1651
|
Abstract
PURPOSE OF REVIEW Although karyotypic events in follicular lymphoma and its transformation to aggressive lymphoma have been well described, the underlying genetic changes have until recently remained obscure. Both germline and acquired molecular events are now known to predict disease risk and outcome, respectively. Recent developments in these fields are covered within this review. RECENT FINDINGS Identification of a region of germline predisposition on chromosome 6p together with pesticide influence on disease-related changes suggests specific risk factors for follicular lymphoma. The profiling of S(mu) and immunoglobulin heavy-chain locus (IgH-VH) mutations in follicular lymphoma and relapse/transformed samples suggests divergent evolution from a common progenitor, whereas modular expression profiling highlights the stem cell-like origin of disease. Furthermore, methylation profiling indicates a significant epigenetic influence on disease and novel gene mutations provide exciting new targets for investigation. SUMMARY Recent insights into follicular lymphoma identify constitutional and environmental predisposition further unravelling the concept of a lymphoma-initiating cell and the acquired events defining this disease. The major challenge remains successful translation of these findings into routine clinical practice.
Collapse
|
1652
|
Accumulation of driver and passenger mutations during tumor progression. Proc Natl Acad Sci U S A 2010; 107:18545-50. [PMID: 20876136 DOI: 10.1073/pnas.1010978107] [Citation(s) in RCA: 561] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Major efforts to sequence cancer genomes are now occurring throughout the world. Though the emerging data from these studies are illuminating, their reconciliation with epidemiologic and clinical observations poses a major challenge. In the current study, we provide a mathematical model that begins to address this challenge. We model tumors as a discrete time branching process that starts with a single driver mutation and proceeds as each new driver mutation leads to a slightly increased rate of clonal expansion. Using the model, we observe tremendous variation in the rate of tumor development-providing an understanding of the heterogeneity in tumor sizes and development times that have been observed by epidemiologists and clinicians. Furthermore, the model provides a simple formula for the number of driver mutations as a function of the total number of mutations in the tumor. Finally, when applied to recent experimental data, the model allows us to calculate the actual selective advantage provided by typical somatic mutations in human tumors in situ. This selective advantage is surprisingly small--0.004 ± 0.0004--and has major implications for experimental cancer research.
Collapse
|
1653
|
Abel HJ, Duncavage EJ, Becker N, Armstrong JR, Magrini VJ, Pfeifer JD. SLOPE: a quick and accurate method for locating non-SNP structural variation from targeted next-generation sequence data. Bioinformatics 2010; 26:2684-8. [PMID: 20876606 DOI: 10.1093/bioinformatics/btq528] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
MOTIVATION Targeted 'deep' sequencing of specific genes or regions is of great interest in clinical cancer diagnostics where some sequence variants, particularly translocations and indels, have known prognostic or diagnostic significance. In this setting, it is unnecessary to sequence an entire genome, and target capture methods can be applied to limit sequencing to important regions, thereby reducing costs and the time required to complete testing. Existing 'next-gen' sequencing analysis packages are optimized for efficiency in whole-genome studies and are unable to benefit from the particular structure of targeted sequence data. RESULTS We developed SLOPE to detect structural variants from targeted short-DNA reads. We use both real and simulated data to demonstrate SLOPE's ability to rapidly detect insertion/deletion events of various sizes as well as translocations and viral integration sites with high sensitivity and low false discovery rate. AVAILABILITY Binary code available at http://www-genepi.med.utah.edu/suppl/SLOPE/index.html
Collapse
Affiliation(s)
- Haley J Abel
- Department of Internal Medicine, Division of Genetic Epidemiology, Department of Pathology, University of Utah, Salt Lake City, UT, USA.
| | | | | | | | | | | |
Collapse
|
1654
|
Caramazza D, Lasho TL, Finke CM, Gangat N, Dingli D, Knudson RA, Siragusa S, Hanson CA, Pardanani A, Ketterling RP, Tefferi A. IDH mutations and trisomy 8 in myelodysplastic syndromes and acute myeloid leukemia. Leukemia 2010; 24:2120-2. [DOI: 10.1038/leu.2010.213] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
1655
|
Meyerson M, Gabriel S, Getz G. Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 2010; 11:685-96. [PMID: 20847746 DOI: 10.1038/nrg2841] [Citation(s) in RCA: 778] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
1656
|
Cheng Y, Wang J, Shao J, Chen Q, Mo F, Ma L, Han X, Zhang J, Chen C, Zhang C, Lin S, Yu J, Zheng S, Lin SC, Lin B. Identification of novel SNPs by next-generation sequencing of the genomic region containing the APC gene in colorectal cancer patients in China. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:315-25. [PMID: 20569184 DOI: 10.1089/omi.2010.0018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We described an approach of identifying single nucleotide polymorphisms (SNPs) in complete genomic regions of key genes including promoters, exons, introns, and downstream sequences by combining long-range polymerase chain reaction (PCR) or NimbleGen sequence capture with next-generation sequencing. Using the adenomatous polyposis coli (APC) gene as an example, we identified 210 highly reliable SNPs by next-generation sequencing analysis program MAQ and Samtools, of which 69 were novel ones, in the 123-kb APC genomic region in 27 pair of colorectal cancers and normal adjacent tissues. We confirmed all of the eight randomly selected high-quality SNPs by allele-specific PCR, suggesting that our false discovery rate is negligible. We identified 11 SNPs in the exonic region, including one novel SNP that was not previously reported. Although 10 of them are synonymous, they were predicted to affect splicing by creating or removing exonic splicing enhancers or exonic splicing silencers. We also identified seven SNPs in the upstream region of the APC gene, three of which were only identified in the cancer tissues. Six of these upstream SNPs were predicted to affect transcription factor binding. We also observed that long-range PCR was better in capturing GC-rich regions than the NimbleGen sequence capture technique.
Collapse
Affiliation(s)
- Yin Cheng
- Systems Biology Division, Zhejiang-California International Nanosystems Institute (ZCNI), Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1657
|
Ding L, Wendl MC, Koboldt DC, Mardis ER. Analysis of next-generation genomic data in cancer: accomplishments and challenges. Hum Mol Genet 2010; 19:R188-96. [PMID: 20843826 DOI: 10.1093/hmg/ddq391] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The application of next-generation sequencing technology has produced a transformation in cancer genomics, generating large data sets that can be analyzed in different ways to answer a multitude of questions about the genomic alterations associated with the disease. Analytical approaches can discover focused mutations such as substitutions and small insertion/deletions, large structural alterations and copy number events. As our capacity to produce such data for multiple cancers of the same type is improving, so are the demands to analyze multiple tumor genomes simultaneously growing. For example, pathway-based analyses that provide the full mutational impact on cellular protein networks and correlation analyses aimed at revealing causal relationships between genomic alterations and clinical presentations are both enabled. As the repertoire of data grows to include mRNA-seq, non-coding RNA-seq and methylation for multiple genomes, our challenge will be to intelligently integrate data types and genomes to produce a coherent picture of the genetic basis of cancer.
Collapse
Affiliation(s)
- Li Ding
- Department of Genetics, The Genome Center at Washington University School of Medicine, 4444 Forest Park Blvd., St Louis, MO 63108, USA
| | | | | | | |
Collapse
|
1658
|
Abstract
We present an allele-specific copy number analysis of the in vivo breast cancer genome. We describe a unique bioinformatics approach, ASCAT (allele-specific copy number analysis of tumors), to accurately dissect the allele-specific copy number of solid tumors, simultaneously estimating and adjusting for both tumor ploidy and nonaberrant cell admixture. This allows calculation of "ASCAT profiles" (genome-wide allele-specific copy-number profiles) from which gains, losses, copy number-neutral events, and loss of heterozygosity (LOH) can accurately be determined. In an early-stage breast carcinoma series, we observe aneuploidy (>2.7n) in 45% of the cases and an average nonaberrant cell admixture of 49%. By aggregation of ASCAT profiles across our series, we obtain genomic frequency distributions of gains and losses, as well as genome-wide views of LOH and copy number-neutral events in breast cancer. In addition, the ASCAT profiles reveal differences in aberrant tumor cell fraction, ploidy, gains, losses, LOH, and copy number-neutral events between the five previously identified molecular breast cancer subtypes. Basal-like breast carcinomas have a significantly higher frequency of LOH compared with other subtypes, and their ASCAT profiles show large-scale loss of genomic material during tumor development, followed by a whole-genome duplication, resulting in near-triploid genomes. Finally, from the ASCAT profiles, we construct a genome-wide map of allelic skewness in breast cancer, indicating loci where one allele is preferentially lost, whereas the other allele is preferentially gained. We hypothesize that these alternative alleles have a different influence on breast carcinoma development.
