1551
|
Gorbea C, Taillandier D, Rechsteiner M. Mapping subunit contacts in the regulatory complex of the 26 S proteasome. S2 and S5b form a tetramer with ATPase subunits S4 and S7. J Biol Chem 2000; 275:875-82. [PMID: 10625621 DOI: 10.1074/jbc.275.2.875] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 19 S regulatory complex (RC) of the 26 S proteasome is composed of at least 18 different subunits, including six ATPases that form specific pairs S4-S7, S6-S8, and S6'-S10b in vitro. One of the largest regulatory complex subunits, S2, was translated in reticulocyte lysate containing [(35)S]methionine and used to probe membranes containing SDS-polyacrylamide gel electrophoresis separated RC subunits. S2 bound to two ATPases, S4 and S7. Association of S2 with regulatory complex subunits was also assayed by co-translation and sedimentation. S2 formed an immunoprecipitable heterotrimer upon co-translation with S4 and S7. The non-ATPase S5b also formed a ternary complex with S4 and S7 and the three proteins assembled into a tetramer with S2. Neither S2 nor S5b formed complexes with S6'-S10b dimers or with S6-S8 oligomers. The use of chimeric ATPases demonstrated that S2 binds the NH(2)-terminal region of S4 and the COOH-terminal two-thirds of S7. Conversely, S5b binds the COOH-terminal two-thirds of S4 and to S7's NH(2)-terminal region. The demonstrated association of S2 with ATPases in the mammalian 19 S regulatory complex is consistent with and extends the recent finding that the yeast RC is composed of two subcomplexes, the lid and the base (Glickman, M. H., Rubin, D. M., Coux, O., Wefes, I., Pfeifer, G., Cejka, Z., Baumeister, W., Fried, V. A., and Finley, D. (1998) Cell 94, 615-623).
Collapse
Affiliation(s)
- C Gorbea
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | | | | |
Collapse
|
1552
|
Abstract
The ubiquitin-proteasome pathway is responsible for the major portion of specific cellular protein degradation. Ubiquitin-mediated degradation is involved in physiological regulation of many cellular processes, including cell cycle progression, differentiation, and signal transduction. Here, we review the basic mechanisms of the ubiquitin system and the various ways in which ubiquitin-mediated degradation can be modulated by physiological signals.
Collapse
Affiliation(s)
- D Kornitzer
- Department of Molecular Microbiology, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | | |
Collapse
|
1553
|
Pouch MN, Cournoyer B, Baumeister W. Characterization of the 20S proteasome from the actinomycete Frankia. Mol Microbiol 2000; 35:368-77. [PMID: 10652097 DOI: 10.1046/j.1365-2958.2000.01703.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Frankia is an actinomycete that fixes atmospheric nitrogen in symbiotic association with the root systems of a variety of non-leguminous plants, denominated actinorhizal plants. Information on the biology of proteolysis in Frankia is almost non-existent as it is extremely difficult to grow this organism. We have purified 20S proteasomes from Frankia strain ACN14a/ts-r. It is composed of one alpha-subunit and one beta-subunit, which assemble into the canonical structure of four rings of seven subunits each. The enzyme displayed a chymotrypsin-like activity against synthetic substrates and was sensitive to lactacystin, a specific proteasome inhibitor. Analysis of the structural genes and the flanking regions revealed a similar organization to Rhodococcus erythropolis, Mycobacterium tuberculosis and Streptomyces coelicolor and showed that the beta-subunit is encoded with a 52-amino-acid propeptide that is cleaved off in the course of the assembly. We report also for the first time the in vitro assembly of chimeric proteasomes composed of Frankia and Rhodococcus erythropolis subunits, which are correctly assembled and proteolytically active.
Collapse
Affiliation(s)
- M N Pouch
- Max-Planck-Institut für Biochemie, Abteilung Molekulare Strukturbiologie, Am Klopferspitz 18a, D-82152 Martinsried, Germany
| | | | | |
Collapse
|
1554
|
Stohwasser R, Soza A, Eggers M, Koszinowski UH, Kloetzel PM. PA28alphabeta double and PA28beta single transfectant mouse B8 cell lines reveal enhanced presentation of a mouse cytomegalovirus (MCMV) pp89 MHC class I epitope. Mol Immunol 2000; 37:13-9. [PMID: 10781831 DOI: 10.1016/s0161-5890(00)00017-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PA28 is an interferon-gamma inducible modulator of proteasome function composed of two subunits, i.e. PA28alpha and PA28beta. Previously we showed that stabile overexpression of the PA28alpha subunit alone supported MHC class I antigen presentation of two viral epitopes. However, no information was obtained on the consequences when PA28alpha and PA28beta function in concert or when PA28beta is overexpressed on its own. Here we demonstrate that overexpression of PA28alpha and beta together is similarly efficient in supporting MHC class I antigen presentation of the MCMV pp89 9mer epitope as PA28alpha alone, excluding a potentially potentiating role of PA28beta. Surprisingly, and despite the fact that PA28beta alone was thought to be inactive and to only stabilize PA28 activity, overexpression of PA28beta also resulted in improved antigen presentation. However, by northernblot and immunoprecipitation experiments we show that while PA28alpha is able to act alone the observed effect in the PA28beta and PA28alphabeta transfectant cell lines is due to increased levels of PA28alphabeta complexes.
Collapse
Affiliation(s)
- R Stohwasser
- Institute of Biochemistry, Medical Faculty - Charité, Humboldt University, Monbijoustrasse 2, 10117, Berlin, Germany.
| | | | | | | | | |
Collapse
|
1555
|
Tokumoto M, Horiguchi R, Nagahama Y, Ishikawa K, Tokumoto T. Two proteins, a goldfish 20S proteasome subunit and the protein interacting with 26S proteasome, change in the meiotic cell cycle. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:97-103. [PMID: 10601855 DOI: 10.1046/j.1432-1327.2000.00962.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To investigate the regulatory mechanism for the proteasome in the meiotic cell cycle, we purified the 26S proteasome from immature (in G2-phase) and mature (in M-phase) oocytes, and compared its subunits by immunoblotting. At least two protein bands, at 30 kDa (detected by GC3beta antibody) and 62 kDa (detected by 1-4D5 antibody), differed between 26S proteasomes. A monoclonal antibody, GC3beta cross-reacted with two bands in the 26S proteasome from immature oocytes, however, the upper band was absent in the 26S proteasome from mature oocytes. The 62-kDa protein band detected by 1-4D5 antibody was not detected in the immature oocyte 26S proteasome; however, a band was detected in mature oocyte 26S proteasome. The cDNAs encoding these proteins were isolated by an immunoscreening method using the monoclonal antibodies. The 30-kDa protein was an alpha4 subunit, which is one of the alpha-subunit group of the 20S proteasome, and the 62-kDa protein was a homologue of CCTepsilon, one of the components of eukaryotic molecular chaperones. Phosphatase treatment of the 26S proteasome revealed that a part of the alpha4 subunit of goldfish 20S proteasome, alpha4_ca, is phosphorylated in G2-phase and dephosphorylated in M-phase. A binding assay using a recombinant goldfish CCTepsilon revealed that unmodified CCTepsilon interacts with the 26S proteasome. Fertilization triggers a transition from meiotic metaphase to mitotic interphase. During fertilization, a GC3beta cross-reacting upper band reappeared. The 62-kDa band dissociated from the 26S proteasome. As a result, the 26S proteasome changed to an immature type from a mature type during fertilization. These results suggest that the 26S proteasome is changed reversibly during the meiotic cell cycle by modification of its subunits and interactions between regulators.
Collapse
Affiliation(s)
- M Tokumoto
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.
| | | | | | | | | |
Collapse
|
1556
|
Abstract
Based on the peculiar spatial array of the active sites in the internal chamber of the multicatalytic proteasome, as derived from the X-ray structure of yeast proteasome, homo- and heterobivalent inhibitors were designed and synthesized to exploit the principle of multivalency for enhancing inhibition potency. Peptidic bis-aldehyde compounds of the octapeptide size were synthesized to address adjacent active sites, whilst a PEG spacer with a statistical length distribution of 19-25 monomers was used to link two identical or different tripeptide aldehydes as binding heads. These bis-aldehyde compounds were synthesized applying both methods in solution and solid phase peptide synthesis. Bivalent binding was observed only for the PEG-spaced inhibitors suggesting that binding from the primed side prevents hemiacetal formation with the active site threonine residue.
Collapse
Affiliation(s)
- G Loidl
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | | | |
Collapse
|
1557
|
Murata S, Kawahara H, Tohma S, Yamamoto K, Kasahara M, Nabeshima Y, Tanaka K, Chiba T. Growth retardation in mice lacking the proteasome activator PA28gamma. J Biol Chem 1999; 274:38211-5. [PMID: 10608895 DOI: 10.1074/jbc.274.53.38211] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proteasome activator PA28 binds to both ends of the central catalytic machine, known as the 20 S proteasome, in opposite orientations to form the enzymatically active proteasome. The PA28 family is composed of three members designated alpha, beta, and gamma; PA28alpha and PA28beta form the heteropolymer mainly located in the cytoplasm, whereas PA28gamma forms a homopolymer that predominantly occurs in the nucleus. Available evidence indicates that the heteropolymer of PA28alpha and PA28beta is involved in the processing of intracellular antigens, but the function of PA28gamma remains elusive. To investigate the role of PA28gamma in vivo, we generated mice deficient in the PA28gamma gene. The PA28gamma-deficient mice were born without appreciable abnormalities in all tissues examined, but their growth after birth was retarded compared with that of PA28gamma(+/-) or PA28gamma(+/+) mice. We also investigated the effects of the PA28gamma deficiency using cultured embryonic fibroblasts; cells lacking PA28gamma were larger and displayed a lower saturation density than their wild-type counterparts. Neither the expression of PA28alpha/beta nor the subcellular localization of PA28alpha was affected in PA28gamma(-/-) cells. These results indicate that PA28gamma functions as a regulator of cell proliferation and body growth in mice and suggest that neither PA28alpha nor PA28beta compensates for the PA28gamma deficiency.
