1601
|
Okada K, Kamiya Y, Zhu X, Suzuki K, Tanaka K, Nakagawa T, Matsuda H, Kawamukai M. Cloning of the sdsA gene encoding solanesyl diphosphate synthase from Rhodobacter capsulatus and its functional expression in Escherichia coli and Saccharomyces cerevisiae. J Bacteriol 1997; 179:5992-8. [PMID: 9324242 PMCID: PMC179498 DOI: 10.1128/jb.179.19.5992-5998.1997] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Different organisms produce different species of isoprenoid quinones, each with its own distinctive length. These differences in length are commonly exploited in microbial classification. The side chain length of quinone is determined by the nature of the polyprenyl diphosphate synthase that catalyzes the reaction. To determine if the side chain length of ubiquinone (UQ) has any distinct role to play in the metabolism of the cells in which it is found, we cloned the solanesyl diphosphate synthase gene (sdsA) from Rhodobacter capsulatus SB1003 and expressed it in Escherichia coli and Saccharomyces cerevisiae. Sequence analysis revealed that the sdsA gene encodes a 325-amino-acid protein which has similarity (27 to 40%) with other prenyl diphosphate synthases. Expression of the sdsA gene complemented a defect in the octaprenyl diphosphate synthase gene of E. coli and the nonrespiratory phenotype resulting from a defect in the hexaprenyl diphosphate synthase gene of S. cerevisiae. Both E. coli and S. cerevisiae expressing the sdsA gene mainly produced solanesyl diphosphate, which resulted in the synthesis of UQ-9 without any noticeable effect on the growth of the cells. Thus, it appears that UQ-9 can replace the function of UQ-8 in E. coli and UQ-6 in S. cerevisiae. Taken together with previous results, the results described here imply that the side chain length of UQ is not a critical factor for the survival of microorganisms.
Collapse
Affiliation(s)
- K Okada
- Department of Applied Bioscience and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | | | | | | | | | | | | | | |
Collapse
|
1602
|
Abstract
The complete Escherichia coli genome sequence is now known; it should greatly facilitate the analysis of other genomes, but a lot remains to be learnt about E. coli itself. About half the genes were previously uncharacterized, but expanding databases and improving analysis methods will help predict their functions.
Collapse
Affiliation(s)
- E V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| |
Collapse
|
1603
|
Narumi I, Cherdchu K, Kitayama S, Watanabe H. The Deinococcus radiodurans uvr A gene: identification of mutation sites in two mitomycin-sensitive strains and the first discovery of insertion sequence element from deinobacteria. Gene X 1997; 198:115-26. [PMID: 9370272 DOI: 10.1016/s0378-1119(97)00301-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Deinococcus radiodurans (Dr) possesses a prominent ability to repair the DNA injury induced by various DNA-damaging agents including mitomycin C (MC), ultraviolet light (UV) and ionizing radiation. DNA damage resistance was restored in MC sensitive (MC(S)) mutants 2621 and 3021 by transforming with DNAs of four cosmid clones derived from the gene library of strain KD8301, which showed wild type (wt) phenotype to DNA-damaging agents. Gene affected by mutation (mtcA or mtcB) in both mutants was cloned and its nucleotide (nt) sequence was determined. The deduced amino acid (aa) sequence of the gene product consists of 1016 aa and shares homology with many bacterial UvrA proteins. The mutation sites of both mutants were identified by analyzing the polymerase chain reaction (PCR) fragments derived from the genomic DNA of the mutants. A 144-base pair (bp) deletion including the start codon for the uvrA gene was observed in DNA of the mutant 3021, causing a defect in the gene. On the other hand, an insertion sequence (IS) element intervened in the uvrA gene of the mutant 2621, suggesting the insertional inactivation of the gene. The IS element comprises 1322-bp long, flanked by 19-bp inverted terminal repeats (ITR), and generated a 6-bp target duplication (TD). Two open reading frames (ORFs) were found in the IS element. The deduced aa sequences of large and small ORFs show homology to a putative transposase found in IS4 of Escherichia coli (Ec) and to a resolvase found in ISXc5 of Xanthomonas campestris (Xc), respectively. This is the first discovery of IS element in deinobacteria, and the IS element was designated IS2621.
Collapse
Affiliation(s)
- I Narumi
- Biotechnology Laboratory, Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research Institute, Gunma.
| | | | | | | |
Collapse
|
1604
|
|
1605
|
Affiliation(s)
- J N Reeve
- Department of Microbiology, The Ohio State University, Columbus 43210, USA.
| | | | | | | |
Collapse
|
1606
|
Presecan E, Moszer I, Boursier L, Ramos HC, de la Fuente V, Hullo MF, Lelong C, Schleich S, Sekowska A, Song BH, Villani G, Kunst F, Danchin A, Glaser P. The Bacillus subtilis genome from gerBC (311 degrees) to licR (334 degrees). MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 10):3313-3328. [PMID: 9353933 DOI: 10.1099/00221287-143-10-3313] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
As part of the international project to sequence the Bacillus subtilis genome, the DNA region located between gerBC (311 degrees) and licR (334 degrees) was assigned to the institut Pasteur. In this paper, the cloning and sequencing of 176 kb of DNA and the analysis of the sequence of the entire 271 kb region (6.5% of the B. subtilis chromosome) is described; 273 putative coding sequences were identified. Although the complete genome sequences of seven other organisms (five bacteria, one archaeon and the yeast Saccharomyces cerevisiae) are available in public database, 65 genes from this region of the B. subtilis chromosome encode proteins without significant similarities to other known protein sequences. Among the 208 other genes, 115 have paralogues in the currently known B. subtilis DNA sequences and the products of 178 genes were found to display similarities to protein sequences from public databases for which a function is known. Classification of these genes shows a high proportion of them to be involved in the adaptation to various growth conditions (non-essential cell wall constituents, catabolic and bioenergetic pathways); a small number of the genes are essential or encode anabolic enzymes.
Collapse
Affiliation(s)
- E Presecan
- Unité de Régulation de I'Expression GénéeTique Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - I Moszer
- Unité de Régulation de I'Expression GénéeTique Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - L Boursier
- Unité de Régulation de I'Expression GénéeTique Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - H Cruz Ramos
- Unité de Régulation de I'Expression GénéeTique Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - V de la Fuente
- Unité de Biochimie Microbienne Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - M-F Hullo
- Unité de Biochimie Microbienne Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
- Unité de Régulation de I'Expression GénéeTique Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - C Lelong
- Unité de Régulation de I'Expression GénéeTique Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - S Schleich
- Unité de Régulation de I'Expression GénéeTique Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - A Sekowska
- Unité de Régulation de I'Expression GénéeTique Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - B H Song
- Unité de Régulation de I'Expression GénéeTique Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - G Villani
- Unité de Régulation de I'Expression GénéeTique Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - F Kunst
- Unité de Biochimie Microbienne Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - A Danchin
- Unité de Régulation de I'Expression GénéeTique Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - P Glaser
- Unité de Régulation de I'Expression GénéeTique Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
1607
|
Abstract
The crystal structure of squalene-hopene cyclase from Alicyclobacillus acidocaldarius was determined at 2.9 angstrom resolution. The mechanism and sequence of this cyclase are closely related to those of 2,3-oxidosqualene cyclases that catalyze the cyclization step in cholesterol biosynthesis. The structure reveals a membrane protein with membrane-binding characteristics similar to those of prostaglandin-H2 synthase, the only other reported protein of this type. The active site of the enzyme is located in a large central cavity that is of suitable size to bind squalene in its required conformation and that is lined by aromatic residues. The structure supports a mechanism in which the acid starting the reaction by protonating a carbon-carbon double bond is an aspartate that is coupled to a histidine. Numerous surface alpha helices are connected by characteristic QW-motifs (Q is glutamine and W is tryptophan) that tighten the protein structure, possibly for absorbing the reaction energy without structural damage.
Collapse
Affiliation(s)
- K U Wendt
- Institut für Organische Chemie und Biochemie, Albertstrasse 21, D-79104 Freiburg im Breisgau, Germany
| | | | | |
Collapse
|
1608
|
Penrose JF, Baldasaro MH, Webster M, Xu K, Austen KF, Lam BK. Molecular cloning of the gene for mouse leukotriene-C4 synthase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:807-13. [PMID: 9342232 DOI: 10.1111/j.1432-1033.1997.00807.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Leukotriene C4 (LTC4) synthase (LTC4S), an integral membrane protein, catalyzes the conjugation of leukotriene A4 with reduced glutathione to form LTC4, the biosynthetic parent of the additional cysteinyl leukotriene metabolites. An XmnI-digested fragment of a P1 clone from a 129 mouse ES library contained the full-length gene of 2.01 kb for mouse LTC4S. The mouse LTC4S gene is comprised of 5 exons of 122, 100, 71, 82 and 241 nucleotides, with intron sizes that range from 76 nucleotides to 937 nucleotides. The intron/exon boundaries are identical to those of the human genes for LTC4S and 5-lipoxygenase-activating protein (FLAP). Primer extension demonstrated a single transcription-initiation site 64 bp 5' of the ATG translation-start site. Nucleotide sequencing of 1.2 kb of the 5' flanking region revealed multiple putative sites for activating protein-2, CCAAT/enhancer-binding protein, and polyoma virus enhancer-3. Fluorescent in situ hybridization mapped the mouse LTC4S gene to mouse chromosome 11, in a region containing the genes for interleukin 13 and granulocyte/macrophage-colony-stimulating factor, and orthologous to the chromosomal location of 5q35 for the human LTC4S gene. Thus, the mouse LTC4S gene is similar in size, intron/exon organization and chromosomal localization to the human LTC4S gene. Recent mutagenic analysis of the conjugation function of human LTC4S has identified R51 and Y93 as critical for acid and base catalysis of LTA4 and reduced glutathione, respectively. A comparison across species for proteins that possess LTC4S activity reveals conservation of both of these residues, whereas R51 is absent in the FLAP molecules. Thus, within the glutathione S-transferase superfamily of genes, alignment of specific residues allows the separation of LTC4S family members from their most structurally similar counterparts, the FLAP molecules.