Collapse
|
1659
|
Tong P, Prendergast JGD, Lohan AJ, Farrington SM, Cronin S, Friel N, Bradley DG, Hardiman O, Evans A, Wilson JF, Loftus B. Sequencing and analysis of an Irish human genome. Genome Biol 2010; 11:R91. [PMID: 20822512 PMCID: PMC2965383 DOI: 10.1186/gb-2010-11-9-r91] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Revised: 07/13/2010] [Accepted: 09/07/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent studies generating complete human sequences from Asian, African and European subgroups have revealed population-specific variation and disease susceptibility loci. Here, choosing a DNA sample from a population of interest due to its relative geographical isolation and genetic impact on further populations, we extend the above studies through the generation of 11-fold coverage of the first Irish human genome sequence. RESULTS Using sequence data from a branch of the European ancestral tree as yet unsequenced, we identify variants that may be specific to this population. Through comparisons with HapMap and previous genetic association studies, we identified novel disease-associated variants, including a novel nonsense variant putatively associated with inflammatory bowel disease. We describe a novel method for improving SNP calling accuracy at low genome coverage using haplotype information. This analysis has implications for future re-sequencing studies and validates the imputation of Irish haplotypes using data from the current Human Genome Diversity Cell Line Panel (HGDP-CEPH). Finally, we identify gene duplication events as constituting significant targets of recent positive selection in the human lineage. CONCLUSIONS Our findings show that there remains utility in generating whole genome sequences to illustrate both general principles and reveal specific instances of human biology. With increasing access to low cost sequencing we would predict that even armed with the resources of a small research group a number of similar initiatives geared towards answering specific biological questions will emerge.
Collapse
Affiliation(s)
- Pin Tong
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - James GD Prendergast
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Amanda J Lohan
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Susan M Farrington
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
- Colon Cancer Genetics Group and Academic Coloproctology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Simon Cronin
- Department of Clinical Neurological Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Nial Friel
- School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dan G Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Orla Hardiman
- Department of Neurology, Beaumont Hospital and Trinity College Dublin, Beaumont Road, Dublin 9, Ireland
| | - Alex Evans
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - James F Wilson
- Centre for Population Health Sciences, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, UK
| | - Brendan Loftus
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
1660
|
Raynaud S, Carbuccia N, Colin C, Adélaïde J, Mozziconacci MJ, Metellus P, Chinot O, Birnbaum D, Chaffanet M, Figarella-Branger D. Absence of R140Q mutation of isocitrate dehydrogenase 2 in gliomas and breast cancers. Oncol Lett 2010; 1:883-884. [PMID: 22966399 DOI: 10.3892/ol_00000156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 06/23/2010] [Indexed: 01/17/2023] Open
Abstract
Somatic mutations of isocitrate dehydrogenase (IDH)-1 and IDH2 proteins have been described in gliomas. The mutations target the R132 amino acid residue and the R172 residue in IDH1 and IDH2, respectively. The same mutations were observed in acute myeloid leukemias with normal karyotype, but a new mutation in IDH2 (R140Q substitution) was detected in malignant myeloid diseases and appears to be the most frequent IDH mutation in these pathologies. To the best of our knowledge, no study thus far has reported the presence of this R140Q mutation in IDH2 in tumors of the nervous system and breast cancers. We evaluated IDH1 and IDH2 exon 4 in 48 low-grade gliomas, 58 primary glioblastomas and 94 breast cancers to evaluate the frequency of mutation and investigated the R140Q substitution in IDH2. The results were compared to our recently obtained results in hematopoietic diseases. The frequency of IDH1 and IDH2 mutations in our panel of gliomas was similar to previously reported mutations. No IDH2 R140 mutation was observed. Compared to hematopoietic diseases, the IDH2 R172 mutation was also more rare and IDH1 mutations more prominent in tumors of the nervous system. No IDH1 or IDH2 mutation was detected in the 94 breast cancer samples. Thus, the IDH2 R140 mutation appears to be restricted to hematopoietic diseases.
Collapse
Affiliation(s)
- Stéphane Raynaud
- Centre de Recherche en Cancérologie de Marseille, Laboratoire d' Oncologie Moléculaire, UMR891 Inserm, Institut Paoli-Calmettes, 13009 Marseille
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1661
|
Rogers RE, Deberardinis RJ, Klesse LJ, Boriack RL, Margraf LR, Rakheja D. Wilms tumor in a child with L-2-hydroxyglutaric aciduria. Pediatr Dev Pathol 2010; 13:408-11. [PMID: 20064066 DOI: 10.2350/09-12-0768-cr.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We report a male infant with L-2-hydroxyglutaric aciduria and Wilms tumor. L-2-hydroxyglutaric aciduria is a rare, autosomal-recessive, inborn error of metabolism characterized by a variable degree of progressive encephalopathy. Of the fewer than 100 cases reported in the literature, at least 9 patients have developed tumors of the central nervous system. To our knowledge, the present case is the 1st example of an extracranial tumor associated with L-2-hydroxyglutaric aciduria. This observation potentially widens the tumor spectrum in this metabolic disorder and may lead to further insight into the relationship between L-2-hydroxyglutaric acid and cellular transformation.
Collapse
Affiliation(s)
- Robert E Rogers
- 1Department of Pathology, Children's Medical Center, Dallas, TX, USA
| | | | | | | | | | | |
Collapse
|
1662
|
Rocquain J, Gelsi-Boyer V, Adélaïde J, Murati A, Carbuccia N, Vey N, Birnbaum D, Mozziconacci MJ, Chaffanet M. Alteration of cohesin genes in myeloid diseases. Am J Hematol 2010; 85:717-9. [PMID: 20687102 DOI: 10.1002/ajh.21798] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
New genes involved in leukemogenesis, such as ASXL1 and TET2, have been identified recently using genomic analyses of DNA from patient samples. We have studied by array-comparative genomic hybridization (aCGH) a series of 167 samples including myelodysplastic syndromes, chronic myelomonocytic leukemias, and acute myeloid leukemias. We found a deletion of the RAD21 and STAG2 genes, which encode two components of the cohesin complex. We propose that these alterations may compromise the cohesin complex and its regulation of the transcription of genes.
Collapse
|
1663
|
IDH1 mutations are detected in 6.6% of 1414 AML patients and are associated with intermediate risk karyotype and unfavorable prognosis in adults younger than 60 years and unmutated NPM1 status. Blood 2010; 116:5486-96. [PMID: 20805365 DOI: 10.1182/blood-2010-02-267955] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in the IDH1 gene at position R132 coding for the enzyme cytosolic isocitrate dehydrogenase are known in glioma and have recently been detected also in acute myeloid leukemia (AML). These mutations result in an accumulation of α-ketoglutarate to R (2)-2-hydroxyglutarate (2HG). To further clarify the role of this mutation in AML, we have analyzed IDH1R132 in 1414 AML patients. We detected IDH1R132 mutations in 93 of 1414 patients (6.6%) with a clear prevalence in intermediate risk karyotype group (10.4%, P < .001). Although IDH1R132 mutations can incidentally occur together with all other molecular markers, there were strong associations with NPM1 mutations (14.2% vs 5.4% in NPM1wt, P < .001) and MLL-PTD (18.2% vs 7.0% in MLLwt, P = .020). IDH1-mutated cases more often had AML without maturation/French-American-British M1 (P < .001), an immature immunophenotype, and female sex (8.7% vs 4.7% in male, P = .003) compared with IDH1wt cases. Prognosis was adversely affected by IDH1 mutations with trend for shorter overall survival (P = .110), a shorter event-free survival (P < .003) and a higher cumulative risk for relapse (P = .001). IDH1 mutations were of independent prognostic relevance for event-free survival (P = .039) especially in the age group < 60 years (P = .028). In conclusion, these data show that IDH1R132 may significantly add information regarding characterization and prognostication in AML.