Collapse
Affiliation(s)
- S Murata
- Department of Allergy, Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
1558
|
Schmidtke G, Holzhütter HG, Bogyo M, Kairies N, Groll M, de Giuli R, Emch S, Groettrup M. How an inhibitor of the HIV-I protease modulates proteasome activity. J Biol Chem 1999; 274:35734-40. [PMID: 10585454 DOI: 10.1074/jbc.274.50.35734] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human immunodeficiency virus, type I protease inhibitor Ritonavir has been used successfully in AIDS therapy for 4 years. Clinical observations suggested that Ritonavir may exert a direct effect on the immune system unrelated to inhibition of the human immunodeficiency virus, type I protease. In fact, Ritonavir inhibited the major histocompatibility complex class I restricted presentation of several viral antigens at therapeutically relevant concentrations (5 microM). In search of a molecular target we found that Ritonavir inhibited the chymotrypsin-like activity of the proteasome whereas the tryptic activity was enhanced. In this study we kinetically analyzed how Ritonavir modulates proteasome activity and what consequences this has on cellular functions of the proteasome. Ritonavir is a reversible effector of proteasome activity that protected the subunits MB-1 (X) and/or LMP7 from covalent active site modification with the vinyl sulfone inhibitor(125)I-NLVS, suggesting that they are the prime targets for competitive inhibition by Ritonavir. At low concentrations of Ritonavir (5 microM) cells were more sensitive to canavanine but proliferated normally whereas at higher concentrations (50 microM) protein degradation was affected, and the cell cycle was arrested in the G(1)/S phase. Ritonavir thus modulates antigen processing at concentrations at which vital cellular functions of the proteasome are not yet severely impeded. Proteasome modulators may hence qualify as therapeutics for the control of the cytotoxic immune response.
Collapse
Affiliation(s)
- G Schmidtke
- Research Department, Cantonal Hospital St. Gall, CH-9007 St. Gallen, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
1559
|
Kim KB, Myung J, Sin N, Crews CM. Proteasome inhibition by the natural products epoxomicin and dihydroeponemycin: insights into specificity and potency. Bioorg Med Chem Lett 1999; 9:3335-40. [PMID: 10612595 DOI: 10.1016/s0960-894x(99)00612-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
While two structurally related epoxyketone-containing antitumor natural products, epoxomicin and eponemycin, share the proteasome as a common intracellular target, they differ in their antiproliferative activity, proteasome subunit binding specificity, and rates of proteasome inhibition. As a first step towards understanding such differences and developing novel proteasome subunit-specific inhibitors, we report here the synthesis and characterization of epoxomicin/dihydroeponemycin chimerae.
Collapse
Affiliation(s)
- K B Kim
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | | | | | | |
Collapse
|
1560
|
Niedermann G, Geier E, Lucchiari-Hartz M, Hitziger N, Ramsperger A, Eichmann K. The specificity of proteasomes: impact on MHC class I processing and presentation of antigens. Immunol Rev 1999; 172:29-48. [PMID: 10631935 DOI: 10.1111/j.1600-065x.1999.tb01354.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have studied polypeptide processing by purified proteasomes, with regard to proteolytic specificity and cytotoxic T-lymphocyte (CTL) epitope generation. Owing to defined preferences with respect to cleavage sites and fragment length, proteasomes degrade polypeptide substrates into cohorts of overlapping oligopeptides. Many of the proteolytic fragments exhibit structural features in common with major histocompatibility complex (MHC) class I ligands including fragment size and frequencies of amino acids at fragment boundaries. Proteasomes frequently generate definitive MHC class I ligands and/or slightly longer peptides, while substantially larger peptides are rare. Individual CTL epitopes are produced in widely varying amounts, often consistent with immunohierarchies among CTL epitopes. We further found that polypeptide processing is remarkably conserved among proteasomes of eukaryotic origin and that invertebrate proteasomes can efficiently produce known high-copy MHC class I ligands, suggesting evolutionary adaptation of the transporter associated with antigen processing and MHC class I to ancient constraints imposed by proteasomal protein degradation.
Collapse
Affiliation(s)
- G Niedermann
- Max-Planck Institute of Immunobiology, Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
1561
|
York IA, Goldberg AL, Mo XY, Rock KL. Proteolysis and class I major histocompatibility complex antigen presentation. Immunol Rev 1999; 172:49-66. [PMID: 10631936 DOI: 10.1111/j.1600-065x.1999.tb01355.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The class I major histocompatibility complex (MHC class I) presents 8-10 residue peptides to cytotoxic T lymphocytes. Most of these antigenic peptides are generated during protein degradation in the cytoplasm and are then transported into the endoplasmic reticulum by the transporter associated with antigen processing (TAP). Several lines of evidence have indicated that the proteasome is the major proteolytic activity responsible for generation of antigenic peptides--probably most conclusive has been the finding that specific inhibitors of the proteasome block antigen presentation. However, other proteases (e.g. the signal peptidase) may also generate some epitopes, particularly those on certain MHC class I alleles. The proteasome is responsible for generating the precise C termini of many presented peptides, and appears to be the only activity in cells that can make this cleavage. In contrast, aminopeptidases in the cytoplasm and endoplasmic reticulum can trim the N terminus of extended peptides to their proper size. Interestingly, the cellular content of proteases involved in the production and destruction of antigenic peptides is modified by interferon-gamma (IFN-gamma) treatment of cells. IFN-gamma induces the expression of three new proteasome beta subunits that are preferentially incorporated into new proteasomes and alter their pattern of peptidase activities. These changes are likely to enhance the yield of peptides with C termini appropriate for MHC binding and have been shown to enhance the presentation of at least some antigens. IFN-gamma also upregulates leucine aminopeptidase, which should promote the removal of N-terminal flanking residues of antigenic peptides. Also, this cytokine downregulates the expression of a metallo-proteinase, thimet oligopeptidase, that actively destroys many antigenic peptides. Thus, IFN-gamma appears to increase the supply of peptides by stimulating their generation and decreasing their destruction. The specificity and content of these various proteases should determine the amount of peptides available for antigen presentation. Also, the efficiency with which a peptide is presented is determined by the protein's half life (e.g. its ubiquitination rate) and the sequences flanking antigenic peptides, which influence the rates of proteolytic cleavage and destruction.
Collapse
Affiliation(s)
- I A York
- Department of Pathology, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | | | |
Collapse
|
1562
|
Yao Y, Toth CR, Huang L, Wong ML, Dias P, Burlingame AL, Coffino P, Wang CC. alpha5 subunit in Trypanosoma brucei proteasome can self-assemble to form a cylinder of four stacked heptamer rings. Biochem J 1999; 344 Pt 2:349-58. [PMID: 10567215 PMCID: PMC1220650 DOI: 10.1042/0264-6021:3440349] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The proteasomes have a central role in catalysing protein degradation among both prokaryotes and eukaryotes. The 20 S proteasome constitutes their catalytic core. In studying the structure of Trypanosoma brucei 20 S proteasomes, we isolated by two-dimensional (2D) gel electrophoresis a 27 kDa subunit protein with an estimated pI of 4.7 and subjected it to mass spectrometric analysis. A tryptic peptide sequence from the protein was found identical with that of the rat alpha5 subunit. With the use of antiserum against T. brucei 20 S proteasomes to screen a T. b. rhodesiense lambda expression cDNA library, we obtained a cDNA clone encoding a full-length protein of 246 amino acid residues with a calculated molecular mass of 27174 Da and a pI of 4.71. It bears 50. 0% and 46.3% sequence identity with rat and yeast proteasome subunit alpha5 respectively, and matches all the peptide sequences derived from MS of the 2D gel-purified protein. The protein is thus designated the alpha5 subunit of T. brucei 20 S proteasome (TbPSA5). The recombinant protein, expressed in plasmid-transformed Escherichia coli, was found in a 27 kDa monomer form as well as polymerized forms with estimated molecular masses ranging from 190 to 800 kDa. Under the electron microscope, the most highly polymerized forms bear the appearance of cylinders of four-stacked heptamer rings with an estimated outer diameter of 14.5 nm and a length of 18 nm, which were immunoprecipitable by anti-(T. brucei 20 S proteasome) antiserum. In view of the documented self-assembly of the archaeon proteasome alpha subunit into double heptamer rings and the spontaneous assembly of the two alpha subunits from the 20 S proteasome of Rhodococcus erythropolis, the self-assembly of the T. brucei alpha subunit might reflect a common feature of proteasome biogenesis shared by prokaryotes and primitive eukaryotes such as the trypanosomes but apparently lost among the higher forms of eukaryote such as the yeast and the mammals.
Collapse
Affiliation(s)
- Y Yao
- Department of Pharmaceutical Chemistry, Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA 94143-0446, USA
| | | | | | | | | | | | | | | |
Collapse
|
1563
|
Stevanović S, Schild H. Quantitative aspects of T cell activation--peptide generation and editing by MHC class I molecules. Semin Immunol 1999; 11:375-84. [PMID: 10625591 DOI: 10.1006/smim.1999.0195] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The number of class I MHC/peptide complexes on the surface of antigen presenting cells crucially influences the activation of T cells. The formation of these complexes depends on selection processes at the level of peptide generation from proteins (predominantly in the cytosol), peptide transport into the ER and binding requirements of individual MHC class I molecules. These individual events have co-evolved to what is called 'antigen processing and presentation' and result in the representative presentation of peptides from every cellular protein by a species-specific combination of MHC class I molecules for recognition by MHC class I-restricted T cells.
