1551
|
Dayem Ullah AZ, Cutts RJ, Ghetia M, Gadaleta E, Hahn SA, Crnogorac-Jurcevic T, Lemoine NR, Chelala C. The pancreatic expression database: recent extensions and updates. Nucleic Acids Res 2013; 42:D944-9. [PMID: 24163255 PMCID: PMC3965100 DOI: 10.1093/nar/gkt959] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Pancreatic Expression Database (PED, http://www.pancreasexpression.org) is the only device currently available for mining of pancreatic cancer literature data. It brings together the largest collection of multidimensional pancreatic data from the literature including genomic, proteomic, microRNA, methylomic and transcriptomic profiles. PED allows the user to ask specific questions on the observed levels of deregulation among a broad range of specimen/experimental types including healthy/patient tissue and body fluid specimens, cell lines and murine models as well as related treatments/drugs data. Here we provide an update to PED, which has been previously featured in the Database issue of this journal. Briefly, PED data content has been substantially increased and expanded to cover methylomics studies. We introduced an extensive controlled vocabulary that records specific details on the samples and added data from large-scale meta-analysis studies. The web interface has been improved/redesigned with a quick search option to rapidly extract information about a gene/protein of interest and an upload option allowing users to add their own data to PED. We added a user guide and implemented integrated graphical tools to overlay and visualize retrieved information. Interoperability with biomart-compatible data sets was significantly improved to allow integrative queries with pancreatic cancer data.
Collapse
Affiliation(s)
- Abu Z Dayem Ullah
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK and Molecular GI-Onkologie (MGO), University of Bochum, Germany
| | | | | | | | | | | | | | | |
Collapse
|
1552
|
Palmblad M, Henkel CV, Dirks RP, Meijer AH, Deelder AM, Spaink HP. Parallel deep transcriptome and proteome analysis of zebrafish larvae. BMC Res Notes 2013; 6:428. [PMID: 24156766 PMCID: PMC4016144 DOI: 10.1186/1756-0500-6-428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 10/15/2013] [Indexed: 11/10/2022] Open
Abstract
Background Sensitivity and throughput of transcriptomic and proteomic technologies have advanced tremendously in recent years. With the use of deep sequencing of RNA samples (RNA-seq) and mass spectrometry technology for protein identification and quantitation, it is now feasible to compare gene and protein expression on a massive scale and for any organism for which genomic data is available. Although these technologies are currently applied to many research questions in various model systems ranging from cell cultures to the entire organism level, there are few comparative studies of these technologies in the same system, let alone on the same samples. Here we present a comparison between gene and protein expression in embryos of zebrafish, which is an upcoming model in disease studies. Results We compared Agilent custom made expression microarrays with Illumina deep sequencing for RNA analysis, showing as expected a high degree of correlation of expression of a common set of 18,230 genes. Gene expression was also found to correlate with the abundance of 963 distinct proteins, with several categories of genes as exceptions. These exceptions include ribosomal proteins, histones and vitellogenins, for which biological and technical explanations are discussed. Conclusions By comparing state of the art transcriptomic and proteomic technologies on samples derived from the same group of organisms we have for the first time benchmarked the differences in these technologies with regard to sensitivity and bias towards detection of particular gene categories in zebrafish. Our datasets submitted to public repositories are a good starting point for researchers interested in disease progression in zebrafish at a stage of development highly suited for high throughput screening technologies.
Collapse
Affiliation(s)
- Magnus Palmblad
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Zone L04-Q, P,O, Box 9600, 2300 RC, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
1553
|
Integrated transcriptomic and proteomic analysis of the global response of Wolbachia to doxycycline-induced stress. ISME JOURNAL 2013; 8:925-37. [PMID: 24152719 PMCID: PMC3960535 DOI: 10.1038/ismej.2013.192] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/12/2013] [Accepted: 09/20/2013] [Indexed: 01/05/2023]
Abstract
The bacterium Wolbachia (order Rickettsiales), representing perhaps the most abundant vertically transmitted microbe worldwide, infects arthropods and filarial nematodes. In arthropods, Wolbachia can induce reproductive alterations and interfere with the transmission of several arthropod-borne pathogens. In addition, Wolbachia is an obligate mutualist of the filarial parasites that cause lymphatic filariasis and onchocerciasis in the tropics. Targeting Wolbachia with tetracycline antibiotics leads to sterilisation and ultimately death of adult filariae. However, several weeks of treatment are required, restricting the implementation of this control strategy. To date, the response of Wolbachia to stress has not been investigated, and almost nothing is known about global regulation of gene expression in this organism. We exposed an arthropod Wolbachia strain to doxycycline in vitro, and analysed differential expression by directional RNA-seq and label-free, quantitative proteomics. We found that Wolbachia responded not only by modulating expression of the translation machinery, but also by upregulating nucleotide synthesis and energy metabolism, while downregulating outer membrane proteins. Moreover, Wolbachia increased the expression of a key component of the twin-arginine translocase (tatA) and a phosphate ABC transporter ATPase (PstB); the latter is associated with decreased susceptibility to antimicrobials in free-living bacteria. Finally, the downregulation of 6S RNA during translational inhibition suggests that this small RNA is involved in growth rate control. Despite its highly reduced genome, Wolbachia shows a surprising ability to regulate gene expression during exposure to a potent stressor. Our findings have general relevance for the chemotherapy of obligate intracellular bacteria and the mechanistic basis of persistence in the Rickettsiales.
Collapse
|
1554
|
Rawlings ND, Waller M, Barrett AJ, Bateman A. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 2013; 42:D503-9. [PMID: 24157837 PMCID: PMC3964991 DOI: 10.1093/nar/gkt953] [Citation(s) in RCA: 692] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Peptidases, their substrates and inhibitors are of great relevance to biology, medicine and biotechnology. The MEROPS database (http://merops.sanger.ac.uk) aims to fulfill the need for an integrated source of information about these. The database has hierarchical classifications in which homologous sets of peptidases and protein inhibitors are grouped into protein species, which are grouped into families, which are in turn grouped into clans. Recent developments include the following. A community annotation project has been instigated in which acknowledged experts are invited to contribute summaries for peptidases. Software has been written to provide an Internet-based data entry form. Contributors are acknowledged on the relevant web page. A new display showing the intron/exon structures of eukaryote peptidase genes and the phasing of the junctions has been implemented. It is now possible to filter the list of peptidases from a completely sequenced bacterial genome for a particular strain of the organism. The MEROPS filing pipeline has been altered to circumvent the restrictions imposed on non-interactive blastp searches, and a HMMER search using specially generated alignments to maximize the distribution of organisms returned in the search results has been added.
Collapse
Affiliation(s)
- Neil D Rawlings
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK and Proteins and Protein Families, EMBO European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | | | | | | |
Collapse
|
1555
|
Gorbachev AY, Fisunov GY, Izraelson M, Evsyutina DV, Mazin PV, Alexeev DG, Pobeguts OV, Gorshkova TN, Kovalchuk SI, Kamashev DE, Govorun VM. DNA repair in Mycoplasma gallisepticum. BMC Genomics 2013; 14:726. [PMID: 24148612 PMCID: PMC4007778 DOI: 10.1186/1471-2164-14-726] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/15/2013] [Indexed: 01/04/2023] Open
Abstract
Background DNA repair is essential for the maintenance of genome stability in all living beings. Genome size as well as the repertoire and abundance of DNA repair components may vary among prokaryotic species. The bacteria of the Mollicutes class feature a small genome size, absence of a cell wall, and a parasitic lifestyle. A small number of genes make Mollicutes a good model for a “minimal cell” concept. Results In this work we studied the DNA repair system of Mycoplasma gallisepticum on genomic, transcriptional, and proteomic levels. We detected 18 out of 22 members of the DNA repair system on a protein level. We found that abundance of the respective mRNAs is less than one per cell. We studied transcriptional response of DNA repair genes of M. gallisepticum at stress conditions including heat, osmotic, peroxide stresses, tetracycline and ciprofloxacin treatment, stationary phase and heat stress in stationary phase. Conclusions Based on comparative genomic study, we determined that the DNA repair system M. gallisepticum includes a sufficient set of proteins to provide a cell with functional nucleotide and base excision repair and mismatch repair. We identified SOS-response in M. gallisepticum on ciprofloxacin, which is a known SOS-inducer, tetracycline and heat stress in the absence of established regulators. Heat stress was found to be the strongest SOS-inducer. We found that upon transition to stationary phase of culture growth transcription of DNA repair genes decreases dramatically. Heat stress does not induce SOS-response in a stationary phase.
Collapse
Affiliation(s)
- Alexey Y Gorbachev
- Research Institute of Physico-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1556
|
Rosenow A, Noben JP, Bouwman FG, Mariman ECM, Renes J. Hypoxia-mimetic effects in the secretome of human preadipocytes and adipocytes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2761-71. [PMID: 24140569 DOI: 10.1016/j.bbapap.2013.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/16/2013] [Accepted: 10/03/2013] [Indexed: 10/26/2022]
Abstract
White adipose tissue (WAT) regulates energy metabolism by secretion of proteins with endocrine and paracrine effects. Dysregulation of the secretome of obesity-associated enlarged WAT may lead to obesity-related disorders. This can be caused by hypoxia as a result of poorly vascularized WAT. The effect of hypoxia on the secretome of human (pre)adipocytes is largely unknown. Therefore, we investigated the effect of CoCl2, a hypoxia mimetic, on the secretome of human SGBS (pre)adipocytes by a proteomics approach combined with bioinformatic analysis. In addition, regulation of protein secretion was examined by protein turnover experiments. As such, secretome changes were particularly associated with protein down-regulation and extracellular matrix protein dysregulation. The observed up-regulation of collagens in adipocytes may be essential for cell survival while down-regulation of collagens in preadipocytes may indicate a disturbed differentiation process. These CoCl2-induced changes reflect WAT dysfunction that ultimately may lead to obesity-associated complications. In addition, 9 novel adipocyte secreted proteins were identified from which 6 were regulated by CoCl2. Mass spectrometry data have been deposited to the ProteomeXchange with identifier PXD000162.
Collapse
Affiliation(s)
- Anja Rosenow
- NUTRIM School for Nutrition, Toxicology and Metabolism, Department of Human Biology, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
1557
|
van Ooijen G, Martin SF, Barrios-Llerena ME, Hindle M, Le Bihan T, O'Neill JS, Millar AJ. Functional analysis of the rodent CK1tau mutation in the circadian clock of a marine unicellular alga. BMC Cell Biol 2013; 14:46. [PMID: 24127907 PMCID: PMC3852742 DOI: 10.1186/1471-2121-14-46] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/04/2013] [Indexed: 11/18/2022] Open
Abstract
Background Casein Kinase 1 (CK1) is one of few proteins known to affect cellular timekeeping across metazoans, and the naturally occurring CK1tau mutation shortens circadian period in mammals. Functional conservation of a timekeeping function for CK1 in the green lineage was recently identified in the green marine unicell Ostreococcus tauri, in spite of the absence of CK1's transcriptional targets known from other species. The short-period phenotype of CK1tau mutant in mammals depends specifically on increased CK1 activity against PERIOD proteins. To understand how CK1 acts differently upon the algal clock, we analysed the cellular and proteomic effects of CK1tau overexpression in O. tauri. Results Overexpression of the CK1tau in O. tauri induces period lengthening identical to overexpression of wild-type CK1, in addition to resistance to CK1 inhibitor IC261. Label-free quantitative mass spectrometry of CK1tau overexpressing algae revealed a total of 58 unique phospho-sites that are differentially responsive to CK1tau. Combined with CK1 phosphorylation site prediction tools and previously published wild-type CK1-responsive peptides, this study results in a highly stringent list of upregulated phospho-sites, derived from proteins containing ankyrin repeats, kinase proteins, and phosphoinositide-binding proteins. Conclusions The identical phenotype for overexpression of wild-type CK1 and CK1tau is in line with the absence of critical targets for rodent CK1tau in O. tauri. Proteomic analyses reveal that two thirds of previously reported CK1 overexpression-responsive phospho-sites are shared with CK1tau. These results indicate that the two alleles are functionally indiscriminate in O. tauri, and verify the identified cellular CK1 target proteins in a minimal circadian model organism.