Collapse
Affiliation(s)
- J F Penrose
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
1609
|
Parry RJ, Li W. An NADPH:FAD oxidoreductase from the valanimycin producer, Streptomyces viridifaciens. Cloning, analysis, and overexpression. J Biol Chem 1997; 272:23303-11. [PMID: 9287340 DOI: 10.1074/jbc.272.37.23303] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The valanimycin producer Streptomyces viridifaciens contains a two-component enzyme system that catalyzes the oxidation of isobutylamine to isobutylhydroxylamine. One component of this enzyme system is isobutylamine hydroxylase, and the other component is a flavin reductase. The gene (vlmR) encoding the flavin reductase required by isobutylamine hydroxylase has been cloned from S. viridifaciens by chromosome walking. The gene codes for a protein of 194 amino acids with a calculated mass of 21,265 Da and a calculated pI of 10.2. Overexpression of the vlmR gene in Escherichia coli as an N-terminal His-tag derivative yielded a soluble protein that was purified to homogeneity. Removal of the N-terminal His-tag from the overexpressed protein by thrombin cleavage also produced a soluble protein. Both forms of the protein exhibited a high degree of flavin reductase activity, and the thrombin-cleaved form functioned in combination with isobutylamine hydroxylase to catalyze the conversion of isobutylamine to isobutylhydroxylamine. Kinetic data indicate that the overexpressed protein utilizes FAD and NADPH in preference to FMN, riboflavin, and NADH. The deduced amino acid sequence of the VlmR protein exhibited similarity to several other flavin reductases that may constitute a new family of flavin reductases.
Collapse
Affiliation(s)
- R J Parry
- Department of Chemistry, Rice University, Houston, Texas 77005-1892, USA
| | | |
Collapse
|
1610
|
Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y. The complete genome sequence of Escherichia coli K-12. Science 1997; 277:1453-62. [PMID: 9278503 DOI: 10.1126/science.277.5331.1453] [Citation(s) in RCA: 5374] [Impact Index Per Article: 191.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The 4,639,221-base pair sequence of Escherichia coli K-12 is presented. Of 4288 protein-coding genes annotated, 38 percent have no attributed function. Comparison with five other sequenced microbes reveals ubiquitous as well as narrowly distributed gene families; many families of similar genes within E. coli are also evident. The largest family of paralogous proteins contains 80 ABC transporters. The genome as a whole is strikingly organized with respect to the local direction of replication; guanines, oligonucleotides possibly related to replication and recombination, and most genes are so oriented. The genome also contains insertion sequence (IS) elements, phage remnants, and many other patches of unusual composition indicating genome plasticity through horizontal transfer.
Collapse
MESH Headings
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Bacteriophage lambda/genetics
- Base Composition
- Binding Sites
- Chromosome Mapping
- DNA Replication
- DNA Transposable Elements
- DNA, Bacterial/genetics
- Escherichia coli/genetics
- Genes, Bacterial
- Genome, Bacterial
- Molecular Sequence Data
- Mutation
- Operon
- RNA, Bacterial/genetics
- RNA, Transfer/genetics
- Recombination, Genetic
- Regulatory Sequences, Nucleic Acid
- Repetitive Sequences, Nucleic Acid
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- F R Blattner
- Laboratory of Genetics, University of Wisconsin-Madison, 445 Henry Mall, Madison, WI 53706, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1611
|
Mihara H, Kurihara T, Yoshimura T, Soda K, Esaki N. Cysteine sulfinate desulfinase, a NIFS-like protein of Escherichia coli with selenocysteine lyase and cysteine desulfurase activities. Gene cloning, purification, and characterization of a novel pyridoxal enzyme. J Biol Chem 1997; 272:22417-24. [PMID: 9278392 DOI: 10.1074/jbc.272.36.22417] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Selenocysteine lyase (EC 4.4.1.16) exclusively decomposes selenocysteine to alanine and elemental selenium, whereas cysteine desulfurase (NIFS protein) of Azotobacter vinelandii acts indiscriminately on both cysteine and selenocysteine to produce elemental sulfur and selenium respectively, and alanine. These proteins exhibit some sequence homology. The Escherichia coli genome contains three genes with sequence homology to nifS. We have cloned the gene mapped at 63.4 min in the chromosome and have expressed, purified to homogeneity, and characterized the gene product. The enzyme comprises two identical subunits with 401 amino acid residues (Mr 43,238) and contains pyridoxal 5'-phosphate as a coenzyme. The enzyme catalyzes the removal of elemental sulfur and selenium atoms from L-cysteine, L-cystine, L-selenocysteine, and L-selenocystine to produce L-alanine. Because L-cysteine sulfinic acid was desulfinated to form L-alanine as the preferred substrate, we have named this new enzyme cysteine sulfinate desulfinase. Mutant enzymes having alanine substituted for each of the four cysteinyl residues (Cys-100, Cys-176, Cys-323, and Cys-358) were all active. Cys-358 corresponds to Cys-325 of A. vinelandii NIFS, which is conserved among all NIFS-like proteins and catalytically essential (Zheng, L., White, R. H., Cash, V. L., and Dean, D. R. (1994) Biochemistry 33, 4714-4720), is not required for cysteine sulfinate desulfinase. Thus, the enzyme is distinct from A. vinelandii NIFS in this respect.
Collapse
Affiliation(s)
- H Mihara
- Laboratory of Microbial Biochemistry, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611, Japan
| | | | | | | | | |
Collapse
|
1612
|
Abstract
The biliprotein phytochrome regulates plant growth and developmental responses to the ambient light environment through an unknown mechanism. Biochemical analyses demonstrate that phytochrome is an ancient molecule that evolved from a more compact light sensor in cyanobacteria. The cyanobacterial phytochrome Cph1 is a light-regulated histidine kinase that mediates red, far-red reversible phosphorylation of a small response regulator, Rcp1 (response regulator for cyanobacterial phytochrome), encoded by the adjacent gene, thus implicating protein phosphorylation-dephosphorylation in the initial step of light signal transduction by phytochrome.
Collapse
Affiliation(s)
- K C Yeh
- Section of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
1613
|
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389-402. [PMID: 9254694 PMCID: PMC146917 DOI: 10.1093/nar/25.17.3389] [Citation(s) in RCA: 52123] [Impact Index Per Article: 1861.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSI-BLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.
Collapse
Affiliation(s)
- S F Altschul
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | | | | | | | |
Collapse
|
1614
|
Harano Y, Suzuki I, Maeda S, Kaneko T, Tabata S, Omata T. Identification and nitrogen regulation of the cyanase gene from the cyanobacteria Synechocystis sp. strain PCC 6803 and Synechococcus sp. strain PCC 7942. J Bacteriol 1997; 179:5744-50. [PMID: 9294430 PMCID: PMC179462 DOI: 10.1128/jb.179.18.5744-5750.1997] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
An open reading frame (slr0899) on the genome of Synechocystis sp. strain PCC 6803 encodes a polypeptide of 149 amino acid residues, the sequence of which is 40% identical to that of cyanase from Escherichia coli. Introduction into a cyanase-deficient E. coli strain of a plasmid-borne slr0899 resulted in expression of low but significant activity of cyanase. Targeted interruption of a homolog of slr0899 from Synechococcus sp. strain PCC 7942, encoding a protein 77% identical to that encoded by slr0899, resulted in loss of cellular cyanase activity. These results indicated that slr0899 and its homolog in the strain PCC 7942 represent the cyanobacterial cyanase gene (designated cynS). While cynS of strain PCC 6803 is tightly clustered with the four putative molybdenum cofactor biosynthesis genes located downstream, cynS of strain PCC 7942 was found to be tightly clustered with the two genes located upstream, which encode proteins similar to the subunits of the cyanobacterial nitrate-nitrite transporter. In both strains, cynS was transcribed as a part of a large transcription unit and the transcription was negatively regulated by ammonium. Cyanase activity was low in ammonium-grown cells and was induced 7- to 13-fold by inhibition of ammonium fixation or by transfer of the cells to ammonium-free media. These findings indicated that cyanase is an ammonium-repressible enzyme in cyanobacteria, the expression of which is regulated at the level of transcription. Similar to other ammonium-repressible genes in cyanobacteria, expression of cynS required NtcA, a global nitrogen regulator of cyanobacteria.
Collapse
Affiliation(s)
- Y Harano
- Department of Applied Biological Sciences, School of Agricultural Sciences, Nagoya University, Japan
| | | | | | | | | | | |
Collapse
|
1615
|
Forward JA, Behrendt MC, Wyborn NR, Cross R, Kelly DJ. TRAP transporters: a new family of periplasmic solute transport systems encoded by the dctPQM genes of Rhodobacter capsulatus and by homologs in diverse gram-negative bacteria. J Bacteriol 1997; 179:5482-93. [PMID: 9287004 PMCID: PMC179420 DOI: 10.1128/jb.179.17.5482-5493.1997] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The dct locus of Rhodobacter capsulatus encodes a high-affinity transport system for the C4-dicarboxylates malate, succinate, and fumarate. The nucleotide sequence of the region downstream of the previously sequenced dctP gene (encoding a periplasmic C4-dicarboxylate-binding protein) was determined. Two open reading frames (ORFs) of 681 bp (dctQ) and 1,320 bp (dctM) were identified as additional dct genes by insertional mutagenesis and complementation studies. DctQ (24,763 Da) and DctM (46,827 Da) had hydropathic profiles consistent with the presence of 4 and 12 potential transmembrane segments, respectively, and were localized in the cytoplasmic membrane fraction after heterologous expression of the dctQM ORFs in Escherichia coli. DctP, DctQ, and DctM were found to be unrelated to known transport proteins in the ABC (ATP-binding cassette) superfamily but were shown to be homologous with the products of previously unidentified ORFs in a number of gram-negative bacteria, including Bordetella pertussis, E. coli, Salmonella typhimurium, Haemophilus influenzae, and Synechocystis sp. strain PCC6803. An additional ORF (rypA) downstream of dctM encodes a protein with sequence similarity to eukaryotic protein-tyrosine phosphatases, but interposon mutagenesis of this ORF did not result in a Dct- phenotype. Complementation of a Rhizobium meliloti dctABD deletion mutant by heterologous expression of the dctPQM genes from R. capsulatus demonstrated that no additional structural genes were required to form a functional transport system. Transport via the Dct system was vanadate insensitive, and in uncoupler titrations with intact cells, the decrease in the rate of succinate transport correlated closely with the fall in membrane potential but not with the cellular ATP concentration, implying that the proton motive force, rather than ATP hydrolysis, drives uptake. It is concluded that the R. capsulatus Dct system is a new type of periplasmic secondary transporter and that similar, hitherto-unrecognized systems are widespread in gram-negative bacteria. The name TRAP (for tripartite ATP-independent periplasmic) transporters is proposed for this new group.