Collapse
|
1664
|
Seto M. Genomic profiles in B cell lymphoma. Int J Hematol 2010; 92:238-45. [PMID: 20799004 DOI: 10.1007/s12185-010-0662-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 07/29/2010] [Indexed: 10/19/2022]
Abstract
Chromosome translocations found in B cell lymphomas generate typical genome profiles that are characteristic of each disease entity. The mechanisms of lymphomagenesis have been investigated with respect to the involvement of deregulated genes in tumor development, as characterized by the promotion of cell proliferation and the blockage of cell differentiation and anti-apoptosis. It is now well known that chromosome translocation alone does not induce tumor formation. New technology such as array CGH and expression profiling introduced as a result of the human genome project introduced a new paradigm from which to understand the molecular mechanisms of lymphoma development. Analyses with this new technology revealed that genome profiles of disease entities are characteristic and differ from disease to disease, although the genome profile of each patient with the same disease entity varies significantly given the recurrent genetic alterations frequently found. These apparent paradoxical findings are likely to be the cause of heterogeneity of the clinicopathological features associated with the same disease entity. Based on these findings, the future prospect and direction of lymphoma research will be discussed.
Collapse
Affiliation(s)
- Masao Seto
- Division of Molecular Medicine, Department of Cancer Genetics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| |
Collapse
|
1665
|
Collins-Underwood JR, Mullighan CG. Genomic profiling of high-risk acute lymphoblastic leukemia. Leukemia 2010; 24:1676-85. [PMID: 20739952 DOI: 10.1038/leu.2010.177] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is a heterogeneous disease comprising multiple subtypes with different genetic alterations and responses to therapy. Recent genome-wide profiling studies of ALL have identified a number of novel genetic alterations that target key cellular pathways in lymphoid growth and differentiation and are associated with treatment outcome. Notably, genetic alteration of the lymphoid transcription factor gene IKZF1 is a hallmark of multiple subtypes of ALL with poor prognosis, including BCR-ABL1-positive lymphoid leukemia and a subset of 'BCR-ABL1-like' ALL cases that, in addition to IKZF1 alteration, harbor genetic mutations resulting in aberrant lymphoid cytokine receptor signaling, including activating mutations of Janus kinases and rearrangement of cytokine receptor-like factor 2 (CRLF2). Recent insights from genome-wide profiling studies of B-progenitor ALL and the potential for new therapeutic approaches in high-risk disease are discussed.
Collapse
Affiliation(s)
- J R Collins-Underwood
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
1666
|
Rosen DB, Putta S, Covey T, Huang YW, Nolan GP, Cesano A, Minden MD, Fantl WJ. Distinct patterns of DNA damage response and apoptosis correlate with Jak/Stat and PI3kinase response profiles in human acute myelogenous leukemia. PLoS One 2010; 5:e12405. [PMID: 20811632 PMCID: PMC2928279 DOI: 10.1371/journal.pone.0012405] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 07/26/2010] [Indexed: 12/27/2022] Open
Abstract
Background Single cell network profiling (SCNP) utilizing flow cytometry measures alterations in intracellular signaling responses. Here SCNP was used to characterize Acute Myeloid Leukemia (AML) disease subtypes based on survival, DNA damage response and apoptosis pathways. Methodology and Principal Findings Thirty four diagnostic non-M3 AML samples from patients with known clinical outcome were treated with a panel of myeloid growth factors and cytokines, as well as with apoptosis-inducing agents. Analysis of induced Jak/Stat and PI3K pathway responses in blasts from individual patient samples identified subgroups with distinct signaling profiles that were not seen in the absence of a modulator. In vitro exposure of patient samples to etoposide, a DNA damaging agent, revealed three distinct “DNA damage response (DDR)/apoptosis” profiles: 1) AML blasts with a defective DDR and failure to undergo apoptosis; 2) AML blasts with proficient DDR and failure to undergo apoptosis; 3) AML blasts with proficiency in both DDR and apoptosis pathways. Notably, AML samples from clinical responders fell within the “DDR/apoptosis” proficient profile and, as well, had low PI3K and Jak/Stat signaling responses. In contrast, samples from clinical non responders had variable signaling profiles often with in vitro apoptotic failure and elevated PI3K pathway activity. Individual patient samples often harbored multiple, distinct, leukemia-associated cell populations identifiable by their surface marker expression, functional performance of signaling pathway in the face of cytokine or growth factor stimulation, as well as their response to apoptosis-inducing agents. Conclusions and Significance Characterizing and tracking changes in intracellular pathway profiles in cell subpopulations both at baseline and under therapeutic pressure will likely have important clinical applications, potentially informing the selection of beneficial targeted agents, used either alone or in combination with chemotherapy.
Collapse
Affiliation(s)
- David B. Rosen
- Nodality, Inc., South San Francisco, California, United States of America
| | - Santosh Putta
- Nodality, Inc., South San Francisco, California, United States of America
| | - Todd Covey
- Nodality, Inc., South San Francisco, California, United States of America
| | - Ying-Wen Huang
- Nodality, Inc., South San Francisco, California, United States of America
| | - Garry P. Nolan
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
| | - Alessandra Cesano
- Nodality, Inc., South San Francisco, California, United States of America
| | | | - Wendy J. Fantl
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
- Nodality, Inc., South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
1667
|
A single-tube, sensitive multiplex method for screening of isocitrate dehydrogenase 1 (IDH1) mutations. Blood 2010; 116:495-6. [PMID: 20651083 DOI: 10.1182/blood-2010-04-280636] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
1668
|
Dang L, Jin S, Su SM. IDH mutations in glioma and acute myeloid leukemia. Trends Mol Med 2010; 16:387-97. [PMID: 20692206 DOI: 10.1016/j.molmed.2010.07.002] [Citation(s) in RCA: 277] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 07/01/2010] [Indexed: 01/17/2023]
Abstract
The systematic sequencing of glioblastoma multiforme (GBM) genomes has identified the recurrent mutation of IDH1, a gene encoding NADP(+)-dependent isocitrate dehydrogenase 1 (IDH1) that catalyzes the oxidative decarboxylation of isocitrate yielding alpha-ketoglutarate (alpha-KG). Subsequent studies have confirmed recurrent IDH1 and IDH2 mutations in up to 70% of low-grade glioma and secondary GBM, as well as in 10% of acute myeloid leukemia (AML) cases. The heterozygous somatic mutations at arginine R132 (IDH1) and at R140 or R172 (IDH2) in the enzyme active site confer a gain of function to the enzymes, which can both produce the metabolite 2-hydroxyglutarate. This review surveys the prevalence of IDH mutations in cancer and explores current mechanistic understanding of IDH mutations with implications for diagnostic and therapeutic development for the treatment of gliomas and AML.
Collapse
Affiliation(s)
- Lenny Dang
- Agios Pharmaceuticals, 38 Sidney Street, Suite 200, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
1669
|
Rocquain J, Carbuccia N, Trouplin V, Raynaud S, Murati A, Nezri M, Tadrist Z, Olschwang S, Vey N, Birnbaum D, Gelsi-Boyer V, Mozziconacci MJ. Combined mutations of ASXL1, CBL, FLT3, IDH1, IDH2, JAK2, KRAS, NPM1, NRAS, RUNX1, TET2 and WT1 genes in myelodysplastic syndromes and acute myeloid leukemias. BMC Cancer 2010; 10:401. [PMID: 20678218 PMCID: PMC2923633 DOI: 10.1186/1471-2407-10-401] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 08/02/2010] [Indexed: 02/06/2023] Open
Abstract
Background Gene mutation is an important mechanism of myeloid leukemogenesis. However, the number and combination of gene mutated in myeloid malignancies is still a matter of investigation. Methods We searched for mutations in the ASXL1, CBL, FLT3, IDH1, IDH2, JAK2, KRAS, NPM1, NRAS, RUNX1, TET2 and WT1 genes in 65 myelodysplastic syndromes (MDSs) and 64 acute myeloid leukemias (AMLs) without balanced translocation or complex karyotype. Results Mutations in ASXL1 and CBL were frequent in refractory anemia with excess of blasts. Mutations in TET2 occurred with similar frequency in MDSs and AMLs and associated equally with either ASXL1 or NPM1 mutations. Mutations of RUNX1 were mutually exclusive with TET2 and combined with ASXL1 but not with NPM1. Mutations in FLT3 (mutation and internal tandem duplication), IDH1, IDH2, NPM1 and WT1 occurred primarily in AMLs. Conclusion Only 14% MDSs but half AMLs had at least two mutations in the genes studied. Based on the observed combinations and exclusions we classified the 12 genes into four classes and propose a highly speculative model that at least a mutation in one of each class is necessary for developing AML with simple or normal karyotype.