Collapse
Affiliation(s)
- Gerben van Ooijen
- SynthSys, University of Edinburgh, Waddington Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JD, UK.
| | | | | | | | | | | | | |
Collapse
|
1558
|
Vanden Bergh P, Heller M, Braga-Lagache S, Frey J. The Aeromonas salmonicida subsp. salmonicida exoproteome: global analysis, moonlighting proteins and putative antigens for vaccination against furunculosis. Proteome Sci 2013; 11:44. [PMID: 24127837 PMCID: PMC3826670 DOI: 10.1186/1477-5956-11-44] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 10/04/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Aeromonas salmonicida subsp. salmonicida, the etiologic agent of furunculosis, is a major pathogen of fisheries worldwide. Despite the identification of several virulence factors the pathogenesis is still poorly understood. We have used high-throughput proteomics to display the differences between in vitro secretome of A. salmonicida wild-type (wt, hypervirulent, JF5054) and T3SS-deficient (isogenic ΔascV, extremely low-virulent, JF2747) strains in exponential (GP) and stationary (SP) phases of growth. RESULTS Among the different experimental conditions we obtained semi-quantitative values for a total of 2136 A. salmonicida proteins. Proteins of specific A. salmonicida species were proportionally less detected than proteins common to the Aeromonas genus or those shared with other Aeromonas species, suggesting that in vitro growth did not induce the expression of these genes. Four detected proteins which are unidentified in the genome of reference strains of A. salmonicida were homologous to components of the conjugative T4SS of A. hydrophila pRA1 plasmid. Polypeptides of three proteins which are specific to the 01-B526 strain were also discovered. In supernatants (SNs), the number of detected proteins was higher in SP (326 for wt vs 329 for mutant) than in GP (275 for wt vs 263 for mutant). In pellets, the number of identified proteins (a total of 1536) was approximately the same between GP and SP. Numerous highly conserved cytoplasmic proteins were present in A. salmonicida SNs (mainly EF-Tu, EF-G, EF-P, EF-Ts, TypA, AlaS, ribosomal proteins, HtpG, DnaK, peptidyl-prolyl cis-trans isomerases, GAPDH, Enolase, FbaA, TpiA, Pgk, TktA, AckA, AcnB, Mdh, AhpC, Tpx, SodB and PNPase), and several evidences support the theory that their extracellular localization was not the result of cell lysis. According to the Cluster of Orthologous Groups classification, 29% of excreted proteins in A. salmonicida SNs were currently poorly characterized. CONCLUSIONS In this part of our work we elucidated the whole in vitro exoproteome of hypervirulent A. salmonicida subsp. salmonicida and showed the secretion of several highly conserved cytoplasmic proteins with putative moonlighting functions and roles in virulence. All together, our results offer new information about the pathogenesis of furunculosis and point out potential candidates for vaccine development.
Collapse
Affiliation(s)
- Philippe Vanden Bergh
- Institute of Veterinary Bacteriology, University of Bern, Länggassstrasse 122, P.O. Box 8466, 3001 Bern, Switzerland
| | - Manfred Heller
- Department of Clinical Research, University of Bern, P.O. Box 37, 3010 Bern, Switzerland
| | - Sophie Braga-Lagache
- Department of Clinical Research, University of Bern, P.O. Box 37, 3010 Bern, Switzerland
| | - Joachim Frey
- Institute of Veterinary Bacteriology, University of Bern, Länggassstrasse 122, P.O. Box 8466, 3001 Bern, Switzerland
| |
Collapse
|
1559
|
Puttamallesh VN, Sreenivasamurthy SK, Singh PK, Harsha HC, Ganjiwale A, Broor S, Pandey A, Narayana J, Prasad TSK. Proteomic profiling of serum samples from chikungunya-infected patients provides insights into host response. Clin Proteomics 2013; 10:14. [PMID: 24124767 PMCID: PMC3879382 DOI: 10.1186/1559-0275-10-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 09/17/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Chikungunya is a highly debilitating febrile illness caused by Chikungunya virus, a single-stranded RNA virus, which is transmitted by Aedes aegypti or Aedes albopictus mosquito species. The pathogenesis and host responses in individuals infected with the chikungunya virus are not well understood at the molecular level. We carried out proteomic profiling of serum samples from chikungunya patients in order to identify molecules associated with the host response to infection by this virus. RESULTS Proteomic profiling of serum obtained from the infected individuals resulted in identification of 569 proteins. Of these, 63 proteins were found to be differentially expressed (≥ 2-fold) in patient as compared to control sera. These differentially expressed proteins were involved in various processes such as lipid metabolism, immune response, transport, signal transduction and apoptosis. CONCLUSIONS This is the first report providing a global proteomic profile of serum samples from individuals infected with the chikungunya virus. Our data provide an insight into the proteins that are involved as host response factors during an infection. These proteins include clusterin, apolipoproteins and S100A family of proteins.
Collapse
Affiliation(s)
- Vinuth N Puttamallesh
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | | | - Pradeep Kumar Singh
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - H C Harsha
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - Anjali Ganjiwale
- Microtest Innovations Pvt. Limited, International Technology Park, Bangalore 560 066, India
| | - Shobha Broor
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Akhilesh Pandey
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
- McKusick-Nathans Institute of Genetic Medicine and Departments of Biological Chemistry, Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore 21205 MD, USA
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore 21205 MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore 21205 MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore 21205 MD, USA
| | - Jayasuryan Narayana
- Microtest Innovations Pvt. Limited, International Technology Park, Bangalore 560 066, India
| | - T S Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
| |
Collapse
|
1560
|
Québatte M, Dick MS, Kaever V, Schmidt A, Dehio C. Dual input control: activation of theBartonella henselae VirB/D4 type IV secretion system by the stringent sigma factor RpoH1 and the BatR/BatS two-component system. Mol Microbiol 2013; 90:756-75. [DOI: 10.1111/mmi.12396] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2013] [Indexed: 01/12/2023]
Affiliation(s)
- Maxime Québatte
- Focal Area Infection Biology, Biozentrum; University of Basel; Klingelbergstrasse 70 4056 Basel Switzerland
| | - Mathias S. Dick
- Focal Area Infection Biology, Biozentrum; University of Basel; Klingelbergstrasse 70 4056 Basel Switzerland
| | - Volkhard Kaever
- Research Core Unit for Mass Spectrometry - Metabolomics; Institute of Pharmacology; Hannover Medical School; Hannover Germany
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum; University of Basel; Basel Switzerland
| | - Christoph Dehio
- Focal Area Infection Biology, Biozentrum; University of Basel; Klingelbergstrasse 70 4056 Basel Switzerland
| |
Collapse
|
1561
|
Noyce AB, Smith R, Dalgleish J, Taylor RM, Erb KC, Okuda N, Prince JT. Mspire-Simulator: LC-MS Shotgun Proteomic Simulator for Creating Realistic Gold Standard Data. J Proteome Res 2013; 12:5742-9. [DOI: 10.1021/pr400727e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrew B. Noyce
- Department
of Biochemistry, Brigham Young University, 701 East University Parkway, BNSN C100, Provo, Utah 84602, United States
| | - Rob Smith
- Department
of Computer Science, Brigham Young University, 3361 TMCB, PO Box
26576, Provo, Utah, United States
| | - James Dalgleish
- Department
of Biochemistry, Brigham Young University, 701 East University Parkway, BNSN C100, Provo, Utah 84602, United States
| | - Ryan M. Taylor
- Department
of Biochemistry, Brigham Young University, 701 East University Parkway, BNSN C100, Provo, Utah 84602, United States
| | - K. C. Erb
- Department
of Biochemistry, Brigham Young University, 701 East University Parkway, BNSN C100, Provo, Utah 84602, United States
| | - Nozomu Okuda
- Department
of Biochemistry, Brigham Young University, 701 East University Parkway, BNSN C100, Provo, Utah 84602, United States
| | - John T. Prince
- Department
of Biochemistry, Brigham Young University, 701 East University Parkway, BNSN C100, Provo, Utah 84602, United States
| |
Collapse
|
1562
|
Hayakawa E, Menschaert G, De Bock PJ, Luyten W, Gevaert K, Baggerman G, Schoofs L. Improving the identification rate of endogenous peptides using electron transfer dissociation and collision-induced dissociation. J Proteome Res 2013; 12:5410-21. [PMID: 24032530 DOI: 10.1021/pr400446z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Tandem mass spectrometry (MS/MS) combined with bioinformatics tools have enabled fast and systematic protein identification based on peptide-to-spectrum matches. However, it remains challenging to obtain accurate identification of endogenous peptides, such as neuropeptides, peptide hormones, peptide pheromones, venom peptides, and antimicrobial peptides. Since these peptides are processed at sites that are difficult to predict reliably, the search of their MS/MS spectra in sequence databases needs to be done without any protease setting. In addition, many endogenous peptides carry various post-translational modifications, making it essential to take these into account in the database search. These characteristics of endogenous peptides result in a huge search space, frequently leading to poor confidence of the peptide characterizations in peptidomics studies. We have developed a new MS/MS spectrum search tool for highly accurate and confident identification of endogenous peptides by combining two different fragmentation methods. Our approach takes advantage of the combination of two independent fragmentation methods (collision-induced dissociation and electron transfer dissociation). Their peptide spectral matching is carried out separately in both methods, and the final score is built as a combination of the two separate scores. We demonstrate that this approach is very effective in discriminating correct peptide identifications from false hits. We applied this approach to a spectral data set of neuropeptides extracted from mouse pituitary tumor cells. Compared to conventional MS-based identification, i.e., using a single fragmentation method, our approach significantly increased the peptide identification rate. It proved also highly effective for scanning spectra against a very large search space, enabling more accurate genome-wide searches and searches including multiple potential post-translational modifications.
Collapse
Affiliation(s)
- Eisuke Hayakawa
- Research Group of Functional Genomics and Proteomics, KU Leuven , Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
1563
|
Nawrot R, Barylski J, Schulze WX. Incorrectly annotated keratin derived peptide sequences lead to misleading MS/MS data interpretation. J Proteomics 2013; 91:270-3. [DOI: 10.1016/j.jprot.2013.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/01/2013] [Accepted: 07/07/2013] [Indexed: 11/25/2022]
|
1564
|
Blasco H, Corcia P, Gordon PH, Pradat PF. Biological and neuroimaging biomarkers for amyotrophic lateral sclerosis: 2013 and beyond. Neurodegener Dis Manag 2013. [DOI: 10.2217/nmt.13.43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
SUMMARY Amyotrophic lateral sclerosis is an idiopathic, incurable neurodegenerative disease that is fatal for most patients in less than 3 years from the time weakness first appears. Alongside identification of etiologies and stronger neuroprotective agents, the development of biomarkers is a main research priority. Since the original description, diagnosis and progression measurement in amyotrophic lateral sclerosis has been clinical. The time from symptom onset to diagnosis is usually more than a year, and clinical research studies utilize clinical end points that have low sensitivity. Few eligible patients and inefficient trials mean that just one or a few new therapies can be tested each year. Biological markers are needed not only to improve the sensitivity of clinical assessments, but also to better examine disease pathophysiology in vivo.