Collapse
Affiliation(s)
- J A Forward
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, United Kingdom
| | | | | | | | | |
Collapse
|
1616
|
Hughes DS, Felbeck H, Stein JL. A histidine protein kinase homolog from the endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila. Appl Environ Microbiol 1997; 63:3494-8. [PMID: 9293000 PMCID: PMC168656 DOI: 10.1128/aem.63.9.3494-3498.1997] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The uncultivated bacterial endosymbionts of the hydrothermal vent tubeworm Riftia pachyptila play a central role in providing their host with fixed carbon. While this intimate association between host and symbiont indicates tight integration and coordination of function via cellular communication mechanisms, no such systems have been identified. To elucidate potential signal transduction pathways in symbionts that may mediate symbiont-host communication, we cloned and characterized a gene encoding a histidine protein kinase homolog isolated from a symbiont fosmid library. The gene, designated rssA (for Riftia symbiont signal kinase), resembles known sensor kinases and encodes a protein capable of phosphorylating response regulators in Escherichia coli. A second open reading frame, rssB (for Riftia symbiont signal regulator), encodes a protein similar to known response regulators. These results suggest that the symbionts utilize a phosphotransfer signal transduction mechanism to communicate external signals that may mediate recognition of or survival within the host. The specific signals eliciting a response by the signal transduction proteins of the symbiont remain to be elucidated.
Collapse
Affiliation(s)
- D S Hughes
- Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, California 92093-0202, USA
| | | | | |
Collapse
|
1617
|
Aoki S, Kondo T, Wada H, Ishiura M. Circadian rhythm of the cyanobacterium Synechocystis sp. strain PCC 6803 in the dark. J Bacteriol 1997; 179:5751-5. [PMID: 9294431 PMCID: PMC179463 DOI: 10.1128/jb.179.18.5751-5755.1997] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The cyanobacterium Synechocystis sp. strain PCC 6803 exhibited circadian rhythms in complete darkness. To monitor a circadian rhythm of the Synechocystis cells in darkness, we introduced a PdnaK1::luxAB gene fusion (S. Aoki, T. Kondo, and M. Ishiura, J. Bacteriol. 177:5606-5611, 1995), which was composed of a promoter region of the Synechocystis dnaK1 gene and a promoterless bacterial luciferase luxAB gene set, as a reporter into the chromosome of a dark-adapted Synechocystis strain. The resulting dnaK1-reporting strain showed bioluminescence rhythms with a period of 25 h (on agar medium supplemented with 5 mM glucose) for at least 7 days in darkness. The rhythms were reset by 12-h-light-12-h-dark cycles, and the period of the rhythms was temperature compensated for between 24 and 31 degrees C. These results indicate that light is not necessary for the oscillation of the circadian clock in Synechocystis.
Collapse
Affiliation(s)
- S Aoki
- National Institute for Basic Biology, Aichi, Japan
| | | | | | | |
Collapse
|
1618
|
Okumura N, Masamoto K, Wada H. The gshB gene in the cyanobacterium Synechococcus sp. PCC 7942 encodes a functional glutathione synthetase. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 9):2883-2890. [PMID: 9308172 DOI: 10.1099/00221287-143-9-2883] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The gene homologous to glutathione synthetase of Escherichia coli was inactivated in the cyanobacterium Synechococcus sp. PCC 7942. The region of genomic DNA including the mutation site was isolated from the mutant by plasmid rescue and the native gene of the wild-type was cloned from a genomic DNA library of the wild-type using the flanking DNA as a probe. The wild-type gene, designated gshB, encodes a polypeptide of 323 amino acids with a molecular mass of 35 kDa. The deduced amino acid sequence resembles glutathione synthetases of bacteria, but not those of higher organisms. When gshB was overexpressed in E. coli, glutathione synthetase activity was increased markedly in the E. coli extract. In addition, the Synechococcus sp. PCC 7942 gshB mutants had lost their ability to synthesize glutathione. These findings demonstrate that the gshB gene of Synechococcus sp. PCC 7942 is a structural gene for glutathione synthetase and is involved in the biosynthesis of glutathione.
Collapse
Affiliation(s)
- Noriko Okumura
- Biological Laboratory, Faculty of Education, Kumamoto University, Kurokami, Kumamoto 860, Japan
| | - Kazumori Masamoto
- Biological Laboratory, Faculty of Education, Kumamoto University, Kurokami, Kumamoto 860, Japan
| | - Hajime Wada
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 810, Japan
| |
Collapse
|
1619
|
Reuhs BL, Kim JS, Matthysse AG. Attachment of Agrobacterium tumefaciens to carrot cells and Arabidopsis wound sites is correlated with the presence of a cell-associated, acidic polysaccharide. J Bacteriol 1997; 179:5372-9. [PMID: 9286990 PMCID: PMC179406 DOI: 10.1128/jb.179.17.5372-5379.1997] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
An early step in crown gall tumor formation involves the attachment of Agrobacterium tumefaciens to host plant cells. A. tumefaciens C58::A205 (C58 attR) is a Tn3HoHo1 insertion mutant that was found to be avirulent on Bryophyllum daigremontiana and unable to attach to carrot suspension cells. The mutation mapped to an open reading frame encoding a putative protein of 247 amino acids which has significant homology to transacetylases from many bacteria. Biochemical analysis of polysaccharide extracts from wild-type strain C58 and the C58::A205 mutant showed that the latter was deficient in the production of a cell-associated polysaccharide. Anion-exchange chromatography followed by 1H nuclear magnetic resonance and gas chromatography-mass spectrometry analyses showed that the polysaccharide produced by strain C58 was an acetylated, acidic polysaccharide and that the polysaccharide preparation contained three sugars: glucose, glucosamine, and an unidentified deoxy-sugar. Application of the polysaccharide preparation from strain C58 to carrot suspension cells prior to inoculation with the bacteria effectively inhibited attachment of the bacteria to the carrot cells, whereas an identical preparation from strain C58::A205 had no inhibitory effect and did not contain the acidic polysaccharide. Similarly, preincubation of Arabidopsis thaliana root segments with the polysaccharide prevented attachment of strain C58 to that plant. This indicates that the acidic polysaccharide may play a role in the attachment of A. tumefaciens to host soma plant cells.
Collapse
Affiliation(s)
- B L Reuhs
- Complex Carbohydrate Research Center, University of Georgia, Athens 30602-4712, USA.
| | | | | |
Collapse
|
1620
|
Pierre Y, Breyton C, Lemoine Y, Robert B, Vernotte C, Popot JL. On the presence and role of a molecule of chlorophyll a in the cytochrome b6 f complex. J Biol Chem 1997; 272:21901-8. [PMID: 9268323 DOI: 10.1074/jbc.272.35.21901] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Highly purified preparations of cytochrome b6 f complex from the unicellar freshwater alga Chlamydomonas reinhardtii contain about 1 molecule of chlorophyll a/cytochrome f. Several lines of evidence indicate that the chlorophyll is an authentic component of the complex rather than a contaminant. In particular, (i) the stoichiometry is constant; (ii) the chlorophyll is associated with the complex at a specific binding site, as evidenced by resonance Raman spectroscopy; (iii) it does not originate from free chlorophyll released from thylakoid membranes upon solubilization; and (iv) its rate of exchange with free, radioactive chlorophyll a is extremely slow (weeks). Some of the putative functional roles for a chlorophyll in the b6f complex are experimentally ruled out, and its possible evolutionary origin is briefly discussed.
Collapse
Affiliation(s)
- Y Pierre
- Institut de Biologie Physico-Chimique and Paris-7 University, CNRS UPR 9052, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | | | | | | | | | | |
Collapse
|
1621
|
Cassier-Chauvat C, Poncelet M, Chauvat F. Three insertion sequences from the cyanobacterium Synechocystis PCC6803 support the occurrence of horizontal DNA transfer among bacteria. Gene 1997; 195:257-66. [PMID: 9305771 DOI: 10.1016/s0378-1119(97)00165-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Three insertion sequences were characterized from the widely-used cyanobacterium Synechocystis PCC6803. They all harbored a putative transposase sequence flanked by two imperfect inverted repeats, seemed to have duplicated their target insertion site and occurred as multiple copies in the host genome. They exhibited no obvious homology with any other cyanobacterial ISs and were termed IS5S (871 bp), IS4S (1299 bp) and ISS1987 (949 bp) because they were, respectively, homologous to IS5- and IS4-bacterial elements, and to several members of the IS630-Tc1-mariner superfamily of IS elements occurring in a wide range of hosts. This suggests that these IS-elements were spread through horizontal transfer between evolutionary distant organisms. Three IS5S-copies were isolated as a rescue insertion into a replicating plasmid (IS5Sa), or subsequently cloned from a Synechocystis DNA-library probed with IS5Sa (IS5Sb and IS5Sc), and appeared to be almost identical. In the vicinity of IS5Sb, we found the ISS1987 element inserted into the IS4S element. This indicates that the ISS1987 element has been, and could still be, mobile since its transposase sequence is not interrupted with stop codons or translational frameshifts, unlike that which is found in most members of the IS630-Tc1-mariner superfamily of transposable elements.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Cloning, Molecular
- Codon, Terminator
- Cyanobacteria/genetics
- DNA Probes
- DNA Transposable Elements/genetics
- DNA, Bacterial/genetics
- Frameshifting, Ribosomal
- Gene Transfer, Horizontal
- Genome, Bacterial
- Molecular Sequence Data
- Mutagenesis, Insertional
- Nucleic Acid Hybridization
- Phylogeny
- Plasmids
- Repetitive Sequences, Nucleic Acid
- Sequence Alignment
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Transposases/genetics
Collapse
Affiliation(s)
- C Cassier-Chauvat
- Service de Biochimie et Génétique Moléculaire, CEA Saclay, URA 2096 CNRS, Gif sur Yvette, France.
| | | | | |
Collapse
|
1622
|
Vlcek C, Paces V, Maltsev N, Paces J, Haselkorn R, Fonstein M. Sequence of a 189-kb segment of the chromosome of Rhodobacter capsulatus SB1003. Proc Natl Acad Sci U S A 1997; 94:9384-8. [PMID: 9256491 PMCID: PMC23199 DOI: 10.1073/pnas.94.17.9384] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cosmids from the 1A3-1A10 region of the complete miniset were individually subcloned by using the vector M13 mp18. Sequences of each cosmid were assembled from about 400 DNA fragments generated from the ends of these phage subclones and merged into one 189-kb contig. About 160 ORFs identified by the CodonUse program were subjected to similarity searches. The biological functions of 80 ORFs could be assigned reliably by using the WIT and Magpie genome investigation tools. Eighty percent of these recognizable ORFs were organized in functional clusters, which simplified assignment decisions and increased the strength of the predictions. A set of 26 genes for cobalamin biosynthesis, genes for polyhydroxyalkanoic acid metabolism, DNA replication and recombination, and DNA gyrase were among those identified. Most of the ORFs lacking significant similarity with reference databases also were grouped. There are two large clusters of these ORFs, one located between 45 and 67 kb of the map, and the other between 150 and 183 kb. Nine of the loosely identified ORFs (of 15) of the first of these clusters match ORFs from phages or transposons. The other cluster also has four ORFs of possible phage origin.