Collapse
Affiliation(s)
- Julien Rocquain
- Laboratoire d'Oncologie Moléculaire, UMR891 Inserm, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1670
|
Andrulis M, Capper D, Luft T, Hartmann C, Zentgraf H, von Deimling A. Detection of isocitrate dehydrogenase 1 mutation R132H in myelodysplastic syndrome by mutation-specific antibody and direct sequencing. Leuk Res 2010; 34:1091-3. [DOI: 10.1016/j.leukres.2010.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/06/2010] [Accepted: 02/13/2010] [Indexed: 10/19/2022]
|
1671
|
Bernheim A. Cytogenomics of cancers: from chromosome to sequence. Mol Oncol 2010; 4:309-22. [PMID: 20599448 PMCID: PMC5527907 DOI: 10.1016/j.molonc.2010.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 06/02/2010] [Indexed: 02/02/2023] Open
Abstract
The role of acquired chromosomal rearrangements in oncogenesis (cytogenomics) and tumor progression is now well established. These alterations are multiple and diverse and the products of these rearranged genes play an essential role in the transformation and growth of cancer cells. The validity of this assumption is demonstrated by the development of specific inhibitors or antibodies that eliminate tumoral cells by targeting some of these changes. Imatinib, an inhibitor of the tyrosine kinase ABL, the prototype of these targeting drugs, is yielding complete remissions in most CML patients. Knowledge of chromosomal abnormalities is becoming an essential contribution to the diagnosis and prognosis of cancers but also for monitoring minimal residual disease or relapse. The concept of the "cytogenetic uniqueness" of each cancer has resulted in personalized treatment. This investigation will expound upon, besides the recurrent genomic alterations, the numerous products of perverted Darwinian selection at the cellular level.
Collapse
Affiliation(s)
- Alain Bernheim
- Laboratoire de Génomique Cellulaire des Cancers, INSERM U985 and Molecular Pathology, Biopathology Department, Institut de Cancérologie Gustave Roussy, 39 rue Camille Desmoulins, 94805 Paris-Villejuif Cedex, France.
| |
Collapse
|
1672
|
Lopez GY, Reitman ZJ, Solomon D, Waldman T, Bigner DD, McLendon RE, Samuels Y, Yan H. IDH1(R132) mutation identified in one human melanoma metastasis, but not correlated with metastases to the brain. Biochem Biophys Res Commun 2010; 398:585-7. [PMID: 20603105 PMCID: PMC2987603 DOI: 10.1016/j.bbrc.2010.06.125] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 06/30/2010] [Indexed: 02/03/2023]
Abstract
Isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) are enzymes which convert isocitrate to alpha-ketoglutarate while reducing nicotinamide adenine dinucleotide phosphate (NADP+to NADPH). IDH1/2 were recently identified as mutated in a large percentage of progressive gliomas. These mutations occur at IDH1(R132) or the homologous IDH2(R172). Melanomas share some genetic features with IDH1/2-mutated gliomas, such as frequent TP53 mutation. We sought to test whether melanoma is associated with IDH1/2 mutations. Seventy-eight human melanoma samples were analyzed for IDH1(R132) and IDH2(R172) mutation status. A somatic, heterozygous IDH1 c.C394T (p.R132C) mutation was identified in one human melanoma metastasis to the lung. Having identified this mutation in one metastasis, we sought to test the hypothesis that certain selective pressures in the brain environment may specifically favor the cell growth or survival of tumor cells with mutations in IDH1/2, regardless of primary tumor site. To address this, we analyzed IDH1(R132) and IDH2(R172) mutation status 53 metastatic brain tumors, including nine melanoma metastases. Results revealed no mutations in any samples. This lack of mutations would suggest that mutations in IDH1(R132) or IDH2(R172) may be necessary for the formation of tumors in a cell-lineage dependent manner, with a particularly strong selective pressure for mutations in progressive gliomas; this also suggests the lack of a particular selective pressure for growth in brain tissue in general. Studies on the cell-lineages of tumors with IDH1/2 mutations may help clarify the role of these mutations in the development of brain tumors.
Collapse
Affiliation(s)
- Giselle Y. Lopez
- Preston Robert Tisch Brain Tumor Center, The Pediatric Brain Tumor Foundation, and The Department of Pathology, Duke University Medical Center, DUMC 3156, Durham, NC 27710, USA
| | - Zachary J. Reitman
- Preston Robert Tisch Brain Tumor Center, The Pediatric Brain Tumor Foundation, and The Department of Pathology, Duke University Medical Center, DUMC 3156, Durham, NC 27710, USA
| | - David Solomon
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, District of Columbia 20057, USA
| | - Todd Waldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, District of Columbia 20057, USA
| | - Darell D. Bigner
- Preston Robert Tisch Brain Tumor Center, The Pediatric Brain Tumor Foundation, and The Department of Pathology, Duke University Medical Center, DUMC 3156, Durham, NC 27710, USA
| | - Roger E. McLendon
- Preston Robert Tisch Brain Tumor Center, The Pediatric Brain Tumor Foundation, and The Department of Pathology, Duke University Medical Center, DUMC 3156, Durham, NC 27710, USA
| | - Yardena Samuels
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-8000, USA
| | - Hai Yan
- Preston Robert Tisch Brain Tumor Center, The Pediatric Brain Tumor Foundation, and The Department of Pathology, Duke University Medical Center, DUMC 3156, Durham, NC 27710, USA
| |
Collapse
|
1673
|
Ocaña A, Pandiella A. Personalized therapies in the cancer "omics" era. Mol Cancer 2010; 9:202. [PMID: 20670437 PMCID: PMC2920264 DOI: 10.1186/1476-4598-9-202] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 07/29/2010] [Indexed: 01/23/2023] Open
Abstract
A molecular hallmark of cancer is the presence of genetic alterations in the tumoral DNA. Understanding how these alterations translate into the malignant phenotype is critical for the adequate treatment of oncologic diseases. Several cancer genome sequencing reports have uncovered the number and identity of proteins and pathways frequently altered in cancer. In this article we discuss how integration of these genomic data with other biological and proteomic studies may help in designing anticancer therapies "a la carte". An important conclusion is that next generation treatment of neoplasias must be based on rational drug combinations that target various pathways and cellular entities that sustain the survival of cancer cells.
Collapse
Affiliation(s)
- Alberto Ocaña
- Servicio de Oncología Médica, Complejo Hospitalario Universitario de Albacete y unidad AECC, Albacete, Spain
| | | |
Collapse
|
1674
|
Sellner L, Capper D, Meyer J, Langhans CD, Hartog CM, Pfeifer H, Serve H, Ho AD, Okun JG, Krämer A, Von Deimling A. Increased levels of 2-hydroxyglutarate in AML patients with IDH1-R132H and IDH2-R140Q mutations. Eur J Haematol 2010; 85:457-9. [DOI: 10.1111/j.1600-0609.2010.01505.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
1675
|
FLT3 internal tandem duplication associates with adverse outcome and gene- and microRNA-expression signatures in patients 60 years of age or older with primary cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. Blood 2010; 116:3622-6. [PMID: 20656931 DOI: 10.1182/blood-2010-05-283648] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The clinical impact of FLT3-internal tandem duplications (ITDs), an adverse prognostic marker in adults aged < 60 years with primary cytogenetically normal acute myeloid leukemia (CN-AML), requires further investigation in older patients. In CN-AML patients aged ≥ 60 years treated on Cancer and Leukemia Group B frontline trials, we found that FLT3-ITD remained associated with shorter disease-free survival (P < .001; hazard ratio = 2.10) and overall survival (P < .001; hazard ratio = 1.97) in multivariable analyses. This impact on shorter disease-free survival and overall survival was in patients aged 60-69 (P < .001, each) rather than in those aged ≥ 70 years. An FLT3-ITD-associated gene-expression signature revealed overexpression of FLT3, homeobox genes (MEIS1, PBX3, HOXB3), and immunotherapeutic tar-gets (WT1, CD33) and underexpression of leukemia-associated (MLLT3, TAL1) and erythropoiesis-associated (GATA3, EPOR, ANK1, HEMGN) genes. An FLT3-ITD-associated microRNA-expression signature included overexpressed miR-155 and underexpressed miR-144 and miR-451. FLT3-ITD identifies older CN-AML patients with molecular high risk and is associated with gene- and microRNA-expression signatures that provide biologic insights for novel therapeutic approaches.