Collapse
Affiliation(s)
- Hélène Blasco
- UMR INSERM U930, Université François-Rabelais de Tours, Tours, France
- Laboratoire de Biochimie & de Biologie Moléculaire, Hôpital Bretonneau, CHRU de Tours, France
| | - Philippe Corcia
- Centre SLA, Service de Neurologie & Neurophysiologie Clinique, CHRU de Tours, France
| | - Paul H Gordon
- Départment des Maladies du Système Nerveux, Assistance Publique-Hôpitaux de Paris, Hôpital de la Salpêtrière, 75013, Paris, France
| | - Pierre-François Pradat
- Départment des Maladies du Système Nerveux, Assistance Publique-Hôpitaux de Paris, Hôpital de la Salpêtrière, 75013, Paris, France
- UMR-678, INSERM-UPMC, Hôpital de la Salpêtrière, 75013, Paris, France
| |
Collapse
|
1565
|
Huang TK, Han CL, Lin SI, Chen YJ, Tsai YC, Chen YR, Chen JW, Lin WY, Chen PM, Liu TY, Chen YS, Sun CM, Chiou TJ. Identification of downstream components of ubiquitin-conjugating enzyme PHOSPHATE2 by quantitative membrane proteomics in Arabidopsis roots. THE PLANT CELL 2013; 25:4044-60. [PMID: 24122829 PMCID: PMC3877800 DOI: 10.1105/tpc.113.115998] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 07/12/2013] [Accepted: 09/20/2013] [Indexed: 05/18/2023]
Abstract
MicroRNA399-mediated regulation of the ubiquitin-conjugating enzyme UBC24/phosphate2 (PHO2) is crucial for Pi acquisition and translocation in plants. Because of a potential role for PHO2 in protein degradation and its association with membranes, an iTRAQ (for isobaric tags for relative and absolute quantitation)- based quantitative membrane proteomic method was employed to search for components downstream of PHO2. A total of 7491 proteins were identified from Arabidopsis thaliana roots by mass spectrometry, 35.2% of which were predicted to contain at least one transmembrane helix. Among the quantifiable proteins, five were significantly differentially expressed between the wild type and pho2 mutant under two growth conditions. Using immunoblot analysis, we validated the upregulation of several members in phosphate transporter1 (PHT1) family and phosphate transporter traffic facilitator1 (PHF1) in pho2 and demonstrated that PHO2 mediates the degradation of PHT1 proteins. Genetic evidence that loss of PHF1 or PHT1;1 alleviated Pi toxicity in pho2 further suggests that they play roles as downstream components of PHO2. Moreover, we showed that PHO2 interacts with PHT1s in the postendoplasmic reticulum compartments and mediates the ubiquitination of endomembrane-localized PHT1;1. This study not only uncovers a mechanism by which PHO2 modulates Pi acquisition by regulating the abundance of PHT1s in the secretory pathway destined for plasma membranes, but also provides a database of the membrane proteome that will be widely applicable in root biology research.
Collapse
Affiliation(s)
- Teng-Kuei Huang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
| | - Chia-Li Han
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Shu-I Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Yi-Chuan Tsai
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan
| | - June-Wei Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Wei-Yi Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
| | - Pei-Mien Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Tzu-Yin Liu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ying-Shin Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ching-Mei Sun
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan
- Address correspondence to
| |
Collapse
|
1566
|
Schmutz C, Ahrné E, Kasper CA, Tschon T, Sorg I, Dreier RF, Schmidt A, Arrieumerlou C. Systems-level overview of host protein phosphorylation during Shigella flexneri infection revealed by phosphoproteomics. Mol Cell Proteomics 2013; 12:2952-68. [PMID: 23828894 PMCID: PMC3790303 DOI: 10.1074/mcp.m113.029918] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/14/2013] [Indexed: 01/01/2023] Open
Abstract
The enteroinvasive bacterium Shigella flexneri invades the intestinal epithelium of humans. During infection, several injected effector proteins promote bacterial internalization, and interfere with multiple host cell responses. To obtain a systems-level overview of host signaling during infection, we analyzed the global dynamics of protein phosphorylation by liquid chromatography-tandem MS and identified several hundred of proteins undergoing a phosphorylation change during the first hours of infection. Functional bioinformatic analysis revealed that they were mostly related to the cytoskeleton, transcription, signal transduction, and cell cycle. Fuzzy c-means clustering identified six temporal profiles of phosphorylation and a functional module composed of ATM-phosphorylated proteins related to genotoxic stress. Pathway enrichment analysis defined mTOR as the most overrepresented pathway. We showed that mTOR complex 1 and 2 were required for S6 kinase and AKT activation, respectively. Comparison with a published phosphoproteome of Salmonella typhimurium-infected cells revealed a large subset of coregulated phosphoproteins. Finally, we showed that S. flexneri effector OspF affected the phosphorylation of several hundred proteins, thereby demonstrating the wide-reaching impact of a single bacterial effector on the host signaling network.
Collapse
Affiliation(s)
- Christoph Schmutz
- From the ‡Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Erik Ahrné
- From the ‡Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Christoph A. Kasper
- From the ‡Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Therese Tschon
- From the ‡Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Isabel Sorg
- From the ‡Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Roland F. Dreier
- From the ‡Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Alexander Schmidt
- From the ‡Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Cécile Arrieumerlou
- From the ‡Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| |
Collapse
|
1567
|
Hartmann EM, Armengaud J. Shotgun proteomics suggests involvement of additional enzymes in dioxin degradation by Sphingomonas wittichii RW1. Environ Microbiol 2013; 16:162-76. [PMID: 24118890 DOI: 10.1111/1462-2920.12264] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/06/2013] [Accepted: 08/24/2013] [Indexed: 12/01/2022]
Abstract
Chlorinated congeners of dibenzo-p-dioxin and dibenzofuran are widely dispersed pollutants that can be treated using microorganisms, such as the Sphingomonas wittichii RW1 bacterium, able to transform some of them into non-toxic substances. The enzymes of the upper pathway for dibenzo-p-dioxin degradation in S. wittichii RW1 have been biochemically and genetically characterized, but its genome sequence indicated the existence of a tremendous potential for aromatic compound transformation, with 56 ring-hydroxylating dioxygenase subunits, 34 extradiol dioxygenases and 40 hydrolases. To further characterize this enzymatic arsenal, new methodological approaches should be employed. Here, a large shotgun proteomic survey was performed on cells grown on dibenzofuran, dibenzo-p-dioxin and 2-chlorodibenzo-p-dioxin, and compared with growth on acetate. Changes in the proteome were monitored over time. In total, 502 proteins were observed and quantified using a label-free mass spectrometry-based approach; all data were deposited to the ProteomeXchange (PXD000403). Our results confirmed the roles of the dioxin dioxygenase DxnA1A2, trihydroxybiphenyl dioxygenase DbfB, meta-cleavage product hydrolase DxnB and reductase RedA2, and corroborated the proposed involvement of the Swit_3046 dioxygenase and DxnB2 hydrolase. Trends across substrates and over the course of growth do not support concerted pathway regulation and suggest the involvement of an additional hydrolase and several TonB-dependent receptors.
Collapse
Affiliation(s)
- Erica M Hartmann
- CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze, F-30207, France
| | | |
Collapse
|
1568
|
Reimann J, Esser D, Orell A, Amman F, Pham TK, Noirel J, Lindås AC, Bernander R, Wright PC, Siebers B, Albers SV. Archaeal signal transduction: impact of protein phosphatase deletions on cell size, motility, and energy metabolism in Sulfolobus acidocaldarius. Mol Cell Proteomics 2013; 12:3908-23. [PMID: 24078887 PMCID: PMC3861733 DOI: 10.1074/mcp.m113.027375] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In this study, the in vitro and in vivo functions of the only two identified protein phosphatases, Saci-PTP and Saci-PP2A, in the crenarchaeal model organism Sulfolobus acidocaldarius were investigated. Biochemical characterization revealed that Saci-PTP is a dual-specific phosphatase (against pSer/pThr and pTyr), whereas Saci-PP2A exhibited specific pSer/pThr activity and inhibition by okadaic acid. Deletion of saci_pp2a resulted in pronounced alterations in growth, cell shape and cell size, which could be partially complemented. Transcriptome analysis of the three strains (Δsaci_ptp, Δsaci_pp2a and the MW001 parental strain) revealed 155 genes that were differentially expressed in the deletion mutants, and showed significant changes in expression of genes encoding the archaella (archaeal motility structure), components of the respiratory chain and transcriptional regulators. Phosphoproteome studies revealed 801 unique phosphoproteins in total, with an increase in identified phosphopeptides in the deletion mutants. Proteins from most functional categories were affected by phosphorylation, including components of the motility system, the respiratory chain, and regulatory proteins. In the saci_pp2a deletion mutant the up-regulation at the transcript level, as well as the observed phosphorylation pattern, resembled starvation stress responses. Hypermotility was also observed in the saci_pp2a deletion mutant. The results highlight the importance of protein phosphorylation in regulating essential cellular processes in the crenarchaeon S. acidocaldarius.
Collapse
Affiliation(s)
- Julia Reimann
- Molecular Biology of Archaea, Max Planck Institute for terrestrial Microbiology, Karl-von-Frisch Straβe 10, 35043 Marburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1569
|
The Aeromonas salmonicida subsp. salmonicida exoproteome: determination of the complete repertoire of Type-Three Secretion System effectors and identification of other virulence factors. Proteome Sci 2013; 11:42. [PMID: 24073886 PMCID: PMC3852671 DOI: 10.1186/1477-5956-11-42] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/23/2013] [Indexed: 01/24/2023] Open
Abstract
Background Aeromonas salmonicida subsp. salmonicida, the etiologic agent of furunculosis, is a major pathogen of fisheries worldwide. Several virulence factors have been described, but the type-three secretion system (T3SS) is recognized as having a major effect on virulence by injecting effectors directly into fish cells. In this study we used high-throughput proteomics to display the differences between in vitro secretome of A. salmonicida wild-type (wt, hypervirulent, JF2267) and T3SS-deficient (isogenic ΔascV, extremely low-virulent, JF2747) strains in exponential and stationary phases of growth. Results Results confirmed the secretion of effectors AopH, AexT, AopP and AopO via T3SS, and for the first time demonstrated the impact of T3SS in secretion of Ati2, AopN and ExsE that are known as effectors in other pathogens. Translocators, needle subunits, Ati1, and AscX were also secreted in supernatants (SNs) dependent on T3SS. AopH, Ati2, AexT, AopB and AopD were in the top seven most abundant excreted proteins. EF-G, EF-Tu, DnaK, HtpG, PNPase, PepN and MdeA were moderately secreted in wt SNs and predicted to be putative T3 effectors by bioinformatics. Pta and ASA_P5G088 were increased in wt SNs and T3-associated in other bacteria. Ten conserved cytoplasmic proteins were more abundant in wt SNs than in the ΔascV mutant, but without any clear association to a secretion system. T1-secreted proteins were predominantly found in wt SNs: OmpAI, OmpK40, DegQ, insulinase ASA_0716, hypothetical ASA_0852 and ASA_3619. Presence of T3SS components in pellets was clearly decreased by ascV deletion, while no impact was observed on T1- and T2SS. Our results demonstrated that the ΔascV mutant strain excreted well-described (VapA, AerA, AerB, GCAT, Pla1, PlaC, TagA, Ahe2, GbpA and enolase) and yet uncharacterized potential toxins, adhesins and enzymes as much as or even more than the wt strain. Other putative important virulence factors were not detected. Conclusions We demonstrated the whole in vitro secretome and T3SS repertoire of hypervirulent A. salmonicida. Several toxins, adhesins and enzymes that are not part of the T3SS secretome were secreted to a higher extent in the extremely low-virulent ΔascV mutant. All together, our results show the high importance of an intact T3SS to initiate the furunculosis and offer new information about the pathogenesis.