Collapse
Affiliation(s)
- C Vlcek
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Flemingova 2, CZ-16637 Prague 6, Czech Republic
| | | | | | | | | | | |
Collapse
|
1623
|
Sugita M, Sugishita H, Fujishiro T, Tsuboi M, Sugita C, Endo T, Sugiura M. Organization of a large gene cluster encoding ribosomal proteins in the cyanobacterium Synechococcus sp. strain PCC 6301: comparison of gene clusters among cyanobacteria, eubacteria and chloroplast genomes. Gene 1997; 195:73-9. [PMID: 9300823 DOI: 10.1016/s0378-1119(97)00169-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The structure of a large gene cluster containing 22 ribosomal protein (r-protein) genes of the cyanobacterium Synechococcus sp. strain PCC6301 is presented. Based on DNA and protein sequence analyses, genes encoding r-proteins L3, L4, L23, L2, S19, L22, S3, L16, L29, S17, L14, L24, L5, S8, L6, L18, S5, L15, L36, S13, S11, L17, SecY, adenylate kinase (AK) and the alpha subunit of RNA polymerase were identified. The gene order is similar to that of the E. coli S10, spc and alpha operons. Unlike the corresponding E. coli operons, the genes for r-proteins S4, S10, S14 and L30 are not present in this cluster. The organization of Synechococcus r-protein genes also resembles that of chloroplast (cp) r-protein genes of red and brown algal species. This strongly supports the endosymbiotic theory that the cp genome evolved from an ancient photosynthetic bacterium.
Collapse
Affiliation(s)
- M Sugita
- Center for Gene Research, Nagoya University, Japan.
| | | | | | | | | | | | | |
Collapse
|
1624
|
Rühlmann A, Cramer F, Englisch U. Isolation and analysis of mutated histidyl-tRNA synthetases from Escherichia coli. Biochem Biophys Res Commun 1997; 237:192-201. [PMID: 9266856 DOI: 10.1006/bbrc.1997.7108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Amino terminally deleted and point-mutated histidyl-tRNA synthetases were purified from E. coli via betaGal fusion proteins. A hinge region proximal and distal to the factor Xa cleavage region was necessary to cut the betaGal-fusion proteins efficiently under very mild nondenaturing conditions. N-terminal addition of either methionine or valine to this enzyme (its starting N-formyl-methionine is in vivo post-translationally removed) or the deletion of 6 amino terminal amino acids decreased the specific aminoacylation activity 2- to 7-fold. Further N-terminal deletions of 10 or 17 amino acids caused significantly reduced aminoacylation (100-fold) and ATP/PPi exchange (10-fold) activities, and a reduced binding affinity for histidine. Removal of 18 or more amino acids from the N-terminus thereby removing residues from MOTIF 1 resulted in inactive histidyl-tRNA synthetase mutants. Two point mutations within the histidyl-adenylate binding pocket, R259Q and R259K, also blocked histidyl-tRNA synthetase activity without affecting histidine or ATP binding. The experiments shown identify a highly conserved N-terminal R/KG-patch in front of MOTIF 1 as well as R259 as vital for full enzymatic activity.
Collapse
Affiliation(s)
- A Rühlmann
- Max-Planck-Institut fur Experimentelle Medizin, Department of Chemistry, Göttingen, Germany.
| | | | | |
Collapse
|
1625
|
Zhou T, Rosen BP. Tryptophan fluorescence reports nucleotide-induced conformational changes in a domain of the ArsA ATPase. J Biol Chem 1997; 272:19731-7. [PMID: 9242630 DOI: 10.1074/jbc.272.32.19731] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The ars operon of plasmid R773 encodes an ATP-dependent extrusion pump for arsenite and antimonite in Escherichia coli. The ArsA ATPase is the catalytic subunit of the pump protein, with two nucleotide binding consensus sequences, one in the NH2-terminal half and one in the COOH-terminal half of the protein. A 12-residue consensus sequence (DTAPTGHTIRLL) has been identified in ArsA homologs from eubacteria, archebacteria, fungi, plants, and animals. ArsA enzymes were constructed containing single tryptophan residues at either end of this conserved sequence. The emission spectrum of the fluorescence of the tryptophan on the COOH-terminal end (Trp-159) indicated a relatively hydrophilic environment for this residue. An increase in intrinsic tryptophan fluorescence and a blue shift of the maximum emission wavelength were observed upon addition of MgATP, indicating movement of Trp-159 into a relatively less polar environment. No fluorescence response was observed with MgADP, with nonhydrolyzable ATP analogs, or with MgATP by catalytically inactive enyzmes. This suggests that the location Trp-159 is shifted only during hydrolysis of ATP. In contrast, the emission spectrum of Trp-141, located on the NH2-terminal side of the consensus sequence, indicated a relatively nonpolar environment. The maximum emission wavelength red shifted upon addition of MgADP. MgATP slowly produced a response that correlated with product formation, suggesting that the environment of Trp-141 is sensitive only to MgADP binding. Thus, during ATP hydrolysis the COOH-terminal end of the conserved domain moves into a less polar environment, whereas the NH2-terminal end moves into a more hydrophilic environment as product is formed. A hypothesis is presented in which the conserved domain of ArsA and homologs is an energy transduction domain involved in transmission of the energy of ATP hydrolysis to biological functions such as transport.
Collapse
Affiliation(s)
- T Zhou
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
1626
|
Bustard K, Gupta RS. The sequences of heat shock protein 40 (DnaJ) homologs provide evidence for a close evolutionary relationship between the Deinococcus-thermus group and cyanobacteria. J Mol Evol 1997; 45:193-205. [PMID: 9236279 DOI: 10.1007/pl00006219] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The genes encoding for heat shock protein 40 (Hsp40 or DnaJ) homologs were cloned and sequenced from the archaebacterium Halobacterium cutirubrum and the eubacterium Deinococcus proteolyticus to add to sequences from the gene banks. These genes were identified downstream of the Hsp70 (or DnaK) genes in genomic fragments spanning this region and, as in other prokaryotic species, Hsp70-Hsp40 genes are likely part of the same operon. The Hsp40 homolog from D. proteolyticus was found to be lacking a central 204 base pair region present in H. cutirubrum that encodes for the four cysteine-rich domains of the repeat consensus sequence CxxCxGxG (where x is any amino acid), present in most Hsp40 homologs. The available sequences from various archaebacteria, eubacteria, and eukaryotes show that the same deletion is also present in the homologs from Thermus aquaticus and two cyanobacteria, but in no other species tested. This unique deletion and the clustering of homologs from the Deinococcus-Thermus group and cyanobacterial species in the Hsp40 phylogenetic trees suggest a close evolutionary relationship between these groups as was also shown recently for Hsp70 sequences (R.S. Gupta et al., J Bacteriol 179:345-357, 1997). Sequence comparisons indicate that the Hsp40 homologs are not as conserved as the Hsp70 sequences. Phylogenetic analysis provides no reliable information concerning evolutionary relationship between prokaryotes and eukaryotes and their usefulness in this regard is limited. However, in phylogenetic trees based on Hsp40 sequences, the two archaebacterial homologs showed a polyphyletic branching within Gram-positive bacteria, similar to that seen with Hsp70 sequences.
Collapse
Affiliation(s)
- K Bustard
- Department of Biochemistry, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | | |
Collapse
|
1627
|
Andersson JO, Andersson SGE. Genomic rearrangements during evolution of the obligate intracellular parasite Rickettsia prowazekii as inferred from an analysis of 52015 bp nucleotide sequence. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 8):2783-2795. [PMID: 9274032 DOI: 10.1099/00221287-143-8-2783] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this study a description is given of the sequence and analysis of 52 kb from the 1.1 Mb genome of Rickettsia prowazekii, a member of the alpha-Proteobacteria. An investigation was made of nucleotide frequencies and amino acid composition patterns of 41 coding sequences, distributed in 10 genomic contigs, of which 32 were found to have putative homologues in the public databases. Overall, the coding content of the individual contigs ranged from 59 to 97%, with a mean of 81%. The genes putatively identified included genes involved in the biosynthesis of nucleotides, macromolecules and cell wall structures as well as citric acid cycle component genes. In addition, a putative identification was made of a member of the regulatory response family of two-component signal transduction systems as well as a gene encoding haemolysin. For one gene, the homologue of metK, an internal stop codon was discovered within a region that is otherwise highly conserved. Comparisons with the genomic structures of Escherichia coli, Haemophilus influenzae and Bacillus subtilis have revealed several atypical gene organization patterns in the R. prowazekii genome. For example, R. prowazekii was found to have a unique arrangement of genes upstream of dnaA in a region that is highly conserved among other microbial genomes and thought to represent the origin of replication of a primordial replicon. The results presented in this paper support the hypothesis that the R. prowazekii genome is a highly derived genome and provide examples of gene order structures that are unique for the Rickettsia.