Collapse
Affiliation(s)
- S Stevanović
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, Tübingen, D-72076, Germany
| | | |
Collapse
|
1564
|
Yao Y, Huang L, Krutchinsky A, Wong ML, Standing KG, Burlingame AL, Wang CC. Structural and functional characterizations of the proteasome-activating protein PA26 from Trypanosoma brucei. J Biol Chem 1999; 274:33921-30. [PMID: 10567354 DOI: 10.1074/jbc.274.48.33921] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activated 20 S proteasome, which has been found only in mammalian cells, is composed of two heptamer rings of an activator protein on each end of the 20 S proteasome and is inducible by interferon-gamma. A 20 S proteasome has been recently identified in a protozoan pathogen Trypanosoma brucei, but there has been no experimental evidence yet for the presence of a 26 S proteasome. Instead, an activated form of 20 S proteasome was isolated from this organism, which has significantly enhanced peptidase activities. It consists of an additional activator protein with an estimated molecular mass of 26 kDa (PA26) (To, W. Y., and Wang, C. C. (1997) FEBS Lett. 404, 253-262). The profile and sequences of tryptic peptides from PA26 were determined by mass spectrometry; no matches were found in the data base. The peptide sequences were used in reverse transcriptase-polymerase chain reaction to isolate a full-length cDNA clone encoding PA26. The protein sequence thus derived from it indicates little sequence identity with those of mammalian activator proteins PA28 alpha, beta, or gamma. There is only a single copy of PA26 gene in T. brucei. Purified recombinant PA26 polymerizes spontaneously to form heptamer ring with an outer diameter of 8.5 nm. The ring binds and activates 20 S proteasomes from T. brucei as well as rat, whereas human PA28alpha can neither bind nor activate T. brucei 20 S proteasome. The former is thus apparently more ubiquitous than PA28 in its capability of binding to and activating 20 S proteasomes. Its presence in T. brucei may also suggest a more ancient origin of proteasome activator proteins and a much wider involvement in protein degradation among other eukaryotic organisms than was originally envisaged.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Southern
- Cloning, Molecular
- Cysteine Endopeptidases/chemistry
- Cysteine Endopeptidases/genetics
- Cysteine Endopeptidases/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Protozoan/analysis
- DNA, Protozoan/genetics
- Electrophoresis, Gel, Two-Dimensional
- Electrophoresis, Polyacrylamide Gel
- Enzyme Activation
- Gene Dosage
- Histidine/genetics
- Immunoblotting
- Insect Proteins/chemistry
- Insect Proteins/genetics
- Insect Proteins/metabolism
- Mass Spectrometry/methods
- Molecular Sequence Data
- Multienzyme Complexes/chemistry
- Multienzyme Complexes/genetics
- Multienzyme Complexes/metabolism
- Proteasome Endopeptidase Complex
- Protein Conformation
- Protein Isoforms/genetics
- Protozoan Proteins
- Rats
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/ultrastructure
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Analysis, Protein
- Sequence Homology, Amino Acid
- Trypanosoma brucei brucei/chemistry
- Trypanosoma brucei brucei/enzymology
- Trypanosoma brucei brucei/genetics
Collapse
Affiliation(s)
- Y Yao
- Department of Pharmaceutical Chemistry, Howard Hughes Medical Institute, University of California, San Francisco, California 94143, USA
| | | | | | | | | | | | | |
Collapse
|
1565
|
Yano M, Mori S, Kido H. Intrinsic nucleoside diphosphate kinase-like activity is a novel function of the 20 S proteasome. J Biol Chem 1999; 274:34375-82. [PMID: 10567415 DOI: 10.1074/jbc.274.48.34375] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The eukaryotic 20 S proteasome is the prototype of a new family of the N-terminal nucleophil hydrolases and is composed of numerous low molecular mass subunits arranged in a stack of four rings, each containing seven different alpha- or beta-subunits. Among the beta-type subunits in the yeast proteasome, three proteolytically active ones were identified, although the functions of the other beta- and alpha-type subunits remain to be clarified. We report here that the purified 20 S proteasome exhibits intrinsic nucleoside diphosphate (NDP) kinase-like activity. The proteasome exhibited a preference for ATP and dATP as phosphate donors, and a broad specificity for NDPs, other than GDP, as phosphate acceptors, unlike conventional NDP kinase, which catalyzes the transfer of gamma-phosphate between NDPs and nucleoside triphosphates. During the transfer of gamma-phosphate, the proteasome formed acid-labile phosphohistidine as autophosphorylated intermediates, and NDP-dependent dephosphorylation of the latter then occurred. These enzymatic properties are similar to those of the molecular chaperone, Hsp70, which also exhibits intrinsic NDP kinase-like activity, instead of ATPase activity. C5 among the beta-type subunits and C8 among the alpha-type subunits were autophosphorylated during the gamma-phosphate transfer reaction and were photoaffinity labeled with 8-azido-[alpha-(32)P]ATP, suggesting that the C5 and C8 subunits of the proteasome are responsible for the NDP kinase-like activity.
Collapse
Affiliation(s)
- M Yano
- Division of Enzyme Chemistry, Institute for Enzyme Research, The University of Tokushima, Tokushima 770, Japan
| | | | | |
Collapse
|
1566
|
Wu Z, Li Q, Fortini ME, Fischer JA. Genetic analysis of the role of the drosophila fat facets gene in the ubiquitin pathway. DEVELOPMENTAL GENETICS 1999; 25:312-20. [PMID: 10570463 DOI: 10.1002/(sici)1520-6408(1999)25:4<312::aid-dvg5>3.0.co;2-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Drosophila fat facets gene encodes a deubiquitinating enzyme required during eye development to limit the number of photoreceptors in each facet to eight. Ubiquitin is a small polypeptide that targets proteins for degradation by the proteasome. Deubiquitinating enzymes cleave ubiquitin-protein bonds. In order to investigate the role of FAT FACETS in the ubiquitin pathway, genetic interactions between fat facets and the Drosophila UbcD1 gene were assessed. In addition, three yeast deubiquitinating enzyme genes were tested for their ability to substitute for fat facets in the developing Drosophila eye and for their effects on eye morphology. The results of these experiments support the hypothesis that FAT FACETS activity antagonizes that of the proteolytic machinery. The implications of these results for the specificity of FAF and yeast UBPs are discussed as well.
Collapse
Affiliation(s)
- Z Wu
- Department of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, 78712, USA
| | | | | | | |
Collapse
|
1567
|
Tomoda H, Ohbayashi N, Kumagai H, Hashizume H, Sunazuka T, Omura S. Differential inhibition of HMG-CoA synthase and pancreatic lipase by the specific chiral isomers of beta-lactone DU-6622. Biochem Biophys Res Commun 1999; 265:536-40. [PMID: 10558904 DOI: 10.1006/bbrc.1999.1712] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A synthetic beta-lactone trans-DU-6622 (3-hydroxy-2-(hydroxymethyl)-5-[7-(methylcarbonyl)-naphthalen++ +-1-yl]pentanoic acid 1,3-lactone, a mixture of (2R, 3R)- and (2S, 3S)-beta-lactones) was found to inhibit HMG-CoA synthase (IC(50): 0. 15 microM) and pancreatic lipase (IC(50): 120 microM). The effects of the optically pure DU-6622 isomers on the two enzymes were compared. The (2R, 3R)-isomer was shown to be a highly specific inhibitor of HMG-CoA synthase (IC(50): 0.098 microM vs 270 microM for pancreatic lipase), while the (2S, 3S)-isomer markedly increased the specificity of lipase inhibition (IC(50): 27 microM vs 31 microM for HMG-CoA synthase). Furthermore, the (2R, 3R)-isomer strongly inhibited the binding of [(14)C]hymeglusin to HMG-CoA synthase, indicating that the isomer was bound to the same site of the synthase as hymeglusin. The (2R, 3R)-beta-lactone is responsible for the specific inhibition of HMG-CoA synthase, while the (2S, 3S)-beta-lactone is responsible for the inhibition of pancreatic lipase.
Collapse
Affiliation(s)
- H Tomoda
- Research Center for Biological Function, Kitasato University, Tokyo, 108-8642, Japan
| | | | | | | | | | | |
Collapse
|
1568
|
Certad G, Abrahem A, Georges E. Cloning and partial characterization of the proteasome S4 ATPase from Plasmodium falciparum. Exp Parasitol 1999; 93:123-31. [PMID: 10529354 DOI: 10.1006/expr.1999.4442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Certad, G., Abrahem, A., and Georges, E. 1999. Cloning and Partial characterization of the proteasome S4 ATPase from Plasmodium falciparum. Experimental Parasitology 93, 123-131. The ATP-ubiquitin-proteasome pathway mediates the nonlysosomal degradation of cytosolic proteins in eukaryotic cells. The activities of this pathway have been shown to regulate cell growth and differentiation through modulation of regulatory proteins. The proteasome is a large complex consisting of two multisubunit structures, the 20S and 19S(PA700) or P28 complexes, that combine to form the 26S particles. In this study, we describe the cloning of a cDNA encoding the proteasome subunit 4 ATPase homologue from Plasmodium falciparum (PFS4). Analysis of the PFS4 cDNA sequence shows an open reading frame encoding a deduced protein of 455 amino acids. Moreover, comparison of PFS4 cDNA sequence to that of genomic fragments encoding PFS4 showed identical sequences with no detectable introns. Database searches revealed a high sequence identity to those of rice, yeast, mouse, Drosophila, and human S4 ATPases. However, PFS4 contains two unique inserts of nine and seven amino acid residues in the N-terminal domain. Interestingly, only the rice S4 contains the latter (seven amino acids) insert with four identical amino acids. In vitro expression of the full-length cDNA encoding the PFS4, using a transcription-translation-coupled reticulocyte lysate, shows a 50-kDa [(35)S]methionine-labeled protein which was immunoprecipitated with PFS4 anti-peptide antiserum. Southern blot analysis of genomic DNA digests shows a single gene copy of PFS4 in P. falciparum. Of interest was the effect of the proteasome-specific natural product, lactacystin, on the growth of the parasite, with IC(50) values of 0.6-0.92 microM. The latter IC(50) values of lactacystin for different clones of P. falciparum are comparable to those obtained for mammalian cell lines (0.65 microM), suggesting the presence of a conserved proteasome complex. Moreover, lactacystin was equally toxic to drug-sensitive and resistant parasites.