Collapse
|
1570
|
Sacchi R, Li J, Villarreal F, Gardell AM, Kültz D. Salinity-induced regulation of the myo-inositol biosynthesis pathway in tilapia gill epithelium. ACTA ACUST UNITED AC 2013; 216:4626-38. [PMID: 24072791 DOI: 10.1242/jeb.093823] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The myo-inositol biosynthesis (MIB) pathway converts glucose-6-phosphate to the compatible osmolyte myo-inositol that protects cells from osmotic stress. Using proteomics, the enzymes that constitute the MIB pathway, myo-inositol phosphate synthase (MIPS) and inositol monophosphatase 1 (IMPA1), are identified in tilapia (Oreochromis mossambicus) gill epithelium. Targeted, quantitative, label-free proteomics reveals that they are both upregulated during salinity stress. Upregulation is stronger when fish are exposed to severe (34 ppt acute and 90 ppt gradual) relative to moderate (70 ppt gradual) salinity stress. IMPA1 always responds more strongly than MIPS, suggesting that MIPS is more stable during salinity stress. MIPS is N-terminally acetylated and the corresponding peptide increases proportionally to MIPS protein, while non-acetylated N-terminal peptide is not detectable, indicating that MIPS acetylation is constitutive and may serve to stabilize the protein. Hyperosmotic induction of MIPS and IMPA1 is confirmed using western blot and real-time qPCR and is much higher at the mRNA than at the protein level. Two distinct MIPS mRNA variants are expressed in the gill, but one is more strongly regulated by salinity than the other. A single MIPS gene is encoded in the tilapia genome whereas the zebrafish genome lacks MIPS entirely. The genome of euryhaline tilapia contains four IMPA genes, two of which are expressed, but only one is salinity regulated in gill epithelium. The genome of stenohaline zebrafish contains a single IMPA gene. We conclude that the MIB pathway represents a major salinity stress coping mechanism that is regulated at multiple levels in euryhaline fish but absent in stenohaline zebrafish.
Collapse
Affiliation(s)
- Romina Sacchi
- Physiological Genomics Group, Department of Animal Sciences, University of California, Davis, One Shields Avenue, Meyer Hall, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
1571
|
Kültz D, Li J, Gardell A, Sacchi R. Quantitative molecular phenotyping of gill remodeling in a cichlid fish responding to salinity stress. Mol Cell Proteomics 2013; 12:3962-75. [PMID: 24065692 DOI: 10.1074/mcp.m113.029827] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A two-tiered label-free quantitative (LFQ) proteomics workflow was used to elucidate how salinity affects the molecular phenotype, i.e. proteome, of gills from a cichlid fish, the euryhaline tilapia (Oreochromis mossambicus). The workflow consists of initial global profiling of relative tryptic peptide abundances in treated versus control samples followed by targeted identification (by MS/MS) and quantitation (by chromatographic peak area integration) of validated peptides for each protein of interest. Fresh water acclimated tilapia were independently exposed in separate experiments to acute short-term (34 ppt) and gradual long-term (70 ppt, 90 ppt) salinity stress followed by molecular phenotyping of the gill proteome. The severity of salinity stress can be deduced with high technical reproducibility from the initial global label-free quantitative profiling step alone at both peptide and protein levels. However, an accurate regulation ratio can only be determined by targeted label-free quantitative profiling because not all peptides used for protein identification are also valid for quantitation. Of the three salinity challenges, gradual acclimation to 90 ppt has the most pronounced effect on gill molecular phenotype. Known salinity effects on tilapia gills, including an increase in the size and number of mitochondria-rich ionocytes, activities of specific ion transporters, and induction of specific molecular chaperones are reflected in the regulation of abundances of the corresponding proteins. Moreover, specific protein isoforms that are responsive to environmental salinity change are resolved and it is revealed that salinity effects on the mitochondrial proteome are nonuniform. Furthermore, protein NDRG1 has been identified as a novel key component of molecular phenotype restructuring during salinity-induced gill remodeling. In conclusion, besides confirming known effects of salinity on gills of euryhaline fish, molecular phenotyping reveals novel insight into proteome changes that underlie the remodeling of tilapia gill epithelium in response to environmental salinity change.
Collapse
Affiliation(s)
- Dietmar Kültz
- Physiological Genomics Group, Department of Animal Sciences, University of California Davis, One Shields Avenue, Davis, California 95616
| | | | | | | |
Collapse
|
1572
|
Sun HH, Fukao Y, Ishida S, Yamamoto H, Maekawa S, Fujiwara M, Sato T, Yamaguchi J. Proteomics analysis reveals a highly heterogeneous proteasome composition and the post-translational regulation of peptidase activity under pathogen signaling in plants. J Proteome Res 2013; 12:5084-95. [PMID: 23991809 DOI: 10.1021/pr400630w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The proteasome is a large multisubunit complex that plays a crucial role in the removal of damaged or selective ubiquitinated proteins, thereby allowing quality control of cellular proteins and restricted regulation of diverse cellular signaling in eukaryotic cells. Proteasome-dependent protein degradation is involved in almost all aspects of plant growth and responses to environmental stresses including pathogen resistance. Although the molecular mechanism for specifying targets by ubiquitin ligases is well understood, the detailed characterization of the plant proteasome complex remains unclear. One of the most important features of the plant proteasome is that most subunits are encoded by duplicate genes, suggesting the highly heterogeneous composition of this proteasome. Here, we performed affinity purification and a combination of 2-dimensional electrophoresis and mass spectrometry, which identified the detailed composition of paralogous and modified proteins. Moreover, these proteomics approaches revealed that specific subunit composition and proteasome peptidase activity were affected by pathogen-derived MAMPs, flg22 treatment. Interestingly, flg22 treatment did not alter mRNA expression levels of the peptidase genes PBA, PBB1/2, PBE1/2, and total proteasome levels remained unchanged by flg22 as well. These results demonstrate the finely tuned mechanism that regulates proteasome function via putative post-translational modifications in response to environmental stress in plants.
Collapse
Affiliation(s)
- Hui H Sun
- Faculty of Science and Graduate School of Life Science, Hokkaido University , Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | |
Collapse
|
1573
|
Francis HM, Mirzaei M, Pardey MC, Haynes PA, Cornish JL. Proteomic analysis of the dorsal and ventral hippocampus of rats maintained on a high fat and refined sugar diet. Proteomics 2013; 13:3076-91. [PMID: 23963966 DOI: 10.1002/pmic.201300124] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/21/2013] [Accepted: 07/16/2013] [Indexed: 12/22/2022]
Abstract
The typical Western diet, rich in high saturated fat and refined sugar (HFS), has been shown to increase cognitive decline with aging and Alzheimer's disease, and to affect cognitive functions that are dependent on the hippocampus, including memory processes and reversal learning. To investigate neurophysiological changes underlying these impairments, we employed a proteomic approach to identify differentially expressed proteins in the rat dorsal and ventral hippocampus following maintenance on an HFS diet. Rats maintained on the HFS diet for 8 weeks were impaired on a novel object recognition task that assesses memory and on a Morris Water Maze task assessing reversal learning. Quantitative label-free shotgun proteomic analysis was conducted on biological triplicates for each group. For the dorsal hippocampus, 59 proteins were upregulated and 36 downregulated in the HFS group compared to controls. Pathway ana-lysis revealed changes to proteins involved in molecular transport and cellular and molecular signaling, and changes to signaling pathways including calcium signaling, citrate cycle, and oxidative phosphorylation. For the ventral hippocampus, 25 proteins were upregulated and 27 downregulated in HFS fed rats. Differentially expressed proteins were involved in cell-to-cell signaling and interaction, and cellular and molecular function. Changes to signaling pathways included protein ubiquitination, ubiquinone biosynthesis, oxidative phosphorylation, and mitochondrial dysfunction. This is the first shotgun proteomics study to examine protein changes in the hippocampus following long-term consumption of a HFS diet, identifying changes to a large number of proteins including those involved in synaptic plasticity and energy metabolism. All MS data have been deposited in the ProteomeXchange with identifier PXD000028.
Collapse
Affiliation(s)
- Heather M Francis
- Department of Psychology, Macquarie University, Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
1574
|
The functional interactome landscape of the human histone deacetylase family. Mol Syst Biol 2013; 9:672. [PMID: 23752268 PMCID: PMC3964310 DOI: 10.1038/msb.2013.26] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/29/2013] [Indexed: 12/22/2022] Open
Abstract
This study presents the first global protein interaction network for all 11 human HDACs in T cells and an integrative mass spectrometry approach for profiling relative interaction stability within isolated protein complexes. ![]()
T-cell lines stably expressing each of the human HDACs (1 - 11), C-terminally tagged with both EGFP and FLAG, were generated using retroviral transduction. Affinity purification coupled to mass spectrometry-based proteomics (AP-MS) was used to build the first global protein interaction network for all eleven human HDACs in T cells. An optimized label free AP-MS and computational workflow was developed for profiling relative interaction stability among isolated protein complexes. HDAC11 is a member of the “survival of motor neuron” protein complex with a functional role in mRNA splicing.
Histone deacetylases (HDACs) are a diverse family of essential transcriptional regulatory enzymes, that function through the spatial and temporal recruitment of protein complexes. As the composition and regulation of HDAC complexes are only partially characterized, we built the first global protein interaction network for all 11 human HDACs in T cells. Integrating fluorescence microscopy, immunoaffinity purifications, quantitative mass spectrometry, and bioinformatics, we identified over 200 unreported interactions for both well-characterized and lesser-studied HDACs, a subset of which were validated by orthogonal approaches. We establish HDAC11 as a member of the survival of motor neuron complex and pinpoint a functional role in mRNA splicing. We designed a complementary label-free and metabolic-labeling mass spectrometry-based proteomics strategy for profiling interaction stability among different HDAC classes, revealing that HDAC1 interactions within chromatin-remodeling complexes are largely stable, while transcription factors preferentially exist in rapid equilibrium. Overall, this study represents a valuable resource for investigating HDAC functions in health and disease, encompassing emerging themes of HDAC regulation in cell cycle and RNA processing and a deeper functional understanding of HDAC complex stability.
Collapse
|
1575
|
Xu J, Pascual L, Aurand R, Bouchet JP, Valot B, Zivy M, Causse M, Faurobert M. An extensive proteome map of tomato (Solanum lycopersicum
) fruit pericarp. Proteomics 2013; 13:3059-63. [DOI: 10.1002/pmic.201200438] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/16/2013] [Accepted: 07/20/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Jiaxin Xu
- INRA, UR1052; Unité de Génétique et Amélioration des Fruits et Légumes; Montfavet France
- College of Horticulture; Northwest A&F University; Yang Ling P. R. China
| | - Laura Pascual
- INRA, UR1052; Unité de Génétique et Amélioration des Fruits et Légumes; Montfavet France
| | - Rémy Aurand
- INRA, UR1052; Unité de Génétique et Amélioration des Fruits et Légumes; Montfavet France
- INRA; UR1115 Plantes et Systèmes de Culture Horticoles; Avignon France
| | - Jean-Paul Bouchet
- INRA, UR1052; Unité de Génétique et Amélioration des Fruits et Légumes; Montfavet France
| | - Benoît Valot
- INRA/Université Paris-Sud/CNRS; Plateforme d'Analyse Protéomique de Paris Sud-Ouest; UMR 0320/UMR 8120 de Génétique Végétale Gif-sur-Yvette France
| | - Michel Zivy
- INRA/Université Paris-Sud/CNRS; Plateforme d'Analyse Protéomique de Paris Sud-Ouest; UMR 0320/UMR 8120 de Génétique Végétale Gif-sur-Yvette France
| | - Mathilde Causse
- INRA, UR1052; Unité de Génétique et Amélioration des Fruits et Légumes; Montfavet France
| | - Mireille Faurobert
- INRA, UR1052; Unité de Génétique et Amélioration des Fruits et Légumes; Montfavet France
| |
Collapse
|
1576
|
Han D, Moon S, Kim Y, Kim J, Jin J, Kim Y. In-depth proteomic analysis of mouse microglia using a combination of FASP and StageTip-based, high pH, reversed-phase fractionation. Proteomics 2013; 13:2984-8. [PMID: 23943505 DOI: 10.1002/pmic.201300091] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 06/02/2013] [Accepted: 07/20/2013] [Indexed: 11/07/2022]
Abstract
Microglia are major immune cells in the central nervous system. A characterization of microglia proteome would facilitate on the study of microglial functions in association with various neurodegenerative diseases. To build a reference proteome, we established a BV-2 microglial proteome to a depth of 5494 unique protein groups using a novel strategy that combined FASP, StageTip-based high pH fractionation, and high-resolution MS quickly and cost efficiently. By bioinformatics analysis, the BV-2 proteome is a valuable resource for studies of microglial function, such as in the immune response, inflammatory response, and phagocytosis. All MS data have been deposited in the ProteomeXchange with identifier PXD000168.