Collapse
Affiliation(s)
- Jan O Andersson
- Department of Molecular Biology, Biomedical Center, Uppsala University, Uppsala, S-751 24, Sweden
| | - Siv G E Andersson
- Department of Molecular Biology, Biomedical Center, Uppsala University, Uppsala, S-751 24, Sweden
| |
Collapse
|
1628
|
Wasinger VC, Bjellqvist B, Humphery-Smith I. Proteomic 'contigs' of Ochrobactrum anthropi, application of extensive pH gradients. Electrophoresis 1997; 18:1373-83. [PMID: 9298651 DOI: 10.1002/elps.1150180812] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The most extensive linear pH gradients yet employed in combination with two-dimensional gel electrophoresis are described, along with their application in proteome analysis. A significant proportion of the protein compliment of bacterial species is believed to be accessible using an extended linear pH gradient of 2.3 to 11.0. Protein standards with predicted isoelectric points (pI) ranging from 3.24 to 9.56 were used to confirm focusing positions with respect to the immobilised pH gradients (IPG) prior to mapping studies of Ochrobactrum anthropi. Multiple gel images were used to construct contiguous windows of protein expression ('proteomic contigs') within 18 cm pH gradients 2.3-5, 4-7, and 6-11 in conjunction with 15% T and 7.5% T acrylamide gels, the latter being used to resolve higher molecular weight (M(r)) proteins. Each IPG had a 5 cm region of similar pH gradient overlap at pH 4-5 and pH 6-7 that was used to construct an image of protein expression characteristic of whole cell lysates. This is reminiscent of genomic sequencing initiatives whereby portions are combined to form a contiguous picture of the whole. The protein maps obtained demonstrated a means of resolving the many tens of thousands of cellular proteins likely to occur in eukaryotic systems, but also highlighted the need to further optimise protein extraction, equilibration buffers, and separation conditions of higher M(r) proteins occurring at extreme pI. Theoretical 2-D protein maps were constructed for five organisms for which the total DNA sequence is now available. In all cases, higher M(r) acidic and basic proteins were shown to be common.
Collapse
Affiliation(s)
- V C Wasinger
- Centre for Proteome Research and Gene-Product Mapping, National Innovation Centre, Eveleigh, Australia
| | | | | |
Collapse
|
1629
|
Marini AM, Soussi-Boudekou S, Vissers S, Andre B. A family of ammonium transporters in Saccharomyces cerevisiae. Mol Cell Biol 1997; 17:4282-93. [PMID: 9234685 PMCID: PMC232281 DOI: 10.1128/mcb.17.8.4282] [Citation(s) in RCA: 428] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ammonium is a nitrogen source supporting growth of yeast cells at an optimal rate. We recently reported the first characterization of an NH4+ transport protein (Mep1p) in Saccharomyces cerevisiae. Here we describe the characterization of two additional NH4+ transporters, Mep2p and Mep3p, both of which are highly similar to Mep1p. The Mep2 protein displays the highest affinity for NH4+ (Km, 1 to 2 microM), followed closely by Mep1p (Km, 5 to 10 microM) and finally by Mep3p, whose affinity is much lower (Km, approximately 1.4 to 2.1 mM). A strain lacking all three MEP genes cannot grow on media containing less than 5 mM NH4+ as the sole nitrogen source, while the presence of individual NH4+ transporters enables growth on these media. Yet, the three Mep proteins are not essential for growth on NH4+ at high concentrations (>20 mM). Feeding experiments further indicate that the Mep transporters are also required to retain NH4+ inside cells during growth on at least some nitrogen sources other than NH4+. The MEP genes are subject to nitrogen control. In the presence of a good nitrogen source, all three MEP genes are repressed. On a poor nitrogen source, MEP2 expression is much higher than MEP1 and MEP3 expression. High-level MEP2 transcription requires at least one of the two GATA family factors Gln3p and Nil1p, which are involved in transcriptional activation of many other nitrogen-regulated genes. In contrast, expression of either MEP1 or MEP3 requires only Gln3p and is unexpectedly down-regulated in a Nil1p-dependent manner. Analysis of databases suggests that families of NH4+ transporters exist in other organisms as well.
Collapse
Affiliation(s)
- A M Marini
- Laboratoire de Physiologie Cellulaire et de Génétique des Levures, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | |
Collapse
|
1630
|
Price KD, Roels S, Losick R. A Bacillus subtilis gene encoding a protein similar to nucleotide sugar transferases influences cell shape and viability. J Bacteriol 1997; 179:4959-61. [PMID: 9244290 PMCID: PMC179349 DOI: 10.1128/jb.179.15.4959-4961.1997] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bacillus subtilis gene ypfP, which is located at 196 degrees on the genetic map, shows similarity to both the monogalactosyldiacylglycerol synthase gene of Cucumis sativus, which encodes a galactosyltransferase, and the murG genes of B. subtilis, Escherichia coli, Haemophilus influenzae, and Synechocystis sp. strain PCC6803, which encode N-acetylglucosaminyltransferases involved in peptidoglycan biosynthesis. Cells containing a null mutation of ypfP are shorter and rounder than wild-type cells during growth in Luria-Bertani medium and glucose minimal medium. In addition, the mutant cells preferentially undergo lysis when grown on solid Luria-Bertani medium.
Collapse
Affiliation(s)
- K D Price
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
1631
|
Smith DR, Richterich P, Rubenfield M, Rice PW, Butler C, Lee HM, Kirst S, Gundersen K, Abendschan K, Xu Q, Chung M, Deloughery C, Aldredge T, Maher J, Lundstrom R, Tulig C, Falls K, Imrich J, Torrey D, Engelstein M, Breton G, Madan D, Nietupski R, Seitz B, Connelly S, McDougall S, Safer H, Gibson R, Doucette-Stamm L, Eiglmeier K, Bergh S, Cole ST, Robison K, Richterich L, Johnson J, Church GM, Mao JI. Multiplex sequencing of 1.5 Mb of the Mycobacterium leprae genome. Genome Res 1997; 7:802-19. [PMID: 9267804 DOI: 10.1101/gr.7.8.802] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The nucleotide sequence of 1.5 Mb of genomic DNA from Mycobacterium leprae was determined using computer-assisted multiplex sequencing technology. This brings the 2.8-Mb M. leprae genome sequence to approximately 66% completion. The sequences, derived from 43 recombinant cosmids, contain 1046 putative protein-coding genes, 44 repetitive regions, 3 tRNAs, and 15 tRNAs. The gene density of one per 1.4 kb is slightly lower than that of Mycoplasma (1.2 kb). Of the protein coding genes, 44% have significant matches to genes with well-defined functions. Comparison of 1157 M. leprae and 1564 Mycobacterium tuberculosis proteins shows a complex mosaic of homologous genomic blocks with up to 22 adjacent proteins in conserved map order. Matches to known enzymatic, antigenic, membrane, cell wall, cell division, multidrug resistance, and virulence proteins suggest therapeutic and vaccine targets. Unusual features of the M. leprae genome include large polyketide synthase (pks) operons, inteins, and highly fragmented pseudogenes.
Collapse
Affiliation(s)
- D R Smith
- Genome Therapeutics Corporation, Collaborative Research Division, Waltham, Massachusetts 02154, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1632
|
Humphery-Smith I, Cordwell SJ, Blackstock WP. Proteome research: complementarity and limitations with respect to the RNA and DNA worlds. Electrophoresis 1997; 18:1217-42. [PMID: 9298643 DOI: 10.1002/elps.1150180804] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A methodological overview of proteome analysis is provided along with details of efforts to achieve high-throughput screening (HTS) of protein samples derived from two-dimensional electrophoresis gels. For both previously sequenced organisms and those lacking significant DNA sequence information, mass spectrometry has a key role to play in achieving HTS. Prototype robotics designed to conduct appropriate chemistries and deliver 700-1000 protein (genes) per day to batteries of mass spectrometers or liquid chromatography (LC)-based analyses are well advanced, as are efforts to produce high density gridded arrays containing > 1000 proteins on a single matrix assisted laser desorption ionisation/time-of-flight (MALDI-TOF) sample stage. High sensitivity HTS of proteins is proposed by employing principally mass spectrometry in an hierarchical manner: (i) MALDI-TOF-mass spectrometry (MS) on at least 1000 proteins per day; (ii) electrospray ionisation (ESI)/MS/MS for analysis of peptides with respect to predicted fragmentation patterns or by sequence tagging; and (iii) ESI/MS/MS for peptide sequencing. Genomic sequences when complemented with information derived from hybridisation assays and proteome analysis may herald in a new era of holistic cellular biology. The current preoccupation with the absolute quantity of gene-product (RNA and/or protein) should move backstage with respect to more molecularly relevant parameters, such as: molecular half-life; synthesis rate; functional competence (presence or absence of mutations); reaction kinetics; the influence of individual gene-products on biochemical flux; the influence of the environment, cell-cycle, stress and disease on gene-products; and the collective roles of multigenic and epigenetic phenomena governing cellular processes. Proteome analysis is demonstrated as being capable of proceeding independently of DNA sequence information and aiding in genomic annotation. Its ability to confirm the existence of gene-products predicted from DNA sequence is a major contribution to genomic science. The workings of software engines necessary to achieve large-scale proteome analysis are outlined, along with trends towards miniaturisation, analyte concentration and protein detection independent of staining technologies. A challenge for proteome analysis into the future will be to reduce its dependence on two-dimensional (2-D) gel electrophoresis as the preferred method of separating complex mixtures of cellular proteins. Nonetheless, proteome analysis already represents a means of efficiently complementing differential display, high density expression arrays, expressed sequence tags, direct or subtractive hybridisation, chromosomal linkage studies and nucleic acid sequencing as a problem solving tool in molecular biology.
Collapse
Affiliation(s)
- I Humphery-Smith
- University of Sydney, Centre for Proteome Research and Gene-Product Mapping, National Innovation Centre, Eveleigh, Australia.
| | | | | |
Collapse
|
1633
|
Wise MJ, Littlejohn TG, Humphery-Smith I. Peptide-mass fingerprinting and the ideal covering set for protein characterisation. Electrophoresis 1997; 18:1399-409. [PMID: 9298654 DOI: 10.1002/elps.1150180815] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The rules that govern the dynamics of protein characterisation by peptide-mass fingerprinting (PMF) were investigated through multiple interrogations of a nonredundant protein database. This was achieved by analysing the efficiency of identifying each entry in the entire database via perfect in silico digestion with a series of 20 pseudo-endoproteinases cutting at the carboxy terminal of each amino acid residue, and the multiple cutters: trypsin, chymotrypsin and Glu-C. The distribution of peptide fragment masses generated by endoproteinase digestion was examined with a view to designing better approaches to protein characterisation by PMF. On average, and for both common and rare cutters, the combination of approximately two fragments was sufficient to identify most database entries. However, the rare cutters left more entries unidentified in the database. Total coverage of the entire database could not be achieved with one enzymatic cutter alone, nor when all 23 cutters were used together. Peptide fragments of > 5000 Da had little effect on the outcome of PMF to correctly characterise database entries, while those with low mass (near to 350 Da in the case of trypsin) were found to be of most utility. The most frequently occurring fragments were also found in this lower mass region. The maximum size of uncut database entries (those not containing a specific amino acid residue) ranged from 52,908 Da to 258,314 Da, while the failure rate for a single cutter in identifying database entries varied from 10,865 (8.4%) to 23,290 (18.1%). PMF is likely to be a mainstay of any high-throughput protein screening strategy for large-scale proteome analysis. A better understanding of the merits and limitations of this technique will allow researchers to optimise their protein characterisation procedures.