Collapse
Affiliation(s)
- G Certad
- Institute of Parasitology, McGill University, Ste-Anne de Bellevue, Quebec, Canada
| | | | | |
Collapse
|
1569
|
Tokumoto M, Horiguchi R, Nagahama Y, Tokumoto T. Identification of the Xenopus 20S proteasome alpha4 subunit which is modified in the meiotic cell cycle. Gene 1999; 239:301-8. [PMID: 10548731 DOI: 10.1016/s0378-1119(99)00406-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The proteasomes are large, multi-subunit particles that act as the proteolytic machinery for most of the regulated intracellular protein degradation in eukaryotic cells. To investigate the regulatory mechanism for the 26S proteasome in cell-cycle events, we purified this proteasome from immature and mature oocytes, and compared its subunits. Immunoblot analysis of 26S proteasomes showed a difference in the subunit of the 20S proteasome. A monoclonal antibody, GC3beta, cross-reacted with two bands in the 26S proteasome from immature oocytes (in G2-phase); however, the upper band was absent in the 26S proteasome from mature oocytes (in M-phase). These results suggest that changes in the subunits of 26S proteasomes are involved in the regulation of the meiotic cell cycle. Here we describe the molecular cloning of one of the alpha subunits of the 20S proteasome from a Xenopus ovarian cDNA library using an anti-GC3beta monoclonal antibody. From the screening, two types of cDNA are obtained, one 856bp, the other 984bp long. The deduced amino-acid sequences comprise 247 and 248 residues, respectively. These deduced amino-acid sequences are highly homologous to those of alpha4 subunits of other vertebrates. Phosphatase treatment of 26S proteasome revealed the upper band to be a phosphorylated form of the lower band. These results suggest that a part of the alpha4 subunit of the Xenopus 20S proteasome, alpha4_xl, is phosphorylated in G2-phase and dephosphorylated in M-phase.
Collapse
Affiliation(s)
- M Tokumoto
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan
| | | | | | | |
Collapse
|
1570
|
Ponting CP, Pallen MJ. beta-propeller repeats and a PDZ domain in the tricorn protease: predicted self-compartmentalisation and C-terminal polypeptide-binding strategies of substrate selection. FEMS Microbiol Lett 1999; 179:447-51. [PMID: 10518749 DOI: 10.1111/j.1574-6968.1999.tb08761.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Prokaryotic proteases demonstrate a variety of substrate-selection strategies that prevent uncontrolled protein degradation. Proteasomes and ClpXP-like proteases form oligomeric structures that exclude large substrates from central solvated chambers containing their active sites. Monomeric prolyl oligopeptidases have been shown to contain beta-propeller structures that similarly reduce access to their catalytic residues. By contrast, Tsp-like enzymes contain PDZ domains that are thought to specifically target C-terminal polypeptides. We have investigated the sequence of Thermoplasma acidophilum tricorn protease using recently-developed database search methods. The tricorn protease is known to associate into a 20 hexamer capsid enclosing an extremely large cavity that is 37 nm in diameter. It is unknown, however, how this enzyme selects its small oligopeptide substrates. Our results demonstrate the presence in tricorn protease of a PDZ domain and two predicted six-bladed beta-propeller domains. We suggest that the PDZ domain is involved in targeting non-polar C-terminal peptides, similar to those generated by the T. acidophilum proteasome, whereas the beta-propeller domains serve to exclude large substrates from the tricorn protease active site in a similar manner to that previously indicated for prolyl oligopeptidase.
Collapse
Affiliation(s)
- C P Ponting
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | |
Collapse
|
1571
|
Soucy F, Grenier L, Behnke ML, Destree AT, McCormack TA, Adams J, Plamondon L. A Novel and Efficient Synthesis of a Highly Active Analogue of clasto-Lactacystin β-Lactone. J Am Chem Soc 1999. [DOI: 10.1021/ja991175f] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- François Soucy
- Contribution from the Department of Chemistry, LeukoSite, Inc., 38 Sidney Street, Cambridge, Massachusetts 02139
| | - Louis Grenier
- Contribution from the Department of Chemistry, LeukoSite, Inc., 38 Sidney Street, Cambridge, Massachusetts 02139
| | - Mark L. Behnke
- Contribution from the Department of Chemistry, LeukoSite, Inc., 38 Sidney Street, Cambridge, Massachusetts 02139
| | - Antonia T. Destree
- Contribution from the Department of Chemistry, LeukoSite, Inc., 38 Sidney Street, Cambridge, Massachusetts 02139
| | - Teresa A. McCormack
- Contribution from the Department of Chemistry, LeukoSite, Inc., 38 Sidney Street, Cambridge, Massachusetts 02139
| | - Julian Adams
- Contribution from the Department of Chemistry, LeukoSite, Inc., 38 Sidney Street, Cambridge, Massachusetts 02139
| | - Louis Plamondon
- Contribution from the Department of Chemistry, LeukoSite, Inc., 38 Sidney Street, Cambridge, Massachusetts 02139
| |
Collapse
|
1572
|
Bailly E, Reed SI. Functional characterization of rpn3 uncovers a distinct 19S proteasomal subunit requirement for ubiquitin-dependent proteolysis of cell cycle regulatory proteins in budding yeast. Mol Cell Biol 1999; 19:6872-90. [PMID: 10490625 PMCID: PMC84683 DOI: 10.1128/mcb.19.10.6872] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By selectively eliminating ubiquitin-conjugated proteins, the 26S proteasome plays a pivotal role in a large variety of cellular regulatory processes, particularly in the control of cell cycle transitions. Access of ubiquitinated substrates to the inner catalytic chamber within the 20S core particle is mediated by the 19S regulatory particle (RP), whose subunit composition in budding yeast has been recently elucidated. In this study, we have investigated the cell cycle defects resulting from conditional inactivation of one of these RP components, the essential non-ATPase Rpn3/Sun2 subunit. Using temperature-sensitive mutant alleles, we show that rpn3 mutations do not prevent the G(1)/S transition but cause a metaphase arrest, indicating that the essential Rpn3 function is limiting for mitosis. rpn3 mutants appear severely compromised in the ubiquitin-dependent proteolysis of several physiologically important proteasome substrates. Thus, RPN3 function is required for the degradation of the G(1)-phase cyclin Cln2 targeted by SCF; the S-phase cyclin Clb5, whose ubiquitination is likely to involve a combination of E3 (ubiquitin protein ligase) enzymes; and anaphase-promoting complex targets, such as the B-type cyclin Clb2 and the anaphase inhibitor Pds1. Our results indicate that the Pds1 degradation defect of the rpn3 mutants most likely accounts for the metaphase arrest phenotype observed. Surprisingly, but consistent with the lack of a G(1) arrest phenotype in thermosensitive rpn3 strains, the Cdk inhibitor Sic1 exhibits a short half-life regardless of the RPN3 genotype. In striking contrast, Sic1 turnover is severely impaired by a temperature-sensitive mutation in RPN12/NIN1, encoding another essential RP subunit. While other interpretations are possible, these data strongly argue for the requirement of distinct RP subunits for efficient proteolysis of specific cell cycle regulators. The potential implications of these data are discussed in the context of possible Rpn3 function in multiubiquitin-protein conjugate recognition by the 19S proteasomal regulatory particle.
Collapse
Affiliation(s)
- E Bailly
- Institut Curie-UMR 144, 75248 Paris Cedex 05, France.
| | | |
Collapse
|
1573
|
Takeuchi J, Fujimuro M, Yokosawa H, Tanaka K, Toh-e A. Rpn9 is required for efficient assembly of the yeast 26S proteasome. Mol Cell Biol 1999; 19:6575-84. [PMID: 10490597 PMCID: PMC84627 DOI: 10.1128/mcb.19.10.6575] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have isolated the RPN9 gene by two-hybrid screening with, as bait, RPN10 (formerly SUN1), which encodes a multiubiquitin chain receptor residing in the regulatory particle of the 26S proteasome. Rpn9 is a nonessential subunit of the regulatory particle of the 26S proteasome, but the deletion of this gene results in temperature-sensitive growth. At the restrictive temperature, the Deltarpn9 strain accumulated multiubiquitinated proteins, indicating that the RPN9 function is needed for the 26S proteasome activity at a higher temperature. We analyzed the proteasome fractions separated by glycerol density gradient centrifugation by native polyacrylamide gel electrophoresis and found that a smaller amount of the 26S proteasome was produced in the Deltarpn9 cells and that the 26S proteasome was shifted to lighter fractions than expected. The incomplete proteasome complexes were found to accumulate in the Deltarpn9 cells. Furthermore, Rpn10 was not detected in the fractions containing proteasomes of the Deltarpn9 cells. These results indicate that Rpn9 is needed for incorporating Rpn10 into the 26S proteasome and that Rpn9 participates in the assembly and/or stability of the 26S proteasome.
Collapse
Affiliation(s)
- J Takeuchi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
1574
|
Murakami Y, Matsufuji S, Hayashi SI, Tanahashi N, Tanaka K. ATP-Dependent inactivation and sequestration of ornithine decarboxylase by the 26S proteasome are prerequisites for degradation. Mol Cell Biol 1999; 19:7216-27. [PMID: 10490656 PMCID: PMC84714 DOI: 10.1128/mcb.19.10.7216] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 26S proteasome is a eukaryotic ATP-dependent protease, but the molecular basis of its energy requirement is largely unknown. Ornithine decarboxylase (ODC) is the only known enzyme to be degraded by the 26S proteasome without ubiquitinylation. We report here that the 26S proteasome is responsible for the irreversible inactivation coupled to sequestration of ODC, a process requiring ATP and antizyme (AZ) but not proteolytic activity. Neither the 20S proteasome (catalytic core) nor PA700 (the regulatory complex) by itself contributed to this ODC inactivation. Analysis with a C-terminal mutant ODC revealed that the 26S proteasome recognizes the C-terminal degradation signal of ODC exposed by attachment of AZ, and subsequent ATP-dependent sequestration of ODC in the 26S proteasome causes irreversible inactivation, possibly unfolding, of ODC and dissociation of AZ. These processes may be linked to the translocation of ODC into the 20S proteasomal inner cavity, centralized within the 26S proteasome, for degradation.
Collapse
Affiliation(s)
- Y Murakami
- Department of Biochemistry 2, Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan.
| | | | | | | | | |
Collapse
|
1575
|
Abstract
A general paradigm for energy-dependent proteases is emerging: ATP may be used to unfold the substrate and translocate it through a narrow channel within the enzyme into a central proteolytic chamber. Different members of the family present intriguing elaborations on this model.