Collapse
Affiliation(s)
- Dohyun Han
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea; Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
1577
|
Martínez-Fábregas J, Díaz-Moreno I, González-Arzola K, Janocha S, Navarro JA, Hervás M, Bernhardt R, Díaz-Quintana A, De la Rosa MÁ. New Arabidopsis thaliana cytochrome c partners: a look into the elusive role of cytochrome c in programmed cell death in plants. Mol Cell Proteomics 2013; 12:3666-76. [PMID: 24019145 DOI: 10.1074/mcp.m113.030692] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Programmed cell death is an event displayed by many different organisms along the evolutionary scale. In plants, programmed cell death is necessary for development and the hypersensitive response to stress or pathogenic infection. A common feature in programmed cell death across organisms is the translocation of cytochrome c from mitochondria to the cytosol. To better understand the role of cytochrome c in the onset of programmed cell death in plants, a proteomic approach was developed based on affinity chromatography and using Arabidopsis thaliana cytochrome c as bait. Using this approach, ten putative new cytochrome c partners were identified. Of these putative partners and as indicated by bimolecular fluorescence complementation, nine of them bind the heme protein in plant protoplasts and human cells as a heterologous system. The in vitro interaction between cytochrome c and such soluble cytochrome c-targets was further corroborated using surface plasmon resonance. Taken together, the results obtained in the study indicate that Arabidopsis thaliana cytochrome c interacts with several distinct proteins involved in protein folding, translational regulation, cell death, oxidative stress, DNA damage, energetic metabolism, and mRNA metabolism. Interestingly, some of these novel Arabidopsis thaliana cytochrome c-targets are closely related to those for Homo sapiens cytochrome c (Martínez-Fábregas et al., unpublished). These results indicate that the evolutionarily well-conserved cytosolic cytochrome c, appearing in organisms from plants to mammals, interacts with a wide range of targets on programmed cell death. The data have been deposited to the ProteomeXchange with identifier PXD000280.
Collapse
Affiliation(s)
- Jonathan Martínez-Fábregas
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla-Consejo Superior de Investigaciones Científicas (CSIC), Seville, 41092, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
1578
|
Hang TC, Tedford NC, Reddy RJ, Rimchala T, Wells A, White FM, Kamm RD, Lauffenburger DA. Vascular endothelial growth factor (VEGF) and platelet (PF-4) factor 4 inputs modulate human microvascular endothelial signaling in a three-dimensional matrix migration context. Mol Cell Proteomics 2013; 12:3704-18. [PMID: 24023389 PMCID: PMC3861718 DOI: 10.1074/mcp.m113.030528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The process of angiogenesis is under complex regulation in adult organisms, particularly as it often occurs in an inflammatory post-wound environment. As such, there are many impacting factors that will regulate the generation of new blood vessels which include not only pro-angiogenic growth factors such as vascular endothelial growth factor, but also angiostatic factors. During initial postwound hemostasis, a large initial bolus of platelet factor 4 is released into localized areas of damage before progression of wound healing toward tissue homeostasis. Because of its early presence and high concentration, the angiostatic chemokine platelet factor 4, which can induce endothelial anoikis, can strongly affect angiogenesis. In our work, we explored signaling crosstalk interactions between vascular endothelial growth factor and platelet factor 4 using phosphotyrosine-enriched mass spectrometry methods on human dermal microvascular endothelial cells cultured under conditions facilitating migratory sprouting into collagen gel matrices. We developed new methods to enable mass spectrometry-based phosphorylation analysis of primary cells cultured on collagen gels, and quantified signaling pathways over the first 48 h of treatment with vascular endothelial growth factor in the presence or absence of platelet factor 4. By observing early and late signaling dynamics in tandem with correlation network modeling, we found that platelet factor 4 has significant crosstalk with vascular endothelial growth factor by modulating cell migration and polarization pathways, centered around P38α MAPK, Src family kinases Fyn and Lyn, along with FAK. Interestingly, we found EphA2 correlational topology to strongly involve key migration-related signaling nodes after introduction of platelet factor 4, indicating an influence of the angiostatic factor on this ambiguous but generally angiogenic signal in this complex environment.
Collapse
Affiliation(s)
- Ta-Chun Hang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | | | | | | | | | | | | | |
Collapse
|
1579
|
Salmon CR, Tomazela DM, Ruiz KGS, Foster BL, Paes Leme AF, Sallum EA, Somerman MJ, Nociti FH. Proteomic analysis of human dental cementum and alveolar bone. J Proteomics 2013; 91:544-55. [PMID: 24007660 DOI: 10.1016/j.jprot.2013.08.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/16/2013] [Accepted: 08/23/2013] [Indexed: 01/24/2023]
Abstract
UNLABELLED Dental cementum (DC) is a bone-like tissue covering the tooth root and responsible for attaching the tooth to the alveolar bone (AB) via the periodontal ligament (PDL). Studies have unsuccessfully tried to identify factors specific to DC versus AB, in an effort to better understand DC development and regeneration. The present study aimed to use matched human DC and AB samples (n=7) to generate their proteomes for comparative analysis. Bone samples were harvested from tooth extraction sites, whereas DC samples were obtained from the apical root portion of extracted third molars. Samples were denatured, followed by protein extraction reduction, alkylation and digestion for analysis by nanoAcquity HPLC system and LTQ-FT Ultra. Data analysis demonstrated that a total of 318 proteins were identified in AB and DC. In addition to shared proteins between these tissues, 105 and 83 proteins exclusive to AB or DC were identified, respectively. This is the first report analyzing the proteomic composition of human DC matrix and identifying putative unique and enriched proteins in comparison to alveolar bone. These findings may provide novel insights into developmental differences between DC and AB, and identify candidate biomarkers that may lead to more efficient and predictable therapies for periodontal regeneration. BIOLOGICAL SIGNIFICANCE Periodontal disease is a highly prevalent disease affecting the world population, which involves breakdown of the tooth supporting tissues, the periodontal ligament, alveolar bone, and dental cementum. The lack of knowledge on specific factors that differentiate alveolar bone and dental cementum limits the development of more efficient and predictable reconstructive therapies. In order to better understand cementum development and potentially identify factors to improve therapeutic outcomes, we took the unique approach of using matched patient samples of dental cementum and alveolar bone to generate and compare a proteome list for each tissue. A potential biomarker for dental cementum was identified, superoxide dismutase 3 (SOD3), which is found in cementum and cementum-associated cells in mouse, pig, and human tissues. These findings may provide novel insights into developmental differences between alveolar bone and dental cementum, and represent the basis for improved and more predictable therapies.
Collapse
Affiliation(s)
- Cristiane R Salmon
- Department of Prosthodontics and Periodontics, Division of Periodontics, School of Dentistry, Campinas State University, Piracicaba, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
1580
|
Rodríguez-Piñeiro AM, Bergström JH, Ermund A, Gustafsson JK, Schütte A, Johansson MEV, Hansson GC. Studies of mucus in mouse stomach, small intestine, and colon. II. Gastrointestinal mucus proteome reveals Muc2 and Muc5ac accompanied by a set of core proteins. Am J Physiol Gastrointest Liver Physiol 2013; 305:G348-56. [PMID: 23832517 PMCID: PMC3761249 DOI: 10.1152/ajpgi.00047.2013] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The mucus that protects the surface of the gastrointestinal tract is rich in specialized O-glycoproteins called mucins, but little is known about other mucus proteins or their variability along the gastrointestinal tract. To ensure that only mucus was analyzed, we combined collection from explant tissues mounted in perfusion chambers, liquid sample preparation, single-shot mass spectrometry, and specific bioinformatics tools, to characterize the proteome of the murine mucus from stomach to distal colon. With our approach, we identified ∼1,300 proteins in the mucus. We found no differences in the protein composition or abundance between sexes, but there were clear differences in mucus along the tract. Noticeably, mucus from duodenum showed similarities to the stomach, probably reflecting the normal distal transport. Qualitatively, there were, however, fewer differences than might had been anticipated, suggesting a relatively stable core proteome (∼80% of the total proteins identified). Quantitatively, we found significant differences (∼40% of the proteins) that could reflect mucus specialization throughout the gastrointestinal tract. Hierarchical clustering pinpointed a number of such proteins that correlated with Muc2 (e.g., Clca1, Zg16, Klk1). This study provides a deeper knowledge of the gastrointestinal mucus proteome that will be important in further understanding this poorly studied mucosal protection system.
Collapse
Affiliation(s)
| | - Joakim H. Bergström
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Anna Ermund
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Jenny K. Gustafsson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - André Schütte
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | | | - Gunnar C. Hansson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
1581
|
Oosterkamp MJ, Boeren S, Plugge CM, Schaap PJ, Stams AJM. Metabolic response of Alicycliphilus denitrificans strain BC toward electron acceptor variation. Proteomics 2013; 13:2886-94. [PMID: 23907812 DOI: 10.1002/pmic.201200571] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 06/12/2013] [Accepted: 06/26/2013] [Indexed: 11/08/2022]
Abstract
Alicycliphilus denitrificans is a versatile, ubiquitous, facultative anaerobic bacterium. Alicycliphilus denitrificans strain BC can use chlorate, nitrate, and oxygen as electron acceptor for growth. Cells display a prolonged lag-phase when transferred from nitrate to chlorate and vice versa. Furthermore, cells adapted to aerobic growth do not easily use nitrate or chlorate as electron acceptor. We further investigated these responses of strain BC by differential proteomics, transcript analysis, and enzyme activity assays. In nitrate-adapted cells transferred to chlorate and vice versa, appropriate electron acceptor reduction pathways need to be activated. In oxygen-adapted cells, adaptation to the use of chlorate or nitrate is likely difficult due to the poorly active nitrate reduction pathway and low active chlorate reduction pathway. We deduce that the Nar-type nitrate reductase of strain BC also reduces chlorate, which may result in toxic levels of chlorite if cells are transferred to chlorate. Furthermore, the activities of nitrate reductase and nitrite reductase appear to be not balanced when oxygen-adapted cells are shifted to nitrate as electron acceptor, leading to the production of a toxic amount of nitrite. These data suggest that strain BC encounters metabolic challenges in environments with fluctuations in the availability of electron acceptors. All MS data have been deposited in the ProteomeXchange with identifier PXD000258.
Collapse
|
1582
|
Lichtman JS, Marcobal A, Sonnenburg JL, Elias JE. Host-centric proteomics of stool: a novel strategy focused on intestinal responses to the gut microbiota. Mol Cell Proteomics 2013; 12:3310-8. [PMID: 23982161 DOI: 10.1074/mcp.m113.029967] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The diverse community of microbes that inhabits the human bowel is vitally important to human health. Host-expressed proteins are essential for maintaining this mutualistic relationship and serve as reporters on the status of host-microbiota interaction. Therefore, unbiased and sensitive methods focused on host proteome characterization are needed. Herein we describe a novel method for applying shotgun proteomics to the analysis of feces, focusing on the secreted host proteome. We have conducted the most complete analysis of the extracellular mouse gut proteome to date by employing a gnotobiotic mouse model. Using mice colonized with defined microbial communities of increasing complexity or a complete human microbiota ('humanized'), we show that the complexity of the host stool proteome mirrors the complexity of microbiota composition. We further show that host responses exhibit signatures specific to the different colonization states. We demonstrate feasibility of this approach in human stool samples and provide evidence for a "core" stool proteome as well as personalized host response features. Our method provides a new avenue for noninvasive monitoring of host-microbiota interaction dynamics via host-produced proteins in stool.