Collapse
|
1676
|
Abdel-Wahab O, Levine RL. Recent advances in the treatment of acute myeloid leukemia. F1000 MEDICINE REPORTS 2010; 2:55. [PMID: 20798782 PMCID: PMC2927833 DOI: 10.3410/m2-55] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Acute myeloid leukemia (AML) is a disorder with significant molecular and clinical heterogeneity. Although there have been clear advances in the identification of somatic genetic and epigenetic alterations present in the malignant cells of patients with AML, translating this knowledge into an integrated view with an impact on the clinical treatment of AML has been slower to evolve. Recent clinical advances in the treatment of AML include studies demonstrating the benefit of dose-intense daunorubicin therapy in induction chemotherapy for patients of any age. We also review use of the DNA methyltransferase inhibitor azacitidine for treatment of AML in elderly patients as well as a study of global patterns of DNA methylation in patients with AML. Lastly, we review a recent assessment of the role of allogeneic hematopoietic stem cell transplantation in AML in first complete remission.
Collapse
Affiliation(s)
- Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer CenterNew York, NY 10065USA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer CenterNew York, NY 10065USA
| |
Collapse
|
1677
|
The prognostic significance of IDH1 mutations in younger adult patients with acute myeloid leukemia is dependent on FLT3/ITD status. Blood 2010; 116:2779-82. [PMID: 20651067 DOI: 10.1182/blood-2010-02-270926] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in the isocitrate dehydrogenase gene (IDH1) were recently described in patients with acute myeloid leukemia (AML). To investigate their prognostic significance we determined IDH1 status in 1333 young adult patients, excluding acute promyelocytic leukemia, treated in the United Kingdom MRC AML10 and 12 trials. A mutation was detected in 107 patients (8%). Most IDH1(+) patients (91%) had intermediate-risk cytogenetics. Mutations correlated significantly with an NPM1 mutation (P < .0001) but not a FLT3/ITD (P = .9). No difference in outcome between IDH1(+) and IDH1(-) patients was found in univariate or multivariate analysis, or if the results were stratified by NPM1 mutation status. However, when stratified by FLT3/ITD status, an IDH1 mutation was an independent adverse factor for relapse in FLT3/ITD(-) patients (P = .008) and a favorable factor in FLT3/ITD(+) patients (P = .02). These results suggest that metabolic changes induced by an IDH1 mutation may influence chemoresistance in a manner that is context-dependent.
Collapse
|
1678
|
Boissel N, Nibourel O, Renneville A, Gardin C, Reman O, Contentin N, Bordessoule D, Pautas C, de Revel T, Quesnel B, Huchette P, Philippe N, Geffroy S, Terre C, Thomas X, Castaigne S, Dombret H, Preudhomme C. Prognostic impact of isocitrate dehydrogenase enzyme isoforms 1 and 2 mutations in acute myeloid leukemia: a study by the Acute Leukemia French Association group. J Clin Oncol 2010; 28:3717-23. [PMID: 20625116 DOI: 10.1200/jco.2010.28.2285] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Recently, whole-genome sequencing in acute myeloid leukemia (AML) identified recurrent isocitrate dehydrogenase enzyme isoform (IDH1) mutations (IDH1m), previously reported to be involved in gliomas as well as IDH2 mutations (IDH2m). The prognosis of both IDH1m and IDH2m in AML remains unclear. PATIENTS AND METHODS The prevalence and the prognostic impact of R132 IDH1 and R172 IDH2 mutations were evaluated in a cohort of 520 adults with AML homogeneously treated in the French Acute Leukemia French Association (ALFA) -9801 and -9802 trials. RESULTS The prevalence of IDH1m and IDH2m was 9.6% and 3.0%, respectively, mostly associated with normal cytogenetics (CN). In patients with CN-AML, IDH1m were associated with NPM1m (P = .008), but exclusive of CEBPAm (P = .03). In contrary, no other mutations were detected in IDH2m patients. In CN-AML patients, IDH1m were found in 19% of favorable genotype ([NPM1m or CEBPAm] without fms-related tyrosine kinase 3 [FLT3] internal tandem duplication [ITD]) and were associated with a higher risk of relapse (RR) and a shorter overall survival (OS). Favorable genotype in CN-AML could thus be defined by the association of NPM1m or CEBPAm with neither FLT3-ITD nor IDH1m. In IDH2m CN-AML patients, we observed a higher risk of induction failure, a higher RR and a shorter OS. In multivariate analysis, age, WBC count, the four-gene favorable genotype and IDH2m were independently associated with a higher RR and a shorter OS. CONCLUSION Contrarily to what is reported in gliomas, IDH1m and IDH2m in AML are associated with a poor prognosis. Screening of IDH1m could help to identify high-risk patients within the subset of CN-AML with a favorable genotype.
Collapse
|
1679
|
Kloosterhof NK, Bralten LBC, Dubbink HJ, French PJ, van den Bent MJ. Isocitrate dehydrogenase-1 mutations: a fundamentally new understanding of diffuse glioma? Lancet Oncol 2010; 12:83-91. [PMID: 20615753 DOI: 10.1016/s1470-2045(10)70053-x] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The discovery of somatic mutations in the gene encoding isocitrate dehydrogenase-1 (IDH1) in glioblastomas was remarkable because the enzyme was not previously identified with any known oncogenic pathway. IDH1 is mutated in up to 75% of grade II and grade III diffuse gliomas. Apart from acute myeloid leukaemia, other tumour types do not carry IDH1 mutations. Mutations in a homologous gene, IDH2, have also been identified, although they are much rarer. Although TP53 mutations and 1p/19q codeletions are mutually exclusive in gliomas, in both of these genotypes IDH1 mutations are common. IDH1 and IDH2 mutations are early events in the development of gliomas. Moreover, IDH1 and IDH2 mutations are a major prognostic marker for overall and progression-free survival in grade II-IV gliomas. Mutated IDH1 has an altered catalytic activity that results in the accumulation of 2-hydroxyglutarate. Molecularly, IDH1 and IDH2 mutations are heterozygous, affect only a single codon, and rarely occur together. Because IDH1 does not belong to a traditional oncogenic pathway and is specifically and commonly mutated in gliomas, the altered enzymatic activity of IDH1 may provide a fundamentally new understanding of diffuse glioma.
Collapse
Affiliation(s)
- Nanne K Kloosterhof
- Department of Neurology and Neuro-Oncology, Daniel den Hoed Cancer Center, Netherlands
| | | | | | | | | |
Collapse
|
1680
|
The mutation spectrum revealed by paired genome sequences from a lung cancer patient. Nature 2010; 465:473-7. [PMID: 20505728 DOI: 10.1038/nature09004] [Citation(s) in RCA: 385] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 03/10/2010] [Indexed: 01/11/2023]
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide, with non-small-cell lung carcinomas in smokers being the predominant form of the disease. Although previous studies have identified important common somatic mutations in lung cancers, they have primarily focused on a limited set of genes and have thus provided a constrained view of the mutational spectrum. Recent cancer sequencing efforts have used next-generation sequencing technologies to provide a genome-wide view of mutations in leukaemia, breast cancer and cancer cell lines. Here we present the complete sequences of a primary lung tumour (60x coverage) and adjacent normal tissue (46x). Comparing the two genomes, we identify a wide variety of somatic variations, including >50,000 high-confidence single nucleotide variants. We validated 530 somatic single nucleotide variants in this tumour, including one in the KRAS proto-oncogene and 391 others in coding regions, as well as 43 large-scale structural variations. These constitute a large set of new somatic mutations and yield an estimated 17.7 per megabase genome-wide somatic mutation rate. Notably, we observe a distinct pattern of selection against mutations within expressed genes compared to non-expressed genes and in promoter regions up to 5 kilobases upstream of all protein-coding genes. Furthermore, we observe a higher rate of amino acid-changing mutations in kinase genes. We present a comprehensive view of somatic alterations in a single lung tumour, and provide the first evidence, to our knowledge, of distinct selective pressures present within the tumour environment.