Collapse
Affiliation(s)
- M Schmidt
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts, 02115, USA
| | | | | |
Collapse
|
1576
|
Wilkinson CR, Penney M, McGurk G, Wallace M, Gordon C. The 26S proteasome of the fission yeast Schizosaccharomyces pombe. Philos Trans R Soc Lond B Biol Sci 1999; 354:1523-32. [PMID: 10582238 PMCID: PMC1692671 DOI: 10.1098/rstb.1999.0496] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The 26S proteasome is the multiprotein complex that degrades proteins that have been marked for destruction by the ubiquitin pathway. It is made up of two multisubunit complexes, the 20S catalytic core and the 19S regulatory complex. We describe the isolation and characterization of conditional mutants in the regulatory complex and their use to investigate interactions between different subunits. In addition we have investigated the localization of the 26S proteasome in fission yeast, by immunofluorescence in fixed cells and live cells with the use of a GFP-tagged subunit. Surprisingly, we find that in mitotic cells the 26S proteasome occupies a discrete intracellular compartment, the nuclear periphery. Electron microscopic analysis demonstrates that the complex resides inside the nuclear envelope. During meiosis the localization showed a more dynamic distribution. In meiosis I the proteasome remained around the nuclear periphery. However, during meiosis II there was a dramatic relocalization: initially, the signal occupied the area between the dividing nuclei, but at the end of mitosis the signal dispersed, returning to the nuclear periphery on ascospore formation. This observation implies that the nuclear periphery is a major site of proteolysis in yeast during mitotic growth and raises important questions about the function of the 26S proteasome in protein degradation.
Collapse
Affiliation(s)
- C R Wilkinson
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, UK
| | | | | | | | | |
Collapse
|
1577
|
Hunt T. Introduction to Programmed proteolysis and the control of cell division. A Discussion Meeting held at the Royal Society on 4 and 5 November 1998. Philos Trans R Soc Lond B Biol Sci 1999. [DOI: 10.1098/rstb.1999.0493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
1578
|
Toda T, Ochotorena I, Kominami K. Two distinct ubiquitin-proteolysis pathways in the fission yeast cell cycle. Philos Trans R Soc Lond B Biol Sci 1999; 354:1551-7. [PMID: 10582240 PMCID: PMC1692669 DOI: 10.1098/rstb.1999.0498] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The SCF complex (Skp1-Cullin-1-F-box) and the APC/cyclosome (anaphase-promoting complex) are two ubiquitin ligases that play a crucial role in eukaryotic cell cycle control. In fission yeast F-box/WD-repeat proteins Pop1 and Pop2, components of SCF are required for cell-cycle-dependent degradation of the cyclin-dependent kinase (CDK) inhibitor Rum1 and the S-phase regulator Cdc18. Accumulation of these proteins in pop1 and pop2 mutants leads to re-replication and defects in sexual differentiation. Despite structural and functional similarities, Pop1 and Pop2 are not redundant homologues. Instead, these two proteins form heterodimers as well as homodimers, such that three distinct complexes, namely SCFPop1/Pop1, SCFPop1/Pop2 and SCFPop2/Pop2, appear to exist in the cell. The APC/cyclosome is responsible for inactivation of CDK/cyclins through the degradation of B-type cyclins. We have identified two novel components or regulators of this complex, called Apc10 and Ste9, which are evolutionarily highly conserved. Apc10 (and Ste9), together with Rum1, are required for the establishment of and progression through the G1 phase in fission yeast. We propose that dual downregulation of CDK, one via the APC/cyclosome and the other via the CDK inhibitor, is a universal mechanism that is used to arrest the cell cycle at G1.
Collapse
Affiliation(s)
- T Toda
- Laboratory of Cell Regulation, Imperial Cancer Research Fund, London, UK.
| | | | | |
Collapse
|
1579
|
Zwickl P, Voges D, Baumeister W. The proteasome: a macromolecular assembly designed for controlled proteolysis. Philos Trans R Soc Lond B Biol Sci 1999; 354:1501-11. [PMID: 10582236 PMCID: PMC1692663 DOI: 10.1098/rstb.1999.0494] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In eukaryotic cells, the vast majority of proteins in the cytosol and nucleus are degraded via the proteasome-ubiquitin pathway. The 26S proteasome is a huge protein degradation machine of 2.5 MDa, built of approximately 35 different subunits. It contains a proteolytic core complex, the 20S proteasome and one or two 19S regulatory complexes which associate with the termini of the barrel-shaped 20S core. The 19S regulatory complex serves to recognize ubiquitylated target proteins and is implicated to have a role in their unfolding and translocation into the interior of the 20S complex where they are degraded into oligopeptides. While much progress has been made in recent years in elucidating the structure, assembly and enzymatic mechanism of the 20S complex, our knowledge of the functional organization of the 19S regulator is rather limited. Most of its subunits have been identified, but specific functions can be assigned to only a few of them.
Collapse
Affiliation(s)
- P Zwickl
- Max-Planck-Institute for Biochemistry, Martinsried, Germany
| | | | | |
Collapse
|
1580
|
Hochstrasser M, Johnson PR, Arendt CS, Swaminathan S, Swanson R, Li SJ, Laney J, Pals-Rylaarsdam R, Nowak J, Connerly PL. The Saccharomyces cerevisiae ubiquitin-proteasome system. Philos Trans R Soc Lond B Biol Sci 1999; 354:1513-22. [PMID: 10582237 PMCID: PMC1692666 DOI: 10.1098/rstb.1999.0495] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Our studies of the yeast ubiquitin-proteasome pathway have uncovered a number of general principles that govern substrate selectivity and proteolysis in this complex system. Much of the work has focused on the destruction of a yeast transcription factor, MAT alpha 2. The alpha 2 protein is polyubiquitinated and rapidly degraded in alpha-haploid cells. One pathway of proteolytic targeting, which depends on two distinct endoplasmic reticulum-localized ubiquitin-conjugating enzymes, recognizes the hydrophobic face of an amphipathic helix in alpha 2. Interestingly, degradation of alpha 2 is blocked in a/alpha-diploid cells by heterodimer formation between the alpha 2 and a1 homeodomain proteins. The data suggest that degradation signals may overlap protein-protein interaction surfaces, allowing a straightforward steric mechanism for regulated degradation. Analysis of alpha 2 degradation led to the identification of both 20S and 26S proteasome subunits, and several key features of proteasome assembly and active-site formation were subsequently uncovered. Finally, it has become clear that protein (poly) ubiquitination is highly dynamic in vivo, and our studies of yeast de-ubiquitinating enzymes illustrate how such enzymes can facilitate the proteolysis of diverse substrates.
Collapse
Affiliation(s)
- M Hochstrasser
- Department of Biochemistry and Molecular Biology, University of Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1581
|
Schweisguth F. Dominant-negative mutation in the beta2 and beta6 proteasome subunit genes affect alternative cell fate decisions in the Drosophila sense organ lineage. Proc Natl Acad Sci U S A 1999; 96:11382-6. [PMID: 10500185 PMCID: PMC18042 DOI: 10.1073/pnas.96.20.11382] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Drosophila, dominant-negative mutations in the beta2 and beta6 proteasome catalytic subunit genes have been identified as dominant temperature-sensitive (DTS) mutations. At restrictive temperature, beta2 and beta6 DTS mutations confer lethality at the pupal stage. I investigate here the role of proteasome activity in regulating cell fate decisions in the sense organ lineage at the early pupal stage. Temperature-shift experiments in beta2 and beta6 DTS mutant pupae occasionally resulted in external sense organs with two sockets and no shaft. This double-socket phenotype was strongly enhanced in conditions in which Notch signaling was up-regulated. Furthermore, conditional overexpression of the beta6 dominant-negative mutant subunit led to shaft-to-socket and to neuron-to-sheath cell fate transformations, which are both usually associated with increased Notch signaling activity. Finally, expression of the beta6 dominant-negative mutant subunit led to the stabilization of an ectopically expressed nuclear form of Notch in imaginal wing discs. This study demonstrates that mutations affecting two distinct proteasome catalytic subunits affect two alternative cell fate decisions and enhance Notch signaling activity in the sense organ lineage. These findings raise the possibility that the proteasome targets an active form of the Notch receptor for degradation in Drosophila.
Collapse
Affiliation(s)
- F Schweisguth
- Ecole Normale Supérieure, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8544, 46, rue d'Ulm, 75230 Paris Cedex 05, France.
| |
Collapse
|
1582
|
Groll M, Heinemeyer W, Jäger S, Ullrich T, Bochtler M, Wolf DH, Huber R. The catalytic sites of 20S proteasomes and their role in subunit maturation: a mutational and crystallographic study. Proc Natl Acad Sci U S A 1999; 96:10976-83. [PMID: 10500111 PMCID: PMC34229 DOI: 10.1073/pnas.96.20.10976] [Citation(s) in RCA: 230] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We present a biochemical and crystallographic characterization of active site mutants of the yeast 20S proteasome with the aim to characterize substrate cleavage specificity, subunit intermediate processing, and maturation. beta1(Pre3), beta2(Pup1), and beta5(Pre2) are responsible for the postacidic, tryptic, and chymotryptic activity, respectively. The maturation of active subunits is independent of the presence of other active subunits and occurs by intrasubunit autolysis. The propeptides of beta6(Pre7) and beta7(Pre4) are intermediately processed to their final forms by beta2(Pup1) in the wild-type enzyme and by beta5(Pre2) and beta1(Pre3) in the beta2(Pup1) inactive mutants. A role of the propeptide of beta1(Pre3) is to prevent acetylation and thereby inactivation. A gallery of proteasome mutants that contain active site residues in the context of the inactive subunits beta3(Pup3), beta6(Pre7), and beta7(Pre4) show that the presence of Gly-1, Thr1, Asp17, Lys33, Ser129, Asp166, and Ser169 is not sufficient to generate activity.