Collapse
Affiliation(s)
- M J Wise
- Department of Computer Science, University of Sydney, Australia.
| | | | | |
Collapse
|
1634
|
Jacquot JP, Lancelin JM, Meyer Y. Thioredoxins: structure and function in plant cells. THE NEW PHYTOLOGIST 1997; 136:543-570. [PMID: 33863109 DOI: 10.1046/j.1469-8137.1997.00784.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thioredoxins are ubiquitous small-molecular-weight proteins (typically 100-120 amino-acid residues) containing an extremely reactive disulphide bridge with a highly conserved sequence -Cys-Gly(Ala/Pro)-Pro-Cys-. In bacteria and animal cells, thioredoxins participate in multiple reactions which require reduction of disulphide bonds on selected target proteins/ enzymes. There is now ample biochemical evidence that thioredoxins exert very specific functions in plants, the best documented being the redox regulation of chloroplast enzymes. Another area in which thioredoxins are believed to play a prominent role is in reserve protein mobilization during the process of germination. It has been discovered that thioredoxins constitute a large multigene family in plants with different-subcellular localizations, a unique feature in living cells so far. Evolutionary studies based on these molecules will be discussed, as well as the available biochemical and genetic evidence related to their functions in plant cells. Eukaryotic photosynthetic plant cells are also unique in that they possess two different reducing systems, one extrachloroplastic dependent on NADPH as an electron donor, and the other one chloroplastic, dependent on photoreduced ferredoxin. This review will examine in detail the latest progresses in the area of thioredoxin structural biology in plants, this protein being an excellent model for this purpose. The structural features of the reducing enzymes ferredoxin thioredoxin reductase and NADPH thioredoxin reductase will also be described. The properties of the target enzymes known so far in plants will be detailed with special emphasis on the structural features which make them redox regulatory. Based on sequence analysis, evidence will be presented that redox regulation of enzymes of the biosynthetic pathways first appeared in cyanobacteria possibly as a way to cope with the oxidants produced by oxygenic photosynthesis. It became more elaborate in the chloroplasts of higher plants where a co-ordinated functioning of the chloroplastic and extra chloroplastic metabolisms is required. CONTENTS Summary 543 I. Introduction 544 II. Thioredoxins from photosynthetic organisms as a structural model 545 III. Physiological functions 552 IV. The thioredoxin reduction systems 556 V. Structural aspects of target enzymes 558 VI. Concluding remarks 563 Acknowledgements 564 References 564.
Collapse
Affiliation(s)
- Jean-Pierre Jacquot
- Institut de Biotechnologie des Plantes, URA 1128 CNRS, Université de Paris-Sud, Bâilment 630, 91405 Orsay Cedex, France
| | - Jean-Marc Lancelin
- Laboratoire de RMN Biomoléculaire, ESA 5078 CNRS, Université de Lyon 1 et CPE-Lyon, Bâilment 308, 69622 Villeurbanne Cedex France
| | - Yves Meyer
- Laboratoire de Physiologic et Biologie Moléculaire des Plantes, UMR 5545 CNRS, Université de Perpignan, 66025 Perpignan Cedex France
| |
Collapse
|
1635
|
Cordwell SJ, Basseal DJ, Humphery-Smith I. Proteome analysis of Spiroplasma melliferum (A56) and protein characterisation across species boundaries. Electrophoresis 1997; 18:1335-46. [PMID: 9298648 DOI: 10.1002/elps.1150180809] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Spiroplasma melliferum (Class: Mollicutes) is a wall-less, helical bacterium with a genome of approximately 1460 kbp encoding 800-1000 gene-products. A two-dimensional electrophoresis gel reference map of S. melliferum was produced by Phoretix 2-D gel software analysis of eight high quality gels. The reference map showed 456 silver-stained and replicated protein spots. 156 proteins (34% of visible protein spots) from S. melliferum were further characterised by one, or a combination, of the following: amino acid analysis, peptide-mass fingerprinting via matrix assisted laser desorption ionisation-time of flight (MALDI-TOF) mass spectrometry, and N-terminal protein microsequencing. Proteins with close relationship to those previously determined from other species were identified across species barriers. Thus, this study represents the first larger-scale analysis of a proteome based upon the attribution of predominantly 'unique numerical parameters' for protein characterisation across species boundaries, as opposed to a sequence-based approach. This approach allowed all database entries to be screened for homology, as is currently the case for studies based on nucleic acid or protein sequence information. Several proteins studied from this organism were identified as hypothetical, or having no close homolog already present in the databases. Gene-products from major families such as glycolysis, translation, transcription, cellular processes, energy metabolism and protein synthesis were identified. Several gene-products characterised in S. melliferum were not previously found in studies of the entire Mycoplasma genitalium and Mycoplasma pneumoniae (both closely related Mollicutes) genomes. The presence of such gene-products in S. melliferum is discussed in terms of genome size as compared with the smallest known free-living organisms. Finally, the levels of expression of S. melliferum gene-products were determined with respect to total optical intensity associated with all visible proteins expressed in exponentially grown cells.
Collapse
Affiliation(s)
- S J Cordwell
- Centre of Proteome Research and Gene-Product Mapping, National Innovation Centre, Eveleigh, Australia
| | | | | |
Collapse
|
1636
|
Schmid-Appert M, Zoller K, Traber H, Vuilleumier S, Leisinger T. Association of newly discovered IS elements with the dichloromethane utilization genes of methylotrophic bacteria. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 8):2557-2567. [PMID: 9274009 DOI: 10.1099/00221287-143-8-2557] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dichloromethane (DCM) dehalogenases enable facultative methylotrophic bacteria to utilize DCM as sole carbon and energy source. DCM-degrading aerobic methylotrophic bacteria expressing a type A DCM dehalogenase were previously shown to share a conserved 4.2 kb BamHI DNA fragment containing the dehalogenase structural gene, dcmA, and dcmR, the gene encoding a putative regulatory protein. Sequence analysis of a 10 kb DNA fragment including this region led to the identification of three types of insertion sequences identified as IS1354, IS1355 and IS1357, and also two ORFs, orf353 and orf192, of unknown function. Two identical copies of element IS1354 flank the conserved 4.2 kb fragment as a direct repeat. The occurrence of these newly identified IS elements was shown to be limited to DCM-utilizing methylotrophs containing a type A DCM dehalogenase. The organization of the corresponding dcm regions in 12 DCM-utilizing strains was examined by hybridization analysis using IS-specific probes. Six different groups could be defined on the basis of the occurrence, position and copy number of IS sequences. All groups shared a conserved 5.6 kb core region with dcmA, dcmR, orf353 and orf192 as well as IS1357. One group of strains including Pseudomonas sp. DM1 contained two copies of this conserved core region. The high degree of sequence conservation observed within the genomic region responsible for DCM utilization and the occurrence of clusters of insertion sequences in the vicinity of the dcm genes suggest that a transposon is involved in the horizontal transfer of the DCM-utilization character among methylotrophic bacteria.
Collapse
Affiliation(s)
- M Schmid-Appert
- Mikrobiologisches Institut, Swiss Federal Institute of Technology, ETH-Zentrum, CH-8092 Zürich, Switzerland
| | - K Zoller
- Mikrobiologisches Institut, Swiss Federal Institute of Technology, ETH-Zentrum, CH-8092 Zürich, Switzerland
| | - H Traber
- Mikrobiologisches Institut, Swiss Federal Institute of Technology, ETH-Zentrum, CH-8092 Zürich, Switzerland
| | - S Vuilleumier
- Mikrobiologisches Institut, Swiss Federal Institute of Technology, ETH-Zentrum, CH-8092 Zürich, Switzerland
| | - T Leisinger
- Mikrobiologisches Institut, Swiss Federal Institute of Technology, ETH-Zentrum, CH-8092 Zürich, Switzerland
| |
Collapse
|
1637
|
Sazuka T, Ohara O. Towards a proteome project of cyanobacterium Synechocystis sp. strain PCC6803: linking 130 protein spots with their respective genes. Electrophoresis 1997; 18:1252-8. [PMID: 9298645 DOI: 10.1002/elps.1150180806] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Following the complete sequencing of the genome of the univellular cyanobacterium, Synechocystis sp. strain PCC6803 within our institute, a protein-gene linkage map of this photosynthetic microorganism was successfully constructed for 130 high abundance proteins present on two-dimensional gels. An additional six proteins were analyzed, but were probably encoded extrachromosomally. In order to demonstrate the usefulness of this protein-gene linkage map, we analyzed the changes that occur in cellular proteins after illumination of PCC6803 cells. The results indicate that this protein-gene linkage map greatly simplifies the identification process of such modulated genes. After illumination, at least three distinctive spots with reduced intensity were detected on two-dimensional gels and the corresponding genes of two of these were successfully identified as chaperonin 2 and a Tortula ruralis rehydrin-related gene. Thus, the combination of the protein-gene linkage map and two-dimensional gel electrophoresis should permit a comprehensive analyses of the proteins encoded by the genome (i.e., "proteome") of this photosynthetic autotroph. This post-genome project represents a productive way of exploiting the information obtained from the sequencing of the cyanobacterium genome.
Collapse
Affiliation(s)
- T Sazuka
- Laboratory of DNA Technology, Kazusa DNA Research Institute, Chiba, Japan
| | | |
Collapse
|
1638
|
Cordwell SJ, Basseal DJ, Bjellqvist B, Shaw DC, Humphery-Smith I. Characterisation of basic proteins from Spiroplasma melliferum using novel immobilised pH gradients. Electrophoresis 1997; 18:1393-8. [PMID: 9298653 DOI: 10.1002/elps.1150180814] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) has become the method of choice for efficient separation of complex protein mixtures. Previously, analysis of the Spiroplasma melliferum proteome (protein complement of a genome) has been performed with pH 3-10 and narrow range pH 4-7 IPG gel strips. We report here on the use of novel 18 cm basic (pH 6-11) immobilised pH gradients (IPG) to increase the resolution of protein spots visible within 2-D gels. These gradients were synthesised to emulate the gradient of commercially available IPG gel strips in a 5 cm region of overlap so as to attempt construction of a more complete map of cellular protein expression. Approximately 50 additional gene products were detected from S. melliferum that were not previously well-resolved or visible using wide-range pH 3-10 IPG gel strips. Twenty-seven of these were electrotransferred to polyvinylidene difluoride (PVDF) membrane and analysed by N-terminal protein microsequencing. Protein spots with an initial peak yield of as little as 100 femtomoles (fm) were sequenced to 5-10 amino acid residues, demonstrating the importance of improved sample handling procedures and analytical technologies. Many essential metabolic enzymes were shown to have basic pI, including: glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase, carbamate kinase and lactate dehydrogenase. A very basic protein (pI approximately 11.0) was identified as uridylate kinase, an enzyme indirectly associated with pyrimidine biosynthesis and thought be absent in some members of the bacterial class Mollicutes. The advent of novel basic (pH 6-11) IPGs has allowed the visualisation of a significantly greater percentage of the 'functional proteome', that portion of the total protein complement of a genome actively translated within a specific time frame, on 2-D electrophoresis gels. This will aid in the characterisation of translated gene products in conjunction with genome sequencing initiatives.