Collapse
|
1681
|
Abstract
BACKGROUND Autoimmune thyroid diseases (AITD), including Graves' disease and Hashimoto's thyroiditis, arise due to complex interactions between environmental and genetic factors. There are sound data coming from epidemiological, family, and twin studies demonstrating a strong genetic influence on the development of AITD. In this review we summarize the new findings on the genetic susceptibility to AITD focusing on emerging mechanisms of susceptibility. SUMMARY Candidate gene analysis, whole-genome linkage screening, genome-wide association studies, and whole-genome sequencing are the major technologies that have advanced this field, leading to the identification of at least seven genes whose variants have been associated with AITD. One of the major ones is the HLA-DR gene locus. Recently, it was shown that substitution of the neutral amino acids Ala or Gln with arginine at position beta 74 in the HLA-DR peptide-binding pocket is key to the etiology of both Graves' disease and Hashimoto's thyroiditis. Several other genes have also been shown to confer susceptibility to AITD. These can be classified into two groups: (i) immune regulatory genes (cytotoxic T lymphocyte-associated protein 4, CD40, protein tyrosine phosphatase-22, and CD25) and (ii) thyroid-specific genes (thyroglobulin and thyrotropin receptor genes). The influence of individual genes on the development of AITD when assessed in a population appears to be weaker than would be expected from the data showing strong genetic susceptibility to AITD. Two possible mechanisms explaining this discrepancy are gene-gene interactions and subset effects. CONCLUSIONS Significant progress has been made in our understanding of the immunogenetic mechanisms leading to thyroid autoimmunity. For the first time we are beginning to unravel these mechanisms at the molecular level. It is hoped that these new data will be translated into novel therapies and prevention strategies in AITD, such as costimulatory blockade.
Collapse
Affiliation(s)
- Yaron Tomer
- Division of Endocrinology, Department of Medicine, Mount Sinai Medical Center, New York, New York 10029, USA.
| |
Collapse
|
1682
|
Tefferi A, Lasho TL, Abdel-Wahab O, Guglielmelli P, Patel J, Caramazza D, Pieri L, Finke CM, Kilpivaara O, Wadleigh M, Mai M, McClure RF, Gilliland DG, Levine RL, Pardanani A, Vannucchi AM. IDH1 and IDH2 mutation studies in 1473 patients with chronic-, fibrotic- or blast-phase essential thrombocythemia, polycythemia vera or myelofibrosis. Leukemia 2010; 24:1302-9. [PMID: 20508616 PMCID: PMC3035975 DOI: 10.1038/leu.2010.113] [Citation(s) in RCA: 267] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 04/23/2010] [Indexed: 11/29/2022]
Abstract
In a multi-institutional collaborative project, 1473 patients with myeloproliferative neoplasms (MPN) were screened for isocitrate dehydrogenase 1 (IDH1)/IDH2 mutations: 594 essential thrombocythemia (ET), 421 polycythemia vera (PV), 312 primary myelofibrosis (PMF), 95 post-PV/ET MF and 51 blast-phase MPN. A total of 38 IDH mutations (18 IDH1-R132, 19 IDH2-R140 and 1 IDH2-R172) were detected: 5 (0.8%) ET, 8 (1.9%) PV, 13 (4.2%) PMF, 1 (1%) post-PV/ET MF and 11 (21.6%) blast-phase MPN (P<0.01). Mutant IDH was documented in the presence or absence of JAK2, MPL and TET2 mutations, with similar mutational frequencies. However, IDH-mutated patients were more likely to be nullizygous for JAK2 46/1 haplotype, especially in PMF (P=0.04), and less likely to display complex karyotype, in blast-phase disease (P<0.01). In chronic-phase PMF, JAK2 46/1 haplotype nullizygosity (P<0.01; hazard ratio (HR) 2.9, 95% confidence interval (CI) 1.7-5.2), but not IDH mutational status (P=0.55; HR 1.3, 95% CI 0.5-3.4), had an adverse effect on survival. This was confirmed by multivariable analysis. In contrast, in both blast-phase PMF (P=0.04) and blast-phase MPN (P=0.01), the presence of an IDH mutation predicted worse survival. The current study clarifies disease- and stage-specific IDH mutation incidence and prognostic relevance in MPN and provides additional evidence for the biological effect of distinct JAK2 haplotypes.
Collapse
Affiliation(s)
- A Tefferi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1683
|
Paschka P, Schlenk RF, Gaidzik VI, Habdank M, Krönke J, Bullinger L, Späth D, Kayser S, Zucknick M, Götze K, Horst HA, Germing U, Döhner H, Döhner K. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol 2010; 28:3636-43. [PMID: 20567020 DOI: 10.1200/jco.2010.28.3762] [Citation(s) in RCA: 639] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To analyze the frequency and prognostic impact of isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) mutations in acute myeloid leukemia (AML). PATIENTS AND METHODS We studied 805 adults (age range, 16 to 60 years) with AML enrolled on German-Austrian AML Study Group (AMLSG) treatment trials AML HD98A and APL HD95 for mutations in exon 4 of IDH1 and IDH2. Patients were also studied for NPM1, FLT3, MLL, and CEBPA mutations. The median follow-up for survival was 6.3 years. RESULTS IDH mutations were found in 129 patients (16.0%) -IDH1 in 61 patients (7.6%), and IDH2 in 70 patients (8.7%). Two patients had both IDH1 and IDH2 mutations. All but one IDH1 mutation caused substitutions of residue R132; IDH2 mutations caused changes of R140 (n = 48) or R172 (n = 22). IDH mutations were associated with older age (P < .001; effect conferred by IDH2 only); lower WBC (P = .04); higher platelets (P < .001); cytogenetically normal (CN) -AML (P< .001); and NPM1 mutations, in particular with the genotype of mutated NPM1 without FLT3 internal tandem duplication (ITD; P < .001). In patients with CN-AML with the latter genotype, IDH mutations adversely impacted relapse-free survival (RFS; P = .02) and overall survival (P = .03), whereas outcome was not affected in patients with CN-AML who lacked this genotype. In CN-AML, multivariable analyses revealed a significant interaction between IDH mutation and the genotype of mutated NPM1 without FLT3-ITD (ie, the adverse impact of IDH mutation [RFS]; P = .046 was restricted to this patient subset). CONCLUSION IDH1 and IDH2 mutations are recurring genetic changes in AML. They constitute a poor prognostic factor in CN-AML with mutated NPM1 without FLT3-ITD, which allows refined risk stratification of this AML subset.
Collapse
|
1684
|
Sonoda Y, Tominaga T. 2-hydroxyglutarate accumulation caused by IDH mutation is involved in the formation of malignant gliomas. Expert Rev Neurother 2010; 10:487-9. [PMID: 20367200 DOI: 10.1586/ern.10.19] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
1685
|
Abstract
Myelodysplastic syndrome (MDS) disorders are clonal diseases that often carry stereotypic chromosomal abnormalities. A smaller proportion of cases harbor point mutations that activate oncogenes or inactivate tumor suppressor genes. New technologies have accelerated the pace of discovery and are responsible for the identification of novel genetic mutations associated with MDS and other myeloid neoplasms. These discoveries have identified novel mechanisms in the pathogenesis of MDS. This article touches on the better known genetic abnormalities in MDS and explains in greater detail those that have been discovered more recently. Understanding how mutations lead to MDS and how they might cooperate with each other has become more complicated as the number of MDS-associated genetic abnormalities has grown. In some cases, these mutations have prognostic significance that could improve upon the various prognostic scoring systems in common clinical use.