Collapse
Affiliation(s)
- Joshua S Lichtman
- Department of Chemical and Systems Biology, Stanford University, Stanford, California
| | | | | | | |
Collapse
|
1583
|
Chen C, Li Z, Huang H, Suzek BE, Wu CH. A fast Peptide Match service for UniProt Knowledgebase. Bioinformatics 2013; 29:2808-9. [PMID: 23958731 DOI: 10.1093/bioinformatics/btt484] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
SUMMARY We have developed a new web application for peptide matching using Apache Lucene-based search engine. The Peptide Match service is designed to quickly retrieve all occurrences of a given query peptide from UniProt Knowledgebase (UniProtKB) with isoforms. The matched proteins are shown in summary tables with rich annotations, including matched sequence region(s) and links to corresponding proteins in a number of proteomic/peptide spectral databases. The results are grouped by taxonomy and can be browsed by organism, taxonomic group or taxonomy tree. The service supports queries where isobaric leucine and isoleucine are treated equivalent, and an option for searching UniRef100 representative sequences, as well as dynamic queries to major proteomic databases. In addition to the web interface, we also provide RESTful web services. The underlying data are updated every 4 weeks in accordance with the UniProt releases. AVAILABILITY http://proteininformationresource.org/peptide.shtml. CONTACT chenc@udel.edu. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Chuming Chen
- Center for Bioinformatics and Computational Biology and Protein Information Resource, University of Delaware, Newark, DE 19711, USA, Protein Information Resource, Georgetown University Medical Center, Washington, DC 20007, USA, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK and Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
1584
|
Ulrich C, Quilici DR, Schlauch KA, Buxton ILO. The human uterine smooth muscle S-nitrosoproteome fingerprint in pregnancy, labor, and preterm labor. Am J Physiol Cell Physiol 2013; 305:C803-16. [PMID: 23948706 DOI: 10.1152/ajpcell.00198.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Molecular mechanisms involved in uterine quiescence during gestation and those responsible for induction of labor at term are incompletely known. More than 10% of babies born worldwide are premature and 1,000,000 die annually. Preterm labor results in preterm delivery in 50% of cases in the United States explaining 75% of fetal morbidity and mortality. There is no Food and Drug Administration-approved treatment to prevent preterm delivery. Nitric oxide-mediated relaxation of human uterine smooth muscle is independent of global elevation of cGMP following activation of soluble guanylyl cyclase. S-nitrosation is a likely mechanism to explain cGMP-independent relaxation to nitric oxide and may reveal S-nitrosated proteins as new therapeutic targets for the treatment of preterm labor. Employing S-nitrosoglutathione as an nitric oxide donor, we identified 110 proteins that are S-nitrosated in 1 or more states of human pregnancy. Using area under the curve of extracted ion chromatograms as well as normalized spectral counts to quantify relative expression levels for 62 of these proteins, we show that 26 proteins demonstrate statistically significant S-nitrosation differences in myometrium from spontaneously laboring preterm patients compared with nonlaboring patients. We identified proteins that were up-S-nitrosated as well as proteins that were down-S-nitrosated in preterm laboring tissues. Identification and relative quantification of the S-nitrosoproteome provide a fingerprint of proteins that can form the basis of hypothesis-directed efforts to understand the regulation of uterine contraction-relaxation and the development of new treatment for preterm labor.
Collapse
Affiliation(s)
- Craig Ulrich
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada; and
| | | | | | | |
Collapse
|
1585
|
Go YM, Roede JR, Walker DI, Duong DM, Seyfried NT, Orr M, Liang Y, Pennell KD, Jones DP. Selective targeting of the cysteine proteome by thioredoxin and glutathione redox systems. Mol Cell Proteomics 2013; 12:3285-96. [PMID: 23946468 DOI: 10.1074/mcp.m113.030437] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Thioredoxin (Trx) and GSH are the major thiol antioxidants protecting cells from oxidative stress-induced cytotoxicity. Redox states of Trx and GSH have been used as indicators of oxidative stress. Accumulating studies suggest that Trx and GSH redox systems regulate cell signaling and metabolic pathways differently and independently during diverse stressful conditions. In the current study, we used a mass spectrometry-based redox proteomics approach to test responses of the cysteine (Cys) proteome to selective disruption of the Trx- and GSH-dependent systems. Auranofin (ARF) was used to inhibit Trx reductase without detectable oxidation of the GSH/GSSG couple, and buthionine sulfoximine (BSO) was used to deplete GSH without detectable oxidation of Trx1. Results for 606 Cys-containing peptides (peptidyl Cys) showed that 36% were oxidized more than 1.3-fold by ARF, whereas BSO-induced oxidation of peptidyl Cys was only 10%. Mean fold oxidation of these peptides was also higher by ARF than BSO treatment. Analysis of potential functional pathways showed that ARF oxidized peptides associated with glycolysis, cytoskeleton remodeling, translation and cell adhesion. Of 60 peptidyl Cys oxidized due to depletion of GSH, 41 were also oxidized by ARF and included proteins of translation and cell adhesion but not glycolysis or cytoskeletal remodeling. Studies to test functional correlates showed that pyruvate kinase activity and lactate levels were decreased with ARF but not BSO, confirming the effects on glycolysis-associated proteins are sensitive to oxidation by ARF. These data show that the Trx system regulates a broader range of proteins than the GSH system, support distinct function of Trx and GSH in cellular redox control, and show for the first time in mammalian cells selective targeting peptidyl Cys and biological pathways due to deficient function of the Trx system.
Collapse
Affiliation(s)
- Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|
1586
|
Robert-Genthon M, Casabona MG, Neves D, Couté Y, Cicéron F, Elsen S, Dessen A, Attrée I. Unique features of a Pseudomonas aeruginosa α2-macroglobulin homolog. mBio 2013; 4:e00309-13. [PMID: 23919994 PMCID: PMC3735191 DOI: 10.1128/mbio.00309-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/11/2013] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Human pathogens frequently use protein mimicry to manipulate host cells in order to promote their survival. Here we show that the opportunistic pathogen Pseudomonas aeruginosa synthesizes a structural homolog of the human α2-macroglobulin, a large-spectrum protease inhibitor and important player of innate immunity. Small-angle X-ray scattering analysis demonstrated that the fold of P. aeruginosa MagD (PA4489) is similar to that of the human macroglobulin and undergoes a conformational modification upon binding of human neutrophil elastase. MagD synthesis is under the control of a general virulence regulatory pathway including the inner membrane sensor RetS and the RNA-binding protein RsmA, and MagD undergoes cleavage from a 165-kDa to a 100-kDa form in all clinical isolates tested. Fractionation and immunoprecipitation experiments showed that MagD is translocated to the bacterial periplasm and resides within the inner membrane in a complex with three other molecular partners, MagA, MagB, and MagF, all of them encoded by the same six-gene genetic element. Inactivation of the whole 10-kb operon on the PAO1 genome resulted in mislocalization of uncleaved, in trans-provided MagD as well as its rapid degradation. Thus, pathogenic bacteria have acquired a homolog of human macroglobulin that plays roles in host-pathogen interactions potentially through recognition of host proteases and/or antimicrobial peptides; it is thus essential for bacterial defense. IMPORTANCE The pathogenesis of Pseudomonas aeruginosa is multifactorial and relies on surface-associated and secreted proteins with different toxic activities. Here we show that the bacterium synthesizes a 160-kDa structural homolog of the human large-spectrum protease inhibitor α2-macroglobulin. The bacterial protein is localized in the periplasm and is associated with the inner membrane through the formation of a multimolecular complex. Its synthesis is coregulated at the posttranscriptional level with other virulence determinants, suggesting that it has a role in bacterial pathogenicity and/or in defense against the host immune system. Thus, this new P. aeruginosa macromolecular complex may represent a future target for antibacterial developments.
Collapse
Affiliation(s)
| | | | - David Neves
- Brazilian National Laboratory for Biosciences (LNBio), CNPEM, Campinas, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
1587
|
Scheibe M, Arnoult N, Kappei D, Buchholz F, Decottignies A, Butter F, Mann M. Quantitative interaction screen of telomeric repeat-containing RNA reveals novel TERRA regulators. Genome Res 2013; 23:2149-57. [PMID: 23921659 PMCID: PMC3847783 DOI: 10.1101/gr.151878.112] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Telomeres are actively transcribed into telomeric repeat-containing RNA (TERRA), which has been implicated in the regulation of telomere length and heterochromatin formation. Here, we applied quantitative mass spectrometry (MS)–based proteomics to obtain a high-confidence interactome of TERRA. Using SILAC-labeled nuclear cell lysates in an RNA pull-down experiment and two different salt conditions, we distinguished 115 proteins binding specifically to TERRA out of a large set of background binders. While TERRA binders identified in two previous studies showed little overlap, using quantitative mass spectrometry we obtained many candidates reported in these two studies. To test whether novel candidates found here are involved in TERRA regulation, we performed an esiRNA-based interference analysis for 15 of them. Knockdown of 10 genes encoding candidate proteins significantly affected total cellular levels of TERRA, and RNAi of five candidates perturbed TERRA recruitment to telomeres. Notably, depletion of SRRT/ARS2, involved in miRNA processing, up-regulated both total and telomere-bound TERRA. Conversely, knockdown of MORF4L2, a component of the NuA4 histone acetyltransferase complex, reduced TERRA levels both globally and for telomere-bound TERRA. We thus identified new proteins involved in the homeostasis and telomeric abundance of TERRA, extending our knowledge of TERRA regulation.
Collapse
Affiliation(s)
- Marion Scheibe
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
1588
|
Nagaprashantha LD, Talamantes T, Singhal J, Guo J, Vatsyayan R, Rauniyar N, Awasthi S, Singhal SS, Prokai L. Proteomic analysis of signaling network regulation in renal cell carcinomas with differential hypoxia-inducible factor-2α expression. PLoS One 2013; 8:e71654. [PMID: 23940778 PMCID: PMC3733962 DOI: 10.1371/journal.pone.0071654] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 07/03/2013] [Indexed: 02/01/2023] Open
Abstract
Background The loss of von Hippel–Lindau (VHL) protein function leads to highly vascular renal tumors characterized by an aggressive course of disease and refractoriness to chemotherapy and radiotherapy. Loss of VHL in renal tumors also differs from tumors of other organs in that the oncogenic cascade is mediated by an increase in the levels of hypoxia-inducible factor-2α (HIF2α) instead of hypoxia-inducible factor-1α (HIF1α). Methods and Principal Findings We used renal carcinoma cell lines that recapitulate the differences between mutant VHL and wild-type VHL genotypes. Utilizing a method relying on extracted peptide intensities as a label-free approach for quantitation by liquid chromatography–mass spectrometry, our proteomics study revealed regulation of key proteins important for cancer cell survival, proliferation and stress-resistance, and implicated differential regulation of signaling networks in VHL-mutant renal cell carcinoma. We also observed upregulation of cellular energy pathway enzymes and the stress-responsive mitochondrial 60-kDa heat shock protein. Finding reliance on glutaminolysis in VHL-mutant renal cell carcinoma was of particular significance, given the generally predominant dependence of tumors on glycolysis. The data have been deposited to the ProteomeXchange with identifier PXD000335. Conclusions and Significance Pathway analyses provided corroborative evidence for differential regulation of molecular and cellular functions influencing cancer energetics, metabolism and cell proliferation in renal cell carcinoma with distinct VHL genotype. Collectively, the differentially regulated proteome characterized by this study can potentially guide translational research specifically aimed at effective clinical interventions for advanced VHL-mutant, HIF2α-over-expressing tumors.