Collapse
Affiliation(s)
- S J Cordwell
- Centre for Proteome Research and Gene-Product Mapping, National Innovation Centre, Eveleigh, Australia
| | | | | | | | | |
Collapse
|
1639
|
Antelmann H, Bernhardt J, Schmid R, Mach H, Völker U, Hecker M. First steps from a two-dimensional protein index towards a response-regulation map for Bacillus subtilis. Electrophoresis 1997; 18:1451-63. [PMID: 9298659 DOI: 10.1002/elps.1150180820] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Data on the identification of proteins of Bacillus subtilis on two-dimensional (2-D) gels as well as their regulation are summarized and the identification of 56 protein spots is included. The pattern of proteins synthesized in Bacillus subtilis during exponential growth, during starvation for glucose or phosphate, or after the imposition of stresses like heat shock, salt- and ethanol stress as well as oxidative stress was analyzed. N-terminal sequencing of protein spots allowed the identification of 93 proteins on 2-D gels, which are required for the synthesis of amino acids and nucleotides, the generation of ATP, for glycolyses, the pentose phosphate cycle, the citric acid cycle as well as for adaptation to a variety of stress conditions. A computer-aided analysis of the 2-D gels was used to monitor the synthesis profile of more than 130 protein spots. Proteins performing housekeeping functions during exponential growth displayed a reduced synthesis rate during stress and starvation, whereas spots induced during stress and starvation were classified as specific stress proteins induced by a single stimulus or a group of related stimuli, or as general stress proteins induced by a variety of entirely different stimuli. The analysis of mutants in global regulators was initiated in order to establish a response regulation map for B. subtilis. These investigations demonstrated that the alternative sigma factor sigma B is involved in the regulation of almost all of the general stress proteins and that the phoPR two-component system is required for the induction of a large part but not all of the proteins induced by phosphate starvation.
Collapse
Affiliation(s)
- H Antelmann
- Ernst-Moritz-Arndt-Universität Greifswald, Institut für Mikrobiologie und Molekularbiologie, Germany
| | | | | | | | | | | |
Collapse
|
1640
|
Juty NS, Moshiri F, Merrick M, Anthony C, Hill S. The Klebsiella pneumoniae cytochrome bd' terminal oxidase complex and its role in microaerobic nitrogen fixation. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 8):2673-2683. [PMID: 9274021 DOI: 10.1099/00221287-143-8-2673] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cytochrome bd' has been implicated in having an important role in microaerobic nitrogen fixation in the enteric bacterium Klebsiella pneumoniae, where it is expressed under all conditions that permit diazotrophy. In this paper the sequence of the genes encoding this terminal oxidase (cydAB) of Klebsiella pneumoniae and the characterization of a cyd mutant are reported. The deduced amino acid sequences support the proposal that His 19, His 186 and Met 393 provide three of the four axial ligands to the Fe of the three haems in the oxidase complex. The nitrogen-fixing ability of the mutant was severely impaired in the presence of low concentrations of oxygen compared with the wild-type bacterium. Only the wild-type organism was capable of microaerobic nitrogenase activity supported by fermentation products. It is proposed that formate dehydrogenase-O may be involved in supplying electrons to a respiratory chain terminated by the bd-type oxidase, which would remove inhibitory oxygen and supply ATP for nitrogenase activity.
Collapse
Affiliation(s)
- Navtej S Juty
- Nitrogen Fixation Laboratory, John Innes Centre, Norwich NR4 7UH, UK
- Department of Biochemistry, University of Southampton, Southampton SO16 7PX, UK
| | - Farhad Moshiri
- Department of Biology, The Johns Hopkinas University, Baltimore, MD 21218, USA
| | - Mike Merrick
- Nitrogen Fixation Laboratory, John Innes Centre, Norwich NR4 7UH, UK
| | - Christopher Anthony
- Department of Biochemistry, University of Southampton, Southampton SO16 7PX, UK
| | - Susan Hill
- Nitrogen Fixation Laboratory, John Innes Centre, Norwich NR4 7UH, UK
| |
Collapse
|
1641
|
Sühnel J, Hermann G, Dornberger U, Fritzsche H. Computer analysis of phytochrome sequences and reevaluation of the phytochrome secondary structure by Fourier transform infrared spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1340:253-67. [PMID: 9252112 DOI: 10.1016/s0167-4838(97)00050-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A repertoire of various methods of computer sequence analysis was applied to phytochromes in order to gain new insights into their structure and function. A statistical analysis of 23 complete phytochrome sequences revealed regions of non-random amino acid composition, which are supposed to be of particular structural or functional importance. All phytochromes other than phyD and phyE from Arabidopsis have at least one such region at the N-terminus between residues 2 and 35. A sequence similarity search of current databases indicated striking homologies between all phytochromes and a hypothetical 84.2-kDa protein from the cyanobacterium Synechocystis. Furthermore, scanning the phytochrome sequences for the occurrence of patterns defined in the PROSITE database detected the signature of the WD repeats of the beta-transducin family within the functionally important 623-779 region (sequence numbering of phyA from Avena) in a number of phytochromes. A multiple sequence alignment performed with 23 complete phytochrome sequences is made available via the IMB Jena World-Wide Web server (http://www.imb-jena.de/PHYTO.html). It can be used as a working tool for future theoretical and experimental studies. Based on the multiple alignment striking sequence differences between phytochromes A and B were detected directly at the N-terminal end, where all phytochromes B have an additional stretch of 15-42 amino acids. There is also a variety of positions with totally conserved but different amino acids in phytochromes A and B. Most of these changes are found in the sequence segment 150-200. It is, therefore, suggested that this region might be of importance in determining the photosensory specificity of the two phytochromes. The secondary structure prediction based on the multiple alignment resulted in a small but significant beta-sheet content. This finding is confirmed by a reevaluation of the secondary structure using FTIR spectroscopy.
Collapse
Affiliation(s)
- J Sühnel
- Institute of Molecular Biotechnology, Jena, Germany
| | | | | | | |
Collapse
|
1642
|
Oguchi K, Nimura K, Yoshikawa H, Takahashi H. Sequence and analysis of a dnaJ homologue gene in cyanobacterium Synechococcus sp. PCC7942. Biochem Biophys Res Commun 1997; 236:461-6. [PMID: 9240461 DOI: 10.1006/bbrc.1997.6992] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The chromosomal region containing a dnaJ gene homologue (dnaJ7942) was sequenced from unicellular cyanobacterium Synechococcus sp. PCC7942. The dnaJ7942 gene as well as following two orfs are located in the region immediately downstream of dnaK3, and they seem to be cotranscribed. The dnaJ7942 gene product shares, like all J homologues, homology for the highly conserved "J-domain" of DnaJ. It does not have, however, a glycine and phenylalanine (G/F)-rich region nor cysteine (Cys)-rich region unlike the Escherichia coli DnaJ protein. When this gene was expressed in E. coli, cells became filamentous in contrast to those expressing the E. coli dnaJ gene. Gene disruption experiments indicated that the dnaJ7942 gene was essential for growth. Analysis of subcellular localization revealed that the DnaJ protein is mainly located on the thylakoid membrane in the cyanobacterium.
Collapse
Affiliation(s)
- K Oguchi
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Japan
| | | | | | | |
Collapse
|
1643
|
Watanabe Y, Kita K, Ueda T, Watanabe K. cDNA sequence of a translational elongation factor Ts homologue from Caenorhabditis elegans: mitochondrial factor-specific features found in the nematode homologue peptide. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1353:7-12. [PMID: 9256058 DOI: 10.1016/s0167-4781(97)00075-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The cDNA for a homologue of elongation factor Ts which probably functions in mitochondria has been sequenced from a nematode Caenorhabditis elegans. The deduced amino acid sequence (316 amino acids long) has a possible transit peptide sequence at the amino terminus and several common specific features for mammalian mitochondrial EF-Ts. The amino acid identities in the protein from C. elegans compared with those of bovine mitochondria and Escherichia coli are 29.5% and 24.0%, respectively. The C. elegans sequence was classified as a long EF-Ts (ca. 280 amino acids long) similar to peptides from mammalian mitochondria and eubacteria other than Thermus and cyanobacteria (except Spirulina platensis), rather than short EF-Ts (ca. 200 amino acids long) as those of Thermus, cyanobacteria and plastids.
Collapse
Affiliation(s)
- Y Watanabe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, the University of Tokyo, Bunkyo-ku, Japan.
| | | | | | | |
Collapse
|
1644
|
Shen JR, Ikeuchi M, Inoue Y. Analysis of the psbU gene encoding the 12-kDa extrinsic protein of photosystem II and studies on its role by deletion mutagenesis in Synechocystis sp. PCC 6803. J Biol Chem 1997; 272:17821-6. [PMID: 9211937 DOI: 10.1074/jbc.272.28.17821] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The gene encoding the 12-kDa extrinsic protein of photosystem II from Synechocystis sp. PCC 6803 was cloned based on N-terminal sequence of the mature protein. This gene, named psbU, encodes a polypeptide of 131 residues, the first 36 residues of which were absent in the mature protein and thus served as a transit peptide required for its transport into the thylakoid lumen. A psbU gene deletion mutant grew photoautotrophically in normal BG11 medium at almost the same rate as that of the wild type strain. This mutant, however, grew apparently slower than the wild type did upon depletion of Ca2+ or Cl- from the growth medium. Photosystem II oxygen evolution decreased to 81% in the mutant as compared with that in the wild type, and the thermoluminescence B- and Q-bands shifted to higher temperatures accompanied by an increase in the Q-band intensity. These results indicate that the 12-kDa protein is not essential for oxygen evolution but may play a role in optimizing the ion (Ca2+ and Cl-) environment and maintaining a functional structure of the cyanobacterial oxygen-evolving complex. In addition, a double deletion mutant lacking cytochrome c-550 and the 12-kDa protein grew photoautotrophically with a phenotype identical to that of the single deletion mutant of cytochrome c-550. This supports our previous biochemical results that the 12-kDa protein cannot bind to photosystem II in the absence of cytochrome c-550 (Shen, J.-R., and Inoue, Y. (1993) Biochemistry 32, 1825-1832).