Collapse
Affiliation(s)
- M Groll
- Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
1583
|
Horwich AL, Weber-Ban EU, Finley D. Chaperone rings in protein folding and degradation. Proc Natl Acad Sci U S A 1999; 96:11033-40. [PMID: 10500119 PMCID: PMC34237 DOI: 10.1073/pnas.96.20.11033] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chaperone rings play a vital role in the opposing ATP-mediated processes of folding and degradation of many cellular proteins, but the mechanisms by which they assist these life and death actions are only beginning to be understood. Ring structures present an advantage to both processes, providing for compartmentalization of the substrate protein inside a central cavity in which multivalent, potentially cooperative interactions can take place between the substrate and a high local concentration of binding sites, while access of other proteins to the cavity is restricted sterically. Such restriction prevents outside interference that could lead to nonproductive fates of the substrate protein while it is present in non-native form, such as aggregation. At the step of recognition, chaperone rings recognize different motifs in their substrates, exposed hydrophobicity in the case of protein-folding chaperonins, and specific "tag" sequences in at least some cases of the proteolytic chaperones. For both folding and proteolytic complexes, ATP directs conformational changes in the chaperone rings that govern release of the bound polypeptide. In the case of chaperonins, ATP enables a released protein to pursue the native state in a sequestered hydrophilic folding chamber, and, in the case of the proteases, the released polypeptide is translocated into a degradation chamber. These divergent fates are at least partly governed by very different cooperating components that associate with the chaperone rings: that is, cochaperonin rings on one hand and proteolytic ring assemblies on the other. Here we review the structures and mechanisms of the two types of chaperone ring system.
Collapse
Affiliation(s)
- A L Horwich
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA.
| | | | | |
Collapse
|
1584
|
Zwickl P, Ng D, Woo KM, Klenk HP, Goldberg AL. An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes. J Biol Chem 1999; 274:26008-14. [PMID: 10473546 DOI: 10.1074/jbc.274.37.26008] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, the 20 S proteasome is the proteolytic core of the 26 S proteasome, which degrades ubiquitinated proteins in an ATP-dependent process. Archaebacteria lack ubiquitin and 26 S proteasomes but do contain 20 S proteasomes. Many archaebacteria, such as Methanococcus jannaschii, also contain a gene (S4) that is highly homologous to the six ATPases in the 19 S (PA700) component of the eukaryotic 26 S proteasome. To test if this putative ATPase may regulate proteasome function, we expressed it in Escherichia coli and purified the 50-kDa product as a 650-kDa complex with ATPase activity. When mixed with the well characterized 20 S proteasomes from Thermoplasma acidophilum and ATP, this complex stimulated degradation of several unfolded proteins 8-25-fold. It also stimulated proteolysis by 20 S proteasomes from another archaebacterium and mammals. This effect required ATP hydrolysis since ADP and the nonhydrolyzable analog, 5'-adenylyl beta, gamma-imidophosphate, were ineffective. CTP and to a lesser extent GTP and UTP were also hydrolyzed and also stimulated proteolysis. We therefore named this complex PAN for proteasome-activating nucleotidase. However, PAN did not promote the degradation of small peptides, which, unlike proteins, should readily diffuse into the proteasome. This ATPase complex appears to have been the evolutionary precursor of the eukaryotic 19 S complex, before the coupling of proteasome function to ubiquitination.
Collapse
Affiliation(s)
- P Zwickl
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
1585
|
Abstract
Investigations of genetic diseases such as cystic fibrosis, alpha-1-antitrypsin deficiency, phenylketonuria, mitochondrial acyl-CoA dehydrogenase deficiencies, and many others have shown that enhanced proteolytic degradation of mutant proteins is a common molecular pathological mechanism. Detailed studies of the fate of mutant proteins in some of these diseases have revealed that impaired or aberrant folding of mutant polypeptides typically results in prolonged interaction with molecular chaperones and degradation by intracellular proteases before the functional conformation is acquired. This appears to be the case for many missense mutations and short in-frame deletions or insertions that represent a major fraction of the mutations detected in genetic diseases. In some diseases, or under some circumstances, the degradation system is not efficient. Instead, aberrant folding leads to accumulation of protein aggregates that damage the cell. Mechanisms by which misfolded proteins are selected for degradation have first been delineated for the endoplasmatic reticulum; this process has been termed "protein quality control." Similar mechanisms appear to be operative in all cellular compartments in which proteins fold. Within the context of genetic diseases, we review knowledge on the molecular processes underlying protein quality control in the various subcellular compartments. The important impact of such systems for variability of the expression of genetic deficiencies is emphasised.
Collapse
Affiliation(s)
- P Bross
- Research Unit for Molecular Medicine, Faculty of Health Sciences and Aarhus University Hospital, Skejby Sygehus, Arhus, Denmark.
| | | | | | | | | | | |
Collapse
|
1586
|
Abstract
A variety of proteins, including glycosylasparaginase, have recently been found to activate functions by self-catalyzed peptide bond rearrangements from single-chain precursors. Here we present the 1.9 A crystal structures of glycosylasparaginase precursors that are able to autoproteolyze via an N --> O acyl shift. Several conserved residues are aligned around the scissile peptide bond that is in a highly strained trans peptide bond configuration. The structure illustrates how a nucleophilic side chain may attack the scissile peptide bond at the immediate upstream backbone carbonyl and provides an understanding of the structural basis for peptide bond cleavage via an N --> O or N --> S acyl shift that is used by various groups of intramolecular autoprocessing proteins.
Collapse
Affiliation(s)
- Q Xu
- Department of Biophysics, Boston University School of Medicine, Massachusetts 02118-2526, USA
| | | | | | | |
Collapse
|
1587
|
Lambertson D, Chen L, Madura K. Pleiotropic defects caused by loss of the proteasome-interacting factors Rad23 and Rpn10 of Saccharomyces cerevisiae. Genetics 1999; 153:69-79. [PMID: 10471701 PMCID: PMC1460738 DOI: 10.1093/genetics/153.1.69] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rad23 is a member of a novel class of proteins that contain unprocessed ubiquitin-like (UbL) domains. We showed recently that a small fraction of Rad23 can form an interaction with the 26S proteasome. Similarly, a small fraction of Rpn10 is a component of the proteasome. Rpn10 can bind multiubiquitin chains in vitro, but genetic studies have not clarified its role in vivo. We report here that the loss of both Rad23 and Rpn10 results in pleiotropic defects that are not observed in either single mutant. rad23Delta rpn10Delta displays slow growth, cold sensitivity, and a pronounced G2/M phase delay, implicating overlapping roles for Rad23 and Rpn10. Although rad23Delta rpn10Delta displays similar sensitivity to DNA damage as a rad23Delta single mutant, deletion of RAD23 in rpn10Delta significantly increased sensitivity to canavanine, a phenotype associated with an rpn10Delta single mutant. A mutant Rad23 that is unable to bind the proteasome ((DeltaUbL)rad23) does not suppress the canavanine or cold-sensitive defects of rad23Delta rpn10Delta, demonstrating that Rad23/proteasome interaction is related to these effects. Finally, the accumulation of multiubiquitinated proteins and the stabilization of a specific proteolytic substrate in rad23Delta rpn10Delta suggest that proteasome function is altered.
Collapse
Affiliation(s)
- D Lambertson
- Robert Wood Johnson Medical School-UMDNJ, Piscataway, New Jersey 08854-5635, USA
| | | | | |
Collapse
|
1588
|
Murray BW, Sültmann H, Klein J. Analysis of a 26-kb Region Linked to the Mhc in Zebrafish: Genomic Organization of the Proteasome Component β/Transporter Associated with Antigen Processing-2 Gene Cluster and Identification of Five New Proteasome β Subunit Genes. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.5.2657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Sequencing of zebrafish (Danio rerio) bacterial artificial chromosome and P1 artificial chromosome genomic clone fragments and of cDNA clones has led to the identification of five new loci coding for β subunits of proteasomes (PSMB). Together with the four genes identified previously, nine PSMB genes have now been defined in the zebrafish. Six of the nine genes reside in the zebrafish MHC (Mhc) class I region, four of them reside in a single cluster closely associated with TAP2 on a 26-kb long genomic fragment, and two reside at some distance from the fragment. In addition to homologues of the human genes PSMB5 through PSMB9, two new genes, PSMB11 and PSMB12, have been found for which there are no known corresponding genes in humans. The new genes reside in the PSMB cluster in the Mhc. Homology and promoter region analysis suggest that the Mhc-associated genes might be inducible by IFN-γ. The zebrafish class I region contains representatives of three phylogenetically distinguishable groups of PSMB genes, X, Y, and Z. It is proposed that these genes were present in the ancestral PSMB region before Mhc class I genes became associated with it.
Collapse
Affiliation(s)
- Brent W. Murray
- Max-Planck-Institut für Biologie, Abt. Immungenetik, Tübingen, Germany
| | - Holger Sültmann
- Max-Planck-Institut für Biologie, Abt. Immungenetik, Tübingen, Germany
| | - Jan Klein
- Max-Planck-Institut für Biologie, Abt. Immungenetik, Tübingen, Germany
| |
Collapse
|
1589
|
Kisselev AF, Akopian TN, Castillo V, Goldberg AL. Proteasome active sites allosterically regulate each other, suggesting a cyclical bite-chew mechanism for protein breakdown. Mol Cell 1999; 4:395-402. [PMID: 10518220 DOI: 10.1016/s1097-2765(00)80341-x] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In eukaryotes, the 20S proteasome contains two chymotrypsin-like, two trypsin-like, and two active sites shown here to have caspase-like specificity. We report that certain sites allosterically regulate each other's activities. Substrates of a chymotrypsin-like site stimulate dramatically the caspase-like activity and also activate the other chymotrypsin-like site. Moreover, substrates of the caspase-like sites inhibit allosterically the chymotrypsin-like activity (the rate-limiting one in protein breakdown) and thus can reduce the degradation of proteins by 26S proteasomes. These allosteric effects suggest an ordered, cyclical mechanism for protein degradation. We propose that the chymotrypsin-like site initially cleaves ("bites") the polypeptide, thereby stimulating the caspase-like sites. Their activation accelerates further cleavage ("chewing") of the fragments, while the chymotrypsin-like activity is temporarily inhibited. When further caspase-like cleavages are impossible, the chymotryptic site is reactivated and the cycle repeated.
