-Oxford Tropical Medicine Research Unit Shoklo Malaria Research Unit Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Myaing M Nyunt
- Howard Hughes Medical Institute/Center for Vaccine Development
| | - Myat H Nyunt
- Department of Medical Research (Lower Myanmar), Yangon
| | - Tyler S Brown
- Howard Hughes Medical Institute/Center for Vaccine Development
| | - Matthew Adams
- Howard Hughes Medical Institute/Center for Vaccine Development
| | | | - Jason Bailey
- Howard Hughes Medical Institute/Center for Vaccine Development
| | - John C Tan
- Research and Development, Roche NimbleGen, Madison, Wisconsin
| | - Michael T Ferdig
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Indiana
| | - Taane G Clark
- Faculty of Epidemiology and Population Health Faculty Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine
| | - Olivo Miotto
- Mahidol-Oxford Tropical Medicine Research Unit MRC Centre for Genomics and Global Health, Oxford University and Wellcome Trust Sanger Institute Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Bronwyn MacInnis
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Dominic P Kwiatkowski
- MRC Centre for Genomics and Global Health, Oxford University and Wellcome Trust Sanger Institute Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Pascal Ringwald
- Drug Resistance and Containment Unit, Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | | |
Collapse
|
1542
|
Hopkins Sibley C. Artemisinin resistance: the more we know, the more complicated it appears. J Infect Dis 2014; 211:667-9. [PMID: 25180242 DOI: 10.1093/infdis/jiu469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Carol Hopkins Sibley
- WorldWide Antimalarial Resistance Network (WWARN), Department of Genome Sciences, University of Washington, Seattle
| |
Collapse
|
1543
|
Affiliation(s)
- Brian Greenwood
- From the London School of Hygiene and Tropical Medicine, London
| |
Collapse
|
1544
|
Chloroquine remains effective for treating Plasmodium vivax malaria in Pursat province, Western Cambodia. Antimicrob Agents Chemother 2014; 58:6270-2. [PMID: 25049249 DOI: 10.1128/aac.03026-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chloroquine (CQ) is used to treat Plasmodium vivax malaria in areas where CQ resistance has not been reported. The use of artemisinin (ART)-based combination therapies (ACTs) to treat CQ-sensitive P. vivax infections is effective and convenient but may promote the emergence and worsening of ART resistance in sympatric Plasmodium falciparum populations. Here, we show that CQ effectively treats P. vivax malaria in Pursat Province, western Cambodia, where ART-resistant P. falciparum is highly prevalent and spreading. (This study has been registered at ClinicalTrials.gov under registration no. NCT00663546.).
Collapse
|
1545
|
Plasmodium falciparum founder populations in western Cambodia have reduced artemisinin sensitivity in vitro. Antimicrob Agents Chemother 2014; 58:4935-7. [PMID: 24867977 DOI: 10.1128/aac.03055-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Reduced Plasmodium falciparum sensitivity to short-course artemisinin (ART) monotherapy manifests as a long parasite clearance half-life. We recently defined three parasite founder populations with long half-lives in Pursat, western Cambodia, where reduced ART sensitivity is prevalent. Using the ring-stage survival assay, we show that these founder populations have reduced ART sensitivity in vitro at the early ring stage of parasite development and that a genetically admixed population contains subsets of parasites with normal or reduced ART sensitivity.
Collapse
|