Collapse
Affiliation(s)
- J R Shen
- Solar Energy Research Group and Photosynthesis Research Laboratory, The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-01, Japan.
| | | | | |
Collapse
|
1645
|
Valverde F, Losada M, Serrano A. Functional complementation of an Escherichia coli gap mutant supports an amphibolic role for NAD(P)-dependent glyceraldehyde-3-phosphate dehydrogenase of Synechocystis sp. strain PCC 6803. J Bacteriol 1997; 179:4513-22. [PMID: 9226260 PMCID: PMC179286 DOI: 10.1128/jb.179.14.4513-4522.1997] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The gap-2 gene, encoding the NAD(P)-dependent D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH2) of the cyanobacterium Synechocystis sp. strain PCC 6803, was cloned by functional complementation of an Escherichia coli gap mutant with a genomic DNA library; this is the first time that this cloning strategy has been used for a GAPDH involved in photosynthetic carbon assimilation. The Synechocystis DNA region able to complement the E. coli gap mutant was narrowed down to 3 kb and fully sequenced. A single complete open reading frame of 1,011 bp encoding a protein of 337 amino acids was found and identified as the putative gap-2 gene identified in the complete genome sequence of this organism. Determination of the transcriptional start point, identification of putative promoter and terminator sites, and orientation of the truncated flanking genes suggested the gap-2 transcript should be monocystronic, a possibility further confirmed by Northern blot studies. Both natural and recombinant homotetrameric GAPDH2s were purified and found to exhibit virtually identical physicochemical and kinetic properties. The recombinant GAPDH2 showed the dual pyridine nucleotide specificity characteristic of the native cyanobacterial enzyme, and similar ratios of NAD- to NADP-dependent activities were found in cell extracts from Synechocystis as well as in those from the complemented E. coli clones. The deduced amino acid sequence of Synechocystis GAPDH2 presented a high degree of identity with sequences of the chloroplastic NADP-dependent enzymes. In agreement with this result, immunoblot analysis using monospecific antibodies raised against GAPDH2 showed the presence of the 38-kDa GAPDH subunit not only in crude extracts from the gap-2-expressing E. coli clones and all cyanobacteria that were tested but also in those from eukaryotic microalgae and plants. Western and Northern blot experiments showed that gap-2 is conspicuously expressed, although at different levels, in Synechocystis cells grown in different metabolic regimens, even under chemoheterotrophic conditions. A possible amphibolic role of the cyanobacterial GAPDH2, namely, anabolic for photosynthetic carbon assimilation and catabolic for carbohydrate degradative pathways, is discussed.
Collapse
Affiliation(s)
- F Valverde
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigación Isla de la Cartuja, Universidad de Sevilla-CSIC, Seville, Spain
| | | | | |
Collapse
|
1646
|
Vysotskaya VS, Shcherbakov DV, Garber MB. Sequencing and analysis of the Thermus thermophilus ribosomal protein gene cluster equivalent to the spectinomycin operon. Gene 1997; 193:23-30. [PMID: 9249063 DOI: 10.1016/s0378-1119(97)00072-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To assess the organization of the Thermus thermophilus ribosomal protein genes, a fragment of DNA containing the complete S10 region and ten ribosomal protein genes of the spc region was cloned, using an oligonucleotide coding for the N-terminal amino acid (aa) sequence of T. thermophilus S8 protein as hybridization probe. The nucleotide sequence of a 4290 bp region between the rps17 and rpl15 genes was determined. Comparative analysis of this gene cluster showed that the gene arrangement (S17, L14, L24, L5, S14, S8, L6, L18, S5, L30 and L15) is identical to that of eubacteria. However, T. thermophilus ribosomal protein genes corresponding to the Escherichia coli S10 and spc operons are not resolved into two clusters: the stop codon of the rps17 gene (the last gene of the S10 operon in E. coli) and the start codon of the rpl14 gene (the first gene of the spc operon in E. coli) overlap. Most genes, except the rps14-rps8 intergenic spacer (69 bp), are separated by very short (only 3-7 bp) spacer regions or partially overlapped. The deduced aa sequences of T. thermophilus proteins share about 51-100% identities with the sequences of homologous proteins from thermophile Thermus aquaticus and Thermotoga maritima and 27-70% identities with the sequences of their mesophile counterparts.
Collapse
Affiliation(s)
- V S Vysotskaya
- Department of Structure and Function of the Ribosome, Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region.
| | | | | |
Collapse
|
1647
|
Treuner-Lange A, Kuhn A, Dürre P. The kdp system of Clostridium acetobutylicum: cloning, sequencing, and transcriptional regulation in response to potassium concentration. J Bacteriol 1997; 179:4501-12. [PMID: 9226259 PMCID: PMC179285 DOI: 10.1128/jb.179.14.4501-4512.1997] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The complete sequence of the kdp gene region of Clostridium acetobutylicum has been determined. This part of the chromosome comprises two small open reading frames (orfZ and orfY), putatively encoding hydrophobic peptides, and the genes kdpA, kdpB, kdpC, and kdpX, followed by an operon encoding a pair of sensor-effector regulatory proteins (KdpD and KdpE). Except for orfZ, orfY, and kdpX, all genes showed significant homology to the kdp genes of Escherichia coli, encoding a high-affinity potassium transport ATPase and its regulators. The complete genome sequence of Synechocystis sp. strain PCC 6803 and a recently published part of the Mycobacterium tuberculosis genome indicate the existence of a kdp system in these organisms as well, but all three systems comprise neither a second orf upstream of kdpA nor an additional kdpX gene. Expression of the clostridial kdp genes, including the unique kdpX gene, was found to be inducible by low potassium concentrations. A transcription start point could be mapped upstream of orfZ. A promoter upstream of kdpD was active only under noninducing conditions. Lowering the potassium content of the medium led to formation of a common transcript (orfZYkdpABCXDE), with a putative internal RNase E recognition site, which could be responsible for the instability of the common transcript. Except for the two small peptides, all gene products could be detected in in vitro transcription-translation experiments.
Collapse
Affiliation(s)
- A Treuner-Lange
- Angewandte Mikrobiologie und Mykologie, Universität Ulm, Germany
| | | | | |
Collapse
|
1648
|
Abstract
The biochemical mechanism by which the phytochrome family of plant sensory photoreceptors transmit perceived informational light signals downstream to transduction pathway components is undertermined. The recent sequencing of the entire genome of the cyanobacterium Synechocystis, however, has revealed a protein that has an NH2-terminal domain with striking sequence similarity to the photosensory NH2-terminal domain of the phytochromes, and a COOH-terminal domain strongly related to the transmitter histidine kinase module of bacterial two-component sensors. The Synechocystis protein is capable of autocatalytic chromophore ligation and exhibits photoreversible light-absorption changes analogous to the phytochromes, indicating its capacity to function as an informational photoreceptor. Together with earlier observations that the COOH-terminal domains of the plant phytochromes also have sequence similarity to the histidine kinases, these data suggest that the cyanobacteria utilize photoregulated histidine kinases as a sensory system and that the plant phytochromes may be evolutionary descendants of these photoreceptors.
Collapse
Affiliation(s)
- P H Quail
- Department of Plant and Microbial Biology, University of California, Berkeley 94720, USA.
| |
Collapse
|
1649
|
Schwartz SH, Tan BC, Gage DA, Zeevaart JA, McCarty DR. Specific oxidative cleavage of carotenoids by VP14 of maize. Science 1997; 276:1872-4. [PMID: 9188535 DOI: 10.1126/science.276.5320.1872] [Citation(s) in RCA: 540] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The plant growth regulator abscisic acid (ABA) is formed by the oxidative cleavage of an epoxy-carotenoid. The synthesis of other apocarotenoids, such as vitamin A in animals, may occur by a similar mechanism. In ABA biosynthesis, oxidative cleavage is the first committed reaction and is believed to be the key regulatory step. A new ABA-deficient mutant of maize has been identified and the corresponding gene, Vp14, has been cloned. The recombinant VP14 protein catalyzes the cleavage of 9-cis-epoxy-carotenoids to form C25 apo-aldehydes and xanthoxin, a precursor of ABA in higher plants.
Collapse
Affiliation(s)
- S H Schwartz
- Michigan State University-Department of Energy (MSU-DOE) Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
1650
|
Gelfand MS, Koonin EV. Avoidance of palindromic words in bacterial and archaeal genomes: a close connection with restriction enzymes. Nucleic Acids Res 1997; 25:2430-9. [PMID: 9171096 PMCID: PMC1995031 DOI: 10.1093/nar/25.12.2430] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Short palindromic sequences (4, 5 and 6 bp palindromes) are avoided at a statistically significant level in the genomes of several bacteria, including the completely sequenced Haemophilus influenzae and Synechocystis sp. genomes and in the complete genome of the archaeon Methanococcus jannaschii. In contrast, there is only moderate avoidance of palindromes in the small genome of the bacterium Mycoplasma genitalium and no detectable avoidance in the genomes of chloroplasts and mitochondria. The sites for type II restriction-modification enzymes detected in the given species tend to be among the most avoided palindromes in a particular genome, indicating a direct connection between the avoidance of short oligonucleotide words and restriction-modification systems with the respective specificity. Palindromes corresponding to sites for restriction enzymes from other species are also avoided, albeit less significantly, suggesting that in the course of evolution bacterial DNA has been exposed to a wide spectrum of restriction enzymes, probably as the result of lateral transfer mediated by mobile genetic elements, such as plasmids and prophages. Palindromic words appear to accumulate in DNA once it becomes isolated from restriction-modification systems, as demonstrated by the case of organellar genomes. By combining these observations with protein sequence analysis, we show that the most avoided 4-palindrome and the most avoided 6-palindrome in the archaeon M.jannaschii are likely to be recognition sites for two novel restriction-modification systems.
Collapse
Affiliation(s)
- M S Gelfand
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| | | |
Collapse
|