Collapse
Affiliation(s)
- A F Kisselev
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
1590
|
Wilson HL, Aldrich HC, Maupin-Furlow J. Halophilic 20S proteasomes of the archaeon Haloferax volcanii: purification, characterization, and gene sequence analysis. J Bacteriol 1999; 181:5814-24. [PMID: 10482525 PMCID: PMC94104 DOI: 10.1128/jb.181.18.5814-5824.1999] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 20S proteasome, composed of alpha(1) and beta subunits arranged in a barrel-shaped structure of four stacked rings, was purified from a halophilic archaeon Haloferax volcanii. The predominant peptide-hydrolyzing activity of the 600-kDa alpha(1)beta-proteasome on synthetic substrates was cleavage carboxyl to hydrophobic residues (chymotrypsin-like [CL] activity) and was optimal at 2 M NaCl, pH 7.7 to 9.5, and 75 degrees C. The alpha(1)beta-proteasome also hydrolyzed insulin B-chain protein. Removal of NaCl inactivated the CL activity of the alpha(1)beta-proteasome and dissociated the complex into monomers. Rapid equilibration of the monomers into buffer containing 2 M NaCl facilitated their reassociation into fully active alpha(1)beta-proteasomes of 600 kDa. However, long-term incubation of the halophilic proteasome in the absence of salt resulted in hydrolysis and irreversible inactivation of the enzyme. Thus, the isolated proteasome has unusual salt requirements which distinguish it from any proteasome which has been described. Comparison of the beta-subunit protein sequence with the sequence deduced from the gene revealed that a 49-residue propeptide is removed to expose a highly conserved N-terminal threonine which is proposed to serve as the catalytic nucleophile and primary proton acceptor during peptide bond hydrolysis. Consistent with this mechanism, the known proteasome inhibitors carbobenzoxyl-leucinyl-leucinyl-leucinal-H (MG132) and N-acetyl-leucinyl-leucinyl-norleucinal (calpain inhibitor I) were found to inhibit the CL activity of the H. volcanii proteasome (K(i) = 0.2 and 8 microM, respectively). In addition to the genes encoding the alpha(1) and beta subunits, a gene encoding a second alpha-type proteasome protein (alpha(2)) was identified. All three genes coding for the proteasome subunits were mapped in the chromosome and found to be unlinked. Modification of the methods used to purify the alpha(1)beta-proteasome resulted in the copurification of the alpha(2) protein with the alpha(1) and beta subunits in nonstoichometric ratios as cylindrical particles of four stacked rings of 600 kDa with CL activity rates similar to the alpha(1)beta-proteasome, suggesting that at least two separate 20S proteasomes are synthesized. This study is the first description of a prokaryote which produces two separate 20S proteasomes and suggests that there may be distinct physiological roles for the two different alpha subunits in this halophilic archaeon.
Collapse
Affiliation(s)
- H L Wilson
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611-0700, USA
| | | | | |
Collapse
|
1591
|
Meng L, Mohan R, Kwok BH, Elofsson M, Sin N, Crews CM. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc Natl Acad Sci U S A 1999; 96:10403-8. [PMID: 10468620 PMCID: PMC17900 DOI: 10.1073/pnas.96.18.10403] [Citation(s) in RCA: 759] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The proteasome regulates cellular processes as diverse as cell cycle progression and NF-kappaB activation. In this study, we show that the potent antitumor natural product epoxomicin specifically targets the proteasome. Utilizing biotinylated-epoxomicin as a molecular probe, we demonstrate that epoxomicin covalently binds to the LMP7, X, MECL1, and Z catalytic subunits of the proteasome. Enzymatic analyses with purified bovine erythrocyte proteasome reveal that epoxomicin potently inhibits primarily the chymotrypsin-like activity. The trypsin-like and peptidyl-glutamyl peptide hydrolyzing catalytic activities also are inhibited at 100- and 1,000-fold slower rates, respectively. In contrast to peptide aldehyde proteasome inhibitors, epoxomicin does not inhibit nonproteasomal proteases such trypsin, chymotrypsin, papain, calpain, and cathepsin B at concentrations of up to 50 microM. In addition, epoxomicin is a more potent inhibitor of the chymotrypsin-like activity than lactacystin and the peptide vinyl sulfone NLVS. Epoxomicin also effectively inhibits NF-kappaB activation in vitro and potently blocks in vivo inflammation in the murine ear edema assay. These results thus define epoxomicin as a novel proteasome inhibitor that likely will prove useful in exploring the role of the proteasome in various in vivo and in vitro systems.
Collapse
Affiliation(s)
- L Meng
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06520-8103, USA
| | | | | | | | | | | |
Collapse
|
1592
|
Jäger S, Groll M, Huber R, Wolf DH, Heinemeyer W. Proteasome beta-type subunits: unequal roles of propeptides in core particle maturation and a hierarchy of active site function. J Mol Biol 1999; 291:997-1013. [PMID: 10452902 DOI: 10.1006/jmbi.1999.2995] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 26 S proteasome is a large eukaryotic protease complex acting in ubiquitin-mediated degradation of abnormal and many short-lived, regulatory proteins. Its cylinder-shaped 20 S proteolytic core consists of two sets, each of seven different alpha and beta-type subunits arranged into two outer alpha-rings surrounding two inner beta-rings. The beta-rings form a central chamber with a total of six proteolytically active centers located in the beta1, beta2 and beta5 subunits. Activation of these subunits occurs during late assembly stages through intramolecular precursor autolysis removing propeptides attached to Thr1, which then serves as N-terminal nucleophile in substrate hydrolysis. This maturation entails intermolecular cleavage of propeptides residing in two of the non-active beta-type subunits, beta6 and beta7. In yeast, deletion of the beta5/Pre2 propeptide was shown to be lethal by preventing assembly of the core particle, while its expression as a separate entity restored growth. We investigated the role of the yeast beta1/Pre3, beta2/Pup1 and beta7/Pre4 propeptides by expressing the mature subunit moieties without propeptides as C-terminal fusions to ubiquitin. In all cases, viable strains could be generated. Deletion of the beta1/Pre3 and beta7/Pre4 propeptides did not affect cell growth, but deletion of the beta2/Pup1 propeptide led to poor growth, which was partially restored by co-expression of the free propeptide. Gain of proteolytic activity of beta1/Pre3 and beta2/Pup1 was abolished or drastically reduced, respectively, if their respective propeptides were not N-terminally bound. We detected N -alpha-acetylation at Thr1 of beta1/Pre3 as cause for its inactivation. Thus, one role for the propeptides of active beta-type subunits might be to protect the mature subunits catalytic Thr1 alpha-amino group from acetylation. The beta2/Pup1 propeptide was, in addition, required for efficient 20 S proteasome maturation, as revealed by the accumulation of beta7/Pre4 precursor and intermediate processing forms upon expression of mature beta2/Pup1. Finally, growth phenotypes resulting from expression of active site mutated beta-type subunits uncoupled from their propeptides allowed us to deduce the hierarchy of the importance of individual subunit activities for proteasomal function as follows: beta5/Pre2>>beta2/Pup1>/=beta1/Pre3.
Collapse
Affiliation(s)
- S Jäger
- Institut für Biochemie der Universität Stuttgart, Pfaffenwaldring 55, Stuttgart, D-70569, Germany
| | | | | | | | | |
Collapse
|
1593
|
Huang L, Shen M, Chernushevich I, Burlingame AL, Wang CC, Robertson CD. Identification and isolation of three proteasome subunits and their encoding genes from Trypanosoma brucei. Mol Biochem Parasitol 1999; 102:211-23. [PMID: 10498178 DOI: 10.1016/s0166-6851(99)00096-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have determined peptide sequences of three Trypanosoma brucei proteasome subunit proteins by mass spectrometry of tryptic digests of the proteins purified by two-dimensional (2-D) polyacrylamide gel electrophoresis. Three genes identified by the sequence of their cDNA encode the peptides identified in these three proteins. The three proteins predicted from the gene sequences have significant similarity to other known proteasome subunits and represent an alpha6 type subunit (TbPSA6), and two beta-type subunits belonging to the beta1-type (TbPSB1) and beta2 type (TbPSB2). The sequences of both beta-subunits predict formation of catalytically active subunits through proteolytic processing. The prediction is supported by the presence in each of the two beta-subunits of a tryptic peptide that has the correctly processed N-terminus that creates the threonine nucleophile of the mature protein. This peptide cannot be generated by trypsin because of the required cleavage of a glycine-threonine bond. It is thus likely that there are at least two catalytically active beta-subunits, TbPSB1 and TbPSB2, present in the mature 20S proteasome from T. brucei.
Collapse
Affiliation(s)
- L Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143-0446, USA
| | | | | | | | | | | |
Collapse
|
1594
|
DeMartino GN, Slaughter CA. The proteasome, a novel protease regulated by multiple mechanisms. J Biol Chem 1999; 274:22123-6. [PMID: 10428771 DOI: 10.1074/jbc.274.32.22123] [Citation(s) in RCA: 398] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- G N DeMartino
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA.
| | | |
Collapse
|
1595
|
Braun BC, Glickman M, Kraft R, Dahlmann B, Kloetzel PM, Finley D, Schmidt M. The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat Cell Biol 1999; 1:221-6. [PMID: 10559920 DOI: 10.1038/12043] [Citation(s) in RCA: 340] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein substrates of the proteasome must apparently be unfolded and translocated through a narrow channel to gain access to the proteolytic active sites of the enzyme. Protein folding in vivo is mediated by molecular chaperones. Here, to test for chaperone activity of the proteasome, we assay the reactivation of denatured citrate synthase. Both human and yeast proteasomes stimulate the recovery of the native structure of citrate synthase. We map this chaperone-like activity to the base of the regulatory particle of the proteasome, that is, to the ATPase-containing assembly located at the substrate-entry ports of the channel. Denatured but not native citrate synthase is bound by the base complex. Ubiquitination of citrate synthase is not required for its binding or refolding by the base complex of the proteasome. These data suggest a model in which ubiquitin-protein conjugates are initially tethered to the proteasome by specific recognition of their ubiquitin chains; this step is followed by a nonspecific interaction between the base and the target protein, which promotes substrate unfolding and translocation.