Collapse
Affiliation(s)
- Lokesh Dalasanur Nagaprashantha
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
1589
|
Xiang F, Guo X, Chen W, Wang J, Zhou T, Huang F, Cao C, Chen X. Proteomics analysis of human pericardial fluid. Proteomics 2013; 13:2692-5. [PMID: 23797974 DOI: 10.1002/pmic.201200317] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 05/18/2013] [Accepted: 06/03/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Fei Xiang
- Department of Thoracic and Cardiovascular Surgery; Nanjing First Hospital Affiliated to Nanjing Medical University; Nanjing P. R. China
| | - Xuejiang Guo
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing P. R. China
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery; Nanjing First Hospital Affiliated to Nanjing Medical University; Nanjing P. R. China
| | - Jing Wang
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing P. R. China
| | - Tao Zhou
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing P. R. China
| | - Fuhua Huang
- Department of Thoracic and Cardiovascular Surgery; Nanjing First Hospital Affiliated to Nanjing Medical University; Nanjing P. R. China
| | - Changchun Cao
- Department of Nephrology; Nanjing First Hospital Affiliated to Nanjing Medical University; Nanjing P. R. China
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery; Nanjing First Hospital Affiliated to Nanjing Medical University; Nanjing P. R. China
| |
Collapse
|
1590
|
Darville LN, Sokolowski BH. In-depth proteomic analysis of mouse cochlear sensory epithelium by mass spectrometry. J Proteome Res 2013; 12:3620-30. [PMID: 23721421 PMCID: PMC3777728 DOI: 10.1021/pr4001338] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Proteomic analysis of sensory organs such as the cochlea is challenging due to its small size and difficulties with membrane protein isolation. Mass spectrometry in conjunction with separation methods can provide a more comprehensive proteome, because of the ability to enrich protein samples, detect hydrophobic proteins, and identify low abundant proteins by reducing the proteome dynamic range. GELFrEE as well as different separation and digestion techniques were combined with FASP and nanoLC-MS/MS to obtain an in-depth proteome analysis of cochlear sensory epithelium from 30-day-old mice. Digestion with LysC/trypsin followed by SCX fractionation and multiple nanoLC-MS/MS analyses identified 3773 proteins with a 1% FDR. Of these, 694 protein IDs were in the plasmalemma. Protein IDs obtained by combining outcomes from GELFrEE/LysC/trypsin with GELFrEE/trypsin/trypsin generated 2779 proteins, of which 606 additional proteins were identified using the GELFrEE/LysC/trypsin approach. Combining results from the different techniques resulted in a total of 4620 IDs, including a number of previously unreported proteins. GO analyses showed high expression of binding and catalytic proteins as well as proteins associated with metabolism. The results show that the application of multiple techniques is needed to provide an exhaustive proteome of the cochlear sensory epithelium that includes many membrane proteins. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD000231.
Collapse
Affiliation(s)
- Lancia N.F. Darville
- University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd. Department of Otolaryngology – HNS, Otology Laboratory, MDC83, Tampa FL 33647
| | - Bernd H.A. Sokolowski
- University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd. Department of Otolaryngology – HNS, Otology Laboratory, MDC83, Tampa FL 33647
| |
Collapse
|
1591
|
Abiko M, Furuta K, Yamauchi Y, Fujita C, Taoka M, Isobe T, Okamoto T. Identification of proteins enriched in rice egg or sperm cells by single-cell proteomics. PLoS One 2013; 8:e69578. [PMID: 23936051 PMCID: PMC3723872 DOI: 10.1371/journal.pone.0069578] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/10/2013] [Indexed: 11/19/2022] Open
Abstract
In angiosperms, female gamete differentiation, fertilization, and subsequent zygotic development occur in embryo sacs deeply embedded in the ovaries. Despite their importance in plant reproduction and development, how the egg cell is specialized, fuses with the sperm cell, and converts into an active zygote for early embryogenesis remains unclear. This lack of knowledge is partly attributable to the difficulty of direct analyses of gametes in angiosperms. In the present study, proteins from egg and sperm cells obtained from rice flowers were separated by one-dimensional polyacrylamide gel electrophoresis and globally identified by highly sensitive liquid chromatography coupled with tandem mass spectroscopy. Proteome analyses were also conducted for seedlings, callus, and pollen grains to compare their protein expression profiles to those of gametes. The proteomics data have been deposited to the ProteomeXchange with identifier PXD000265. A total of 2,138 and 2,179 expressed proteins were detected in egg and sperm cells, respectively, and 102 and 77 proteins were identified as preferentially expressed in egg and sperm cells, respectively. Moreover, several rice or Arabidopsis lines with mutations in genes encoding the putative gamete-enriched proteins showed clear phenotypic defects in seed set or seed development. These results suggested that the proteomic data presented in this study are foundational information toward understanding the mechanisms of reproduction and early development in angiosperms.
Collapse
Affiliation(s)
- Mafumi Abiko
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan,
| | - Kensyo Furuta
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan,
| | - Yoshio Yamauchi
- Department of Chemistry, Tokyo Metropolitan University, Tokyo, Japan
| | - Chiharu Fujita
- Department of Chemistry, Tokyo Metropolitan University, Tokyo, Japan
| | - Masato Taoka
- Department of Chemistry, Tokyo Metropolitan University, Tokyo, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Tokyo Metropolitan University, Tokyo, Japan
| | - Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan,
| |
Collapse
|
1592
|
Giansanti P, Stokes MP, Silva JC, Scholten A, Heck AJR. Interrogating cAMP-dependent kinase signaling in Jurkat T cells via a protein kinase A targeted immune-precipitation phosphoproteomics approach. Mol Cell Proteomics 2013; 12:3350-9. [PMID: 23882029 DOI: 10.1074/mcp.o113.028456] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the past decade, mass-spectrometry-based methods have emerged for the quantitative profiling of dynamic changes in protein phosphorylation, allowing the behavior of thousands of phosphorylation sites to be monitored in a single experiment. However, when one is interested in specific signaling pathways, such shotgun methodologies are not ideal because they lack selectivity and are not cost and time efficient with respect to instrument and data analysis time. Here we evaluate and explore a peptide-centric antibody generated to selectively enrich peptides containing the cAMP-dependent protein kinase (PKA) consensus motif. This targeted phosphoproteomic strategy is used to profile temporal quantitative changes of potential PKA substrates in Jurkat T lymphocytes upon prostaglandin E2 (PGE2) stimulation, which increases intracellular cAMP, activating PKA. Our method combines ultra-high-specificity motif-based immunoaffinity purification with cost-efficient stable isotope dimethyl labeling. We identified 655 phosphopeptides, of which 642 (i.e. 98%) contained the consensus motif [R/K][R/K/X]X[pS/pT]. When our data were compared with a large-scale Jurkat T-lymphocyte phosphoproteomics dataset containing more than 10,500 phosphosites, a minimal overlap of 0.2% was observed. This stresses the need for such targeted analyses when the interest is in a particular kinase. Our data provide a resource of likely substrates of PKA, and potentially some substrates of closely related kinases. Network analysis revealed that about half of the observed substrates have been implicated in cAMP-induced signaling. Still, the other half of the here-identified substrates have been less well characterized, representing a valuable resource for future research.
Collapse
Affiliation(s)
- Piero Giansanti
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
1593
|
Colavita I, Esposito N, Quintarelli C, Nigro E, Pane F, Ruoppolo M, Salvatore F. Identification of Annexin A1 interacting proteins in chronic myeloid leukemia KCL22 cells. Proteomics 2013; 13:2414-8. [PMID: 23754495 DOI: 10.1002/pmic.201200444] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 01/01/2023]
Abstract
In the present study, we used a functional proteomic approach to identify Annexin A1 (Anxa1) interacting proteins in the Philadelphia-positive KCL22 cell line. We focused on Anxa1 because it is one of the major proteins upregulated in imatinib-sensitive KCL22S cells versus imatinib-resistant KCL22R. Our proteomic strategy revealed 21 interactors. Bioinformatic analysis showed that most of these proteins are involved in cell death processes. Among the proteins identified, we studied the interaction of Anxa1 with two phosphatases, Shp1 and Shp2, which were recently identified as biomarkers of imatinib sensitivity in patients affected by chronic myeloid leukemia. Our data open new perspectives in the search for annexin-mediated signaling pathways and may shed light on mechanisms of resistance to imatinib that are unrelated to Bcr-Abl activity. All mass spectrometry data have been deposited in the ProteomeXchange with identifier PXD000030.
Collapse
|
1594
|
Konvalinka A, Zhou J, Dimitromanolakis A, Drabovich AP, Fang F, Gurley S, Coffman T, John R, Zhang SL, Diamandis EP, Scholey JW. Determination of an angiotensin II-regulated proteome in primary human kidney cells by stable isotope labeling of amino acids in cell culture (SILAC). J Biol Chem 2013; 288:24834-47. [PMID: 23846697 DOI: 10.1074/jbc.m113.485326] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Angiotensin II (AngII), the major effector of the renin-angiotensin system, mediates kidney disease progression by signaling through the AT-1 receptor (AT-1R), but there are no specific measures of renal AngII activity. Accordingly, we sought to define an AngII-regulated proteome in primary human proximal tubular cells (PTEC) to identify potential AngII activity markers in the kidney. We utilized stable isotope labeling with amino acids (SILAC) in PTECs to compare proteomes of AngII-treated and control cells. Of the 4618 quantified proteins, 83 were differentially regulated. SILAC ratios for 18 candidates were confirmed by a different mass spectrometry technique called selected reaction monitoring. Both SILAC and selected reaction monitoring revealed heme oxygenase-1 (HO-1) as the most significantly up-regulated protein in response to AngII stimulation. AngII-dependent regulation of the HO-1 gene and protein was further verified in PTECs. To extend these in vitro observations, we overlaid a network of significantly enriched gene ontology terms from our AngII-regulated proteins with a dataset of differentially expressed kidney genes from AngII-treated wild type mice and AT-1R knock-out mice. Five gene ontology terms were enriched in both datasets and included HO-1. Furthermore, HO-1 kidney expression and urinary excretion were reduced in AngII-treated mice with PTEC-specific AT-1R deletion compared with AngII-treated wild-type mice, thus confirming AT-1R-mediated regulation of HO-1. Our in vitro approach identified novel molecular markers of AngII activity, and the animal studies demonstrated that these markers are relevant in vivo. These interesting proteins hold promise as specific markers of renal AngII activity in patients and in experimental models.
Collapse
Affiliation(s)
- Ana Konvalinka
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1595
|
Poschmann G, Lendzian A, Uszkoreit J, Eisenacher M, Borght AV, Ramaekers FC, Meyer HE, Stühler K. A combination of two electrophoretical approaches for detailed proteome-based characterization of SCLC subtypes. Arch Physiol Biochem 2013; 119:114-25. [PMID: 23651173 DOI: 10.3109/13813455.2013.789529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Small cell lung cancers (SCLC) are heterogeneous and tumours differ in growth characteristics and treatment resistance. OBJECTIVE To get insight into the underlying protein profiles responsible for this heterogeneity, two subtypes of SCLC cells mutually differing in chemo resistance properties and growth characteristics are analysed. MATERIALS AND METHODS Two different electrophoresis approaches in combination with mass spectrometry were used to detect differences between the SCLC cell lines GLC1 and GLC1M13: IEF/SDS-PAGE as well as cetyltrimethylammonium bromide (CTAB)-SDS-PAGE. RESULTS Altogether 60 non redundant differentially expressed proteins were found of which 5 were verified by Western Blot analysis. DISCUSSION Most of these proteins identified are involved in processes of tumour progression. Therefore, these proteins are interesting candidates for further functional analysis. CONCLUSION Additional CTAB-SDS page is a complementary method to IEF-SDS page revealing a complete new subset of proteins differentially expressed between GLC1 and GLC1 M13 cells SCLC subtypes.