Collapse
Affiliation(s)
- Rafael Bejar
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | |
Collapse
|
1686
|
Reitman ZJ, Olby NJ, Mariani CL, Thomas R, Breen M, Bigner DD, McLendon RE, Yan H. IDH1 and IDH2 hotspot mutations are not found in canine glioma. Int J Cancer 2010; 127:245-6. [PMID: 19877121 DOI: 10.1002/ijc.25017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
1687
|
Abstract
The identification of an increasing number of cancer genes is opening up unexpected scenarios in cancer genetics. When analyzed for their systemic properties, these genes show a general fragility towards perturbation. A recent paper published in BMC Biology shows how the founder domains of known cancer genes emerged at two macroevolutionary transitions - the advent of the first cell and the transition to metazoan multicellularity. See research article http://www.biomedcentral.com/1741-7007/8/66
Collapse
Affiliation(s)
- Francesca D Ciccarelli
- Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus, 20139 Milan, Italy.
| |
Collapse
|
1688
|
Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value. Blood 2010; 116:2122-6. [PMID: 20538800 DOI: 10.1182/blood-2009-11-250878] [Citation(s) in RCA: 297] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Somatic mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) were recently demonstrated in acute myeloid leukemia (AML), but their prevalence and prognostic impact remain to be explored in large extensively characterized AML series, and also in various other hematologic malignancies. Here, we demonstrate in 893 newly diagnosed cases of AML mutations in the IDH1 (6%) and IDH2 (11%) genes. Moreover, we identified IDH mutations in 2 JAK2 V617F myeloproliferative neoplasias (n = 96), a single case of acute lymphoblastic leukemia (n = 96), and none in chronic myeloid leukemias (n = 81). In AML, IDH1 and IDH2 mutations are more common among AML with normal karyotype and NPM1(mutant) genotypes. IDH1 mutation status is an unfavorable prognostic factor as regards survival in a composite genotypic subset lacking FLT3(ITD) and NPM1(mutant). Thus, IDH1 and IDH2 mutations are common genetic aberrations in AML, and IDH1 mutations may carry prognostic value in distinct subtypes of AML.
Collapse
|
1689
|
|
1690
|
Koboldt DC, Ding L, Mardis ER, Wilson RK. Challenges of sequencing human genomes. Brief Bioinform 2010; 11:484-98. [PMID: 20519329 DOI: 10.1093/bib/bbq016] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Massively parallel sequencing technologies continue to alter the study of human genetics. As the cost of sequencing declines, next-generation sequencing (NGS) instruments and datasets will become increasingly accessible to the wider research community. Investigators are understandably eager to harness the power of these new technologies. Sequencing human genomes on these platforms, however, presents numerous production and bioinformatics challenges. Production issues like sample contamination, library chimaeras and variable run quality have become increasingly problematic in the transition from technology development lab to production floor. Analysis of NGS data, too, remains challenging, particularly given the short-read lengths (35-250 bp) and sheer volume of data. The development of streamlined, highly automated pipelines for data analysis is critical for transition from technology adoption to accelerated research and publication. This review aims to describe the state of current NGS technologies, as well as the strategies that enable NGS users to characterize the full spectrum of DNA sequence variation in humans.
Collapse
Affiliation(s)
- Daniel C Koboldt
- The Genome Center at Washington University, St. Louis, Missouri 63108, USA.
| | | | | | | |
Collapse
|
1691
|
Raca G, Jackson C, Warman B, Bair T, Schimmenti LA. Next generation sequencing in research and diagnostics of ocular birth defects. Mol Genet Metab 2010; 100:184-92. [PMID: 20359920 PMCID: PMC2871986 DOI: 10.1016/j.ymgme.2010.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 03/08/2010] [Accepted: 03/08/2010] [Indexed: 10/19/2022]
Abstract
Sequence capture enrichment (SCE) strategies and massively parallel next generation sequencing (NGS) are expected to increase the rate of gene discovery for genetically heterogeneous hereditary diseases, but at present, there are very few examples of successful application of these technologic advances in translational research and clinical testing. Our study assessed whether array based target enrichment followed by re-sequencing on the Roche Genome Sequencer FLX (GS FLX) system could be used for novel mutation identification in more than 1000 exons representing 100 candidate genes for ocular birth defects, and as a control, whether these methods could detect two known mutations in the PAX2 gene. We assayed two samples with heterozygous sequence changes in PAX2 that were previously identified by conventional Sanger sequencing. These changes were a c.527G>C (S176T) substitution and a single basepair deletion c.77delG. The nucleotide substitution c.527G>C was easily identified by NGS. A deletion of one base in a long polyG stretch (c.77delG) was not registered initially by the GS Reference Mapper, but was detected in repeated analysis using two different software packages. Different approaches were evaluated for distinguishing false positives (sequencing errors) and benign polymorphisms from potentially pathogenic sequence changes that require further follow-up. Although improvements will be necessary in accuracy, speed, ease of data analysis and cost, our study confirms that NGS can be used in research and diagnostic settings to screen for mutations in hundreds of loci in genetically heterogeneous human diseases.
Collapse
Affiliation(s)
- Gordana Raca
- UW Cytogenetic Services, Wisconsin State Laboratory of Hygiene, 465 Henry Mall, Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
1692
|
Tefferi A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia 2010; 24:1128-38. [PMID: 20428194 PMCID: PMC3035972 DOI: 10.1038/leu.2010.69] [Citation(s) in RCA: 415] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 03/18/2010] [Indexed: 12/11/2022]
Abstract
Myeloproliferative neoplasms (MPNs) originate from genetically transformed hematopoietic stem cells that retain the capacity for multilineage differentiation and effective myelopoiesis. Beginning in early 2005, a number of novel mutations involving Janus kinase 2 (JAK2), Myeloproliferative Leukemia Virus (MPL), TET oncogene family member 2 (TET2), Additional Sex Combs-Like 1 (ASXL1), Casitas B-lineage lymphoma proto-oncogene (CBL), Isocitrate dehydrogenase (IDH) and IKAROS family zinc finger 1 (IKZF1) have been described in BCR-ABL1-negative MPNs. However, none of these mutations were MPN specific, displayed mutual exclusivity or could be traced back to a common ancestral clone. JAK2 and MPL mutations appear to exert a phenotype-modifying effect and are distinctly associated with polycythemia vera, essential thrombocythemia and primary myelofibrosis; the corresponding mutational frequencies are approximately 99, 55 and 65% for JAK2 and 0, 3 and 10% for MPL mutations. The incidence of TET2, ASXL1, CBL, IDH or IKZF1 mutations in these disorders ranges from 0 to 17%; these latter mutations are more common in chronic (TET2, ASXL1, CBL) or juvenile (CBL) myelomonocytic leukemias, mastocytosis (TET2), myelodysplastic syndromes (TET2, ASXL1) and secondary acute myeloid leukemia, including blast-phase MPN (IDH, ASXL1, IKZF1). The functional consequences of MPN-associated mutations include unregulated JAK-STAT (Janus kinase/signal transducer and activator of transcription) signaling, epigenetic modulation of transcription and abnormal accumulation of oncoproteins. However, it is not clear as to whether and how these abnormalities contribute to disease initiation, clonal evolution or blastic transformation.
Collapse
Affiliation(s)
- A Tefferi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
1693
|
Reitman ZJ, Yan H. Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J Natl Cancer Inst 2010; 102:932-41. [PMID: 20513808 DOI: 10.1093/jnci/djq187] [Citation(s) in RCA: 406] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of metabolism is a common phenomenon in cancer cells. The NADP(+)-dependent isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2) function at a crossroads of cellular metabolism in lipid synthesis, cellular defense against oxidative stress, oxidative respiration, and oxygen-sensing signal transduction. We review the normal functions of the encoded enzymes, frequent mutations of IDH1 and IDH2 recently found in human cancers, and possible roles for the mutated enzymes in human disease. IDH1 and IDH2 mutations occur frequently in some types of World Health Organization grades 2-4 gliomas and in acute myeloid leukemias with normal karyotype. IDH1 and IDH2 mutations are remarkably specific to codons that encode conserved functionally important arginines in the active site of each enzyme. To date, all IDH1 mutations have been identified at the Arg132 codon. Mutations in IDH2 have been identified at the Arg140 codon, as well as at Arg172, which is aligned with IDH1 Arg132. IDH1 and IDH2 mutations are usually heterozygous in cancer, and they appear to confer a neomorphic enzyme activity for the enzymes to catalyze the production of D-2-hydroxyglutarate. Study of alterations in these metabolic enzymes may provide insights into the metabolism of cancer cells and uncover novel avenues for development of anticancer therapeutics.