Collapse
Affiliation(s)
- B C Braun
- Institut für Biochemie, Medizinische Fakultät, Humboldt Universität zu Berlin, Charité, Germany
| | | | | | | | | | | | | |
Collapse
|
1596
|
Covi JA, Belote JM, Mykles DL. Subunit compositions and catalytic properties of proteasomes from developmental temperature- sensitive mutants of Drosophila melanogaster. Arch Biochem Biophys 1999; 368:85-97. [PMID: 10415115 DOI: 10.1006/abbi.1999.1294] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two dominant temperature-sensitive (DTS) Drosophila mutants are missense mutations of proteasome genes encoding beta-type subunits beta6/C5 (DTS5) and beta2/Z (DTS7). At nonpermissive temperature (29 degrees C), heterozygotes (DTS5/+ and DTS7/+) develop normally until metamorphosis; pupae fail to mature and die before eclosion. Proteasomes were purified from wild-type (WT) and heterozygous adult flies raised at permissive temperature (25 degrees C). Two-dimensional gel electrophoresis separated at least 28 proteins, 13 of which were identified with monospecific antibodies to alpha6/C2 (five species), alpha2/C3 (three species), alpha7/C8 (three species), alpha5/zeta, and beta1/Y subunits. Both quantitative and qualitative differences were observed between WT and DTS/+ proteasomes, with DTS5/+ deviating more from WT than DTS7/+ proteasomes. In DTS5/+ there was a shift to more acidic species of C2 and C3 and a shift to less acidic species of 32-kDa subunits (#3-#7) recognized by an anti-alpha subunit monoclonal antibody (MCP222) and were losses of two 32-kDa subunits (#2 and #3), decreases in Y (25 kDa; 2-fold) and 31-kDa (#9; 2-fold) subunits, and increases in 52-kDa (#1; 1.9-fold) and 24-kDa (#13; 2.3-fold) subunits. In DTS7/+ there was a less pronounced shift to acidic species of C3 and no pI shift in C2 species and subunits #3-#7 and were decreases in #9 (2.5-fold) and #14 (3-fold) and a loss of #2. The three C8 species were similar between WT, DTS5/+, and DTS7/+ proteasomes. Qualitatively, the most dramatic difference was the appearance of a new 24-kDa subunit (#16) in DTS/+ preparations, with about a 14-fold greater amount of #16 in DTS7/+ than in DTS5/+ proteasomes. Catalytically, WT and DTS/+ proteasomes had similar peptidase activities, although the DTS/+ proteasomes were slightly more sensitive to SDS and elevated temperatures in vitro. The incorporation of DTS subunits apparently altered proteasome assembly and/or processing at permissive temperature with little effect on catalytic activities. These data suggest that at nonpermissive temperature, assembly/processing is more severely affected, producing DTS-containing complexes that lack functions essential for cellular proliferation and differentiation at metamorphosis.
Collapse
Affiliation(s)
- J A Covi
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | | | | |
Collapse
|
1597
|
Russell SJ, Steger KA, Johnston SA. Subcellular localization, stoichiometry, and protein levels of 26 S proteasome subunits in yeast. J Biol Chem 1999; 274:21943-52. [PMID: 10419517 DOI: 10.1074/jbc.274.31.21943] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 26 S proteasome of eukaryotes is responsible for the degradation of proteins targeted for proteolysis by the ubiquitin system. Yeast has been an important model organism for understanding eukaryotic proteasome structure and function. Toward a quantitative characterization of the proteasome, we have determined the localization, cellular levels, and stoichiometry of proteasome subunits. The subcellular localization of two ATPase components of the regulatory complex of the proteasome, Sug2/Rpt4 and Sug1/Rpt6, and a subunit of the 20 S proteasome, Pre1, were determined by immunofluorescence. In contrast to findings in multicellular organisms, these proteins are localized almost exclusively to the nucleus throughout the cell cycle. We have also determined the cellular abundance and stoichiometry of these proteasome subunits. Sug1/Rpt6, Sug2/Rpt4, and Pre1 are present in roughly equal stoichiometry with an abundance of 15,000-30,000 molecules/cell, corresponding to a concentration of 13-26 microM in the nucleus. Also, in contrast to mammalian cells, we find no evidence of a p27-containing "modulator" of the proteasome in yeast. This information will be useful in comparing and contrasting the yeast and mammalian proteasomes and should contribute to a mechanistic understanding of how this complex functions.
Collapse
Affiliation(s)
- S J Russell
- Departments of Internal Medicine and Biochemistry, Biochemistry and Molecular Biology Graduate Program, University of Texas-Southwestern Medical Center, Dallas, Texas 75235-8573, USA
| | | | | |
Collapse
|
1598
|
Bochtler M, Ditzel L, Groll M, Hartmann C, Huber R. The proteasome. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1999; 28:295-317. [PMID: 10410804 DOI: 10.1146/annurev.biophys.28.1.295] [Citation(s) in RCA: 362] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proteasomes are large multisubunit proteases that are found in the cytosol, both free and attached to the endoplasmic reticulum, and in the nucleus of eukaryotic cells. Their ubiquitous presence and high abundance in these compartments reflects their central role in cellular protein turnover. Proteasomes recognize, unfold, and digest protein substrates that have been marked for degradation by the attachment of a ubiquitin moiety. Individual subcomplexes of the complete 26S proteasome are involved in these different tasks: The ATP-dependent 19S caps are believed to unfold substrates and feed them to the actual protease, the 20S proteasome. This core particle appears to be more ancient than the ubiquitin system. Both prokaryotic and archaebacterial ancestors have been identified. Crystal structures are now available for the E. coli proteasome homologue and the T. acidophilum and S. cerevisiae 20S proteasomes. All three enzymes are cylindrical particles that have their active sites on the inner walls of a large central cavity. They share the fold and a novel catalytic mechanism with an N-terminal nucleophilic threonine, which places them in the family of Ntn (N terminal nucleophile) hydrolases. Evolution has added complexity to the comparatively simple prokaryotic prototype. This minimal proteasome is a homododecamer made from two hexameric rings stacked head to head. Its heptameric version is the catalytic core of archaebacterial proteasomes, where it is sandwiched between two inactive antichambers that are made up from a different subunit. In eukaryotes, both subunits have diverged into seven different subunits each, which are present in the particle in unique locations such that a complex dimer is formed that has six active sites with three major specificities that can be attributed to individual subunits. Genetic, biochemical, and high-resolution electron microscopy data, but no crystal structures, are available for the 19S caps. A first step toward a mechanistic understanding of proteasome activation and regulation has been made with the elucidation of the X-ray structure of the alternative, mammalian proteasome activator PA28.
Collapse
Affiliation(s)
- M Bochtler
- Max-Planck-Institut für Biochemie, Martinsried/Planegg, Germany.
| | | | | | | | | |
Collapse
|
1599
|
Salzmann U, Kral S, Braun B, Standera S, Schmidt M, Kloetzel PM, Sijts A. Mutational analysis of subunit i beta2 (MECL-1) demonstrates conservation of cleavage specificity between yeast and mammalian proteasomes. FEBS Lett 1999; 454:11-5. [PMID: 10413086 DOI: 10.1016/s0014-5793(99)00768-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Proteasomes are the major protein-degrading complexes in the cytosol and regulate many cellular processes. To examine the functional importance of the MC14/MECL-1 proteasome active site subunits, cell lines expressing a catalytically inactive form of MECL-1 were established. Whereas mutant MECL-1 was readily incorporated into cytosolic proteasomes, replacing the constitutive MC14 subunit, removal of the prosequence was incomplete indicating that its processing required autocatalytic cleavage. Functional analyses showed that the absence of the MC14/MECL-1 active sites abrogated proteasomal trypsin-like activity, but did not affect other catalytic activities. Our data demonstrate a conservation of cleavage specificity between mammalian and yeast proteasomes.
Collapse
Affiliation(s)
- U Salzmann
- Institute of Biochemistry, Charité, Humboldt University Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
1600
|
Javerzat JP, McGurk G, Cranston G, Barreau C, Bernard P, Gordon C, Allshire R. Defects in components of the proteasome enhance transcriptional silencing at fission yeast centromeres and impair chromosome segregation. Mol Cell Biol 1999; 19:5155-65. [PMID: 10373564 PMCID: PMC84358 DOI: 10.1128/mcb.19.7.5155] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fission yeast centromeres are transcriptionally silent and form a heterochromatin-like structure essential for normal centromere function; this appears analogous to heterochromatin and position effect variegation in other eukaryotes. Conditional mutations in three genes designated cep (centromere enhancer of position effect) were found to enhance transcriptional silencing within centromeres. Cloning of the cep1(+) and cep2(+) genes by functional complementation revealed that they are identical to the previously described genes pad1(+) and mts2(+), respectively, which both encode subunits of the proteasome 19S cap. Like Mts2 and Mts4, epitope-tagged Cep1/Pad1 localizes to or near the nuclear envelope throughout the cell cycle. The cep mutants display a range of phenotypes depending on the temperature. Silencing within the central domain of centromeres is increased at 36 degrees C. This suggests that the proteasome is involved in regulating silencing and thus centromeric chromatin architecture, possibly by lowering the level of some chromatin-associated protein by ubiquitin-dependent degradation. This is the first report of defective proteasome function affecting heterochromatin-mediated transcriptional silencing. At 36 and 32 degrees C, the cep mutants lose chromosomes at an elevated rate, and at 18 degrees C, the mutants are cryosensitive for growth. Cytological analysis at 18 degrees C revealed a defect in sister chromatid separation while other mitotic events occurred normally, indicating that cep mutations might interfere specifically with the degradation of inhibitor(s) of sister chromatid separation. These observations suggest that 19S subunits confer a level of substrate specificity on the proteasome and raise the possibility of a link between components involved in centromere architecture and sister chromatid cohesion.
Collapse
Affiliation(s)
- J P Javerzat
- Medical Research Council, Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, Scotland, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|