Collapse
MESH Headings
- Blotting, Western
- Cell Line, Tumor
- Cetrimonium
- Cetrimonium Compounds/chemistry
- Drug Resistance, Neoplasm
- Electrophoresis, Gel, Two-Dimensional/methods
- Electrophoresis, Polyacrylamide Gel/methods
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Image Processing, Computer-Assisted
- Isoelectric Focusing
- Lung Neoplasms/chemistry
- Lung Neoplasms/diagnosis
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Molecular Sequence Annotation
- Neoplasm Proteins/analysis
- Neoplasm Proteins/genetics
- Proteomics
- Small Cell Lung Carcinoma/chemistry
- Small Cell Lung Carcinoma/diagnosis
- Small Cell Lung Carcinoma/genetics
- Small Cell Lung Carcinoma/pathology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Gereon Poschmann
- Molecular Proteomics Laboratory, BMFZ, Universität Düsseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
1596
|
Vialas V, Sun Z, Loureiro y Penha CV, Carrascal M, Abián J, Monteoliva L, Deutsch EW, Aebersold R, Moritz RL, Gil C. A Candida albicans PeptideAtlas. J Proteomics 2013; 97:62-8. [PMID: 23811049 DOI: 10.1016/j.jprot.2013.06.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 06/16/2013] [Indexed: 01/08/2023]
Abstract
UNLABELLED Candida albicans public proteomic datasets, though growing steadily in the last few years, still have a very limited presence in online repositories. We report here the creation of a C. albicans PeptideAtlas comprising near 22,000 distinct peptides at a 0.24% False Discovery Rate (FDR) that account for over 2500 canonical proteins at a 1.2% FDR. Based on data from 16 experiments, we attained coverage of 41% of the C. albicans open reading frame sequences (ORFs) in the database used for the searches. This PeptideAtlas provides several useful features, including comprehensive protein and peptide-centered search capabilities and visualization tools that establish a solid basis for the study of basic biological mechanisms key to virulence and pathogenesis such as dimorphism, adherence, and apoptosis. Further, it is a valuable resource for the selection of candidate proteotypic peptides for targeted proteomic experiments via Selected Reaction Monitoring (SRM) or SWATH-MS. BIOLOGICAL SIGNIFICANCE This C. albicans PeptideAtlas resolves the previous absence of fungal pathogens in the PeptideAtlas project. It represents the most extensive characterization of the proteome of this fungus that exists up to the current date, including evidence for uncharacterized ORFs. Through its web interface, PeptideAtlas supports the study of interesting proteins related to basic biological mechanisms key to virulence such as apoptosis, dimorphism and adherence. It also provides a valuable resource to select candidate proteotypic peptides for future (SRM) targeted proteomic experiments. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- Vital Vialas
- Dept. Microbiología II, Universidad Complutense de Madrid, Madrid, Spain; IRYCIS: Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain.
| | - Zhi Sun
- Institute for Systems Biology, Seattle, WA, USA
| | - Carla Verónica Loureiro y Penha
- Dept. Microbiología II, Universidad Complutense de Madrid, Madrid, Spain; IRYCIS: Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Montserrat Carrascal
- CSIC/UAB Proteomics Laboratory, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas, Spain
| | - Joaquín Abián
- CSIC/UAB Proteomics Laboratory, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas, Spain
| | - Lucía Monteoliva
- Dept. Microbiología II, Universidad Complutense de Madrid, Madrid, Spain; IRYCIS: Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | | | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland; Faculty of Science, University of Zurich, Zurich, Switzerland
| | | | - Concha Gil
- Dept. Microbiología II, Universidad Complutense de Madrid, Madrid, Spain; IRYCIS: Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain.
| |
Collapse
|
1597
|
Lim UM, Yap MGS, Lim YP, Goh LT, Ng SK. Identification of autocrine growth factors secreted by CHO cells for applications in single-cell cloning media. J Proteome Res 2013; 12:3496-510. [PMID: 23763710 DOI: 10.1021/pr400352n] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chinese hamster ovary (CHO) cell lines are widely used for the expression of therapeutic recombinant proteins, including monoclonal antibodies and other biologics. For manufacturing, cells derived from a single-cell clone are typically used to ensure product consistency. Presently, fetal bovine serum (FBS) is commonly used to support low cell density cultures to obtain clonal cell populations because cells grow slowly, or even do not survive at low cell densities in protein-free media. However, regulatory authorities have discouraged the use of FBS to reduce the risk of contamination by adventitious agents from animal-derived components. In this study, we demonstrated how a complementary mass spectrometry-based shotgun proteomics strategy enabled the identification of autocrine growth factors in CHO cell-conditioned media, which has led to the development of a fully defined single-cell cloning media that is serum and animal component-free. Out of 290 secreted proteins that were identified, eight secreted growth factors were reported for the first time from CHO cell cultures. By supplementing a combination of these growth factors to protein-free basal media, single cell growth of CHO cells was improved with cloning efficiencies of up to 30%, a 2-fold improvement compared to unsupplemented basal media. Complementary effects of these autocrine growth factors with other paracrine growth factors were also demonstrated when the mixture improved cloning efficiency to 42%, similar to that for the conditioned medium.
Collapse
Affiliation(s)
- U Ming Lim
- Bioprocessing Technology Institute , Agency for Science, Technology and Research-A*STAR, 20 Biopolis Way 06-01, Singapore 138668, Republic of Singapore
| | | | | | | | | |
Collapse
|
1598
|
Lan P, Li W, Lin WD, Santi S, Schmidt W. Mapping gene activity of Arabidopsis root hairs. Genome Biol 2013; 14:R67. [PMID: 23800126 PMCID: PMC3707065 DOI: 10.1186/gb-2013-14-6-r67] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 06/25/2013] [Indexed: 11/30/2022] Open
Abstract
Background Quantitative information on gene activity at single cell-type resolution is essential for the understanding of how cells work and interact. Root hairs, or trichoblasts, tubular-shaped outgrowths of specialized cells in the epidermis, represent an ideal model for cell fate acquisition and differentiation in plants. Results Here, we provide an atlas of gene and protein expression in Arabidopsis root hair cells, generated by paired-end RNA sequencing and LC/MS-MS analysis of protoplasts from plants containing a pEXP7-GFP reporter construct. In total, transcripts of 23,034 genes were detected in root hairs. High-resolution proteome analysis led to the reliable identification of 2,447 proteins, 129 of which were differentially expressed between root hairs and non-root hair tissue. Dissection of pre-mRNA splicing patterns showed that all types of alternative splicing were cell type-dependent, and less complex in EXP7-expressing cells when compared to non-root hair cells. Intron retention was repressed in several transcripts functionally related to root hair morphogenesis, indicative of a cell type-specific control of gene expression by alternative splicing of pre-mRNA. Concordance between mRNA and protein expression was generally high, but in many cases mRNA expression was not predictive for protein abundance. Conclusions The integrated analysis shows that gene activity in root hairs is dictated by orchestrated, multilayered regulatory mechanisms that allow for a cell type-specific composition of functional components.
Collapse
|
1599
|
Farina A, Dumonceau JM, Antinori P, Annessi-Ramseyer I, Frossard JL, Hochstrasser DF, Delhaye M, Lescuyer P. Bile carcinoembryonic cell adhesion molecule 6 (CEAM6) as a biomarker of malignant biliary stenoses. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:1018-25. [PMID: 23806607 DOI: 10.1016/j.bbapap.2013.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 12/25/2022]
Abstract
Differentiating malignant from nonmalignant biliary stenoses is challenging. This could be facilitated by the measurement of cancer biomarkers in bile. We aimed at (i) identifying new cancer biomarkers by comparative proteomic analysis of bile collected from patients with a malignant or benign biliary stenosis (exploratory phase) and (ii) verifying the accuracy of the newly identified potential biomarkers for discriminating malignant versus nonmalignant biliary stenoses in a larger group of patients (confirmation phase). Overall, 66 proteins were found overexpressed (ratio>1.5) in at least one cancer condition using proteomic analysis and 7 proteins were increased in all malignant/nonmalignant disease comparisons. Preliminary screening by immunoblot highlighted carcinoembryonic cell adhesion molecule 6 (CEAM6), a cell surface protein overexpressed in many human cancers, as an interesting candidate biomarker. ELISA subsequently confirmed CEAM6 as a potential bile biomarker for distinguishing malignant from benign biliary stenoses with a receiver operating characteristic (ROC) area under the curve (AUC) of 0.92 (specificity 83%, sensitivity 93%, positive predictive value 93%, and negative predictive value 83%). No significant difference in serum CEAM6 level was found between malignant and nonmalignant samples. Combining bile CEAM6 and serum CA19-9 in a panel further improved diagnostic accuracy for malignant stenoses (AUC 0.96, specificity 83%, sensitivity 97%, positive predictive value 93%, and negative predictive value 91%). CEAM6 measurement in bile could be clinically useful to discriminate between malignant and nonmalignant causes of biliary stenosis. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.
Collapse
Affiliation(s)
- Annarita Farina
- Biomedical Proteomics Research Group, Department of Human Protein Sciences, Geneva University, Geneva CH-1211, Switzerland.
| | - Jean-Marc Dumonceau
- Division of Gastroenterology and Hepatology, Geneva University Hospitals, Geneva CH-1211, Switzerland
| | - Paola Antinori
- Biomedical Proteomics Research Group, Department of Human Protein Sciences, Geneva University, Geneva CH-1211, Switzerland
| | - Isabelle Annessi-Ramseyer
- Biomedical Proteomics Research Group, Department of Human Protein Sciences, Geneva University, Geneva CH-1211, Switzerland; Clinical Proteomics Laboratory, Department of Genetic and Laboratory Medicine, Geneva University Hospitals, Geneva CH-1211, Switzerland
| | - Jean-Louis Frossard
- Division of Gastroenterology and Hepatology, Geneva University Hospitals, Geneva CH-1211, Switzerland
| | - Denis F Hochstrasser
- Biomedical Proteomics Research Group, Department of Human Protein Sciences, Geneva University, Geneva CH-1211, Switzerland; Clinical Proteomics Laboratory, Department of Genetic and Laboratory Medicine, Geneva University Hospitals, Geneva CH-1211, Switzerland
| | - Myriam Delhaye
- Department of Gastroenterology, Erasme Hospital, Free University of Brussels, Brussels BE-1070, Belgium
| | - Pierre Lescuyer
- Biomedical Proteomics Research Group, Department of Human Protein Sciences, Geneva University, Geneva CH-1211, Switzerland; Clinical Proteomics Laboratory, Department of Genetic and Laboratory Medicine, Geneva University Hospitals, Geneva CH-1211, Switzerland
| |
Collapse
|
1600
|
Bottermann K, Reinartz M, Barsoum M, Kötter S, Gödecke A. Systematic Analysis Reveals Elongation Factor 2 and α-Enolase as Novel Interaction Partners of AKT2. PLoS One 2013; 8:e66045. [PMID: 23823123 PMCID: PMC3688836 DOI: 10.1371/journal.pone.0066045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/27/2013] [Indexed: 11/25/2022] Open
Abstract
AKT2 is one of the three isoforms of the protein kinase AKT being involved in the modulation of cellular metabolism. Since protein-protein interactions are one possibility to convey specificity in signal transduction, we performed AKT2-protein interaction analysis to elucidate their relevance for AKT2-dependent cellular functions. We identified heat shock protein 90 kDa (HSP90), Cdc37, heat shock protein 70 kDa (HSP70), 78 kDa glucose regulated protein (GRP78), tubulin, GAPDH, α-enolase and elongation factor 2 (EF2) as AKT2-interacting proteins by a combination of tandem affinity purification and mass spectrometry in HEK293T cells. Quantitative MS-analysis using stable isotope labeling by amino acids in cell culture (SILAC) revealed that only HSP90 and Cdc37 interact stably with AKT2, whereas the other proteins interact with low affinity with AKT2. The interactions of AKT2 with α-enolase and EF2 were further analyzed in order to uncover the functional relevance of these newly discovered binding partners. Despite the interaction of AKT2 and α-enolase, which was additionally validated by proximity ligation assay (PLA), no significant impact of AKT on α-enolase activity was detected in activity measurements. AKT stimulation via insulin and/or inhibition with the ATP-competitive inhibitor CCT128930 did not alter enzymatic activity of α-enolase. Interestingly, the direct interaction of AKT2 and EF2 was found to be dynamically regulated in embryonic rat cardiomyocytes. Treatment with the PI3-kinase inhibitor LY294002 before stimulation with several hormones stabilized the complex, whereas stimulation alone led to complex dissociation which was analyzed in situ with PLA. Taken together, these findings point to new aspects of AKT2-mediated signal transduction in protein synthesis and glucose metabolism.
Collapse
Affiliation(s)
- Katharina Bottermann
- Department of Cardiovascular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Michael Reinartz
- Department of Cardiovascular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Marian Barsoum
- Department of Cardiovascular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Kötter
- Department of Cardiovascular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Axel Gödecke
- Department of Cardiovascular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|