Collapse
Affiliation(s)
- Zachary J Reitman
- Department of Pathology, The Pediatric Brain Tumor Foundation Institute, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
1694
|
Fu Y, Huang R, Du J, Yang R, An N, Liang A. Glioma-derived mutations in IDH: from mechanism to potential therapy. Biochem Biophys Res Commun 2010; 397:127-30. [PMID: 20510884 DOI: 10.1016/j.bbrc.2010.05.115] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 05/24/2010] [Indexed: 10/19/2022]
Abstract
Heterozygous mutations in either the R132 residue of isocitrate dehydrogenase I (IDH1) or the R172 residue of IDH2 in human gliomas were recently highlighted. Heterozygous mutations in the IDH1 occur in the majority of grade II and grade III gliomas and secondary glioblastomas and change the structure of the enzyme, which diminishes its ability to convert isocitrate (ICT) to alpha-ketoglutarate (alpha-KG) and provides it with a newly acquired ability to convert alpha-KG to R(-)-2-hydroxyglutarate [R(-)-2HG]. The IDH1 and IDH2 mutations are relevant to the progression of gliomas, the prognosis and treatment of the patients with gliomas harboring the mutation. In this paper, we reviewed these recent findings which were essential for the further exploration of human glioma cancer and might be responsible for developing a newer and more effective therapeutic approach in clinical treatment of this cancer.
Collapse
Affiliation(s)
- Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, PR China.
| | | | | | | | | | | |
Collapse
|
1695
|
Jäger R, Gisslinger H, Passamonti F, Rumi E, Berg T, Gisslinger B, Pietra D, Harutyunyan A, Klampfl T, Olcaydu D, Cazzola M, Kralovics R. Deletions of the transcription factor Ikaros in myeloproliferative neoplasms. Leukemia 2010; 24:1290-8. [DOI: 10.1038/leu.2010.99] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
1696
|
Anderson MW, Schrijver I. Next generation DNA sequencing and the future of genomic medicine. Genes (Basel) 2010; 1:38-69. [PMID: 24710010 PMCID: PMC3960862 DOI: 10.3390/genes1010038] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 05/20/2010] [Accepted: 05/21/2010] [Indexed: 12/20/2022] Open
Abstract
In the years since the first complete human genome sequence was reported, there has been a rapid development of technologies to facilitate high-throughput sequence analysis of DNA (termed “next-generation” sequencing). These novel approaches to DNA sequencing offer the promise of complete genomic analysis at a cost feasible for routine clinical diagnostics. However, the ability to more thoroughly interrogate genomic sequence raises a number of important issues with regard to result interpretation, laboratory workflow, data storage, and ethical considerations. This review describes the current high-throughput sequencing platforms commercially available, and compares the inherent advantages and disadvantages of each. The potential applications for clinical diagnostics are considered, as well as the need for software and analysis tools to interpret the vast amount of data generated. Finally, we discuss the clinical and ethical implications of the wealth of genetic information generated by these methods. Despite the challenges, we anticipate that the evolution and refinement of high-throughput DNA sequencing technologies will catalyze a new era of personalized medicine based on individualized genomic analysis.
Collapse
Affiliation(s)
- Matthew W Anderson
- Department of Pathology, Stanford University Medical Center, 300 Pasteur Drive, Room L235, Stanford, CA 94305-5627, USA.
| | - Iris Schrijver
- Department of Pathology, Stanford University Medical Center, 300 Pasteur Drive, Room L235, Stanford, CA 94305-5627, USA.
| |
Collapse
|
1697
|
Thol F, Weissinger EM, Krauter J, Wagner K, Damm F, Wichmann M, Göhring G, Schumann C, Bug G, Ottmann O, Hofmann WK, Schlegelberger B, Ganser A, Heuser M. IDH1 mutations in patients with myelodysplastic syndromes are associated with an unfavorable prognosis. Haematologica 2010; 95:1668-74. [PMID: 20494930 DOI: 10.3324/haematol.2010.025494] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Myelodysplastic syndromes are a heterogeneous group of hematopoietic stem cell disorders with a high propensity to transform into acute myeloid leukemia. Heterozygous missense mutations in IDH1 at position R132 and in IDH2 at positions R140 and R172 have recently been reported in acute myeloid leukemia. However, little is known about the incidence and prognostic impact of IDH1 and IDH2 mutations in myelodysplastic syndromes. DESIGN AND METHODS We examined 193 patients with myelodysplastic syndromes and 53 patients with acute myeloid leukemia arising from myelodysplastic syndromes for mutations in IDH1 (R132), IDH2 (R172 and R140), and NPM1 by direct sequencing. RESULTS We found that mutations in IDH1 occurred with a frequency of 3.6% in myelodysplastic syndromes (7 mutations in 193 patients) and 7.5% in acute myeloid leukemia following myelodysplastic syndromes (4 mutations in 53 patients). Three mutations in codon R140 of IDH2 and one mutation in codon R172 were found in patients with acute myeloid leukemia following myelodysplastic syndromes (7.5%). No IDH2 R140 or R172 mutations were identified in patients with myelodysplastic syndromes. The presence of IDH1 mutations was associated with a shorter overall survival (HR 3.20; 95% CI 1.47-6.99) and a higher rate of transformation into acute myeloid leukemia (67% versus 28%, P=0.04). In multivariate analysis when considering karyotype, transfusion dependence and International Prognostic Scoring System score, IDH1 mutations remained an independent prognostic marker in myelodysplastic syndromes (HR 3.57; 95% CI 1.59-8.02; P=0.002). CONCLUSIONS These results suggest that IDH1 mutations are recurrent molecular aberrations in patients with myelodysplastic syndromes, and may become useful as a poor risk marker in these patients. These findings await validation in prospective trials.
Collapse
Affiliation(s)
- Felicitas Thol
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg Strasse 1, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1698
|
WHO-defined 'myelodysplastic syndrome with isolated del(5q)' in 88 consecutive patients: survival data, leukemic transformation rates and prevalence of JAK2, MPL and IDH mutations. Leukemia 2010; 24:1283-9. [PMID: 20485371 PMCID: PMC3035970 DOI: 10.1038/leu.2010.105] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The 2008 World Health Organization (WHO) criteria were used to identify 88 consecutive Mayo Clinic patients with ‘myelodysplastic syndrome with isolated del(5q)' (median age 74 years; 60 females). In all, 60 (68%) patients were followed up to the time of their death. Overall median survival was 66 months; leukemic transformation was documented in five (5.7%) cases. Multivariable analysis identified age ⩾70 years (P=0.01), transfusion need at diagnosis (P=0.04) and dysgranulopoiesis (P=0.02) as independent predictors of shortened survival; the presence of zero (low risk), one (intermediate risk) or ⩾2 (high risk) risk factors corresponded to median survivals of 102, 52 and 27 months, respectively. Janus kinase 2 (JAK2), thrombopoietin receptor (MPL), isocitrate dehydrogenase 1 (IDH1) and IDH2 mutational analysis was performed on archived bone marrows in 78 patients; JAK2V617F and MPLW515L mutations were shown in five (6.4%) and three (3.8%) patients, respectively, and did not seem to affect phenotype or prognosis. IDH mutations were not detected. Survival was not affected by serum ferritin and there were no instances of death directly related to iron overload. The current study is unique in its strict adherence to WHO criteria for selecting study patients and providing information on long-term survival, practical prognostic factors, baseline risk of leukemic transformation and the prevalence of JAK2, MPL and IDH mutations.
Collapse
|
1699
|
Recurrent IDH mutations in high-risk myelodysplastic syndrome or acute myeloid leukemia with isolated del(5q). Leukemia 2010; 24:1370-2. [PMID: 20485375 DOI: 10.1038/leu.2010.98] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
1700
|
|